1
|
Martinez-Morata I, Sobel M, Tellez-Plaza M, Navas-Acien A, Howe CG, Sanchez TR. A State-of-the-Science Review on Metal Biomarkers. Curr Environ Health Rep 2023; 10:215-249. [PMID: 37337116 PMCID: PMC10822714 DOI: 10.1007/s40572-023-00402-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses. RECENT FINDINGS We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window. As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA.
| | - Marisa Sobel
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Maria Tellez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| |
Collapse
|
2
|
Renal toxicity and biokinetics models after repeated uranium instillation. Sci Rep 2023; 13:4111. [PMID: 36914734 PMCID: PMC10011524 DOI: 10.1038/s41598-023-31073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
During nuclear fuel processing, workers can potentially be exposed to repeated inhalations of uranium compounds. Uranium nephrotoxicity is well documented after acute uranium intake, but it is controversial after long-term or protracted exposure. This study aims to analyze the nephrotoxicity threshold after repeated uranium exposure through upper airways and to investigate the resulting uranium biokinetics in comparison to reference models. Mice (C57BL/6J) were exposed to uranyl nitrate (0.03-3 mg/kg/day) via intranasal instillation four times a week for two weeks. Concentrations of uranium in urines and tissues were measured at regular time points (from day 1 to 91 post-exposure). At each exposure level, the amount of uranium retained in organs/tissues (kidney, lung, bone, nasal compartment, carcass) and excreta (urine, feces) reflected the two consecutive weeks of instillation except for renal uranium retention for the highest uranium dose. Nephrotoxicity biomarkers, KIM-1, clusterin and osteopontin, are induced from day 4 to day 21 and associated with changes in renal function (arterial fluxes) measured using non-invasive functional imaging (Doppler-ultrasonography) and confirmed by renal histopathological analysis. These results suggest that specific biokinetic models should be developed to consider altered uranium excretion and retention in kidney due to nephrotoxicity. The threshold is between 0.25 and 1 mg/kg/day after repeated exposure to uranium via upper airways.
Collapse
|
3
|
Erdei E, Qeadan F, Miller CP, Kanda DA, Luo L, Gonzales M, Lewis JL, MacKenzie D. Environmental uranium exposures and cytokine profiles among mother-newborn baby pairs from the Navajo Βirth Cohort Study. Toxicol Appl Pharmacol 2022; 456:116292. [PMID: 36270330 PMCID: PMC10228290 DOI: 10.1016/j.taap.2022.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
The Navajo Nation was heavily mined for uranium (U) during the cold-war leading to a legacy of >1100 abandoned U mining, milling and associated waste sites. The Navajo Birth Cohort Study was initiated to assess the effect of non-occupational legacy exposure to U during pregnancy on birth outcomes and child development. We report that 92% of babies with detectable urine U at birth were born from mothers who had urine U concentrations greater than national norms during pregnancy, indicative of prenatal exposure to U. To assess immune alterations associated with U exposure on both mothers and babies, we investigated associations between cytokine profiles and maternal U and associations of these measures with cytokine profiles in babies. Effect sizes for the differences in cytokine profiles were more evident among babies than mothers. Overall, there were seven cytokines (IFN-γ, IL-1β, IL-2, IL-4, IL-10, GM-CSF, and TNF-α), for which the effect size for babies with higher than the national U concentrations was medium to large (ORs of 2.21 (1.08-4.52) through 1.71(0.76-3.83). In contrast, only three cytokines (IL-8, IL-12p70, and TNF-α) had effect sizes which almost reached medium strength (ORs of 1.64 (0.74-4.05) through 1.36 (0.65-2.87) in mothers with U above national norms. The effects of prenatal exposures to uranium and associated alterations in systemic immune responses resulting from U exposure could impact both maternal health as well as healthy child development through induction of inflammation, autoimmunity or other chronic diseases related to immune dysfunction that may affect long-term health.
