1
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Zablotska LB, Little MP, Hamada N. Revisiting an Inverse Dose-Fractionation Effect of Ionizing Radiation Exposure for Ischemic Heart Disease: Insights from Recent Studies. Radiat Res 2024; 202:80-86. [PMID: 38772552 PMCID: PMC11260496 DOI: 10.1667/rade-00230.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
Over the last two decades, there has been emerging evidence suggesting that ionizing radiation exposures could be associated with elevated risks of cardiovascular disease (CVD), particularly ischemic heart disease (IHD). Excess CVD risks have been observed in a number of exposed groups, with generally similar risk estimates both at low and high radiation doses and dose rates. In 2014, we reported for the first time significantly higher risks of IHD mortality when radiation doses were delivered over a protracted period of time (an inverse dose-fractionation effect) in the Canadian Fluoroscopy Cohort Study. Here we review the current evidence on the dose-fractionation effect of radiation exposure, discuss potential implication for radiation protection policies and suggest further directions for research in this area.
Collapse
Affiliation(s)
- Lydia B Zablotska
- Department of Epidemiology & Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland; Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, United Kingdom
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
3
|
Little MP, Boerma M, Bernier MO, Azizova TV, Zablotska LB, Einstein AJ, Hamada N. Effects of confounding and effect-modifying lifestyle, environmental and medical factors on risk of radiation-associated cardiovascular disease. BMC Public Health 2024; 24:1601. [PMID: 38879521 PMCID: PMC11179258 DOI: 10.1186/s12889-024-18701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/23/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide. It has been known for some considerable time that radiation is associated with excess risk of CVD. A recent systematic review of radiation and CVD highlighted substantial inter-study heterogeneity in effect, possibly a result of confounding or modifications of radiation effect by non-radiation factors, in particular by the major lifestyle/environmental/medical risk factors and latent period. METHODS We assessed effects of confounding by lifestyle/environmental/medical risk factors on radiation-associated CVD and investigated evidence for modifying effects of these variables on CVD radiation dose-response, using data assembled for a recent systematic review. RESULTS There are 43 epidemiologic studies which are informative on effects of adjustment for confounding or risk modifying factors on radiation-associated CVD. Of these 22 were studies of groups exposed to substantial doses of medical radiation for therapy or diagnosis. The remaining 21 studies were of groups exposed at much lower levels of dose and/or dose rate. Only four studies suggest substantial effects of adjustment for lifestyle/environmental/medical risk factors on radiation risk of CVD; however, there were also substantial uncertainties in the estimates in all of these studies. There are fewer suggestions of effects that modify the radiation dose response; only two studies, both at lower levels of dose, report the most serious level of modifying effect. CONCLUSIONS There are still large uncertainties about confounding factors or lifestyle/environmental/medical variables that may influence radiation-associated CVD, although indications are that there are not many studies in which there are substantial confounding effects of these risk factors.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Room 7E546, 9609 Medical Center Drive MSC 9778, Bethesda, MD, 20892-9778, USA.
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK.
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marie-Odile Bernier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay Aux Roses, France
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Chelyabinsk Region, Ozyorskoe Shosse 19, Ozyorsk, 456780, Russia
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, 550 16th St 2nd floor, San Francisco, CA, 94143, USA
| | - Andrew J Einstein
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| |
Collapse
|
4
|
Dauer LT, Walsh L, Mumma MT, Cohen SS, Golden AP, Howard SC, Roemer GE, Boice JD. Moon, Mars and Minds: Evaluating Parkinson's disease mortality among U.S. radiation workers and veterans in the million person study of low-dose effects. Z Med Phys 2024; 34:100-110. [PMID: 37537100 PMCID: PMC10919963 DOI: 10.1016/j.zemedi.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Radiation is one of the most important stressors related to missions in space beyond Earth's orbit. Epidemiologic studies of exposed workers have reported elevated rates of Parkinson's disease. The importance of cognitive dysfunction related to low-dose rate radiation in humans is not defined. A meta-analysis was conducted of six cohorts in the Million Person Study (MPS) of low-dose health effects to learn whether there is consistent evidence that Parkinson's disease is associated with radiation dose to brain. MATERIALS AND METHODS The MPS evaluates all causes of death among U.S. radiation workers and veterans, including Parkinson's disease. Systematic and consistent methods are applied to study all categories of workers including medical radiation workers, industrial radiographers, nuclear power plant workers, atomic veterans, and Manhattan Projects workers at the Los Alamos National Laboratory and at Rocky Flats. Consistent methods for all cohorts are used to estimate organ-specific doses and to obtain vital status and cause of death. RESULTS The meta-analysis include 6 cohorts within the MPS, consisting of 517,608 workers and 17,219,001 person-years of observation. The mean dose to brain ranged from 6.9 to 47.6 mGy and the maximum dose from 0.76 to 2.7 Gy. Five of the 6 cohorts revealed positive associations with Parkinson's disease. The overall summary estimate from the meta-analysis was statistically significant based on 1573 deaths due to Parkinson's disease. The summary excess relative risk at 100 mGy was 0.17 (95% CI: 0.05; 0.29). CONCLUSIONS Parkinson's disease was positively associated with radiation in the MPS cohorts indicating the need for careful evaluation as to causality in other studies, delineation of possible mechanisms, and assessing possible implications for space travel as well as radiation protection guidance for terrestrial workers.
Collapse
Affiliation(s)
- Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Linda Walsh
- Department of Physics, University of Zürich, Zürich, Switzerland
| | - Michael T Mumma
- Vanderbilt University Medical Center's International Epidemiology Field Station, Rockville, MD, USA
| | | | - Ashley P Golden
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Sara C Howard
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Grace E Roemer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA; Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
5
|
Milder CM, Howard SC, Ellis ED, Golden AP, Cohen SS, Mumma MT, Leggett RW, French B, Zablotska LB, Boice JD. Third mortality follow-up of the Mallinckrodt uranium processing workers, 1942-2019. Int J Radiat Biol 2024; 100:161-175. [PMID: 37819879 PMCID: PMC10843089 DOI: 10.1080/09553002.2023.2267640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Mallinckrodt Chemical Works was a uranium processing facility during the Manhattan Project from 1942 to 1966. Thousands of workers were exposed to low-dose-rates of ionizing radiation from external and internal sources. This third follow-up of 2514 White male employees updates cancer and noncancer mortality potentially associated with radiation and silica dust. MATERIALS AND METHODS Individual, annualized organ doses were estimated from film badge records (n monitored = 2514), occupational chest x-rays (n = 2514), uranium urinalysis (n = 1868), radium intake through radon breath measurements (n = 487), and radon ambient measurements (n = 1356). Silica dust exposure from pitchblende processing was estimated (n = 1317). Vital status and cause of death determination through 2019 relied upon the National Death Index and Social Security Administration Epidemiological Vital Status Service. The analysis included standardized mortality ratios (SMRs), Cox proportional hazards, and Poisson regression models. RESULTS Vital status was confirmed for 99.4% of workers (84.0% deceased). For a dose weighting factor of 1 for intakes of uranium, radium, and radon decay products, the mean and median lung doses were 65.6 and 29.9 mGy, respectively. SMRs indicated a difference in health outcomes between salaried and hourly workers, and more brain cancer deaths than expected [SMR: 1.79; 95% confidence interval (CI): 1.14, 2.70]. No association was seen between radiation and lung cancer [hazard ratio (HR) at 100 mGy: 0.93; 95%CI: 0.78, 1.11]. The relationship between radiation and kidney cancer observed in the previous follow-up was maintained (HR at 100 mGy: 2.07; 95%CI: 1.12, 3.79). Cardiovascular disease (CVD) also increased significantly with heart dose (HR at 100 mGy: 1.11; 95%CI: 1.02, 1.21). Exposures to dust ≥23.6 mg/m3-year were associated with nonmalignant kidney disease (NMKD) (HR: 3.02; 95%CI: 1.12, 8.16) and kidney cancer combined with NMKD (HR: 2.46; 95%CI: 1.04, 5.81), though without evidence of a dose-response per 100 mg/m3-year. CONCLUSIONS This third follow-up of Mallinckrodt uranium processors reinforced the results of the previous studies. There was an excess of brain cancers compared with the US population, although no radiation dose-response was detected. The association between radiation and kidney cancer remained, though potentially due to few cases at higher doses. The association between levels of silica dust ≥23.6 mg/m3-year and NMKD also remained. No association was observed between radiation and lung cancer. A positive dose-response was observed between radiation and CVD; however, this association may be confounded by smoking, which was unmeasured. Future work will pool these data with other uranium processing worker cohorts within the Million Person Study.
