1
|
Huang S, Xu M, Deng X, Da Q, Li M, Huang H, Zhao L, Jing L, Wang H. Anti irradiation nanoparticles shelter immune organ from radio-damage via preventing the IKK/IκB/NF-κB activation. Mol Cancer 2024; 23:234. [PMID: 39425231 PMCID: PMC11490033 DOI: 10.1186/s12943-024-02142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Normal tissue and immune organ protection are critical parts of the tumor radiation therapy process. Radiation-induced immune organ damage (RIOD) causes several side reactions by increasing oxidative stress and inflammatory responses, resulting in unsatisfactory curability in tumor radiation therapy. The aim of this study was to develop a novel and efficient anti irradiation nanoparticle and explore its mechanism of protecting splenic tissue from radiation in mice. METHODS Nanoparticles of triphenylphosphine cation NIT radicals (NPs-TPP-NIT) were prepared and used to protect the spleens of mice irradiated with X-rays. Splenic tissue histopathology and hematological parameters were investigated to evaluate the protective effect of NPs-TPP-NIT against X-ray radiation. Proteomics was used to identify differentially expressed proteins related to inflammatory factor regulation. In addition, in vitro and in vivo experiments were performed to assess the impact of NPs-TPP-NIT on radiation therapy. RESULTS NPs-TPP-NIT increased superoxide dismutase, catalase, and glutathione peroxidase activity and decreased malondialdehyde levels and reactive oxygen species generation in the spleens of mice after exposure to 6.0 Gy X-ray radiation. Moreover, NPs-TPP-NIT inhibited cell apoptosis, blocked the activation of cleaved cysteine aspartic acid-specific protease/proteinase, upregulated the expression of Bcl-2, and downregulated that of Bax. We confirmed that NPs-TPP-NIT prevented the IKK/IκB/NF-κB activation induced by ionizing radiation, thereby alleviating radiation-induced splenic inflammatory damage. In addition, when used during radiotherapy for tumors in mice, NPs-TPP-NIT exhibited no significant toxicity and conferred no significant tumor protective effects. CONCLUSIONS NPs-TPP-NIT prevented activation of IKK/IκB/NF-κB signaling, reduced secretion of pro-inflammatory factors, and promoted production of anti-inflammatory factors in the spleen, which exhibited radiation-induced damage repair capability without diminishing the therapeutic effect of radiation therapy. It suggests that NPs-TPP-NIT serve as a potential radioprotective drug to shelter immune organs from radiation-induced damage.
Collapse
Affiliation(s)
- Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Min Xu
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
- The Third Stationed Outpatient Department, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Xiaojun Deng
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
| | - Qingyue Da
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Miaomiao Li
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Hao Huang
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Linlin Jing
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Haibo Wang
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
3
|
Santos JF, Braz MT, Raposinho P, Cleeren F, Cassells I, Leekens S, Cawthorne C, Mendes F, Fernandes C, Paulo A. Synthesis and Preclinical Evaluation of PSMA-Targeted 111In-Radioconjugates Containing a Mitochondria-Tropic Triphenylphosphonium Carrier. Mol Pharm 2024; 21:216-233. [PMID: 37992229 DOI: 10.1021/acs.molpharmaceut.3c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Nuclear DNA is the canonical target for biological damage induced by Auger electrons (AE) in the context of targeted radionuclide therapy (TRT) of cancer, but other subcellular components might also be relevant for this purpose, such as the energized mitochondria of tumor cells. Having this in mind, we have synthesized novel DOTA-based chelators carrying a prostate-specific membrane antigen (PSMA) inhibitor and a triphenyl phosphonium (TPP) group that were used to obtain dual-targeted 111In-radioconjugates ([111In]In-TPP-DOTAGA-PSMA and [111In]In-TPP-DOTAGA-G3-PSMA), aiming to promote a selective uptake of an AE-emitter radiometal (111In) by PSMA+ prostate cancer (PCa) cells and an enhanced accumulation in the mitochondria. These dual-targeted 111In-radiocomplexes are highly stable under physiological conditions and in cell culture media. The complexes showed relatively similar binding affinities toward the PSMA compared to the reference tracer [111In]In-PSMA-617, in line with their high cellular uptake and internalization in PSMA+ PCa cells. The complexes compromised cell survival in a dose-dependent manner and in the case of [111In]In-TPP-DOTAGA-G3-PSMA to a higher extent than observed for the single-targeted congener [111In]In-PSMA-617. μSPECT imaging studies in PSMA+ PCa xenografts showed that the TPP pharmacophore did not interfere with the excellent in vivo tumor uptake of the "golden standard" [111In]In-PSMA-617, although it led to a higher kidney retention. Such kidney retention does not necessarily compromise their usefulness as radiotherapeutics due to the short tissue range of the Auger/conversion electrons emitted by 111In. Overall, our results provide valuable insights into the potential use of mitochondrial targeting by PSMA-based radiocomplexes for efficient use of AE-emitting radionuclides in TRT, giving impetus to extend the studies to other AE-emitting trivalent radiometals (e.g., 161Tb or 165Er) and to further optimize the designed dual-targeting constructs.
Collapse
Affiliation(s)
- Joana F Santos
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Maria T Braz
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Paula Raposinho
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, B-3000 Leuven, Belgium
| | - Irwin Cassells
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, B-3000 Leuven, Belgium
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Simon Leekens
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, B-3000 Leuven, Belgium
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Filipa Mendes
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Célia Fernandes
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
4
|
Chukavin NN, Filippova KO, Ermakov AM, Karmanova EE, Popova NR, Anikina VA, Ivanova OS, Ivanov VK, Popov AL. Redox-Active Cerium Fluoride Nanoparticles Selectively Modulate Cellular Response against X-ray Irradiation In Vitro. Biomedicines 2023; 12:11. [PMID: 38275372 PMCID: PMC10813610 DOI: 10.3390/biomedicines12010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Ionizing radiation-induced damage in cancer and normal cells leads to apoptosis and cell death, through the intracellular oxidative stress, DNA damage and disorders of their metabolism. Irradiation doses that do not lead to the death of tumor cells can result in the emergence of radioresistant clones of these cells due to the rearrangement of metabolism and the emergence of new mutations, including those in the genes responsible for DNA repair. The search for the substances capable of modulating the functioning of the tumor cell repair system is an urgent task. Here we analyzed the effect of cerium(III) fluoride nanoparticles (CeF3 NPs) on normal (human mesenchymal stem cells-hMSC) and cancer (MCF-7 line) human cells after X-ray radiation. CeF3 NPs effectively prevent the formation of hydrogen peroxide and hydroxyl radicals in an irradiated aqueous solution, showing pronounced antioxidant properties. CeF3 NPs are able to protect hMSC from radiation-induced proliferation arrest, increasing their viability and mitochondrial membrane potential, and, conversely, inducing the cell death of MCF-7 cancer cells, causing radiation-induced mitochondrial hyperpolarization. CeF3 NPs provided a significant decrease in the number of double-strand breaks (DSBs) in hMSC, while in MCF-7 cells the number of γ-H2AX foci dramatically increased in the presence of CeF3 4 h after irradiation. In the presence of CeF3 NPs, there was a tendency to modulate the expression of most analyzed genes associated with the development of intracellular oxidative stress, cell redox status and the DNA-repair system after X-ray irradiation. Cerium-containing nanoparticles are capable of providing selective protection of hMSC from radiation-induced injuries and are considered as a platform for the development of promising clinical radioprotectors.