Collapse
Affiliation(s)
- Esther Erdei
- University of New Mexico Health Sciences Center, Community Environmental Health Program, College of Pharmacy, Albuquerque, NM, United States of America.
| | - Fares Qeadan
- Loyola University Chicago, Parkinson School of Public Health, Maywood, IL, United States of America
| | - Curtis P Miller
- University of New Mexico Health Sciences Center, Community Environmental Health Program, College of Pharmacy, Albuquerque, NM, United States of America
| | - Deborah A Kanda
- University of New Mexico Health Sciences Center, School of Medicine & University of New Mexico Cancer Center, Albuquerque, NM, United States of America
| | - Li Luo
- University of New Mexico Health Sciences Center, School of Medicine & University of New Mexico Cancer Center, Albuquerque, NM, United States of America
| | - Melissa Gonzales
- University of New Mexico Health Sciences Center, School of Medicine, Division of Epidemiology, Biostatistics & Preventive Medicine, Albuquerque, NM, United States of America
| | - Johnnye L Lewis
- University of New Mexico Health Sciences Center, Community Environmental Health Program, College of Pharmacy, Albuquerque, NM, United States of America
| | - Debra MacKenzie
- University of New Mexico Health Sciences Center, Community Environmental Health Program, College of Pharmacy, Albuquerque, NM, United States of America
| |
Collapse
|
4
|
Thompson González N, Ong J, Luo L, MacKenzie D. Chronic Community Exposure to Environmental Metal Mixtures Is Associated with Selected Cytokines in the Navajo Birth Cohort Study (NBCS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14939. [PMID: 36429656 PMCID: PMC9690552 DOI: 10.3390/ijerph192214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 05/10/2023]
Abstract
Many tribal populations are characterized by health disparities, including higher rates of infection, metabolic syndrome, and cancer-all of which are mediated by the immune system. Members of the Navajo Nation have suffered chronic low-level exposure to metal mixtures from uranium mine wastes for decades. We suspect that such metal and metalloid exposures lead to adverse health effects via their modulation of immune system function. We examined the relationships between nine key metal and metalloid exposures (in blood and urine) with 11 circulating biomarkers (cytokines and CRP in serum) in 231 pregnant Navajo women participating in the Navajo Birth Cohort Study. Biomonitored levels of uranium and arsenic species were considerably higher in participants than NHANES averages. Each biomarker was associated with a unique set of exposures, and arsenic species were generally immunosuppressive (decreased cellular and humoral stimulating cytokines). Overall, our results suggest that environmental metal and metalloid exposures modulate immune status in pregnant Navajo women, which may impact long-term health outcomes in mothers and their children.
Collapse
Affiliation(s)
- Nicole Thompson González
- Integrative Anthropological Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, USA
- Academic Science Education and Research Training Program, Health Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jennifer Ong
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Li Luo
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
| | - Debra MacKenzie
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
5
|
Zhang L, Chu J, Xia B, Xiong Z, Zhang S, Tang W. Health Effects of Particulate Uranium Exposure. TOXICS 2022; 10:575. [PMID: 36287855 PMCID: PMC9610560 DOI: 10.3390/toxics10100575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Uranium contamination has become a nonnegligible global health problem. Inhalation of particulate uranium is one of the predominant routes of occupational and environmental exposure. Uranium particle is a complex two-phase flow of matter that is both particulate and flowable. This particular physicochemical property may alter its biological activity. Epidemiological studies from occupationally exposed populations in the uranium industry have concluded that there is a possible association between lung cancer risk and uranium exposure, while the evidence for the risk of other tumors is not sufficient. The toxicological effects of particulate uranium exposure to animals have been shown in laboratory tests to focus on respiratory and central nervous system damage. Fibrosis and tumors can occur in the lung tissue of the respiratory tract. Uranium particles can also induce a concentration-dependent increase in cytotoxicity, targeting mitochondria. The understanding of the health risks and potential toxicological mechanisms of particulate uranium contamination is still at a preliminary stage. The diversity of particle parameters has limited the in-depth exploration. This review summarizes the current evidence on the toxicology of particulate uranium and highlights the knowledge gaps and research prospects.
