1
|
Cyran M, Stawarz K, Chambily L, Kusza K, Siemionow M. Assessment of Hematopoietic Response to Total Body Irradiation in a Rat Experimental Model. Ann Plast Surg 2024; 93:100-106. [PMID: 38785378 DOI: 10.1097/sap.0000000000003962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
BACKGROUND Exposure to high doses of total body irradiation (TBI) may lead to the development of acute radiation syndrome (ARS). This study was conducted to establish an experimental rat model of TBI to assess the impact of different doses of TBI on survival and the kinetics of changes within the hematopoietic system in ARS. MATERIALS AND METHODS In this study, 132 Lewis rats irradiated with a 5Gy or 7Gy dose served as experimental models to induce ARS and to evaluate the hematopoietic response of the bone marrow (BM) compartment. Animals were divided into 22 experimental groups (n = 6/group): groups 1-11 irradiated with 5Gy dose and groups 12-22 irradiated with 7Gy dose. The effects of TBI on the hematopoietic response were assessed at 2, 4, 6, 8 hours and 5, 10, 20, 30, 40, 60 and 90 days following TBI. Signs of ARS were evaluated by analyzing blood samples through complete blood count in addition to the clinical assessment. RESULTS Groups irradiated with 5Gy TBI showed 100% survival, whereas after 7Gy dose, 1.6% mortality rate was observed. Assessment of the complete blood count revealed that lymphocytes were the first to be affected, regardless of the dose used, whereas an "abortive rise" of granulocytes was noted for both TBI doses. None of the animals exhibited signs of severe anemia or thrombocytopenia. All animals irradiated with 5Gy dose regained initial values for all blood cell subpopulations by the end of observation period. Body weight loss was reported to be dose-dependent and was more pronounced in the 7Gy groups. However, at the study end point at 90 days, all animals regained or exceeded the initial weight values. CONCLUSIONS We have successfully established a rat experimental model of TBI. This study revealed a comparable hematopoietic response to the sublethal or potentially lethal doses of ionizing radiation. The experimental rat model of TBI may be used to assess different therapeutic approaches including BM-based cell therapies for long-term reconstitution of the hematopoietic and BM compartments allowing for comprehensive analysis of both the hematological and clinical symptoms associated with ARS.
Collapse
Affiliation(s)
| | - Katarzyna Stawarz
- From the Department of Orthopaedics, University of Illinois Chicago, Chicago, IL
| | - Lucile Chambily
- From the Department of Orthopaedics, University of Illinois Chicago, Chicago, IL
| | - Krzysztof Kusza
- Departments of Anesthesiology, Intensive Therapy and Pain Management
| | | |
Collapse
|
2
|
Szalanczy AM, Sherrill C, Fanning KM, Hart B, Caudell D, Davis AW, Whitfield J, Kavanagh K. A Novel TGFβ Receptor Inhibitor, IPW-5371, Prevents Diet-induced Hepatic Steatosis and Insulin Resistance in Irradiated Mice. Radiat Res 2024; 202:1-10. [PMID: 38772553 DOI: 10.1667/rade-23-00202.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
As the number of cancer survivors increases and the risk of accidental radiation exposure rises, there is a pressing need to characterize the delayed effects of radiation exposure and develop medical countermeasures. Radiation has been shown to damage adipose progenitor cells and increase liver fibrosis, such that it predisposes patients to developing metabolic-associated fatty liver disease (MAFLD) and insulin resistance. The risk of developing these conditions is compounded by the global rise of diets rich in carbohydrates and fats. Radiation persistently increases the signaling cascade of transforming growth factor β (TGFβ), leading to heightened fibrosis as characteristic of the delayed effects of radiation exposure. We investigate here a potential radiation medical countermeasure, IPW-5371, a small molecule inhibitor of TGFβRI kinase (ALK5). We found that mice exposed to sub-lethal whole-body irradiation and chronic Western diet consumption but treated with