Collapse
Affiliation(s)
- Nikita N. Chukavin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
- Scientific and Educational Center, State University of Education, Moscow 105005, Russia
| | - Kristina O. Filippova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Artem M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
- Scientific and Educational Center, State University of Education, Moscow 105005, Russia
| | - Ekaterina E. Karmanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Nelli R. Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Viktoriia A. Anikina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia;
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| |
Collapse
|
5
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
6
|
Kashino G, Kobashigawa S, Uchikoshi A, Tamari Y. VEGF affects mitochondrial ROS generation in glioma cells and acts as a radioresistance factor. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:213-220. [PMID: 36941405 DOI: 10.1007/s00411-023-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/08/2023] [Indexed: 05/18/2023]
Abstract
Vascular endothelial growth factor (VEGF) is closely related to angiogenesis. Anticancer therapy by inhibiting VEGF signaling is well established. However, the role of VEGF in cell-cell communication during the response to ionizing radiation is not well understood. Here, we examined the role of VEGF on radiosensitivity of cells. The addition of recombinant VEGF (rVEGF) on cultured rat C6 glioma cells showed a radioprotective effects on X-ray irradiation and reduced oxidative stress. These effects were also observed by endogenous VEGF in supernatant of C6 glioma cells. Reduction of oxidative stress by VEGF is suggested to underlie the radioprotective effects. The mechanism of VEGF-induced reduction of oxidative stress was indicated by a decreased oxygen consumption rate (OCR) in mitochondria. However, the number of DNA double-strand breaks (DSB) immediately after irradiation was not reduced by the treatment with VEGF. These results suggest that VEGF plays a role in cell survival after irradiation by controlling the oxidative condition through mitochondrial function that is independent of the efficiency of DSB induction.
Collapse
Affiliation(s)
- Genro Kashino
- Radioisotope Research Center, Nara Medical University, Shijo-Machi, Kashihara, Japan.
| | - Shinko Kobashigawa
- Radioisotope Research Center, Nara Medical University, Shijo-Machi, Kashihara, Japan
| | - Aoki Uchikoshi
- Radioisotope Research Center, Nara Medical University, Shijo-Machi, Kashihara, Japan
| | - Yuki Tamari
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Kumar A, Prajapati S, Sharma M, Singh T, Choudhary N, Bharti AC, Sharma R, Gupta P. Quantitative assessment of antioxidant potential of selected homeopathic preparations in clinical practice. Drug Metab Pers Ther 2022:dmdi-2022-0169. [PMID: 36577508 DOI: 10.1515/dmpt-2022-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Antioxidant property like radical scavenging is a primary target to elucidate the efficacy mechanism of a drug against diseases linked to oxidative stress such as cancer, metabolic disorders, rheumatoid arthritis, etc. In alternative therapies, homeopathy is one of the preferred choices by patients and clinicians due to its potential to cure chronic and complex illnesses. However, the efficacy of homeopathic preparations at high diluted potencies attracts rational criticism due to insufficient scientific knowledge supporting the mechanism of action. Therefore, an attempt was made to estimate the total phenolic content (TPC) and radical scavenging activity of clinically prescribed homeopathic drugs. METHODS With gallic acid as a reference control, mother tinctures (MTs) and different potencies of Eucalyptus globulus (EG), Syzygium jambolanum (SJ), Ruta graveolens (RG), and Thuja occidentalis (TO) were used to perform Folin-Ciocalteu test, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. RESULTS The results showed TPC of MTs equivalent to µg/mL of gallic acid viz; EG (4,872.5 ± 133.2), SJ (8,840.5 ± 14.8), RG (985.6 ± 39.1), and TO (341.5 ± 19.5) with significant ABTS and DPPH radical scavenging potential. Whereas 30C and 200C potencies of each homeopathic drug showed undetectable phenolic content and insignificant radical scavenging potential compared to vehicle control, i.e., alcohol 90% (2.0 ± 1.5). CONCLUSIONS The reported efficacy of 30C and 200C potencies of homeopathic medicines against oxidative stress-related illnesses might be due to mechanisms other than radical scavenging. Furthermore, the assays studied can be helpful in drug standardization and quality control of MTs that are used as starting material in homeopathic preparations.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology Laboratory, Drug Standardization Unit, Dr. DP Rastogi Central Research Institute of Homeopathy, Ministry of AYUSH, Government of India, Noida 201301, Uttar Pradesh, India.,Department of Zoology, Kirori Mal College, University of Delhi, Delhi- 110007 , India
| | - Suneel Prajapati
- Molecular Biology Laboratory, Drug Standardization Unit, Dr. DP Rastogi Central Research Institute of Homeopathy, Ministry of AYUSH, Government of India, Noida 201301, Uttar Pradesh, India
| | - Mahima Sharma
- Molecular Biology Laboratory, Drug Standardization Unit, Dr. DP Rastogi Central Research Institute of Homeopathy, Ministry of AYUSH, Government of India, Noida 201301, Uttar Pradesh, India
| | - Tejveer Singh
- Department of Zoology, Hansraj College, University of Delhi, Delhi- 110007 , India
| | - Neha Choudhary
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, India
| | - Alok C Bharti
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi, Delhi 110007, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Pankaj Gupta
- Molecular Biology Laboratory, Drug Standardization Unit, Dr. DP Rastogi Central Research Institute of Homeopathy, Ministry of AYUSH, Government of India, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
8
|
Delbart W, Karabet J, Marin G, Penninckx S, Derrien J, Ghanem GE, Flamen P, Wimana Z. Understanding the Radiobiological Mechanisms Induced by 177Lu-DOTATATE in Comparison to External Beam Radiation Therapy. Int J Mol Sci 2022; 23:ijms232012369. [PMID: 36293222 PMCID: PMC9604190 DOI: 10.3390/ijms232012369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Radionuclide Therapy (RNT) with 177Lu-DOTATATE targeting somatostatin receptors (SSTRs) in neuroendocrine tumours (NET) has been successfully used in routine clinical practice, mainly leading to stable disease. Radiobiology holds promise for RNT improvement but is often extrapolated from external beam radiation therapy (EBRT) studies despite differences in these two radiation-based treatment modalities. In a panel of six human cancer cell lines expressing SSTRs, common radiobiological endpoints (i.e., cell survival, cell cycle, cell death, oxidative stress and DNA damage) were evaluated over time in 177Lu-DOTATATE- and EBRT-treated cells, as well as the radiosensitizing potential of poly (ADP-ribose) polymerase inhibition (PARPi). Our study showed that common radiobiological mechanisms were induced by both 177Lu-DOTATATE and EBRT, but to a different extent and/or with variable kinetics, including in the DNA damage response. A higher radiosensitizing potential of PARPi was observed for EBRT compared to 177Lu-DOTATATE. Our data reinforce the need for dedicated RNT radiobiology studies, in order to derive its maximum therapeutic benefit.
Collapse
Affiliation(s)
- Wendy Delbart
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-541-30-05
| | - Jirair Karabet
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gwennaëlle Marin
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Jonathan Derrien
- Laboratoire de Physique Nucléaire et Des Radiations, Institut Supérieur Industriel de Bruxelles (ISIB), 1000 Brussels, Belgium
- NEMP Applied Research Lab, Institut de Recherche de l’Institut Supérieur Industriel de Bruxelles (IRISIB), 1000 Brussels, Belgium
| | - Ghanem E. Ghanem
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Patrick Flamen
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Zéna Wimana
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
9
|
Searching for a Paradigm Shift in Auger-Electron Cancer Therapy with Tumor-Specific Radiopeptides Targeting the Mitochondria and/or the Cell Nucleus. Int J Mol Sci 2022; 23:ijms23137238. [PMID: 35806239 PMCID: PMC9266350 DOI: 10.3390/ijms23137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
Although 99mTc is not an ideal Auger electron (AE) emitter for Targeted Radionuclide Therapy (TRT) due to its relatively low Auger electron yield, it can be considered a readily available “model” radionuclide useful to validate the design of new classes of AE-emitting radioconjugates. With this in mind, we performed a detailed study of the radiobiological effects and mechanisms of cell death induced by the dual-targeted radioconjugates 99mTc-TPP-BBN and 99mTc-AO-BBN (TPP = triphenylphosphonium; AO = acridine orange; BBN = bombesin derivative) in human prostate cancer PC3 cells. 99mTc-TPP-BBN and 99mTc-AO-BBN caused a remarkably high reduction of the survival of PC3 cells when compared with the single-targeted congener 99mTc-BBN, leading to an augmented formation of γH2AX foci and micronuclei. 99mTc-TPP-BBN also caused a reduction of the mtDNA copy number, although it enhanced the ATP production by PC3 cells. These differences can be attributed to the augmented uptake of 99mTc-TPP-BBN in the mitochondria and enhanced uptake of 99mTc-AO-BBN in the nucleus, allowing the irradiation of these radiosensitive organelles with the short path-length AEs emitted by 99mTc. In particular, the results obtained for 99mTc-TPP-BBN reinforce the relevance of targeting the mitochondria to promote stronger radiobiological effects by AE-emitting radioconjugates.