Collapse
Affiliation(s)
- Cato M. Milder
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | | | | | | | - Sarah S. Cohen
- EpidStrategies, a Division of ToxStrategies, Inc., Katy, TX
| | | | | | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, CA, USA
| | - John D. Boice
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- National Council on Radiation Protection and Measurements (NCRP), Bethesda, MD, USA
| |
Collapse
|
6
|
Hamada N. Noncancer Effects of Ionizing Radiation Exposure on the Eye, the Circulatory System and beyond: Developments made since the 2011 ICRP Statement on Tissue Reactions. Radiat Res 2023; 200:188-216. [PMID: 37410098 DOI: 10.1667/rade-23-00030.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
For radiation protection purposes, noncancer effects with a threshold-type dose-response relationship have been classified as tissue reactions (formerly called nonstochastic or deterministic effects), and equivalent dose limits aim to prevent occurrence of such tissue reactions. Accumulating evidence demonstrates increased risks for several late occurring noncancer effects at doses and dose rates much lower than previously considered. In 2011, the International Commission on Radiological Protection (ICRP) issued a statement on tissue reactions to recommend a threshold of 0.5 Gy to the lens of the eye for cataracts and to the heart and brain for diseases of the circulatory system (DCS), independent of dose rate. Literature published thereafter continues to provide updated knowledge. Increased risks for cataracts below 0.5 Gy have been reported in several cohorts (e.g., including in those receiving protracted or chronic exposures). A dose threshold for cataracts is less evident with longer follow-up, with limited evidence available for risk of cataract removal surgery. There is emerging evidence for risk of normal-tension glaucoma and diabetic retinopathy, but the long-held tenet that the lens represents among the most radiosensitive tissues in the eye and in the body seems to remain unchanged. For DCS, increased risks have been reported in various cohorts, but the existence or otherwise of a dose threshold is unclear. The level of risk is less uncertain at lower dose and lower dose rate, with the possibility that risk per unit dose is greater at lower doses and dose rates. Target organs and tissues for DCS are also unknown, but may include heart, large blood vessels and kidneys. Identification of potential factors (e.g., sex, age, lifestyle factors, coexposures, comorbidities, genetics and epigenetics) that may modify radiation risk of cataracts and DCS would be important. Other noncancer effects on the radar include neurological effects (e.g., Parkinson's disease, Alzheimer's disease and dementia) of which elevated risk has increasingly been reported. These late occurring noncancer effects tend to deviate from the definition of tissue reactions, necessitating more scientific developments to reconsider the radiation effect classification system and risk management. This paper gives an overview of historical developments made in ICRP prior to the 2011 statement and an update on relevant developments made since the 2011 ICRP statement.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
7
|
Srivastava T, Chirikova E, Birk S, Xiong F, Benzouak T, Liu JY, Villeneuve PJ, Zablotska LB. Exposure to Ionizing Radiation and Risk of Dementia: A Systematic Review and Meta-Analysis. Radiat Res 2023; 199:490-505. [PMID: 37293601 PMCID: PMC10249679 DOI: 10.1667/rade-22-00153.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The number of people living with dementia is rising globally as life expectancy increases. Dementia is a multifactorial disease. Due to the ubiquity of radiation exposure in medical and occupational settings, the potential association between radiation and dementia, and its subtypes (Alzheimer's and Parkinson's disease), is of particular importance. There has also been an increased interest in studying radiation induced dementia risks in connection with the long-term manned space travel proposed by The National Aeronautics and Space Administration (NASA). Our aim was to systematically review the literature on this topic, and use meta-analysis to generate a summary measure of association, assess publication bias and explore sources of heterogeneity across studies. We identified five types of exposed populations for this review: 1. survivors of atomic bombings in Japan; 2. patients treated with radiation therapy for cancer or other diseases; 3. occupationally exposed workers; 4. those exposed to environmental radiation; and 5. patients exposed to radiation from diagnostic radiation imaging procedures. We included studies that considered incident or mortality outcomes for dementia and its subtypes. Following PRISMA guidelines, we systematically searched the published literature indexed in PubMed between 2001 and 2022. We then abstracted the relevant articles, conducted a risk-of-bias assessment, and fit random effects models using the published risk estimates. After we applied our eligibility criteria, 18 studies were identified for review and retained for meta-analysis. For dementia (all subtypes), the summary relative risk was 1.11 (95% CI: 1.04, 1.18; P = 0.001) comparing individuals receiving 100 mSv of radiation to those with no exposure. The corresponding summary relative risk for Parkinson's disease incidence and mortality was 1.12 (95% CI 1.07, 1.17; P <0.001). Our results provide evidence that exposure to ionizing radiation increases the risk of dementia. However, our findings should be interpreted with caution due to the small number of included studies. Longitudinal studies with improved exposure characterization, incident outcomes, larger sample size, and the ability to adjust for effects of potential confounders are needed to better assess the possible causal link between ionizing radiation and dementia.
Collapse
Affiliation(s)
- Tanvi Srivastava
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - Ekaterina Chirikova
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - Sapriya Birk
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Fanxiu Xiong
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - Tarek Benzouak
- Department of Psychology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Jane Y. Liu
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - Paul J. Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
8
|
Boice JD, Cohen SS, Mumma MT, Golden AP, Howard SC, Girardi DJ, Ellis ED, Bellamy MB, Dauer LT, Eckerman KF, Leggett RW. Mortality among Tennessee Eastman Corporation (TEC) uranium processing workers, 1943-2019. Int J Radiat Biol 2023; 99:208-228. [PMID: 35758985 DOI: 10.1080/09553002.2022.2078003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND There are few occupational studies of women exposed to ionizing radiation. During World War II, the Tennessee Eastman Corporation (TEC) operated an electromagnetic field separation facility of 1152 calutrons to obtain enriched uranium (235U) used for the Hiroshima atomic bomb. Thousands of women were involved in these operations. MATERIALS AND METHODS A new study was conducted of 13,951 women and 12,699 men employed at TEC between 1943 and 1947 for at least 90 days. Comprehensive dose reconstruction techniques were used to estimate lung doses from the inhalation of uranium dust based on airborne measurements. Vital status through 2018/2019 was obtained from the National Death Index, Social Security Death Index, Tennessee death records and online public record databases. Analyses included standardized mortality ratios (SMRs) and Cox proportional hazards models. RESULTS Most workers were hourly (77.7%), white (95.6%), born before 1920 (58.3%), worked in dusty environments (57.0%), and had died (94.9%). Vital status was confirmed for 97.4% of the workers. Women were younger than men when first employed: mean ages 25.0 years and 33.0 years, respectively. The estimated mean absorbed dose to the lung was 32.7 mGy (max 1048 mGy) for women and 18.9 mGy (max 501 mGy) for men. The mean dose to thoracic lymph nodes (TLNs) was 127 mGy. Statistically significant SMRs were observed for lung cancer (SMR 1.25; 95% CI 1.19, 1.31; n = 1654), nonmalignant respiratory diseases (NMRDs) (1.23; 95% CI 1.19, 1.28; n = 2585), and cerebrovascular disease (CeVD) (1.13; 95% CI 1.08, 1.18; n = 1945). For lung cancer, the excess relative rate (ERR) at 100 mGy (95% CI) was 0.01 (-0.10, 0.12; n = 652) among women, and -0.15 (-0.38, 0.07; n = 1002) among men based on a preferred model for men with lung doses <300 mGy. NMRD and non-Hodgkin lymphoma were not associated with estimated absorbed dose to the lung or TLN. CONCLUSIONS There was little evidence that radiation increased the risk of lung cancer, suggesting that inhalation of uranium dust and the associated high-LET alpha particle exposure to lung tissue experienced over a few years is less effective in causing lung cancer than other types of exposures. There was no statistically significant difference in the lung cancer risk estimates between men and women. The elevation of certain causes of death such as CeVD is unexplained and will require additional scrutiny of workplace or lifestyle factors given that radiation is an unlikely contributor since only the lung and lymph nodes received appreciable dose.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Michael T Mumma
- International Epidemiology Institute, Rockville, MD, USA.,Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashley P Golden
- ORISE Health Studies, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Sara C Howard
- ORISE Health Studies, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - David J Girardi
- ORISE Health Studies, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Elizabeth D Ellis
- ORISE Health Studies, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Michael B Bellamy
- Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence T Dauer
- Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
9
|
Boice JD, Cohen SS, Mumma MT, Howard SC, Yoder RC, Dauer LT. Mortality among medical radiation workers in the United States, 1965-2016. Int J Radiat Biol 2023; 99:183-207. [PMID: 34731066 DOI: 10.1080/09553002.2021.1967508] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Estimates of radiation risks following prolonged exposures at low doses and low-dose rates are uncertain. Medical radiation workers are a major component of the Million Person Study (MPS) of low-dose health effects. Annual personal dose equivalents, HP(10), for individual workers are available to facilitate dose-response analyses for lung cancer, leukemia, ischemic heart disease (IHD) and other causes of death. MATERIALS AND METHODS The Landauer, Inc. dosimetry database identified 109,019 medical and associated radiation workers first monitored 1965-1994. Vital status and cause of death were determined through 2016. Mean absorbed doses to red bone marrow (RBM), lung, heart, and other organs were estimated by adjusting the recorded HP(10) for each worker by scaling factors, accounting for exposure geometry, the energy of the incident photon radiation, sex of the worker and whether an apron was worn. There were 4 exposure scenarios: general radiology characterized by low-energy x-ray exposure with no lead apron use, interventional radiologists/cardiologists who wore aprons, nuclear medicine personnel and radiation oncologists exposed to high-energy photon radiation, and other workers. Standardized mortality ratio (SMR) analyses were performed. Cox proportional hazards models were used to estimate organ-specific radiation risks. RESULTS Overall, 11,433 deaths occurred (SMR 0.60; 95%CI 0.59,0.61), 126 from leukemia other than chronic lymphocytic leukemia (CLL), 850 from lung cancer, and 1654 from IHD. The mean duration of monitoring was 23.7 y. The excess relative rate (ERR) per 100 mGy was estimated as 0.10 (95% CI -0.34, 0.54) for leukemia other than CLL, 0.15 (0.02, 0.27) for lung cancer, and -0.10 (-0.27, 0.06) for IHD. The ERR for lung cancer was 0.16 (0.01, 0.32) among the 55,218 male workers and 0.09 (-0.19, 0.36) among the 53,801 female workers; a difference that was not statistically significant (p-value = 0.23). CONCLUSIONS Medical radiation workers were at increased risk for lung cancer that was higher among men than women, although this difference was not statistically significant. In contrast, the study of Japanese atomic bomb survivors exposed briefly to radiation in 1945 found females to be nearly 3 times the radiation risk of lung cancer compared with males on a relative scale. For medical workers, there were no statistically significant radiation associations with leukemia excluding CLL, IHD or other specific causes of death. Combining these data with other cohorts within the MPS, such as nuclear power plant workers and nuclear submariners, will enable more precise estimates of radiation risks at relatively low cumulative doses.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | | | - Michael T Mumma
- International Epidemiology Institute, Rockville, MD, USA.,Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara C Howard
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | | | - Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Schöllnberger H, Dauer LT, Wakeford R, Constanzo J, Golden A. Summary of Radiation Research Society Online 67th Annual Meeting, Symposium on "Radiation and Circulatory Effects". Int J Radiat Biol 2023; 99:702-711. [PMID: 35930470 DOI: 10.1080/09553002.2022.2110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE This article summarizes a number of presentations from a session on "Radiation and Circulatory Effects" held during the Radiation Research Society Online 67th Annual Meeting, October 3-6 2021. MATERIALS AND METHODS Different epidemiological cohorts were analyzed with various statistical means common in epidemiology. The cohorts included the one from the U.S. Million Person Study and the Canadian Fluoroscopy Cohort Study. In addition, one of the contributions in our article relies on results from analyses of the Japanese atomic bomb survivors, Russian emergency and recovery workers and cohorts of nuclear workers. The Canadian Fluoroscopy Cohort Study data were analyzed with a larger series of linear and nonlinear dose-response models in addition to the linear no-threshold (LNT) model. RESULTS AND CONCLUSIONS The talks in this symposium showed that low/moderate acute doses at low/moderate dose rates can be associated with an increased risk of CVD, although some of the epidemiological results for occupational cohorts are equivocal. The usually only limited availability of information on well-known risk factors for circulatory disease (e.g. smoking, obesity, hypertension, diabetes, physical activity) is an important limiting factor that may bias any observed association between radiation exposure and detrimental health outcome, especially at low doses. Additional follow-up and careful dosimetric and outcome assessment are necessary and more epidemiological and experimental research is required. Obtaining reliable information on other risk factors is especially important.