IPW-5371 had a similar body weight, food consumption, and fat mass compared to control mice exposed to radiation. The IPW-5371 treated mice maintained lower fibrosis and fat accumulation in the liver, were more responsive to insulin and had lower circulating triglycerides and better muscle endurance. Future studies are needed to verify the improvement by IPW-5371 on the structure and function of other metabolically active tissues such as adipose and skeletal muscle, but these data demonstrate that IPW-5371 protects liver and whole-body health in rodents exposed to radiation and a Western diet, and there may be promise in using IPW-5371 to prevent the development of MAFLD.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Chrissy Sherrill
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Katherine M Fanning
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Barry Hart
- Innovation Pathways, Palo Alto, California
| | - David Caudell
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ashley W Davis
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jordyn Whitfield
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- College of Health and Medicine, University o f Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
3
|
Mikhalkevich N, Russ E, Iordanskiy S. Cellular RNA and DNA sensing pathways are essential for the dose-dependent response of human monocytes to ionizing radiation. Front Immunol 2023; 14:1235936. [PMID: 38152396 PMCID: PMC10751912 DOI: 10.3389/fimmu.2023.1235936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
Circulating monocytes are important players of the inflammatory response to ionizing radiation (IR). These IR-resistant immune cells migrate to radiation-damaged tissues and differentiate into macrophages that phagocytize dying cells, but also facilitate inflammation. Besides the effect of damage-associated molecular patterns, released from irradiated tissues, the inflammatory activation of monocytes and macrophages is largely dependent on IR-induced DNA damage and aberrant transcriptional activity, which may facilitate expression of type I interferons (IFN-I) and numerous inflammation-related genes. We analyzed the accumulation of dsRNA, dsDNA fragments, and RNA:DNA hybrids in the context of induction of RNA-triggered MAVS-mediated and DNA-triggered STING-mediated signaling pathways, in primary human monocytes and a monocytic cell line, THP1, in response to various doses of gamma IR. We found that exposure to lower doses (<7.5 Gy) led to the accumulation of dsRNA, along with dsDNA and RNA:DNA hybrids and activated both MAVS and STING pathway-induced gene expression and signaling activity of IFN-I. Higher doses of IR resulted in the reduced dsRNA level, degradation of RNA-sensing mediators involved in MAVS signaling and coincided with an increased accumulation of dsDNA and RNA:DNA hybrids that correlated with elevated STING signaling and NF-κB-dependent gene expression. While both pathways activate IFN-I expression, using MAVS- and STING-knockout THP1 cells, we identified differences in the spectra of interferon-stimulated genes (ISGs) that are associated with each specific signaling pathway and outlined a large group of STING signaling-associated genes. Using the RNAi technique, we found that increasing the dose of IR activates STING signaling through the DNA sensor cGAS, along with suppression of the DDX41 helicase, which is known to reduce the accumulation of RNA:DNA hybrids and thereby limit cGAS/STING signaling activity. Together, these results indicate that depending on the applied dose, IR leads to the activation of either dsRNA-induced MAVS signaling, which predominantly leads to the expression of both pro- and anti-inflammatory markers, or dsDNA-induced STING signaling that contributes to pro-inflammatory activation of the cells. While RNA:DNA hybrids boost both MAVS- and STING-mediated signaling pathways, these structures being accumulated upon high IR doses promote type I interferon expression and appear to be potent enhancers of radiation dose-dependent pro-inflammatory activation of monocytes.