Collapse
|
10
|
Hasuike Y, Mochizuki H, Nakamori M. Expanded CUG Repeat RNA Induces Premature Senescence in Myotonic Dystrophy Model Cells. Front Genet 2022; 13:865811. [PMID: 35401669 PMCID: PMC8990169 DOI: 10.3389/fgene.2022.865811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominantly inherited disorder due to a toxic gain of function of RNA transcripts containing expanded CUG repeats (CUGexp). Patients with DM1 present with multisystemic symptoms, such as muscle wasting, cognitive impairment, cataract, frontal baldness, and endocrine defects, which resemble accelerated aging. Although the involvement of cellular senescence, a critical component of aging, was suggested in studies of DM1 patient-derived cells, the detailed mechanism of cellular senescence caused by CUGexp RNA remains unelucidated. Here, we developed a DM1 cell model that conditionally expressed CUGexp RNA in human primary cells so that we could perform a detailed assessment that eliminated the variability in primary cells from different origins. Our DM1 model cells demonstrated that CUGexp RNA expression induced cellular senescence by a telomere-independent mechanism. Furthermore, the toxic RNA expression caused mitochondrial dysfunction, excessive reactive oxygen species production, and DNA damage and response, resulting in the senescence-associated increase of cell cycle inhibitors p21 and p16 and secreted mediators insulin-like growth factor binding protein 3 (IGFBP3) and plasminogen activator inhibitor-1 (PAI-1). This study provides unequivocal evidence of the induction of premature senescence by CUGexp RNA in our DM1 model cells.
Collapse
|
11
|
Hosseini E, Kianinodeh F, Ghasemzadeh M. Irradiation of platelets in Transfusion Medicine: risk and benefit judgments. Platelets 2021; 33:666-678. [PMID: 34697994 DOI: 10.1080/09537104.2021.1990250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Irradiation of platelet products is generally used to prevent transfusion-associated graft-versus-host disease (TA-GvHD) as well as transfusion-transmitted infections. As an essential prerequisite, gamma-irradiation of blood products prior to transfusion is required in patients who may develop TA-GVHD. Most studies suggest that gamma irradiation has no significant effect on the quality of platelet products; however, more recent studies have shown that the oxidative effects of gamma irradiation can lead to the induction of platelet storage lesion (PSL) and to some extent reduce the efficiency of transfused platelets. As the second widely used irradiation technique, UV-illumination was primarily introduced to reduce the growth of infectious agents during platelet storage, with the advantage that this method can also prevent TA-GvHD. However, the induction of oxidative conditions and platelet pre-activation that lead to PSL is more pronounced after UV-based methods of pathogen reduction. Since these lesions are large enough to clearly affect the post-transfusion platelet recovery and survival, more studies are needed to improve the safety and effectiveness of pathogen reduction technologies (PRTs). Therefore, pointing to other benefits of PRTs, such as preventing TA-GvHD or prolonging the shelf life of products by eliminating the possibility of pathogen growth during storage, does not yet seem to justify their widespread use due to above-mentioned effects. Even for gamma-irradiated platelets, some researchers have suggested that due to decreased 1-hour post-transfusion increments and increased risk of platelet refractoriness, their use should be limited to the patients who may develop TA-GVHD. It is noteworthy that due to the effect of X-rays in preventing TA-GvHD, some recent studies are underway to examine its effects on the quality and effectiveness of platelet products and determine whether X-rays can be used as a more appropriate and cost-effective alternative to gamma radiation. The review presented here provides a detailed description about irradiation-based technologies for platelet products, including their applications, mechanistic features, advantages, and disadvantages.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Kianinodeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
12
|
Multifaceted roles of a bioengineered nanoreactor in repressing radiation-induced lung injury. Biomaterials 2021; 277:121103. [PMID: 34478930 DOI: 10.1016/j.biomaterials.2021.121103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022]
Abstract
Radiation-induced lung injury (RILI) is a potentially fatal and dose-limiting complication of thoracic cancer radiotherapy. However, effective therapeutic agents for this condition are limited. Here, we describe a novel strategy to exert additive effects of a non-erythropoietic EPO derivative (ARA290), along with a free radical scavenger, superoxide dismutase (SOD), using a bioengineered nanoreactor (SOD@ARA290-HBc). ARA290-chimeric nanoreactor makes SOD present in a confined reaction space by encapsulation into its interior to heighten stability against denaturing stimuli. In a RILI mouse model, intratracheal administration of SOD@ARA290-HBc was shown to significantly ameliorate acute radiation pneumonitis and pulmonary fibrosis. Our investigations revealed that SOD@ARA290-HBc performs its radioprotective effects by protecting against radiation induced alveolar epithelial cell apoptosis and ferroptosis, suppressing oxidative stress, inhibiting inflammation and by modulating the infiltrated macrophage phenotype, or through a combination of these mechanisms. In conclusion, SOD@ARA29-HBc is a potential therapeutic agent for RILI, and given its multifaceted roles, it may be further developed as a translational nanomedicine for other related disorders.
Collapse
|
13
|
Luo Y, Zhai F, Zhang Y, Chen Z, Ding M, Qin D, Yang J, Feng G, Li L. A superfine glass fibre air filter with rapid response to photocatalytic antibacterial properties under visible light by loading rGO/ZnO. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202285. [PMID: 34457329 PMCID: PMC8371377 DOI: 10.1098/rsos.202285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/22/2021] [Indexed: 05/14/2023]
Abstract
The development of high-performance air filter has become more and more important to public health. However, it has always been very challenging for developing a multifunctional air filter to simultaneously achieve excellent filtration and antibacterial properties. Herein, a versatile air filter was prepared with loading the reduced graphene (rGO) and zinc oxide on the superfine glass fibre (s-GF) with the three-dimensional network structure by in situ sol-gel process followed by calcination, which aims to achieve synergistic high-efficiency air filtration and rapid response to photocatalytic antibacterial properties under visible light. The air filter showed a three-dimensional network structure based on a rGO/ZnO/s-GF multilayer and exhibited the highest catalytic performance by achieving a 95% degradation effect on rhodamine B within 2 h and achieving 100% antibacterial inactivation of the Escherichia coli and Staphylococcus aureus within 4 h under visible light when the weight ratio of rGO in rGO/ZnO is 1.6%. The air filtration efficiency can also be maintained at 99% after loading ZnO and rGO photocatalytic particles. The spectrum of the photoluminescence (PL), UV-Vis diffuse reflectance spectra (DRS) and electron spin resonance (ESR) indicate that the combination of rGO and ZnO on the s-GF can increase the separation of photogenerated carriers and the specific surface area of the air filter, thereby increasing the photocatalytic response and antibacterial properties of the s-GF air filter under visible light in a short time.
Collapse
Affiliation(s)
- Yongyi Luo
- School of Materials and Energy, Southwest University, Chongqing 402160, People's Republic of China
| | - Fuqiang Zhai
- Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Yingchun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 402160, People's Republic of China
| | - Zhiqian Chen
- School of Materials and Energy, Southwest University, Chongqing 402160, People's Republic of China
| | - Mingde Ding
- Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Dajiang Qin
- Chongqing Zisun Technology Co., Ltd., Chongqing 401120, People's Republic of China
| | - Jinming Yang
- Chongqing Zisun Technology Co., Ltd., Chongqing 401120, People's Republic of China
| | - Guang Feng
- Engineering Research Center of Optical Instrument and System, Chongqing Institute of East China Normal University, Chongqing 401120, People's Republic of China
| | - Lu Li
- Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| |
Collapse
|
14
|
Liu C, Hirakawa H, Katsube T, Fang Y, Tanaka K, Nenoi M, Fujimori A, Wang B. Altered Induction of Reactive Oxygen Species by X-rays in Hematopoietic Cells of C57BL/6-Tg (CAG-EGFP) Mice. Int J Mol Sci 2021; 22:6929. [PMID: 34203224 PMCID: PMC8268547 DOI: 10.3390/ijms22136929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Previous work pointed to a critical role of excessive production of reactive oxygen species (ROS) in increased radiation hematopoietic death in GFP mice. Meanwhile, enhanced antioxidant capability was not demonstrated in the mouse model of radio-induced adaptive response (RAR) using rescue of radiation hematopoietic death as the endpoint. ROS induction by ex vivo X-irradiation at a dose ranging from 0.1 to 7.5 Gy in the nucleated bone marrow cells was comparatively studied using GFP and wild type (WT) mice. ROS induction was also investigated in the cells collected from mice receiving a priming dose (0.5 Gy) efficient for RAR induction in WT mice. Significantly elevated background and increased induction of ROS in the cells from GFP mice were observed compared to those from WT mice. Markedly lower background and decreased induction of ROS were observed in the cells collected from WT mice but not GFP mice, both receiving the priming dose. GFP overexpression could alter background and induction of ROS by X-irradiation in hematopoietic cells. The results provide a reasonable explanation to the previous study on the fate of cells and mice after X-irradiation and confirm enhanced antioxidant capability in RAR. Investigations involving GFP overexpression should be carefully interpreted.