Collapse
Affiliation(s)
| | - Lawrence T Dauer
- Departments of Medical Physics and Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Ashley Golden
- ORISE Health Studies, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| |
Collapse
|
11
|
Koterov AN, Tukov AR, Ushenkova LN, Kalinina MV, Biryukov AP. Average Accumulated Radiation Doses for Global Nuclear Workers: Low Doses, Low Effects, and Comparison with Doses for Medical Radiologists. BIOL BULL+ 2022. [DOI: 10.1134/s106235902212007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
12
|
Zablotska LB, Zupunski L, Leuraud K, Lopes J, Hinkle J, Pugeda T, Delgado T, Olschowka J, Williams J, O’Banion MK, Boice JD, Cohen SS, Mumma MT, Dauer LT, Britten RA, Stephenson S. Radiation and CNS effects: summary of evidence from a recent symposium of the Radiation Research Society. Int J Radiat Biol 2022; 99:1332-1342. [PMID: 36318723 PMCID: PMC10759179 DOI: 10.1080/09553002.2023.2142984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022]
Abstract
This article summarizes a Symposium on 'Radiation risks of the central nervous system' held virtually at the 67th Annual Meeting of the Radiation Research Society, 3-6 October 2021. Repeated low-dose radiation exposure over a certain period could lead to reduced neuronal proliferation, altered neurogenesis, neuroinflammation and various neurological complications, including psychological consequences, necessitating further research in these areas. Four speakers from radiation biology, genetics and epidemiology presented the latest data from their studies seeking insights into this important topic. This symposium highlighted new and important directions for further research on mental health disorders, neurodegenerative conditions and cognitive impairment. Future studies will examine risks of mental and behavioral disorders and neurodegenerative diseases following protracted radiation exposures to better understand risks of occupational exposures as well as provide insights into risks from exposures to galactic cosmic rays.
Collapse
Affiliation(s)
- Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ljubica Zupunski
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Klervi Leuraud
- Laboratory of Epidemiology (LEPID), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Julie Lopes
- Laboratory of Epidemiology (LEPID), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Joshua Hinkle
- Department of Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
- Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Tyler Pugeda
- Department of Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
- Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Thomas Delgado
- Department of Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
- Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - John Olschowka
- Department of Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
- Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Jacqueline Williams
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
- Wilmot Cancer Center, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - M. Kerry O’Banion
- Department of Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
- Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
- Wilmot Cancer Center, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah S. Cohen
- Vanderbilt University Medical Center, Nashville, TN, USA
- EpidStrategies, Cary, NC, USA
| | - Michael T. Mumma
- Vanderbilt University Medical Center, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | | | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Samuel Stephenson
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
13
|
Milder CM, Howard SC, Ellis ED, Deppen SA. Deep Breaths: A Systematic Review of the Potential Effects of Employment in the Nuclear Industry on Mortality from Non-Malignant Respiratory Disease. Radiat Res 2022; 198:396-429. [PMID: 35943867 PMCID: PMC9704034 DOI: 10.1667/rade-21-00014.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Ionizing radiation is an established carcinogen, but its effects on non-malignant respiratory disease (NMRD) are less clear. Cohorts exposed to multiple risk factors including radiation and toxic dusts conflate these relationships, and there is a need for clarity in previous findings. This systematic review was conducted to survey the body of existing evidence for radiation effects on NMRD in global nuclear worker cohorts. A PubMed search was conducted for studies with terms relating to radiation or uranium and noncancer respiratory outcomes. Papers were limited to the most recent report within a single cohort published between January 2000 and December 2020. Publication quality was assessed based upon UNSCEAR 2017 criteria. In total, 31 papers were reviewed. Studies included 29 retrospective cohorts, one prospective cohort, and one longitudinal cohort primarily comprising White men from the U.S., Canada and Western Europe. Ten studies contained subpopulations of uranium miners or millers. Papers reported standardized mortality ratio (SMR) analyses, regression analyses, or both. Neither SMR nor regression analyses consistently showed a relationship between radiation exposure and NMRD. A meta-analysis of excess relative risks (ERRs) for NMRD did not present evidence for a dose-response (overall ERR/Sv: 0.07; 95% CI: -0.07, 0.21), and results for more specific outcomes were inconsistent. Significantly elevated SMRs for NMRD overall were observed in two studies among the subpopulation of uranium miners and millers (combined n = 4229; SMR 1.42-1.43), indicating this association may be limited to mining and milling populations and may not extend to other nuclear workers. A quality review showed limited capacity of 17 out of 31 studies conducted to provide evidence for a causal relationship between radiation and NMRD; the higher-quality studies showed no consistent relationship. All elevated NMRD SMRs were among mining and milling cohorts, indicating different exposure profiles between mining and non-mining cohorts; future pooled cohorts should adjust for mining exposures or address mining cohorts separately.
Collapse
Affiliation(s)
- Cato M. Milder
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sara C. Howard
- Health Studies Program, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Elizabeth D. Ellis
- Health Studies Program, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Stephen A. Deppen
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
14
|
Risk of Developing Non-Cancerous Central Nervous System Diseases Due to Ionizing Radiation Exposure during Adulthood: Systematic Review and Meta-Analyses. Brain Sci 2022; 12:brainsci12080984. [PMID: 35892428 PMCID: PMC9331299 DOI: 10.3390/brainsci12080984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Background: High-dose ionizing radiation (IR) (>0.5 Gy) is an established risk factor for cognitive impairments, but this cannot be concluded for low-to-moderate IR exposure (<0.5 Gy) in adulthood as study results are inconsistent. The objectives are to summarize relevant epidemiological studies of low-to-moderate IR exposure in adulthood and to assess the risk of non-cancerous CNS diseases. Methods: A systematic literature search of four electronic databases was performed to retrieve relevant epidemiological studies published from 2000 to 2022. Pooled standardized mortality ratios, relative risks, and excess relative risks (ERR) were estimated with a random effect model. Results: Forty-five publications were included in the systematic review, including thirty-three in the quantitative meta-analysis. The following sources of IR-exposure were considered: atomic bomb, occupational, environmental, and medical exposure. Increased dose-risk relationships were found for cerebrovascular diseases incidence and mortality (ERRpooled per 100 mGy = 0.04; 95% CI: 0.03−0.05; ERRpooled at 100 mGy = 0.01; 95% CI: −0.00−0.02, respectively) and for Parkinson’s disease (ERRpooled at 100 mGy = 0.11; 95% CI: 0.06−0.16); Conclusions: Our findings suggest that adult low-to-moderate IR exposure may have effects on non-cancerous CNS diseases. Further research addressing inherent variation issues is encouraged.