Collapse
Affiliation(s)
- Natallia Mikhalkevich
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Eric Russ
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
- The American Genome Center (TAGC), Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sergey Iordanskiy
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of The Health Sciences, Bethesda, MD, United States
| |
Collapse
|
4
|
Schaaf GW, Justice JN, Quillen EE, Cline JM. Resilience, aging, and response to radiation exposure (RARRE) in nonhuman primates: a resource review. GeroScience 2023; 45:3371-3379. [PMID: 37188889 PMCID: PMC10643677 DOI: 10.1007/s11357-023-00812-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The Wake Forest nonhuman primate (NHP) Radiation Late Effects Cohort (RLEC) is a unique and irreplaceable population of aging NHP radiation survivors which serves the nation's need to understand the late effects of radiation exposure. Over the past 16 years, Wake Forest has evaluated > 250 previously irradiated rhesus macaques (Macaca mulatta) that were exposed to single total body irradiation (IR) doses of 1.14-8.5 Gy or to partial body exposures of up to 10 Gy (5% bone marrow sparing) or 10.75 Gy (whole thorax). Though primarily used to examine IR effects on disease-specific processes or to develop radiation countermeasures, this resource provides insights on resilience across physiologic systems and its relationship with biological aging. Exposure to IR has well documented deleterious effects on health, but the late effects of IR are highly variable. Some animals exhibit multimorbidity and accumulated health deficits, whereas others remain relatively resilient years after exposure to total body IR. This provides an opportunity to evaluate biological aging at the nexus of resilient/vulnerable responses to a stressor. Consideration of inter-individual differences in response to this stressor can inform individualized strategies to manage late effects of radiation exposure, and provide insight into mechanisms underlying systemic resilience and aging. The utility of this cohort for age-related research questions was summarized at the 2022 Trans-NIH Geroscience Interest Group's Workshop on Animal Models for Geroscience. We present a brief review of radiation injury and its relationship to aging and resilience in NHPs with a focus on the RLEC.
Collapse
Affiliation(s)
- George W Schaaf
- Department of Pathology, Section On Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Jamie N Justice
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, and Stich Center for Health Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ellen E Quillen
- Department of Internal Medicine, Section On Molecular Medicine, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - J Mark Cline
- Department of Pathology, Section On Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Satyamitra MM, Cassatt DR, Molinar-Inglis O, Rios CI, Taliaferro LP, Winters TA, DiCarlo AL. The NIAID/RNCP Biodosimetry Program: An Overview. Cytogenet Genome Res 2023; 163:89-102. [PMID: 37742625 PMCID: PMC10946631 DOI: 10.1159/000534213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Established in 2004, the Radiation and Nuclear Countermeasures Program (RNCP), within the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health has the central mission to advance medical countermeasure mitigators/therapeutics, and biomarkers and technologies to assess, triage, and inform medical management of patients experiencing acute radiation syndrome and/or the delayed effects of acute radiation exposure. The RNCP biodosimetry mission space encompasses: (1) basic research to elucidate novel approaches for rapid and accurate assessment of radiation exposure, (2) studies to support advanced development for US Food and Drug Administration (FDA) clearance of promising triage or treatment devices/approaches, (3) characterization of biomarkers and/or assays to determine degree of tissue or organ dose that can predict outcome of radiation injuries (i.e., organ failure, morbidity, and/or mortality), and (4) outreach efforts to facilitate interactions with researchers developing cutting edge biodosimetry approaches. Thus far, no biodosimetry device has been FDA cleared for use during a radiological/nuclear incident. At NIAID, advancement of radiation biomarkers and biodosimetry approaches is facilitated by a variety of funding mechanisms (grants, contracts, cooperative and interagency agreements, and Small Business Innovation Research awards), with the objective of advancing devices and assays toward clearance, as outlined in the FDA's Radiation Biodosimetry Medical Countermeasure Devices Guidance. The ultimate goal of the RNCP biodosimetry program is to develop and establish accurate and reliable biodosimetry tools that will improve radiation preparedness and ultimately save lives during a radiological or nuclear incident.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Olivia Molinar-Inglis