Collapse
Affiliation(s)
- Cuihua Liu
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Hirokazu Hirakawa
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Takanori Katsube
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Yaqun Fang
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Kaoru Tanaka
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Mitsuru Nenoi
- Human Resources Development Center, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Bing Wang
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| |
Collapse
|
15
|
Sato Y, Yoshino H, Kashiwakura I, Tsuruga E. DAP3 Is Involved in Modulation of Cellular Radiation Response by RIG-I-Like Receptor Agonist in Human Lung Adenocarcinoma Cells. Int J Mol Sci 2021; 22:E420. [PMID: 33401559 PMCID: PMC7795940 DOI: 10.3390/ijms22010420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) mediate anti-viral response through mitochondria. In addition, RLR activation induces anti-tumor effects on various cancers. We previously reported that the RLR agonist Poly(I:C)-HMW/LyoVec™ (Poly(I:C)) enhanced radiosensitivity and that cotreatment with Poly(I:C) and ionizing radiation (IR) more than additively increased cell death in lung adenocarcinoma cells, indicating that Poly(I:C) modulates the cellular radiation response. However, it remains unclear how mitochondria are involved in the modulation of this response. Here, we investigated the involvement of mitochondrial dynamics and mitochondrial ribosome protein death-associated protein 3 (DAP3) in the modulation of cellular radiation response by Poly(I:C) in A549 and H1299 human lung adenocarcinoma cell lines. Western blotting revealed that Poly(I:C) decreased the expression of mitochondrial dynamics-related proteins and DAP3. In addition, siRNA experiments showed that DAP3, and not mitochondrial dynamics, is involved in the resistance of lung adenocarcinoma cells to IR-induced cell death. Finally, we revealed that a more-than-additive effect of cotreatment with Poly(I:C) and IR on increasing cell death was diluted by DAP3-knockdown because of an increase in cell death induced by IR alone. Together, our findings suggest that RLR agonist Poly(I:C) modulates the cellular radiation response of lung adenocarcinoma cells by downregulating DAP3 expression.
Collapse
Affiliation(s)
| | - Hironori Yoshino
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan; (Y.S.); (I.K.); (E.T.)
| | | | | |
Collapse
|
16
|
Eras N, Türkoz G, Tombak A, Tiftik N, Yalin S, Berkoz M, Erden S, Akbas E. An investigation of the relation between catalase C262T gene polymorphism and catalase enzyme activity in leukemia patients. Arch Med Sci 2021; 17:928-933. [PMID: 34336022 PMCID: PMC8314395 DOI: 10.5114/aoms.2019.89692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/23/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Catalase (CAT), an antioxidant enzyme, catalyzes conversion of hydrogen peroxide to water and molecular oxygen, protecting cells against oxidative stress. The aim of this study was to investigate the possible association between CAT C262T polymorphism in the promoter region of the CAT gene and leukemia risk and to determine the relationship between CAT genotypes and CAT enzyme activities. MATERIAL AND METHODS Genotypes of 102 cases and 112 healthy controls' genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism methods. Catalase activity was measured with the method of Aebi. RESULTS The frequencies of the T allele among the cases and controls were 28.4% and 25.9%, respectively (p = 0.75). The frequencies of CC, CT, and TT among cases were 57.8%, 27.4%, and 14.7%, respectively, while in controls, the frequencies of CC, CT, and TT were 54.4%, 39.3%, and 6.3%, respectively, which were not significantly different. Although CAT enzyme activity was lower in leukemia patients with TT genotypes than in controls, this did not reach statistical significance (p = 0.37). CONCLUSIONS This is the first report showing that CAT C262T polymorphism is not a genetic predisposing factor for the risk of leukemia in the Turkish population. However, additional research is needed to confirm these findings.
Collapse
Affiliation(s)
- Nazan Eras
- Department of Medical Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Gozde Türkoz
- Department of Medical Biology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Anil Tombak
- Department of Hematology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Naci Tiftik
- Department of Hematology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Serap Yalin
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Mehmet Berkoz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yuzuncu Yil University, Van, Turkey
| | - Sema Erden
- Vocational School of Health Service, Mersin University, Mersin, Turkey
| | - Etem Akbas
- Department of Medical Biology, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
17
|
Nodeh FK, Hosseini E, Ghasemzadeh M. The effect of gamma irradiation on platelet redox state during storage. Transfusion 2020; 61:579-593. [PMID: 33231307 DOI: 10.1111/trf.16207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/16/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND As a method with insignificant adverse effects on in vitro quality of platelet concentrates (PCs), gamma irradiation is applied to abrogate the risk of transfusion-associated graft-vs-host disease in vulnerable recipients. However, there is some evidence of lower posttransfusion responses and proteomic alterations in gamma-irradiated platelets (PLTs), which raises some questions about their quality, safety, and efficacy. Since reactive oxygen species (ROS) are considered as markers of PLT storage lesion (PSL), the study presented here investigated oxidant state in gamma-irradiated PCs. STUDY DESIGN AND METHODS PLT-rich plasma PC was split into two bags, one kept as control while other was subjected to gamma irradiation. Within 7 days of storage, the levels of intra-PLT superoxide, H2 O2 , mitochondrial ROS, P-selectin expression, and phosphatidylserine (PS) exposure were detected by flow cytometry while intracellular reduced glutathione (GSH), glucose concentration, and lactate dehydrogenase (LDH) activity were measured by enzymocolorimetric method. RESULTS GSH decreased, while ROS generation and LDH activity increased, during storage. Gamma irradiation significantly attenuated GSH whereas increased ROS generation in earlier and later stages of storage associated with either P-selectin or PS exposure increments. CONCLUSION Gamma irradiation can significantly increase cytosolic ROS generation in two distinct phases, one upon irradiation and another later in longer-stored PCs. While earlier ROS influx seems to be governed by direct effect of irradiation, the second phase of oxidant stress is presumably due to the storage-dependent PLT activation. Intriguingly, these observations were also in line with early P-selectin increments and increased PS exposure in longer-stored PLTs. Given the mutual link between ROS generation and PLT activation, further investigation is required to explore the effect of gamma irradiation on the induction of PSL.
Collapse
Affiliation(s)
- Fatemeh Kiani Nodeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
18
|
Antioxidants suppress radiation-induced apoptosis via inhibiting MAPK pathway in nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 2020; 527:770-777. [DOI: 10.1016/j.bbrc.2020.04.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
|
19
|
Kaźmierczak-Barańska J, Boguszewska K, Adamus-Grabicka A, Karwowski BT. Two Faces of Vitamin C-Antioxidative and Pro-Oxidative Agent. Nutrients 2020; 12:nu12051501. [PMID: 32455696 PMCID: PMC7285147 DOI: 10.3390/nu12051501] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin C has been known for decades. It is common in everyday use as an element of the diet, supplementation, and a preservative. For years, research has been conducted to precisely determine the mechanism of action of ascorbate in the cell. Available results indicate its multi-directional cellular effects. Vitamin C, which belongs to antioxidants scavenging free radicals, also has a ‘second face’—as a pro-oxidative factor. However, whether is the latter nature a defect harmful to the cell, or whether a virtue that is a source of benefit? In this review, we discuss the effects of vitamin C treatment in cancer prevention and the role of ascorbate in maintaining redox balance in the central nervous system (CNS). Finally, we discuss the effect of vitamin C supplementation on biomarkers of oxidative DNA damage and review the evidence that vitamin C has radioprotective properties.