Collapse
|
15
|
Koterov AN, Ushenkova LN, Biryukov AP. Hill’s Criterion ‘Experiment’: The Counterfactual Approach in Non-Radiation and Radiation Sciences. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021120062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Boice JD, Quinn B, Al-Nabulsi I, Ansari A, Blake PK, Blattnig SR, Caffrey EA, Cohen SS, Golden AP, Held KD, Jokisch DW, Leggett RW, Mumma MT, Samuels C, Till JE, Tolmachev SY, Yoder RC, Zhou JY, Dauer LT. A million persons, a million dreams: a vision for a national center of radiation epidemiology and biology. Int J Radiat Biol 2021; 98:795-821. [PMID: 34669549 PMCID: PMC10594603 DOI: 10.1080/09553002.2021.1988183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epidemiologic studies of radiation-exposed populations form the basis for human safety standards. They also help shape public health policy and evidence-based health practices by identifying and quantifying health risks of exposure in defined populations. For more than a century, epidemiologists have studied the consequences of radiation exposures, yet the health effects of low levels delivered at a low-dose rate remain equivocal. MATERIALS AND METHODS The Million Person Study (MPS) of U.S. Radiation Workers and Veterans was designed to examine health effects following chronic exposures in contrast with brief exposures as experienced by the Japanese atomic bomb survivors. Radiation associations for rare cancers, intakes of radionuclides, and differences between men and women are being evaluated, as well as noncancers such as cardiovascular disease and conditions such as dementia and cognitive function. The first international symposium, held November 6, 2020, provided a broad overview of the MPS. Representatives from four U.S. government agencies addressed the importance of this research for their respective missions: U.S. Department of Energy (DOE), the Centers for Disease Control and Prevention (CDC), the U.S. Department of Defense (DOD), and the National Aeronautics and Space Administration (NASA). The major components of the MPS were discussed and recent findings summarized. The importance of radiation dosimetry, an essential feature of each MPS investigation, was emphasized. RESULTS The seven components of the MPS are DOE workers, nuclear weapons test participants, nuclear power plant workers, industrial radiographers, medical radiation workers, nuclear submariners, other U.S. Navy personnel, and radium dial painters. The MPS cohorts include tens of thousands of workers with elevated intakes of alpha particle emitters for which organ-specific doses are determined. Findings to date for chronic radiation exposure suggest that leukemia risk is lower than after acute exposure; lung cancer risk is much lower and there is little difference in risks between men and women; an increase in ischemic heart disease is yet to be seen; esophageal cancer is frequently elevated but not myelodysplastic syndrome; and Parkinson's disease may be associated with radiation exposure. CONCLUSIONS The MPS has provided provocative insights into the possible range of health effects following low-level chronic radiation exposure. When the 34 MPS cohorts are completed and combined, a powerful evaluation of radiation-effects will be possible. This final article in the MPS special issue summarizes the findings to date and the possibilities for the future. A National Center for Radiation Epidemiology and Biology is envisioned.
Collapse
Affiliation(s)
- John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian Quinn
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Armin Ansari
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Steve R. Blattnig
- National Aeronautics and Space Administration Langley Research Center, Hampton, VA, USA
| | - Emily A. Caffrey
- Radian Scientific, LLC, Huntsville, AL, and Risk Assessment Corporation, Neeses, SC, USA
| | - Sarah S. Cohen
- EpidStrategies, a division of ToxStrategies, Inc, Cary, NC, USA
| | | | - Kathryn D. Held
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Derek W. Jokisch
- Francis Marion University, Florence, SC, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Michael T. Mumma
- Vanderbilt University School of Medicine, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | | | | | | | | | - Joey Y. Zhou
- United States Department of Energy, Gaithersburg, MD, USA
| | | |
Collapse
|
17
|
Boice JD, Cohen SS, Mumma MT, Hagemeyer DA, Chen H, Golden AP, Yoder RC, Dauer LT. Mortality from Leukemia, Cancer and Heart Disease among U.S. Nuclear Power Plant Workers, 1957-2011. Int J Radiat Biol 2021; 98:657-678. [PMID: 34669562 DOI: 10.1080/09553002.2021.1967507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of the Million Person Study (MPS) of Low Dose Health Effects is to examine the level of radiation risk for chronic exposures received gradually over time and not acutely as was the case for the Japanese atomic bomb survivors. Nuclear power plant (NPP) workers comprise nearly 15 percent of the MPS. Leukemia, selected cancers, Parkinson's disease, ischemic heart disease (IHD) and other causes of death are evaluated. METHODS AND MATERIAL The U.S. Nuclear Regulatory Commission's Radiation Exposure Information and Reporting System (REIRS) and the Landauer, Inc. dosimetry databases identified 135,193 NPP workers first monitored 1957-1984. Annual personal dose equivalents [Hp(10)] were available for each worker. Radiation records from all places of employment were sought. Vital status was determined through 2011. Mean absorbed doses to red bone marrow (RBM), esophagus, lung, colon, brain and heart were estimated by adjusting the recorded Hp(10) for each worker by scaling factors, accounting for exposure geometry and energy of the incident gamma radiation. Standardized mortality ratios (SMR) were calculated. Radiation risks were estimated using Cox proportional hazards models. RESULTS Nearly 50% of workers were employed for more than 20 years. The mean duration of follow-up was 30.2 y. Overall, 29,076 total deaths occurred, 296 from leukemia other than chronic lymphocytic leukemia (CLL), 3,382 from lung cancer, 140 from Parkinson's disease and 5,410 from IHD. The mean dose to RBM was 37.9 mGy (maximum 1.0 Gy; percent >100 mGy was 9.2%), 43.2 mGy to lung, 43.7 mGy to colon, 33.2 mGy to brain, and 43.9 mGy to heart. The SMRs (95% CI) were 1.06 (0.94;1.19) for leukemia other than CLL, 1.10 (1.07;1.14) for lung cancer, 0.90 (0.76;1.06) for Parkinson's disease, and 0.80 (0.78; 0.82) for IHD. The excess relative risk (ERR) per 100 mGy for leukemia other than CLL was 0.15 (90% CI 0.001; 0.31). For all solid cancers the ERR per 100 mGy (95% CI) was 0.01 (-0.03; 0.05), for lung cancer -0.04 (-0.11; 0.02), for Parkinson's disease 0.24 (-0.02; 0.50), and for IHD -0.01 (-0.06; 0.04). CONCLUSION Prolonged exposure to radiation increased the risk of leukemia other than CLL among NPP workers. There was little evidence for a radiation-association for all solid cancers, lung cancer or ischemic heart disease. Increased precision will be forthcoming as the different cohorts within the MPS are combined, such as industrial radiographers and medical radiation workers who were assembled and evaluated in like manner.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | | | - Michael T Mumma
- International Epidemiology Institute, Rockville, MD, USA.,Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Heidi Chen
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
18
|
Hartel C, Nasonova E, Ritter S, Friedrich T. Alpha-Particle Exposure Induces Mainly Unstable Complex Chromosome Aberrations which do not Contribute to Radiation-Associated Cytogenetic Risk. Radiat Res 2021; 196:561-573. [PMID: 34411274 DOI: 10.1667/rade-21-00116.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 11/03/2022]
Abstract
The mechanism underlying the carcinogenic potential of α radiation is not fully understood, considering that cell inactivation (e.g., mitotic cell death) as a main consequence of exposure efficiently counteracts the spreading of heritable DNA damage. The aim of this study is to improve our understanding of the effectiveness of α particles in inducing different types of chromosomal aberrations, to determine the respective values of the relative biological effectiveness (RBE) and to interpret the results with respect to exposure risk. Human peripheral blood lymphocytes (PBLs) from a single donor were exposed ex vivo to doses of 0-6 Gy X rays or 0-2 Gy α particles. Cells were harvested at two different times after irradiation to account for the mitotic delay of heavily damaged cells, which is known to occur after exposure to high-LET radiation (including α particles). Analysis of the kinetics of cells reaching first or second (and higher) mitosis after irradiation and aberration data obtained by the multiplex fluorescence in situ hybridization (mFISH) technique are used to determine of the cytogenetic risk, i.e., the probability for transmissible aberrations in surviving lymphocytes. The analysis shows that the cytogenetic risk after α exposure is lower than after X rays. This indicates that the actually observed higher carcinogenic effect of α radiation is likely to stem from small scale mutations that are induced effectively by high-LET radiation but cannot be resolved by mFISH analysis.