Collapse
|
6
|
Early Metabolomic Markers of Acute Low-Dose Exposure to Uranium in Rats. Metabolites 2022; 12:metabo12050421. [PMID: 35629925 PMCID: PMC9147032 DOI: 10.3390/metabo12050421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/25/2023] Open
Abstract
Changes in metabolomics over time were studied in rats to identify early biomarkers and highlight the main metabolic pathways that are significantly altered in the period immediately following acute low-dose uranium exposure. A dose response relationship study was established from urine and plasma samples collected periodically over 9 months after the exposure of young adult male rats to uranyl nitrate. LC-MS and biostatistical analysis were used to identify early discriminant metabolites. As expected, low doses of uranium lead to time-based non-toxic biological effects, which can be used to identify early and delayed markers of exposure in both urine and plasma samples. A combination of surrogate markers for uranium exposure was validated from the most discriminant early markers for making effective predictions. N-methyl-nicotinamide, kynurenic acid, serotonin, tryptophan, tryptamine, and indole acetic acid associated with the nicotinate–nicotinamide and tryptophan pathway seem to be one of the main biological targets, as shown previously for chronic contaminations and completed, among others, by betaine metabolism. This study can be considered as a proof of concept for the relevance of metabolomics in the field of low-dose internal contamination by uranium, for the development of predictive diagnostic tests usable for radiotoxicological monitoring.
Collapse
|
7
|
Guéguen Y, Frerejacques M. Review of Knowledge of Uranium-Induced Kidney Toxicity for the Development of an Adverse Outcome Pathway to Renal Impairment. Int J Mol Sci 2022; 23:ijms23084397. [PMID: 35457214 PMCID: PMC9030063 DOI: 10.3390/ijms23084397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
An adverse outcome pathway (AOP) is a conceptual construct of causally and sequentially linked events, which occur during exposure to stressors, with an adverse outcome relevant to risk assessment. The development of an AOP is a means of identifying knowledge gaps in order to prioritize research assessing the health risks associated with exposure to physical or chemical stressors. In this paper, a review of knowledge was proposed, examining experimental and epidemiological data, in order to identify relevant key events and potential key event relationships in an AOP for renal impairment, relevant to stressors such as uranium (U). Other stressors may promote similar pathways, and this review is a necessary step to compare and combine knowledge reported for nephrotoxicants. U metal ions are filtered through the glomerular membrane of the kidneys, then concentrate in the cortical and juxtaglomerular areas, and bind to the brush border membrane of the proximal convoluted tubules. U uptake by epithelial cells occurs through endocytosis and the sodium-dependent phosphate co-transporter (NaPi-IIa). The identified key events start with the inhibition of the mitochondria electron transfer chain and the collapse of mitochondrial membrane potential, due to cytochrome b5/cytochrome c disruption. In the nucleus, U directly interacts with negatively charged DNA phosphate, thereby inducing an adduct formation, and possibly DNA strand breaks or cross-links. U also compromises DNA repair by inhibiting zing finger proteins. Thereafter, U triggers the Nrf2, NF-κB, or endoplasmic reticulum stress pathways. The resulting cellular key events include oxidative stress, DNA strand breaks and chromosomal aberrations, apoptosis, and pro-inflammatory effects. Finally, the main adverse outcome is tubular damage of the S2 and S3 segments of the kidneys, leading to tubular cell death, and then kidney failure. The attribution of renal carcinogenesis due to U is controversial, and specific experimental or epidemiological studies must be conducted. A tentative construction of an AOP for uranium-induced kidney toxicity and failure was proposed.