Collapse
|
20
|
Das S, Joshi MB, Parashiva GK, Rao SBS. Stimulation of cytoprotective autophagy and components of mitochondrial biogenesis / proteostasis in response to ionizing radiation as a credible pro-survival strategy. Free Radic Biol Med 2020; 152:715-727. [PMID: 31968231 DOI: 10.1016/j.freeradbiomed.2020.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
The present study illustrates mitochondria-mediated impact of ionizing radiation which is paralleled by activation of several pro-adaptive responses in normal human dermal fibroblast cells. Irradiation of cells with X-rays (5 Gy) led to an increase in fragmentation and mitochondrial mass. Distinct temporal changes in cytosolic and mitochondrial reactive oxygen species (ROS) were noted in response to radiation, which was associated with depletion in mitochondrial membrane potential followed by decrease in ATP levels. Long Amplicon-Polymerase Chain Reaction (LA-PCR) analysis showed time-dependent increase in mitochondrial DNA damage that preceded mitochondrial ROS generation. Irradiation of cells led to an initial G2/M arrest at 8 h that persisted till 16 h, with subsequent block at G0/G1 measured at 48 and 72 h time points. Interestingly, cells activated autophagy as a countermeasure against radiation-mediated cellular insults and aided in removal of damaged mitochondria. Blocking autophagy using 3-methyladenine led to cell death via activation of enhanced ROS, PARP-1 and caspase 3 cleavage. Upregulation of mitochondrial biogenesis factors Nrf1/PGC-1α, following irradiation was observed. Irradiated cells exhibited an increase in the phosphorylation of GCN2, PERK and eIF2α that might be responsible for the up-regulation of ATF4 and CHOP thereby regulating autophagy and components of integrated stress response. Apart from this, we measured accumulation of mitochondrial chaperones (HSP60/HSP10) and ATF5 which is a major molecule involved in mitochondrial stress. Taken together, mitochondria are one of the major cytoplasmic targets for ionizing radiation and possibly act as an early indicator of cellular insult. The findings also show that stressed mitochondria might influence endoplasmic reticulum (ER)-related signalling leading to the activation of adaptive mechanisms like cytoprotective autophagy, and molecules responsible for mitochondrial biogenesis and protein quality control in order to replenish mitochondrial pool and maintain cellular homeostasis.
Collapse
Affiliation(s)
- Shubhankar Das
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Aging Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Guruprasad K Parashiva
- Department of Aging Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Satish B S Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
21
|
Tong J, Hei TK. Aging and age-related health effects of ionizing radiation. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
22
|
Shrivastava A, Pradhan S, Mishra SP, Asthana AK, Choudhary S, Zahra K, Aggarwal LM. Serum vitamin A, E and C status in cervical cancer patients undergoing Concurrent Chemo-Radiotherapy, an institutional study. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
23
|
Zhou J, Wu P, Sun H, Zhou H, Zhang Y, Xiao Z. Lung tissue extracellular matrix-derived hydrogels protect against radiation-induced lung injury by suppressing epithelial-mesenchymal transition. J Cell Physiol 2019; 235:2377-2388. [PMID: 31490023 DOI: 10.1002/jcp.29143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
This study aimed to examine whether lung tissue extracellular matrix (ECM) hydrogels have protective effects on radiation-induced lung injury (RILI). The cytocompatibility and histocompatibility were tested for the obtained ECM-derived hydrogel. Sprague-Dawley rats were randomly divided into three groups (n = 18): control group (control); rats receiving irradiation and intratracheal injection of normal saline (IR + NS); and rats receiving irradiation and intratracheal injection of lung ECM-derived hydrogel (IR + ECM). The wet/dry weight ratio was used to evaluate the congestion and edema of the lungs. Histopathological analysis of lung tissues was performed using hemotoxylin and eosin staining and Masson's trichrome staining. Immunohistochemical staining and western blot analyses were carried out to determine the expression of epithelial-mesenchymal transition (EMT)-related proteins in lung tissues (E-cadherin, α-smooth muscle actin [α-SMA], and vimentin). In addition, tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and interleukin-6 (IL-6), hydroxyproline, malondialdehyde (MDA), and superoxide dismutase (SOD) levels were also evaluated. The ECM-derived hydrogels had good cytocompatibility and histocompatibility. ECM-derived hydrogel treatment improved lung histopathology injury and pulmonary edema. Higher expression of E-cadherin and lower expression of vimentin and α-SMA were found in the IR + ECM group compared with those in the IR + NS group. Hydroxyproline levels were reduced by ECM-derived hydrogel treatment compared with those in the IR + NS group. Obvious increases of TNF-α, IL-6, and TGF-β1 were identified following irradiation. Marked reductions in MDA content and increases in SOD were induced by ECM-derived hydrogel treatment in rats after radiation. ECM-derived hydrogels were shown to protect against RILI, potentially by reducing EMT, inflammation, and oxidative damage.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Respiratory and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Pengfei Wu
- Department of Respiratory and Critical Care Medicine, Sichuan Science City Hospital, Mianyang, Sichuan, China
| | - Hongyu Sun
- Department of Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hong Zhou
- Department of Respiratory and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yaolei Zhang
- Central Laboratory, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhenliang Xiao
- Department of Respiratory and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Kim J, Perera N, Godahewa G, Priyathilaka TT, Lee J. Characterization of a catalase from red-lip mullet (Liza haematocheila): Demonstration of antioxidative activity and mRNA upregulation in response to immunostimulants. Gene 2019; 712:143945. [DOI: 10.1016/j.gene.2019.143945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 06/09/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
|
25
|
Zhang YR, Wang JY, Li YY, Meng YY, Zhang Y, Yang FJ, Xu WQ. Design and synthesis a mitochondria-targeted dihydronicotinamide as radioprotector. Free Radic Biol Med 2019; 136:45-51. [PMID: 30946960 DOI: 10.1016/j.freeradbiomed.2019.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
Radiation-induced damage to the mitochondrial macromolecules and electron transfer chain (ETC), causing the generation of primary and secondary reactive oxygen (ROS) species. The continuous ROS production after radiation will trigger cell oxidative stress and ROS-mediated nucleus apoptosis and autophagy signaling pathways. Scavenging radiation-induced ROS effectively can help mitochondria to maintain their physiological function and relief cells from oxidative stress. Nicotinamide is a critical endogenous antioxidant helping to neutralize ROS in vivo. In this study, we designed and synthetized a novel mitochondrial-targeted dihydronicotinamide (Mito-N) with the help of mitochondrial membrane potential to enter the mitochondria and scavenge ROS. According to experiment results, Mito-N significantly increased cell viability by 30.75% by neutralizing the accumulated ROS and resisting DNA strands breaks after irradiation. Furthermore, the mice survival rate also improved with the treatment of Mito-N, by effectively ameliorating the hematopoietic system infliction under lethal dose irradiation.
Collapse
Affiliation(s)
- Yu-Rui Zhang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jun-Ying Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Yuan-Yuan Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan-Yuan Meng
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Zhang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fu-Jun Yang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wen-Qing Xu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
26
|
Regulatory roles of miR-22/Redd1-mediated mitochondrial ROS and cellular autophagy in ionizing radiation-induced BMSC injury. Cell Death Dis 2019; 10:227. [PMID: 30846680 PMCID: PMC6405932 DOI: 10.1038/s41419-019-1373-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 11/27/2018] [Accepted: 01/15/2019] [Indexed: 12/26/2022]
Abstract
Ionizing radiation (IR) response has been extensively investigated in BMSCs with an increasing consensus that this type of cells showed relative radiosensitivity in vitro analysis. However, the underlying mechanism of IR-induced injury of BMSCs has not been elucidated. In current study, the regulatory role of miR-22/Redd1 pathway-mediated mitochondrial reactive oxygen species (ROS) and cellular autophagy in IR-induced apoptosis of BMSCs was determined. IR facilitated the generation and accumulation of mitochondrial ROS, which promoted IR-induced apoptosis in BMSCs; meanwhile, cellular autophagy activated by IR hold a prohibitive role on the apoptosis program. The expression of miR-22 significantly increased in BMSCs after IR exposure within 24 h. Overexpression of miR-22 evidently accelerated IR-induced accumulation of mitochondrial ROS, whereas attenuated IR stimulated cellular autophagy, thus advancing cellular apoptosis. Furthermore, we verified Redd1 as a novel target for miR-22 in rat genome. Redd1 overexpression attenuated the regulatory role of miR-22 on mitochondrial ROS generation and alleviated the inhibitive role of miR-22 on cell autophagy activated by IR, thus protecting BMSCs from miR-22-mediated cell injury induced by IR exposure. These results confirmed the role of miR-22/Redd1 pathway in the regulation of IR-induced mitochondrial ROS and cellular autophagy, and subsequent cellular apoptosis.