Collapse
Affiliation(s)
- C Hartel
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - E Nasonova
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany.,Joint Institute for Nuclear Research, Laboratory of Radiation Biology, Dubna, Russia
| | - S Ritter
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - T Friedrich
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| |
Collapse
|
19
|
Boice JD, Cohen SS, Mumma MT, Golden AP, Howard SC, Girardi DJ, Ellis ED, Bellamy MB, Dauer LT, Samuels C, Eckerman KF, Leggett RW. Mortality among workers at the Los Alamos National Laboratory, 1943-2017. Int J Radiat Biol 2021; 98:722-749. [PMID: 34047625 DOI: 10.1080/09553002.2021.1917784] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND During World War II (WWII), the Manhattan Engineering District established a secret laboratory in the mountains of northern New Mexico. The mission was to design, construct and test the first atomic weapon, nicknamed 'The Gadget' that was detonated at the TRINITY site in Alamogordo, NM. After WWII, nuclear weapons research continued, and the laboratory became the Los Alamos National Laboratory (LANL). MATERIALS AND METHODS The mortality experience of 26,328 workers first employed between 1943 and 1980 at LANL was determined through 2017. Included were 6157 contract workers employed by the ZIA Company. Organ dose estimates for each worker considered all sources of exposure, notably photons, neutrons, tritium, 238Pu and 239Pu. Vital status determination included searches within the National Death Index, Social Security Administration and New Mexico State Mortality Files. Standardized Mortality Ratios (SMR) and Cox regression models were used in the analyses. RESULTS Most workers (55%) were hired before 1960, 38% had a college degree, 25% were female, 81% white, 13% Hispanic and 60% had died. Vital status was complete, with only 0.1% lost to follow-up. The mean dose to the lung for the 17,053 workers monitored for radiation was 28.6 weighted-mGy (maximum 16.8 weighted-Gy) assuming a Dose Weighting Factor of 20 for alpha particle dose to lung. The Excess Relative Risk (ERR) at 100 weighted-mGy was 0.01 (95%CI -0.02, 0.03; n = 839) for lung cancer. The ERR at 100 mGy was -0.43 (95%CI -1.11, 0.24; n = 160) for leukemia other than chronic lymphocytic leukemia (CLL), -0.06 (95%CI -0.16, 0.04; n = 3043) for ischemic heart disease (IHD), and 0.29 (95%CI 0.02, 0.55; n = 106) for esophageal cancer. Among the 6499 workers with measurable intakes of plutonium, an increase in bone cancer (SMR 2.44; 95%CI 0.98, 5.03; n = 7) was related to dose. The SMR for berylliosis was significantly high, based on 4 deaths. SMRs for Hispanic workers were significantly high for cancers of the stomach and liver, cirrhosis of the liver, nonmalignant kidney disease and diabetes, but the excesses were not related to radiation dose. CONCLUSIONS There was little evidence that radiation increased the risk of lung cancer or leukemia. Esophageal cancer was associated with radiation, and plutonium intakes were linked to an increase of bone cancer. IHD was not associated with radiation dose. More precise evaluations will await the pooled analysis of workers with similar exposures such as at Rocky Flats, Savannah River and Hanford.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Michael T Mumma
- International Epidemiology Institute, Rockville, MD, USA.,International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashley P Golden
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Sara C Howard
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - David J Girardi
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | | | - Michael B Bellamy
- Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence T Dauer
- Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | |
Collapse
|
20
|
Little MP, Azizova TV, Hamada N. Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology. Int J Radiat Biol 2021; 97:782-803. [PMID: 33471563 PMCID: PMC10656152 DOI: 10.1080/09553002.2021.1876955] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/24/2020] [Accepted: 01/09/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE There are well-known correlations between high and moderate doses (>0.5 Gy) of ionizing radiation exposure and circulatory system damage, also between radiation and posterior subcapsular cataract. At lower dose correlations with circulatory disease are emerging in the Japanese atomic bomb survivors and in some occupationally exposed groups, and are still to some extent controversial. Heterogeneity in excess relative risks per unit dose in epidemiological studies at low (<0.1 Gy) and at low-moderate (>0.1 Gy, <0.5 Gy) doses may result from confounding and other types of bias, and effect modification by established risk factors. There is also accumulating evidence of excess cataract risks at lower dose and low dose rate in various cohorts. Other ocular endpoints, specifically glaucoma and macular degeneration have been little studied. In this paper, we review recent epidemiological findings, and also discuss some of the underlying radiobiology of these conditions. We briefly review some other types of mainly neurological nonmalignant disease in relation to radiation exposure. CONCLUSIONS We document statistically significant excess risk of the major types of circulatory disease, specifically ischemic heart disease and stroke, in moderate- or low-dose exposed groups, with some not altogether consistent evidence suggesting dose-response non-linearity, particularly for stroke. However, the patterns of risk reported are not straightforward. We also document evidence of excess risks at lower doses/dose-rates of posterior subcapsular and cortical cataract in the Chernobyl liquidators, US Radiologic Technologists and Russian Mayak nuclear workers, with fundamentally linear dose-response. Nuclear cataracts are less radiogenic. For other ocular endpoints, specifically glaucoma and macular degeneration there is very little evidence of effects at low doses; radiation-associated glaucoma has been documented only for doses >5 Gy, and so has the characteristics of a tissue reaction. There is some evidence of neurological detriment following low-moderate dose (∼0.1-0.2 Gy) radiation exposure in utero or in early childhood.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Ozyorsk Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
21
|
Harbron RW, Pasqual E. Ionising radiation as a risk factor for lymphoma: a review. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:R151-R185. [PMID: 33017815 DOI: 10.1088/1361-6498/abbe37] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The ability of ionising radiation to induce lymphoma is unclear. Here, we present a narrative review of epidemiological evidence of the risk of lymphoma, including chronic lymphocytic leukaemia (CLL) and multiple myeloma (MM), among various exposed populations including atomic bombing survivors, industrial and medical radiation workers, and individuals exposed for medical purposes. Overall, there is a suggestion of a positive dose-dependent association between radiation exposure and lymphoma. The magnitude of this association is highly imprecise, however, with wide confidence intervals frequently including zero risk. External comparisons tend to show similar incidence and mortality rates to the general population. Currently, there is insufficient information on the impact of age at exposure, high versus low linear energy transfer radiation, external versus internal or acute versus chronic exposures. Associations are stronger for males than females, and stronger for non-Hodgkin lymphoma and MM than for Hodgkin lymphoma, while the risk of radiation-induced CLL may be non-existent. This broad grouping of diverse diseases could potentially obscure stronger associations for certain subtypes, each with a different cell of origin. Additionally, the classification of malignancies as leukaemia or lymphoma may result in similar diseases being analysed separately, while distinct diseases are analysed in the same category. Uncertainty in cell of origin means the appropriate organ for dose response analysis is unclear. Further uncertainties arise from potential confounding or bias due to infectious causes and immunosuppression. The potential interaction between radiation and other risk factors is unknown. Combined, these uncertainties make lymphoma perhaps the most challenging malignancy to study in radiation epidemiology.
Collapse
Affiliation(s)
- Richard W Harbron
- Population Health Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Newcastle University, United Kingdom
- Barcelona Institute for Global Health, (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Elisa Pasqual
- Barcelona Institute for Global Health, (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
22
|
Thakur P, Ward AL. 210Po in the environment: insight into the naturally occurring polonium isotope. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06939-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Wojtczyk-Miaskowska A, Schlichtholz B. Tobacco carcinogens and the methionine metabolism in human bladder cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 782:108281. [PMID: 31843138 DOI: 10.1016/j.mrrev.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023]
Abstract
Cigarette smoking is a strong risk factor for bladder cancer. It has been shown that the duration of smoking is associated with a poor prognosis and a higher risk of recurrence. This is due to tobacco carcinogens forming adducts with DNA and proteins that participate in the DNA repair mechanisms. Additionally, polymorphisms of genes responsible for methyl group transfer in the methionine cycle and dosages of vitamins (from diet and supplements) can cause an increased risk of bladder cancer. Upregulated DNA methyltransferase 1 expression and activity results in a high level of methylated products of metabolism, as well as hypermethylation of tumor suppressor genes. The development of a market that provides new inhibitors of DNA methyltransferase or alternatives for current smokers is essential not only for patients but also for people who are under the danger of secondhand smoking and can experience its long-term exposure consequences.
Collapse
Affiliation(s)
- A Wojtczyk-Miaskowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland.
| | - B Schlichtholz
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| |
Collapse
|
24
|
Boice JD, Held KD, Shore RE. Radiation epidemiology and health effects following low-level radiation exposure. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:S14-S27. [PMID: 31272090 DOI: 10.1088/1361-6498/ab2f3d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radiation epidemiology is the study of human disease following radiation exposure to populations. Epidemiologic studies of radiation-exposed populations have been conducted for nearly 100 years, starting with the radium dial painters in the 1920s and most recently with large-scale studies of radiation workers. As radiation epidemiology has become increasingly sophisticated it is used for setting radiation protection standards as well as to guide the compensation programmes in place for nuclear weapons workers, nuclear weapons test participants, and other occupationally exposed workers in the United States and elsewhere. It is known with high assurance that radiation effects at levels above 100-150 mGy can be detected as evidenced in multiple population studies conducted around the world. The challenge for radiation epidemiology is evaluating the effects at low doses, below about 100 mGy of low-linear energy transfer radiation, and assessing the risks following low dose-rate exposures over years. The weakness of radiation epidemiology in directly studying low dose and low dose-rate exposures is that the signal, i.e. the excess numbers of cancers associated with low-level radiation exposure, is so very small that it cannot be seen against the very high background occurrence of cancer in the population, i.e. a lifetime risk of incidence reaching up to about 38% (i.e. 1 in 3 persons will develop a cancer in their lifetime). Thus, extrapolation models are used for the management of risk at low doses and low dose rates, but having adequate information from low dose and low dose-rate studies would be highly desirable. An overview of recently conducted radiation epidemiologic studies which evaluate risk following low-level radiation exposures is presented. Future improvements in risk assessment for radiation protection may come from increasingly informative epidemiologic studies, combined with mechanistic radiobiologic understanding of adverse outcome pathways, with both incorporated into biologically based models.
Collapse
Affiliation(s)
- J D Boice
- National Council on Radiation Protection and Measurements, Bethesda, Maryland, United States of America. Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | | |
Collapse
|
25
|
Affiliation(s)
- John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Division of Epidemiology Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
26
|
Abstract
PURPOSE The study of low dose and low-dose rate exposure is of immeasurable value in understanding the possible range of health effects from prolonged exposures to radiation. The Million Person Study (MPS) of low-dose health effects was designed to evaluate radiation risks among healthy American workers and veterans who are more representative of today's populations than are the Japanese atomic bomb survivors exposed briefly to high-dose radiation in 1945. A million persons were needed for statistical reasons to evaluate low-dose and dose-rate effects, rare cancers, intakes of radioactive elements, and differences in risks between women and men. METHODS AND MATERIALS The MPS consists of five categories of workers and veterans exposed to radiation from 1939 to the present. The U.S. Department of Energy (DOE) Health and Mortality study began over 40 years ago and is the source of ∼360,000 workers. Over 25 years ago, the National Cancer Institute (NCI) collaborated with the U.S. Nuclear Regulatory Commission (NRC) to effectively create a cohort of nuclear power plant workers (∼150,000) and industrial radiographers (∼130,000). For over 30 years, the Department of Defense (DoD) collected data on aboveground nuclear weapons test participants (∼115,000). At the request of NCI in 1978, Landauer, Inc., (Glenwood, IL) saved their dosimetry databases which became the source of a cohort of ∼250,000 medical and other workers. RESULTS Overall, 29 individual cohorts comprise the MPS of which 21 have been or are under active study (∼810,000 persons). The remaining eight cohorts (∼190,000 persons) will be studied as resources become available. The MPS is a national effort with critical support from the NRC, DOE, National Aeronautics and Space Administration (NASA), DoD, NCI, the Centers for Disease Control and Prevention (CDC), the Environmental Protection Agency (EPA), Landauer, Inc., and national laboratories. CONCLUSIONS The MPS is designed to address the major unanswered question in radiation risk understanding: What is the level of health effects when exposure is gradual over time and not delivered briefly. The MPS will provide scientific understandings of prolonged exposure which will improve guidelines to protect workers and the public; improve compensation schemes for workers, veterans and the public; provide guidance for policy and decision makers; and provide evidence for or against the continued use of the linear nonthreshold dose-response model in radiation protection.