Collapse
|
8
|
Abstract
Systematic bio- and databanks are key prerequisites for modern radiation research to investigate radiation response mechanisms in the context of genetic, environmental and lifestyle-associated factors. This report presents the current status of the German Uranium Miners’ Biobank. In 2008, the bio- and databank was established at the Federal Office for Radiation Protection, and the sampling of biological materials from former uranium miners with and without lung cancer was initiated. For this purpose, various biological specimens, such as DNA and RNA, were isolated from blood samples as well as from formalin-fixed paraffin-embedded lung tissue. High-quality biomaterials suitable for OMICs research and the associated data on occupational radiation and dust exposure, and medical and lifestyle data from over 1000 individuals have been stored so far. Various experimental data, e.g., genome-wide SNPs, whole genome transcriptomic and miRNA data, as well as individual chromosomal aberration data from subgroups of biobank samples, are already available upon request for in-depth research on radiation-induced long-term effects, individual radiation susceptibility to lung cancer and radon-induced fingerprints in lung cancer. This biobank is the first systematic uranium miners´ biobank worldwide that is suitable for OMICs research on radiation-exposed workers. It offers the opportunity to link radiation-induced perturbations of biological pathways or processes and putative adverse outcome(s) by OMICs profiling at different biological organization levels.
Collapse
|
9
|
Bontemps-Karcher A, Magneron V, Conquet L, Elie C, Gloaguen C, Kereselidze D, Roy L, Barbier OC, Guéguen Y. Renal adaptive response to exposure to low doses of uranyl nitrate and sodium fluoride in mice. J Trace Elem Med Biol 2021; 64:126708. [PMID: 33360916 DOI: 10.1016/j.jtemb.2020.126708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Despite their differences in physicochemical properties, both uranium (U) and fluoride (F) are nephrotoxicants at high doses but their adverse effects at low doses are still the subject of debate. METHODS This study aims to improve the knowledge of the biological mechanisms involved through an adaptive response model of C57BL/6 J mice chronically exposed to low priming doses of U (0, 10, 20 and 40 mg/L) or F (0, 15, 30 and 50 mg/L) and then challenged with acute exposure of 5 mg/kg U or 7.5 mg/kg NaF. RESULTS We showed that an adaptive response occurred with priming exposures to 20 mg/L U and 50 mg/L F, with decreased levels of the biomarkers KIM-1 and CLU compared to those in animals that received the challenge dose only (positive control). The adaptive mechanisms involved a decrease in caspase 3/7 activities in animals exposed to 20 mg/L U and a decrease in in situ VCAM expression in mice exposed to 50 mg/L F. However, autophagy and the UPR were induced independently of priming exposure to U or F and could not be identified as adaptive mechanisms to U or F. CONCLUSION Taken together, these results allow us to identify renal adaptive responses to U and F at doses of 20 and 50 mg/L, probably through decrease apoptosis and inflammatory cell recruitment.
Collapse
Affiliation(s)
- Alice Bontemps-Karcher
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262, Fontenay-aux-Roses, France
| | - Victor Magneron
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262, Fontenay-aux-Roses, France
| | - Laurine Conquet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262, Fontenay-aux-Roses, France
| | - Christelle Elie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262, Fontenay-aux-Roses, France
| | - Céline Gloaguen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262, Fontenay-aux-Roses, France
| | - Dimitri Kereselidze
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262, Fontenay-aux-Roses, France
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262, Fontenay-aux-Roses, France
| | - Olivier C Barbier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México City, CP 07360, Mexico
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262, Fontenay-aux-Roses, France.