Collapse
|
27
|
Dose-dependent decrease in anti-oxidant capacity of whole blood after irradiation: A novel potential marker for biodosimetry. Sci Rep 2018; 8:7425. [PMID: 29743580 PMCID: PMC5943295 DOI: 10.1038/s41598-018-25650-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
Many reports have demonstrated that radiation stimulates reactive oxygen species (ROS) production by mitochondria for a few hours to a few days after irradiation. However, these studies were performed using cell lines, and there is a lack of information about redox homeostasis in irradiated animals and humans. Blood redox homeostasis reflects the body condition well and can be used as a diagnostic marker. However, most redox homeostasis studies have focused on plasma or serum, and the anti-oxidant capacity of whole blood has scarcely been investigated. Here, we report changes in the anti-oxidant capacity of whole blood after X-ray irradiation using C57BL/6 J mice. Whole-blood anti-oxidant capacity was measured by electron spin resonance (ESR) spin trapping using a novel spin-trapping agent, 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (DPhPMPO). We found that whole-blood anti-oxidant capacity decreased in a dose-dependent manner (correlation factor, r > 0.9; P < 0.05) from 2 to 24 days after irradiation with 0.5-3 Gy. We further found that the red blood cell (RBC) glutathione level decreased and lipid peroxidation level increased in a dose-dependent manner from 2 to 6 days after irradiation. These findings suggest that blood redox state may be a useful biomarker for estimating exposure doses during nuclear and/or radiation accidents.
Collapse
|
28
|
Aizawa Y, Sunada S, Hirakawa H, Fujimori A, Kato TA, Uesaka M. Design and evaluation of a novel flavonoid-based radioprotective agent utilizing monoglucosyl rutin. JOURNAL OF RADIATION RESEARCH 2018; 59:272-281. [PMID: 29373678 PMCID: PMC5967546 DOI: 10.1093/jrr/rrx090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/13/2017] [Indexed: 06/07/2023]
Abstract
In this study, three novel flavonoid composite materials, created by combining an aglycone [quercetin (QUE), hesperetin (HES) or naringenin (NAR)] with monoglucosyl rutin (MGR), were designed to test for improved radioprotectivity compared with that provided by administration of MGR alone. Aglycone in the MGR-composite state was highly soluble in water, compared with aglycone alone dissolved in dimethyl sulfoxide or distilled water. The antioxidant activity of the three flavonoid composites was as high as that of MGR only. Next, the cytotoxicity test after 30 min treatment of an MGR composite showed a clear reduction in cell viability and suggested that a rapid introduction of aglycone into cells had taken place. In addition, QUE/MGR and HES/MGR composites strongly scavenged intracellular reactive oxygen species (ROS) induced by X-ray irradiation as well as MGR alone did. However, in the colony-formation assay using irradiated Chinese hamster ovary (CHO) cells, the HES/MGR composite showed a stronger radioprotective effect than MGR alone did, but the QUE/MGR composite showed no additional protective effect compared with the control. Furthermore, it was revealed that QUE and QUE/MGR composite treatment had the effect of reducing the glutathione (GSH) content in cells, and that QUE showed a stronger inhibition of PARP activity compared that of HES and NAR. Our data demonstrated that when designing a flavonoid composite as a radioprotective agent, it was necessary to select an appropriate aglycone, considering not only its antioxidant ability but also its inhibitory effect on cell recovery or DNA repair after radiation injury.
Collapse
Affiliation(s)
- Yasushi Aizawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shigeaki Sunada
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hirokazu Hirakawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-855, Japan
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-855, Japan
| | - Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Mitsuru Uesaka
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
29
|
Yamamoto K, Ikenaka Y, Ichise T, Bo T, Ishizuka M, Yasui H, Hiraoka W, Yamamori T, Inanami O. Evaluation of mitochondrial redox status and energy metabolism of X-irradiated HeLa cells by LC/UV, LC/MS/MS and ESR. Free Radic Res 2018; 52:648-660. [PMID: 29620489 DOI: 10.1080/10715762.2018.1460472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To evaluate the metabolic responses in tumour cells exposed to ionizing radiation, oxygen consumption rate (OCR), cellular lipid peroxidation, cellular energy status (intracellular nucleotide pool and ATP production), and mitochondrial reactive oxygen species (ROS), semiquinone (SQ), and iron-sulphur (Fe-S) cluster levels were evaluated in human cervical carcinoma HeLa cells at 12 and 24 h after X-irradiation. LC/MS/MS analysis showed that levels of 8-iso PGF2α and 5-iPF2α-VI, lipid peroxidation products of membrane arachidonic acids, were not altered significantly in X-irradiated cells, although mitochondrial ROS levels and OCR significantly increased in the cells at 24 h after irradiation. LC/UV analysis revealed that intracellular AMP, ADP, and ATP levels increased significantly after X-irradiation, but adenylate energy charge (adenylate energy charge (AEC) = [ATP + 0.5 × ADP]/[ATP + ADP + AMP]) remained unchanged after X-irradiation. In low-temperature electron spin resonance (ESR) spectra of HeLa cells, the presence of mitochondrial SQ at g = 2.004 and Fe-S cluster at g = 1.941 was observed and X-irradiation enhanced the signal intensity of SQ but not of the Fe-S cluster. Furthermore, this radiation-induced increase in SQ signal intensity disappeared on treatment with rotenone, which inhibits electron transfer from Fe-S cluster to SQ in complex I. From these results, it was suggested that an increase in OCR and imbalance in SQ and Fe-S cluster levels, which play a critical role in the mitochondrial electron transport chain (ETC), occur after X-irradiation, resulting in an increase in ATP production and ROS leakage from the activated mitochondrial ETC.
Collapse
Affiliation(s)
- Kumiko Yamamoto
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Yoshinori Ikenaka
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Takahiro Ichise
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Tomoki Bo
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Mayumi Ishizuka
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Hironobu Yasui
- c Central Institute of Isotope Science , Hokkaido University , Sapporo , Japan
| | - Wakako Hiraoka
- d Laboratory of Biophysics , School of Science and Technology, Meiji University , Kawasaki , Japan
| | - Tohru Yamamori
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Osamu Inanami
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
30
|
Nukala U, Thakkar S, Krager KJ, Breen PJ, Compadre CM, Aykin-Burns N. Antioxidant Tocols as Radiation Countermeasures (Challenges to be Addressed to Use Tocols as Radiation Countermeasures in Humans). Antioxidants (Basel) 2018; 7:E33. [PMID: 29473853 PMCID: PMC5836023 DOI: 10.3390/antiox7020033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 01/08/2023] Open
Abstract
Radiation countermeasures fall under three categories, radiation protectors, radiation mitigators, and radiation therapeutics. Radiation protectors are agents that are administered before radiation exposure to protect from radiation-induced injuries by numerous mechanisms, including scavenging free radicals that are generated by initial radiochemical events. Radiation mitigators are agents that are administered after the exposure of radiation but before the onset of symptoms by accelerating the recovery and repair from radiation-induced injuries. Whereas radiation therapeutic agents administered after the onset of symptoms act by regenerating the tissues that are injured by radiation. Vitamin E is an antioxidant that neutralizes free radicals generated by radiation exposure by donating H atoms. The vitamin E family consists of eight different vitamers, including four tocopherols and four tocotrienols. Though alpha-tocopherol was extensively studied in the past, tocotrienols have recently gained attention as radiation countermeasures. Despite several studies performed on tocotrienols, there is no clear evidence on the factors that are responsible for their superior radiation protection properties over tocopherols. Their absorption and bioavailability are also not well understood. In this review, we discuss tocopherol's and tocotrienol's efficacy as radiation countermeasures and identify the challenges to be addressed to develop them into radiation countermeasures for human use in the event of radiological emergencies.
Collapse
Affiliation(s)
- Ujwani Nukala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA.
| | - Shraddha Thakkar
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Kimberly J Krager
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Philip J Breen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA.
| | - Cesar M Compadre
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA.