Collapse
Affiliation(s)
- John D Boice
- a National Council on Radiation Protection and Measurements , Bethesda , MD , USA.,b Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center , Nashville , TN , USA
| | | | - Michael T Mumma
- d International Epidemiology Institute , Rockville , MD , USA
| | | |
Collapse
|
27
|
Golden AP, Ellis ED, Cohen SS, Mumma MT, Leggett RW, Wallace PW, Girardi D, Watkins JP, Shore RE, Boice JD. Updated mortality analysis of the Mallinckrodt uranium processing workers, 1942–2012. Int J Radiat Biol 2019; 98:701-721. [DOI: 10.1080/09553002.2019.1569773] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | | | | | | | | | - David Girardi
- Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | | | - Roy E. Shore
- Epidemiology Division, New York University School of Medicine, NewYork, NY, USA
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
28
|
Shore RE, Beck HL, Boice JD, Caffrey EA, Davis S, Grogan HA, Mettler FA, Preston RJ, Till JE, Wakeford R, Walsh L, Dauer LT. Recent Epidemiologic Studies and the Linear No-Threshold Model For Radiation Protection-Considerations Regarding NCRP Commentary 27. HEALTH PHYSICS 2019; 116:235-246. [PMID: 30585971 DOI: 10.1097/hp.0000000000001015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
National Council on Radiation Protection and Measurements Commentary 27 examines recent epidemiologic data primarily from low-dose or low dose-rate studies of low linear-energy-transfer radiation and cancer to assess whether they support the linear no-threshold model as used in radiation protection. The commentary provides a critical review of low-dose or low dose-rate studies, most published within the last 10 y, that are applicable to current occupational, environmental, and medical radiation exposures. The strengths and weaknesses of the epidemiologic methods, dosimetry assessments, and statistical modeling of 29 epidemiologic studies of total solid cancer, leukemia, breast cancer, and thyroid cancer, as well as heritable effects and a few nonmalignant conditions, were evaluated. An appraisal of the degree to which the low-dose or low dose-rate studies supported a linear no-threshold model for radiation protection or on the contrary, demonstrated sufficient evidence that the linear no-threshold model is inappropriate for the purposes of radiation protection was also included. The review found that many, though not all, studies of solid cancer supported the continued use of the linear no-threshold model in radiation protection. Evaluations of the principal studies of leukemia and low-dose or low dose-rate radiation exposure also lent support for the linear no-threshold model as used in protection. Ischemic heart disease, a major type of cardiovascular disease, was examined briefly, but the results of recent studies were considered too weak or inconsistent to allow firm conclusions regarding support of the linear no-threshold model. It is acknowledged that the possible risks from very low doses of low linear-energy-transfer radiation are small and uncertain and that it may never be possible to prove or disprove the validity of the linear no-threshold assumption by epidemiologic means. Nonetheless, the preponderance of recent epidemiologic data on solid cancer is supportive of the continued use of the linear no-threshold model for the purposes of radiation protection. This conclusion is in accord with judgments by other national and international scientific committees, based on somewhat older data. Currently, no alternative dose-response relationship appears more pragmatic or prudent for radiation protection purposes than the linear no-threshold model.
Collapse
Affiliation(s)
- Roy E Shore
- New York University School of Medicine, New York, NY, and Radiation Effects Research Foundation, Hiroshima, Japan (retired)
| | | | - John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, and Vanderbilt University, Nashville, TN
| | | | - Scott Davis
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Boice JD. NCRP Vision for the Future and Program Area Committee Activities in 2018. HEALTH PHYSICS 2019; 116:282-294. [PMID: 30585977 DOI: 10.1097/hp.0000000000001027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The National Council on Radiation Protection and Measurements' (NCRP) congressional charter aligns with our vision for the future: to improve radiation protection for the public and workers. This vision is embodied within NCRP's ongoing initiatives: preparedness for nuclear terrorism, increasing the number of radiation professionals critically needed for the nation, providing new guidance for comprehensive radiation protection in the United States, addressing the protection issues surrounding the ever-increasing use of ionizing radiation in medicine (the focus of this year's annual meeting), assessing radiation doses to aircrew related to higher altitude and longer flights, providing guidance on emerging radiation issues such as the radioactive waste from hydraulic fracturing, focusing on difficult issues such as high-level waste management, and providing better estimates of radiation risks at low doses within the framework of the Million Person Study of Low-Dose Radiation Health Effects. Cutting-edge initiatives included a reevaluation of the science behind recommendations for lens of the eye dose, recommendations for emergency responders on dosimetry after a major radiological incident, guidance to the National Aeronautics and Space Administration with regard to possible central nervous system effects from galactic cosmic rays (the high-energy, high-mass ions bounding through space), reevaluating the population exposure to medical radiation, and addressing whether the linear no-threshold model is still the best available for purposes of radiation protection (not for risk assessment). To address these initiatives and goals, NCRP has seven program area committees on biology and epidemiology, operational concerns, emergency response and preparedness, medicine, environmental issues and waste management, dosimetry, and communications. The NCRP vision for the future will continue and increase under the leadership of President-Elect Dr. Kathryn D. Held (Massachusetts General Hospital and Harvard Medical School, and current NCRP executive director and chief science officer). The NCRP quest to improve radiation protection for the public is hindered only by limited resources, both human capital and financial.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814-3095
| |
Collapse
|
30
|
Leggett RW, Eckerman KF, Bellamy M. MPS dose reconstruction for internal emitters: some site-specific issues and approaches. Int J Radiat Biol 2019; 98:631-643. [DOI: 10.1080/09553002.2018.1558302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Leggett RW, Tolmachev SY, Boice JD. Potential improvements in brain dose estimates for internal emitters. Int J Radiat Biol 2019; 98:644-656. [DOI: 10.1080/09553002.2018.1554923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Sergei Y. Tolmachev
- U.S. Transuranium and Uranium Registries, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Richland, WA, USA
| | - John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
32
|
Boice JD, Ellis ED, Golden AP, Zablotska LB, Mumma MT, Cohen SS. Sex-specific lung cancer risk among radiation workers in the million-person study and patients TB-Fluoroscopy. Int J Radiat Biol 2019; 98:769-780. [PMID: 30614747 DOI: 10.1080/09553002.2018.1547441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The study of Japanese atomic bomb survivors, exposed briefly to radiation, finds the risk of radiation-induced lung cancer to be nearly three times greater for women than for men. Because protection standards for astronauts are based on individual lifetime risk projections, this sex-specific difference limits the time women can spend in space. Populations exposed to chronic or fractionated radiation were evaluated to learn whether similar differences exist when exposures occur gradually over years. METHODS AND MATERIALS Five occupational cohorts within the Million Person Study of Low-Dose Health Effects (MPS) and a Canadian Fluoroscopy Cohort Study (CFCS) of tuberculosis patients who underwent frequent chest fluoroscopic examinations are evaluated. Included are male and female workers at the Mound nuclear facility, nuclear power plants (NPP), and industrial radiographers (IR). Workers at the Mallinckrodt Chemical Works and military participants at aboveground nuclear weapons tests provide information on the risk among males. Cox proportional hazards and Poisson regression models were used to estimate sex-specific radiation risks for lung cancer and to compare any differences. RESULTS Overall, 15,065 lung cancers occurred among the 443,684 subjects studied: 50,111 women and 395,573 men. The mean cumulative dose to the lung was 166.3 mGy (range 6 to 1,055 mGy) with the highest among the TB-fluoroscopy patients (mean 1,055 mGy). Mean lung dose for women in the worker cohorts was generally 4 times lower than for men. Of the 12 estimates of radiation-related risk, only one, for male IRs, showed a significant elevation (ERR 0.09; 95% CI 0.02-0.16, at 100 mGy). In contrast, the dose response for male NPP workers was negative (ERR -0.05; 95% CI -0.10, 0.01, at 100 mGy). Combined, these two cohorts provided little evidence for a radiation effect among males (ERR 0.01; 95% CI -0.04, 0.06, at 100 mGy). There was no significant dose-response among females within any cohort. There was no difference in the sex-specific estimates of lung cancer risk. CONCLUSIONS There was little evidence that chronic or fractionated exposures increased the risk of lung cancer. There were no differences in the risks of lung cancer between men and women. However, the sex-specific analyses are limited because of small numbers of women and relatively low doses. A more definitive study is ongoing of medical radiation workers which include 85,000 women and 85,000 men (overall mean dose 82 mGy, max 1,140 mGy). Additional understanding will come from the ongoing follow-up of the CFCS.