| |
Collapse
|
10
|
Wang S, Ran Y, Lu B, Li J, Kuang H, Gong L, Hao Y. A Review of Uranium-Induced Reproductive Toxicity. Biol Trace Elem Res 2020; 196:204-213. [PMID: 31621007 DOI: 10.1007/s12011-019-01920-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022]
Abstract
As a heavy metal nuclear fuel, uranium is used in various civil and military projects, resulting in environmental pollution. Uranium can enter the body through the mouth, nose and skin, threatening human health. The reproductive organs are sensitive to uranium. For certain exposure times, doses and modes, uranium can produce toxic effects on the reproductive organs. The reproductive toxicity of uranium can be produced through different mechanisms of action, such as changing the level of sex hormones in the body, disrupting the expression of genes or proteins related to reproduction and causing oxidative stress and inflammation. Uranium thus can cause toxic effects to the reproductive system, leading to histopathological changes and decreased conception rates, and may damage the health of the body. This paper reviews the research progress on uranium reproductive toxicity in recent years and indicates a direction for future research on uranium reproductive toxicity and its mechanisms.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Binghui Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Hongrong Kuang
- Chongqing Normal University, No.37, Middle University Road, Shapingba District, Chongqing, China
| | - Li Gong
- Chongqing Normal University, No.37, Middle University Road, Shapingba District, Chongqing, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
11
|
In Vivo Comparison of the Phenotypic Aspects and Molecular Mechanisms of Two Nephrotoxic Agents, Sodium Fluoride and Uranyl Nitrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071136. [PMID: 30934888 PMCID: PMC6479911 DOI: 10.3390/ijerph16071136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 02/03/2023]
Abstract
Because of their nephrotoxicity and presence in the environment, uranium (U) and fluoride (F) represent risks to the global population. There is a general lack of knowledge regarding the mechanisms of U and F nephrotoxicity and the underlying molecular pathways. The present study aims to compare the threshold of the appearance of renal impairment and to study apoptosis and inflammation as mechanisms of nephrotoxicity. C57BL/6J male mice were intraperitoneally treated with a single dose of U (0, 2, 4 and 5 mg/kg) or F (0, 2, 5, 7.5 and 10 mg/kg) and euthanized 72 h after. Renal phenotypic characteristics and biological mechanisms were evaluated by urine biochemistry, gene/protein expression, enzyme activity, and (immuno)histological analyses. U and F exposures induced nephrotoxicity in a dose-dependent manner, and the highest concentrations induced severe histopathological alterations as well as increased gene expression and urinary excretion of nephrotoxicity biomarkers. KIM-1 gene expression was induced starting at 2 mg/kg U and 7.5 mg/kg F, and this increase in expression was confirmed through in situ detection of this biomarker of nephrotoxicity. Both treatments induced inflammation as evidenced by cell adhesion molecule expression and in situ levels, whereas caspase 3/7-dependent apoptosis was increased only after U treatment. Overall, a single dose of F or U induced histopathologic evidence of nephrotoxicity renal impairment and inflammation in mice with thresholds under 7.5 mg/kg and 4 mg/kg, respectively.
Collapse
|
12
|
Chauhan V, Said Z, Daka J, Sadi B, Bijlani D, Marchetti F, Beaton D, Gaw A, Li C, Burtt J, Leblanc J, Desrosiers M, Stuart M, Brossard M, Vuong NQ, Wilkins R, Qutob S, McNamee J, Wang Y, Yauk C. Is there a role for the adverse outcome pathway framework to support radiation protection? Int J Radiat Biol 2018; 95:225-232. [PMID: 30373433 DOI: 10.1080/09553002.2019.1532617] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE In 2012, the Organization for Economic Cooperation and Development (OECD) formally launched the Adverse Outcome Pathway (AOP) Programme. The AOP framework has the potential for predictive utility in identifying early biological endpoints linked to adverse effects. It uses the weight of correlative evidence to identify a minimal set of measurable key events that link molecular initiating events to an adverse outcome. AOPs have the capability to identify knowledge gaps and priority areas for future research based on relevance to an adverse outcome. In addition, AOPs can identify pathways that are common among multiple stressors, thereby allowing for the possibility of refined risk assessments based on co-exposure considerations. The AOP framework is increasingly being used in chemical and ecological risk assessment; however, its use in the development of radiation-specific pathways has yet to be fully explored. To bring awareness of the AOP framework to the Canadian radiation community, a workshop was held in Canada in June 2018 that brought together radiation experts from Health Canada, the Canadian Nuclear Laboratories, and the Canadian Nuclear Safety Commission. METHODS The purpose of the workshop was to share knowledge on the AOP framework, specifically (1) to introduce the concept of the AOP framework and its possible utility to Canadian radiation experts; (2) to provide examples on how it has advanced risk assessment; (3) to discuss an illustrative example specific to ionizing radiation; and lastly (4) to identify the broad benefits and challenges of the AOP framework to the radiation community. RESULTS The participants showed interest in the framework, case examples were described and areas of challenge were identified. Herein, we summarize the outcomes of the workshop. CONCLUSIONS Overall, participants agreed that by building AOPs in the radiation field, a network of data-sharing initiatives will enhance our interpretation of existing knowledge where current scientific evidence is minimal. They would provide new avenues to understand effects at low-dose and dose-rates and help to quantify the combined effect of multiple stressors on shared mechanistic pathways.