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA.
| |
Collapse
|
31
|
Akaras N, Bal T, Atilay H, Selli J, Halici MB. Protective effects of agomelatine on testicular damage caused by bortezomib. Biotech Histochem 2017; 92:552-559. [DOI: 10.1080/10520295.2017.1350748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- N Akaras
- Department of Histology and Embryology, Faculty of Medicine
| | - T Bal
- Department of Histology and Embryology, Faculty of Medicine
| | - H Atilay
- Department of Histology and Embryology, Faculty of Medicine
| | - J Selli
- Department of Histology and Embryology, Faculty of Medicine
| | - MB Halici
- Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
32
|
Liu X, Gong B, de Souza LB, Ong HL, Subedi KP, Cheng KT, Swaim W, Zheng C, Mori Y, Ambudkar IS. Radiation inhibits salivary gland function by promoting STIM1 cleavage by caspase-3 and loss of SOCE through a TRPM2-dependent pathway. Sci Signal 2017; 10:10/482/eaal4064. [PMID: 28588080 DOI: 10.1126/scisignal.aal4064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Store-operated Ca2+ entry (SOCE) is critical for salivary gland fluid secretion. We report that radiation treatment caused persistent salivary gland dysfunction by activating a TRPM2-dependent mitochondrial pathway, leading to caspase-3-mediated cleavage of stromal interaction molecule 1 (STIM1) and loss of SOCE. After irradiation, acinar cells from the submandibular glands of TRPM2+/+ , but not those from TRPM2-/- mice, displayed an increase in the concentrations of mitochondrial Ca2+ and reactive oxygen species, a decrease in mitochondrial membrane potential, and activation of caspase-3, which was associated with a sustained decrease in STIM1 abundance and attenuation of SOCE. In a salivary gland cell line, silencing the mitochondrial Ca2+ uniporter or caspase-3 or treatment with inhibitors of TRPM2 or caspase-3 prevented irradiation-induced loss of STIM1 and SOCE. Expression of exogenous STIM1 in the salivary glands of irradiated mice increased SOCE and fluid secretion. We suggest that targeting the mechanisms underlying the loss of STIM1 would be a potentially useful approach for preserving salivary gland function after radiation therapy.
Collapse
Affiliation(s)
- Xibao Liu
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baijuan Gong
- Department of Orthodontics, Jilin University School of Stomatology, Changchun 130021, People's Republic of China
| | - Lorena Brito de Souza
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hwei Ling Ong
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krishna P Subedi
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwong Tai Cheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Swaim
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Indu S Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Oral Mucositis: Melatonin Gel an Effective New Treatment. Int J Mol Sci 2017; 18:ijms18051003. [PMID: 28481279 PMCID: PMC5454916 DOI: 10.3390/ijms18051003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
The current treatment for cervico-facial cancer involves radio and/or chemotherapy. Unfortunately, cancer therapies can lead to local and systemic complications such as mucositis, which is the most common dose-dependent complication in the oral cavity and gastrointestinal tract. Mucositis can cause a considerably reduced quality of life in cancer patients already suffering from physical and psychological exhaustion. However, the role of melatonin in the treatment of mucositis has recently been investigated, and offers an effective alternative therapy in the prevention and/or management of radio and/or chemotherapy-induced mucositis. This review focuses on the pathobiology and management of mucositis in order to improve the quality of cancer patients' lives.
Collapse
|
34
|
Grape seed proanthocyanidins prevent irradiation-induced differentiation of human lung fibroblasts by ameliorating mitochondrial dysfunction. Sci Rep 2017; 7:62. [PMID: 28246402 PMCID: PMC5427826 DOI: 10.1038/s41598-017-00108-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
Radiation-induced lung fibrosis (RILF) is a long-term adverse effect of curative radiotherapy. The accumulation of myofibroblasts in fibroblastic foci is a pivotal feature of RILF. In the study, we found the inhibitory effect of grape seed proanthocyanidins (GSPs) on irradiation-induced differentiation of human fetal lung fibroblasts (HFL1). To explore the mechanism by which GSPs inhibit fibroblast differentiation, we measured the reactive oxygen species (ROS) levels, mitochondrial function, mitochondrial dynamics, glycolysis and the signaling molecules involved in fibroblast transdifferentiation. GSPs significantly reduced the production of cellular and mitochondrial ROS after radiation. The increases in mitochondrial respiration, proton leak, mitochondrial ATP production, lactate release and glucose consumption that occurred in response to irradiation were ameliorated by GSPs. Furthermore, GSPs increased the activity of complex I and improved the mitochondrial dynamics, which were disturbed by irradiation. In addition, the elevation of phosphorylation of p38MAPK and Akt, and Nox4 expression induced by irradiation were attenuated by GSPs. Blocking Nox4 attenuated irradiation-mediated fibroblast differentiation. Taken together, these results indicate that GSPs have the ability to inhibit irradiation-induced fibroblast-to-myofibroblast differentiation by ameliorating mitochondrial dynamics and mitochondrial complex I activity, regulating mitochondrial ROS production, ATP production, lactate release, glucose consumption and thereby inhibiting p38MAPK-Akt-Nox4 pathway.
Collapse
|
35
|
Chen YF, Liu H, Luo XJ, Zhao Z, Zou ZY, Li J, Lin XJ, Liang Y. The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Crit Rev Oncol Hematol 2017; 112:21-30. [PMID: 28325262 DOI: 10.1016/j.critrevonc.2017.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/27/2016] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
As a clonal disease of hematopoietic stem cells (HSCs), the etiology and pathogenesis of leukemia is not fully understood. Recent studies suggest that cellular homeostasis plays an essential role in maintaining the function of HSCs because dysregulation of cellular homeostasis is one of the major factors underlying the malignant transformation of HSCs. Reactive oxygen species (ROS) and autophagy, key factors regulating cellular homeostasis, are commonly observed in the human body. Autophagy can be induced by ROS through a variety of signaling pathways, and conversely inhibits ROS-induced damage to cells and tissues. ROS and autophagy coordinate to maintain cellular homeostasis. Previous studies have demonstrated that both of ROS and autophagy play important roles in the development of leukemia and are closely involved in drug resistance in leukemia. Interference with cellular homeostasis by promoting programmed leukemia cell death via ROS and autophagy has been verified to be an efficient technique in the treatment of leukemia. However, the critical roles of ROS and autophagy in the development of leukemia are largely unknown. In this review, we summarize the roles of ROS and autophagy in the pathogenesis of leukemia, which may allow the identification of novel targets and drugs for the treatment of leukemia based on the regulation of HSCs homeostasis through ROS and autophagy.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Hao Liu
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xin-Jing Luo
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhiqiang Zhao
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhen-You Zou
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Biochemistry Department of Purdue University, West Lafayette, IN 47906, USA
| | - Jing Li
- Department of Histology and Embryology, North SiChuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiao-Jing Lin
- Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Yong Liang
- Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
36
|
Waissi GC, Bold S, Pakarinen K, Akkanen J, Leppänen MT, Petersen EJ, Kukkonen JVK. Chironomus riparius exposure to fullerene-contaminated sediment results in oxidative stress and may impact life cycle parameters. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:301-309. [PMID: 27178647 PMCID: PMC5064804 DOI: 10.1016/j.jhazmat.2016.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 05/07/2023]
Abstract
A key component of understanding the potential environmental risks of fullerenes (C60) is their potential effects on benthic invertebrates. Using the sediment dwelling invertebrate Chironomus riparius we explored the effects of acute (12h and 24h) and chronic (10d, 15d, and 28d) exposures of sediment associated fullerenes. The aims of this study were to assess the impact of exposure to C60 in the sediment top layer ((0.025, 0.18 and 0.48) C60 mg/cm2) on larval growth, oxidative stress and emergence rates and to quantify larval body burdens in similarly exposed organisms. Oxidative stress localization was observed in the tissues next to the microvilli and exoskeleton through a method for identifying oxidative stress reactions generated by reactive oxygen species. Rapid intake of fullerenes was shown in acute experiments, whereas body residues decreased after chronic exposure. Transmission electron microscopy analysis revealed oxidative damage and structural changes in cells located between the lipid droplets and next to the microvilli layer in fullerene exposed samples. Fullerene associated sediments also caused changes in the emergence rate of males and females, suggesting that the cellular interactions described above or other effects from the fullerenes may influence reproduction rates.