Collapse
Affiliation(s)
- John D Boice
- a National Council on Radiation Protection and Measurements , Bethesda , MA , USA.,b Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Elizabeth D Ellis
- c Center for Epidemiologic Research, Oak Ridge Associated Universities , Oak Ridge , TN , USA
| | - Ashley P Golden
- c Center for Epidemiologic Research, Oak Ridge Associated Universities , Oak Ridge , TN , USA
| | - Lydia B Zablotska
- d School of Medicine , University of California, San Francisco , San Francisco , CA , USA
| | - Michael T Mumma
- e International Epidemiology Institute , Rockville , MA , USA
| | | |
Collapse
|
33
|
Golden AP, Cohen SS, Chen H, Ellis ED, Boice JD. Evaluation of statistical modeling approaches for epidemiologic studies of low-dose radiation health effects. Int J Radiat Biol 2019; 98:572-579. [DOI: 10.1080/09553002.2018.1554924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | - Heidi Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - John D. Boice
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
| |
Collapse
|
34
|
Mumma MT, Cohen SS, Sirko JL, Ellis ED, Boice JD. Obtaining vital status and cause of death on a million persons. Int J Radiat Biol 2019; 98:580-586. [DOI: 10.1080/09553002.2018.1539884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Elizabeth D. Ellis
- Center for Epidemiologic Research, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
35
|
Cohen SS, Mumma MT, Ellis ED, Boice JD. Validating the use of census data on education as a measure of socioeconomic status in an occupational cohort. Int J Radiat Biol 2019; 98:587-592. [DOI: 10.1080/09553002.2018.1549758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | - John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Vanderbilt Epidemiology Center, Division of Epidemiology Department of Medicine, Vanderbilt-Ingram Cancer Center Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
36
|
Hagemeyer D, Nichols G, Mumma MT, Boice JD, Brock TA. 50 Years of the Radiation Exposure Information and Reporting System. Int J Radiat Biol 2018; 98:568-571. [DOI: 10.1080/09553002.2018.1540896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Division of Epidemiology Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | |
Collapse
|
37
|
Dauer LT, Bouville A, Toohey RE, Boice JD, Beck HL, Eckerman KF, Hagemeyer D, Leggett RW, Mumma MT, Napier B, Pryor KH, Rosenstein M, Schauer DA, Sherbini S, Stram DO, Thompson JL, Till JE, Yoder RC, Zeitlin C. Dosimetry and uncertainty approaches for the million person study of low-dose radiation health effects: overview of the recommendations in NCRP Report No. 178. Int J Radiat Biol 2018; 98:600-609. [DOI: 10.1080/09553002.2018.1536299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lawrence T. Dauer
- Radiology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | - Bruce Napier
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kathy H. Pryor
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marvin Rosenstein
- National Council on Radiation Protection and Measurements, Bethesda, USA
| | | | - Sami Sherbini
- U.S. Nuclear Regulatory Commission, Washington, DC, USA
| | | | | | | | | | - Cary Zeitlin
- Leidos Innovations Corporation, Houston, TX, USA
| |
Collapse
|
38
|
Doss M. Are We Approaching the End of the Linear No-Threshold Era? J Nucl Med 2018; 59:1786-1793. [PMID: 30262515 DOI: 10.2967/jnumed.118.217182] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The linear no-threshold (LNT) model for radiation-induced cancer was adopted by national and international advisory bodies in the 1950s and has guided radiation protection policies worldwide since then. The resulting strict regulations have increased the compliance costs for the various uses of radiation, including nuclear medicine. The concerns about low levels of radiation due to the absence of a threshold have also resulted in adverse consequences. Justification of the LNT model was based on the concept that low levels of radiation increase mutations and that increased mutations imply increased cancers. This concept may not be valid. Low-dose radiation boosts defenses such as antioxidants and DNA repair enzymes. The boosted defenses would reduce the endogenous DNA damage that would have occurred in the subsequent period, and so the result would be reduced DNA damage and mutations. Whereas mutations are necessary for causing cancer, they are not sufficient since the immune system eliminates cancer cells or keeps them under control. The immune system plays an extremely important role in preventing cancer, as indicated by the substantially increased cancer risk in immune-suppressed patients. Hence, since low-dose radiation enhances the immune system, it would reduce cancers, resulting in a phenomenon known as radiation hormesis. There is considerable evidence for radiation hormesis and against the LNT model, including studies of atomic bomb survivors, background radiation, environmental radiation, cancer patients, medical radiation, and occupational exposures. Though Commentary 27 published by the National Council on Radiation Protection and Measurements concluded that recent epidemiologic studies broadly support the LNT model, a critical examination of the studies has shown that they do not. Another deficiency of Commentary 27 is that it did not consider the vast available evidence for radiation hormesis. Other advisory body reports that have supported the LNT model have similar deficiencies. Advisory bodies are urged to critically evaluate the evidence supporting both sides and arrive at an objective conclusion on the validity of the LNT model. Considering the strength of the evidence against the LNT model and the weakness of the evidence for it, the present analysis indicates that advisory bodies would be compelled to reject the LNT model. Hence, we may be approaching the end of the LNT model era.
Collapse
Affiliation(s)
- Mohan Doss
- Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Shore RE, Beck HL, Boice JD, Caffrey EA, Davis S, Grogan HA, Mettler FA, Preston RJ, Till JE, Wakeford R, Walsh L, Dauer LT. Implications of recent epidemiologic studies for the linear nonthreshold model and radiation protection. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:1217-1233. [PMID: 30004025 DOI: 10.1088/1361-6498/aad348] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The recently published NCRP Commentary No. 27 evaluated the new information from epidemiologic studies as to their degree of support for applying the linear nonthreshold (LNT) model of carcinogenic effects for radiation protection purposes (NCRP 2018 Implications of Recent Epidemiologic Studies for the Linear Nonthreshold Model and Radiation Protection, Commentary No. 27 (Bethesda, MD: National Council on Radiation Protection and Measurements)). The aim was to determine whether recent epidemiologic studies of low-LET radiation, particularly those at low doses and/or low dose rates (LD/LDR), broadly support the LNT model of carcinogenic risk or, on the contrary, demonstrate sufficient evidence that the LNT model is inappropriate for the purposes of radiation protection. An updated review was needed because a considerable number of reports of radiation epidemiologic studies based on new or updated data have been published since other major reviews were conducted by national and international scientific committees. The Commentary provides a critical review of the LD/LDR studies that are most directly applicable to current occupational, environmental and medical radiation exposure circumstances. This Memorandum summarises several of the more important LD/LDR studies that incorporate radiation dose responses for solid cancer and leukemia that were reviewed in Commentary No. 27. In addition, an overview is provided of radiation studies of breast and thyroid cancers, and cancer after childhood exposures. Non-cancers are briefly touched upon such as ischemic heart disease, cataracts, and heritable genetic effects. To assess the applicability and utility of the LNT model for radiation protection, the Commentary evaluated 29 epidemiologic studies or groups of studies, primarily of total solid cancer, in terms of strengths and weaknesses in their epidemiologic methods, dosimetry approaches, and statistical modelling, and the degree to which they supported a LNT model for continued use in radiation protection. Recommendations for how to make epidemiologic radiation studies more informative are outlined. The NCRP Committee recognises that the risks from LD/LDR exposures are small and uncertain. The Committee judged that the available epidemiologic data were broadly supportive of the LNT model and that at this time no alternative dose-response relationship appears more pragmatic or prudent for radiation protection purposes.
Collapse
Affiliation(s)
- R E Shore
- New York University School of Medicine, New York, United States of America. Radiation Effects Research Foundation, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Davesne E, Laurent O, Lopez MA. How to assess internal doses for epidemiological studies and for emergency response? An overview of differences with routine operational radiation protection approach. RADIAT MEAS 2018. [DOI: 10.1016/j.radmeas.2018.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Boice JD, Ellis ED, Golden AP, Girardi DJ, Cohen SS, Chen H, Mumma MT, Shore RE, Leggett RW. The Past Informs the Future: An Overview of the Million Worker Study and the Mallinckrodt Chemical Works Cohort. HEALTH PHYSICS 2018; 114:381-385. [PMID: 29481528 DOI: 10.1097/hp.0000000000000825] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The purpose of this paper is to present an overview of ongoing work on the Million Worker Study (MWS), highlighting some of the key methods and progress so far as exemplified by the study of workers at the Mallinckrodt Chemical Works (MCW). The MWS began nearly 25 y ago and continues in a stepwise fashion, evaluating one study cohort at a time. It includes workers from U.S. Department of Energy (DOE) Manhattan Project facilities, U.S. Nuclear Regulatory Commission (NRC) regulated nuclear power plants, industrial radiographers, U.S. Department of Defense (DoD) nuclear weapons test participants, and physicians and technologists working with medical radiation. The purpose is to fill the major gap in radiation protection and science: What is the risk when exposure is received gradually over time rather than briefly as for the atomic bomb survivors? Studies published or planned in 2018 include leukemia (and dosimetry) among atomic veterans, leukemia among nuclear power plant workers, mortality among workers at the MCW, and a comprehensive National Council on Radiation Protection and Measurements (NCRP) Report on dosimetry for the MWS. MCW has a singular place in history: the 40 tons (T) of uranium oxide produced at MCW were used by Enrico Fermi on 2 December 1942 to produce the first manmade sustained and controlled nuclear reaction, and the atomic age was born. Seventy-six years later, the authors followed the over 2,500 MCW workers for mortality and reconstructed dose from six sources of exposure: external gamma rays from the radioactive elements in pitchblende; medical x rays from occupationally required chest examinations; intakes of pitchblende (uranium, radium, and silica) measured by urine samples; radon breath analyses and dust surveys overseen by Robley Evans and Merril Eisenbud; occupational exposures received before and after employment at MCW; and cumulative radon concentrations and lung dose from the decay of radium in the work environment. The unique exposure reconstructions allow for multiple evaluations, including estimates of silica dust. The study results are relevant today. For example, NASA is interested that radium, deposited in the brain, releases high-LET alpha particles - the only human analogue, though limited, for high energy, high-Z particles (galactic cosmic rays) traveling through space that might affect astronauts on Mars missions. Don't discount the past; it's the prologue to the future!