Collapse
Affiliation(s)
- Vinita Chauhan
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Zakaria Said
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada.,b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Joseph Daka
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Baki Sadi
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Deepti Bijlani
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Francesco Marchetti
- e Environmental Health Sciences and Research Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Danielle Beaton
- f Canadian Nuclear Laboratories , Chalk River , Ontario , Canada
| | - Adelene Gaw
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Chunsheng Li
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Julie Burtt
- d Canadian Nuclear Safety Commission , Ottawa , Ontario , Canada
| | - Julie Leblanc
- d Canadian Nuclear Safety Commission , Ottawa , Ontario , Canada
| | - Marc Desrosiers
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Marilyne Stuart
- f Canadian Nuclear Laboratories , Chalk River , Ontario , Canada
| | - Mathieu Brossard
- c Regulatory Operations and Regions Branch , Health Canada , Ottawa , Ontario , Canada
| | - Ngoc Q Vuong
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Ruth Wilkins
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Sami Qutob
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - James McNamee
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Yi Wang
- f Canadian Nuclear Laboratories , Chalk River , Ontario , Canada
| | - Carole Yauk
- e Environmental Health Sciences and Research Bureau , Health Canada , Ottawa , Ontario , Canada
| |
Collapse
|
13
|
Suhard D, Tessier C, Manens L, Rebière F, Tack K, Agarande M, Guéguen Y. Intracellular uranium distribution: Comparison of cryogenic fixation versus chemical fixation methods for SIMS analysis. Microsc Res Tech 2018; 81:855-864. [PMID: 29737608 PMCID: PMC6221105 DOI: 10.1002/jemt.23047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/30/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Localization of uranium within cells is mandatory for the comprehension of its cellular mechanism of toxicity. Secondary Ion Mass Spectrometry (SIMS) has recently shown its interest to detect and localize uranium at very low levels within the cells. This technique requires a specific sample preparation similar to the one used for Transmission Electronic Microscopy, achieved by implementing different chemical treatments to preserve as much as possible the living configuration uranium distribution into the observed sample. This study aims to compare the bioaccumulation sites of uranium within liver or kidney cells after chemical fixation and cryomethods preparations of the samples: SIMS analysis of theses samples show the localization of uranium soluble forms in the cell cytoplasm and nucleus with a more homogenous distribution when using cryopreparation probably due to the diffusible portion of uranium inside the cytoplasm.
Collapse
Affiliation(s)
- D Suhard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - C Tessier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - L Manens
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - F Rebière
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - K Tack
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| | - M Agarande
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SAME, Le Vésinet, France
| | - Y Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux-Roses, France
| |
Collapse
|
14
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
15
|
Ren J, Hao Y, Gao R, Zhang Y, Ran Y, Liu J, Dai X, Xiong W, Su Y, Li R. Effect of a novel polyethylene glycol compound on lung lavage in dogs after the inhalation of depleted uranium dust. Int J Radiat Biol 2018; 94:462-471. [DOI: 10.1080/09553002.2018.1446228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jiong Ren
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Rui Gao
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiaotian Dai
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xiong
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|