Collapse
Affiliation(s)
- G C Waissi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.
| | - S Bold
- GEOMAR Helmholtz Centre of Ocean for Research Kiel, Germany
| | - K Pakarinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - J Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - M T Leppänen
- Finnish Environment Institute, Jyväskylä, Finland
| | - E J Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - J V K Kukkonen
- University of Jyväskylä, Department of Biological and Environmental Science, Jyväskylä, Finland
| |
Collapse
|
37
|
Banerjee S, Aykin-Burns N, Krager KJ, Shah SK, Melnyk SB, Hauer-Jensen M, Pawar SA. Loss of C/EBPδ enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 2016; 99:296-307. [PMID: 27554969 PMCID: PMC5673253 DOI: 10.1016/j.freeradbiomed.2016.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023]
Abstract
Exposure of cells to ionizing radiation (IR) generates reactive oxygen species (ROS). This results in increased oxidative stress and DNA double strand breaks (DSBs) which are the two underlying mechanisms by which IR causes cell/tissue injury. Cells that are deficient or impaired in the cellular antioxidant response are susceptible to IR-induced apoptosis. The transcription factor CCAAT enhancer binding protein delta (Cebpd, C/EBPδ) has been implicated in the regulation of oxidative stress, DNA damage response, genomic stability and inflammation. We previously reported that Cebpd-deficient mice are sensitive to IR and display intestinal and hematopoietic injury, however the underlying mechanism is not known. In this study, we investigated whether an impaired ability to detoxify IR-induced ROS was the underlying cause of the increased radiosensitivity of Cebpd-deficient cells. We found that Cebpd-knockout (KO) mouse embryonic fibroblasts (MEFs) expressed elevated levels of ROS, both at basal levels and after exposure to gamma radiation which correlated with increased apoptosis, and decreased clonogenic survival. Pre-treatment of wild type (WT) and KO MEFs with polyethylene glycol-conjugated Cu-Zn superoxide dismutase (PEG-SOD) and catalase (PEG-CAT) combination prior to irradiation showed a partial rescue of clonogenic survival, thus demonstrating a role for increased intracellular oxidants in promoting IR-induced cell death. Analysis of mitochondrial bioenergetics revealed that irradiated KO MEFs showed significant reductions in basal, adenosine triphosphate (ATP)-linked, maximal respiration and reserved respiratory capacity and decrease in intracellular ATP levels compared to WT MEFs indicating they display mitochondrial dysfunction. KO MEFs expressed significantly lower levels of the cellular antioxidant glutathione (GSH) and its precursor- cysteine as well as methionine. In addition to its antioxidant function, GSH plays an important role in detoxification of lipid peroxidation products such as 4-hydroxynonenal (4-HNE). The reduced GSH levels observed in KO MEFs correlated with elevated levels of 4-HNE protein adducts in irradiated KO MEFs compared to respective WT MEFs. We further showed that pre-treatment with the GSH precursor, N-acetyl L-cysteine (NAC) prior to irradiation showed a significant reduction of IR-induced cell death and increases in GSH levels, which contributed to the overall increase in clonogenic survival of KO MEFs. In contrast, pre-treatment with the GSH synthesis inhibitor- buthionine sulfoximine (BSO) further reduced the clonogenic survival of irradiated KO MEFs. This study demonstrates a novel role for C/EBPδ in protection from basal as well as IR-induced oxidative stress and mitochondrial dysfunction thus promoting post-radiation survival.
Collapse
Affiliation(s)
- Sudip Banerjee
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Kimberly J Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sumit K Shah
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Stepan B Melnyk
- Arkansas Children's Hospital Research Institute, Little Rock, AR 72205, United States
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Surgical Services, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States
| | - Snehalata A Pawar
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
38
|
Yu H, Haskins JS, Su C, Allum A, Haskins AH, Salinas VA, Sunada S, Inoue T, Aizawa Y, Uesaka M, Kato TA. In vitro screening of radioprotective properties in the novel glucosylated flavonoids. Int J Mol Med 2016; 38:1525-1530. [DOI: 10.3892/ijmm.2016.2764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/22/2016] [Indexed: 11/06/2022] Open
|
39
|
Park SI, Park SJ, Lee J, Kim HE, Park SJ, Sohn JW, Park YG. Inhibition of cyclic AMP response element-directed transcription by decoy oligonucleotides enhances tumor-specific radiosensitivity. Biochem Biophys Res Commun 2015; 469:363-9. [PMID: 26655813 DOI: 10.1016/j.bbrc.2015.11.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
The radiation stress induces cytotoxic responses of cell death as well as cytoprotective responses of cell survival. Understanding exact cellular mechanism and signal transduction pathways is important in improving cancer radiotherapy. Increasing evidence suggests that cyclic AMP response element binding protein (CREB)/activating transcription factor (ATF) family proteins act as a survival factor and a signaling molecule in response to stress. We postulated that CREB inhibition via CRE decoy oligonucleotide increases tumor cell sensitization to γ-irradiation-induced cytotoxic stress. In the present study, we demonstrate that CREB phosphorylation and CREB DNA-protein complex formation increased in time- and radiation dose-dependent manners, while there was no significant change in total protein level of CREB. In addition, CREB was phosphorylated in response to γ-irradiation through p38 MAPK pathway. Further investigation revealed that CREB blockade by decoy oligonucleotides functionally inhibited transactivation of CREB, and significantly increased radiosensitivity of multiple human cancer cell lines including TP53- and/or RB-mutated cells with minimal effects on normal cells. We also demonstrate that tumor cells ectopically expressing dominant negative mutant CREB (KCREB) and the cells treated with p38 MAPK inhibitors were more sensitive to γ-irradiation than wild type parental cells or control-treated cells. Taken together, we conclude that CREB protects tumor cells from γ-irradiation, and combination of CREB inhibition plus ionizing radiation will be a promising radiotherapeutic approach.
Collapse
Affiliation(s)
- Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea; The BK21 Plus Program for Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea; Department of Medicine and Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sung-Jun Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea; Laboratory of Obesity and Aging Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Junghan Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Eun Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Won Sohn
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yun Gyu Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Jin LG, Chu JJ, Pang QF, Zhang FZ, Wu G, Zhou LY, Zhang XJ, Xing CG. Caffeic acid phenethyl ester attenuates ionize radiation-induced intestinal injury through modulation of oxidative stress, apoptosis and p38MAPK in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:156-163. [PMID: 26122083 DOI: 10.1016/j.etap.2015.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Caffeic acid phenyl ester (CAPE) is a potent anti-inflammatory agent and it can eliminate the free radicals. This study aimed to investigate the radioprotective effects of CAPE on X-ray irradiation induced intestinal injury in rats. Rats were intragastrically administered with 10 μmol/kg/d CAPE for 7 consecutive days before exposing them to a single dose of X-ray irradiation (9Gy) to abdomen. Rats were sacrificed 72 h after exposure to radiation. We found that pretreatment with CAPE effectively attenuated intestinal pathology changes, apoptosis, oxidative stress, bacterial translocation, the content of nitric oxide and myeloperoxidase as well as the concentration of plasma tumor necrosis factor-α. Pretreatment with CAPE also reversed the activation of p38MAPK and the increased expression of intercellular cell adhesion molecule-1 induced by radiation in intestinal mucosa. Taken together, these results suggest that pretreatment with CAPE could be a promising candidate for treating radiation-induced intestinal injury.
Collapse
Affiliation(s)
- Liu-Gen Jin
- Department of Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, 215004 Suzhou, China
| | - Jian-Jun Chu
- Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, 214122 Wuxi, China
| | - Qing-Feng Pang
- Wuxi Medical School, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, China
| | - Fu-Zheng Zhang
- Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, 214122 Wuxi, China
| | - Gang Wu
- Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, 214122 Wuxi, China
| | - Le-Yuan Zhou
- Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, 214122 Wuxi, China
| | - Xiao-Jun Zhang
- Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, 214122 Wuxi, China
| | - Chun-Gen Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, 215004 Suzhou, China.
| |
Collapse
|
41
|
Kobashigawa S, Kashino G, Mori H, Watanabe M. Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells. Mech Ageing Dev 2015; 146-148:65-71. [DOI: 10.1016/j.mad.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/06/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|