Collapse
|
42
|
Ellis ED, Boice JD, Golden AP, Girardi DJ, Cohen SS, Mumma MT, Shore RE, Leggett RW, Kerr GD. Dosimetry is Key to Good Epidemiology: Workers at Mallinckrodt Chemical Works had Seven Different Source Exposures. HEALTH PHYSICS 2018; 114:386-397. [PMID: 29481529 DOI: 10.1097/hp.0000000000000847] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mallinckrodt Chemical Works was the earliest uranium processing facility in the Manhattan Project, beginning in 1942. Even then, concern existed about possible health effects resulting from exposure to radiation and pitchblende dust. This concern was well founded as the facility processed Belgian Congo pitchblende ore that was up to 60% pure uranium with high U content and up to 100 mg of radium per ton. Workers were exposed to external gamma radiation plus internal radiation from inhalation and ingestion of pitchblende dust (uranium, radium, and silica). Multiple sources of exposure were available for organ dose reconstruction to a degree unique for an epidemiologic study. Personal film badge measures available from 1945 captured external exposures. Additional external exposure included 15,518 occupational medical x-rays and 210 radiation exposure records from other facilities outside of Mallinckrodt employment. Organ dose calculations considered organ-specific coefficients that account for photon energy and job-specific orientation of workers to the radiation source during processing. Intakes of uranium and radium were based on 39,451 uranium urine bioassays and 2,341 breath radon measurements, and International Commission on Radiological Protection (ICRP) Publication 68 biokinetic models were used to estimate organ-specific radiation absorbed dose. Estimates of exposure to airborne radon and its short-lived progeny were based on radon measurements in work areas where radium-containing materials were handled or stored, together with estimated exposure times in these areas based on job titles. Dose estimates for radon and its short-lived progeny were based on models and methods recently recommended in ICRP Publication 137. This comprehensive dosimetric approach follows methods outlined by the National Council on Radiation Protection Scientific Committee 6-9 for the Million Worker Study. Annual doses were calculated for six organs: lung, brain, heart, kidney, colon and red bone marrow. Evaluation and adjustment for individual cumulative measures of pitchblende dust inhalation were made for lung and kidney diseases.
Collapse
|
43
|
Boice JD. NCRP Vision for the Future and Program Area Committee Activities in 2017. HEALTH PHYSICS 2018; 114:232-242. [PMID: 30086021 DOI: 10.1097/hp.0000000000000790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The National Council on Radiation Protection and Measurements' (NCRP) vision for the future is to improve radiation protection for the general public and workers. This vision is embodied within NCRP's ongoing initiatives: preparedness for nuclear terrorism, increasing the number of radiation professionals critically needed for the nation, providing new guidance for radiation protection in the United States, addressing the protection issues surrounding the ever-increasing use of ionizing radiation in medicine, assessing the radiation doses to aircrew due to higher altitude and longer flights, providing guidance on emerging radiation issues such as the radioactive waste from hydraulic fracturing, focusing on difficult issues such as high-level waste management, and providing better estimates of radiation risks at low doses within the framework of the Million Person Study of Low Dose Radiation Health Effects. Cutting-edge initiatives include a re-evaluation of the science behind recommendations for lens of the eye dose, recommendations for emergency responders on dosimetry after a major radiological incident, guidance to the National Aeronautics and Space Administration with regard to possible central nervous system effects from galactic cosmic rays (the high-energy, high-mass particles bounding through space), re-evaluating the population exposure to medical radiation, and addressing whether the linear non-threshold model is still the best available for purposes of radiation protection (not for risk assessment). To address these initiatives and goals, NCRP has seven Program Area Committees on biology and epidemiology, operational concerns, emergency response and preparedness, medicine, environmental issues and waste management, dosimetry, and communications. The NCRP vision for the future received a quantum boost in 2016 when Dr. Kathryn D. Held (Massachusetts General Hospital and Harvard Medical School) accepted the position of NCRP Executive Director and Chief Science Officer. The NCRP quest to improve radiation protection for the public is hindered only by limited resources, both human capital and financial.
Collapse
|
44
|
Till JE, Beck HL, Grogan HA, Caffrey EA. A review of dosimetry used in epidemiological studies considered to evaluate the linear no-threshold (LNT) dose-response model for radiation protection. Int J Radiat Biol 2017; 93:1128-1144. [DOI: 10.1080/09553002.2017.1337280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Boice JD. The linear nonthreshold (LNT) model as used in radiation protection: an NCRP update. Int J Radiat Biol 2017; 93:1079-1092. [DOI: 10.1080/09553002.2017.1328750] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Department of Medicine, Division of Epidemiology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
46
|
Abstract
A critically important gap in knowledge surrounds the health consequences of exposure to radiation received gradually over time. Much is known about the health effects of brief high-dose exposures, such as from the atomic bombings in Japan, but the concerns today focus on the frequent low-dose exposures received by members of the public, workers, and, as addressed in this paper, astronauts. Additional guidance is needed by the National Aeronautics and Space Administration (NASA) for planning long-term missions where the rate of radiation exposure is gradual over years and the cumulative amounts high. The direct study of low doses and low-dose rates is of immeasurable value in understanding the possible range of health effects from gradual exposures and in providing guidance for radiation protection, not only of workers and the public but also astronauts. The ongoing Million Person Study (MPS) is 10 times larger than the study of the Japanese atomic bomb survivors of 86,000 survivors with estimated doses. The number of workers with >100 mSv career dose is substantially greater. The large study size, broad range of doses, and long follow-up indicate substantial statistical ability to quantify the risk of exposures that are received gradually over time. The study consists of 360,000 U.S. Department of Energy workers from the Manhattan Project; 150,000 nuclear utility workers from the inception of the nuclear age; 115,000 atomic veterans who participated in above-ground atmospheric tests at the Nevada Test Site and the Bikini and Enewetak Atolls and Johnston Island in the Pacific Proving Grounds (PPG); 250,000 radiologists and medical workers; and 130,000 industrial radiographers. NASA uses an individual risk-based system for radiation protection in contrast to the system of dose limits for occupational exposures used by terrestrial-based organizations. The permissible career exposure limit set by NASA for each astronaut is a 3% risk of exposure-induced death (REID) from cancer at a 95% confidence level to account for uncertainties in risk projections. The large size of the MPS will reduce the uncertainty in the risk estimates, narrowing the 95% confidence interval, and thus allow more time in space for astronauts. Further differences between men and women in their response to radiation can be more fully examined, and non-cancer outcomes, such as neurological disorders and cardiovascular disease, can be evaluated in a way not hitherto possible.
Collapse
Affiliation(s)
- John D Boice
- *National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814-3095
| |
Collapse
|
47
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
48
|
External radiation dose and cancer mortality among French nuclear workers: considering potential confounding by internal radiation exposure. Int Arch Occup Environ Health 2016; 89:1183-1191. [PMID: 27383840 DOI: 10.1007/s00420-016-1152-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 06/24/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVES French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. METHODS A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat à l'Energie Atomique), AREVA NC, or EDF (Electricité de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. RESULTS For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. CONCLUSIONS This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.
Collapse
|
49
|
Peterson LE, Kovyrshina T. Adjustment of lifetime risks of space radiation-induced cancer by the healthy worker effect and cancer misclassification. Heliyon 2015; 1:e00048. [PMID: 27441231 PMCID: PMC4945756 DOI: 10.1016/j.heliyon.2015.e00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/13/2015] [Accepted: 11/10/2015] [Indexed: 01/12/2023] Open
Abstract
Background. The healthy worker effect (HWE) is a source of bias in occupational studies of mortality among workers caused by use of comparative disease rates based on public data, which include mortality of unhealthy members of the public who are screened out of the workplace. For the US astronaut corp, the HWE is assumed to be strong due to the rigorous medical selection and surveillance. This investigation focused on the effect of correcting for HWE on projected lifetime risk estimates for radiation-induced cancer mortality and incidence. Methods. We performed radiation-induced cancer risk assessment using Poisson regression of cancer mortality and incidence rates among Hiroshima and Nagasaki atomic bomb survivors. Regression coefficients were used for generating risk coefficients for the excess absolute, transfer, and excess relative models. Excess lifetime risks (ELR) for radiation exposure and baseline lifetime risks (BLR) were adjusted for the HWE using standardized mortality ratios (SMR) for aviators and nuclear workers who were occupationally exposed to ionizing radiation. We also adjusted lifetime risks by cancer mortality misclassification among atomic bomb survivors. Results. For all cancers combined (“Nonleukemia”), the effect of adjusting the all-cause hazard rate by the simulated quantiles of the all-cause SMR resulted in a mean difference (not percent difference) in ELR of 0.65% and mean difference of 4% for mortality BLR, and mean change of 6.2% in BLR for incidence. The effect of adjusting the excess (radiation-induced) cancer rate or baseline cancer hazard rate by simulated quantiles of cancer-specific SMRs resulted in a mean difference of −1.2% in the all-cancer mortality ELR and mean difference of −6.4% in the mortality BLR. Whereas for incidence, the effect of adjusting by cancer-specific SMRs resulted in a mean change of −14.4% for the all-cancer BLR. Only cancer mortality risks were adjusted by simulated quantiles for misclassification, and results indicate a mean change of 1.1% for all-cancer mortality ELR, while the mean change in the all-cancer PC was approximately 4% for males and 6% for females. Conclusions. The typical life table approach for projecting lifetime risk of radiation-induced cancer mortality and incidence for astronauts and radiation workers can be improved by adjusting for HWE while simulating the uncertainty of input rates, input excess risk coefficients, and bias correction factors during multiple Monte Carlo realizations of the life table.
Collapse
Affiliation(s)
- Leif E Peterson
- Center for Biostatistics, Houston Methodist Research Institute, 6565 Fannin Street, Suite MGJ6-031, Houston, TX 77030, United States
| | - Tatiana Kovyrshina
- Center for Biostatistics, Houston Methodist Research Institute, 6565 Fannin Street, Suite MGJ6-031, Houston, TX 77030, United States
| |
Collapse
|
50
|
Zhivin S, Guseva Canu I, Samson E, Laurent O, Grellier J, Collomb P, Zablotska LB, Laurier D. Mortality (1968–2008) in a French cohort of uranium enrichment workers potentially exposed to rapidly soluble uranium compounds. Occup Environ Med 2015; 73:167-74. [DOI: 10.1136/oemed-2015-103142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/28/2015] [Indexed: 12/28/2022]
|