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| |
Collapse
|
6
|
Long-Term Immunological Consequences of Radiation Exposure in a Diverse Cohort of Rhesus Macaques. Int J Radiat Oncol Biol Phys 2023; 115:945-956. [PMID: 36288757 PMCID: PMC9974872 DOI: 10.1016/j.ijrobp.2022.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The aim of this study was to develop an improved understanding of the delayed immunologic effects of acute total body irradiation (TBI) using a diverse cohort of nonhuman primates as a model for an irradiated human population. METHODS AND MATERIALS Immune recovery was evaluated in 221 rhesus macaques either left unirradiated (n = 36) or previously irradiated (n = 185) at 1.1 to 8.5 Gy TBI (median, 6.5 Gy) when aged 2.1 to 15.5 years (median, 4.2 years). Blood was drawn annually for up to 5 years total between 0.5 and 14.3 years after exposure. Blood was analyzed by complete blood count, immunophenotyping of monocytes, dendritic cells (DC) and lymphocytes by flow cytometry, and signal joint T-cell receptor exclusion circle quantification in isolated peripheral blood CD4 and CD8 T cells. Animals were categorized by age, irradiation status, and time since irradiation. Sex-adjusted means of immune metrics were evaluated by generalized estimating equation models to identify cell populations altered by TBI. RESULTS Overall, the differences between irradiated and nonirradiated animals were subtle and largely restricted to younger animals and select cell populations. Subsets of monocytes, DC, T cells, and B cells showed significant interaction effects between radiation dose and age after adjustment for sex. Irradiation at a young age caused transient increases in the percentage of peripheral blood myeloid DC and dose-dependent changes in monocyte balance for at least 5 years after TBI. TBI also led to a sustained decrease in the percentage of circulating memory B cells. Young irradiated animals exhibited statistically significant and prolonged disruption of the naïve/effector memory/central memory CD4 and CD8 T-cell equilibrium and exhibited a dose-dependent increase in thymopoiesis for 2 to 3 years after exposure. CONCLUSIONS This study indicates TBI subtly but significantly alters the circulating proportions of cellular mediators of adaptive immune memory for several years after irradiation, especially in macaques under 5 years of age and those receiving a high dose of radiation.
Collapse
|
7
|
Rios CI, Hollingsworth BA, DiCarlo AL, Esker JE, Satyamitra MM, Silverman TA, Winters TA, Taliaferro LP. Animal Care in Radiation Medical Countermeasures Studies. Radiat Res 2022; 198:514-535. [PMID: 36001810 PMCID: PMC9743977 DOI: 10.1667/rade-21-00211.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Animal models are necessary to demonstrate the efficacy of medical countermeasures (MCM) to mitigate/treat acute radiation syndrome and the delayed effects of acute radiation exposure and develop biodosimetry signatures for use in triage and to guide medical management. The use of animal models in radiation research allows for the simulation of the biological effects of exposure in humans. Robust and well-controlled animal studies provide a platform to address basic mechanistic and safety questions that cannot be conducted in humans. The U.S. Department of Health and Human Services has tasked the National Institute of Allergy and Infectious Diseases (NIAID) with identifying and funding early- through advanced-stage MCM development for radiation-induced injuries; and advancement of biodosimetry platforms and exploration of biomarkers for triage, definitive dose, and predictive purposes. Some of these NIAID-funded projects may transition to the Biomedical Advanced Research and Development Authority (BARDA), a component of the Office of the Assistant Secretary for Preparedness and Response in the U.S. Department of Health and Human Services, which is tasked with the advanced development of MCMs to include pharmacokinetic, exposure, and safety assessments in humans. Guided by the U.S. Food and Drug Administration's (FDA) Animal Rule, both NIAID and BARDA work closely with researchers to advance product and device development, setting them on a course for eventual licensure/approval/clearance of their approaches by the FDA. In August 2020, NIAID partnered with BARDA to conduct a workshop to discuss currently accepted animal care protocols and examine aspects of animal models that can influence outcomes of studies to explore MCM efficacy for potential harmonization. This report provides an overview of the two-day workshop, which includes a series of special topic presentations followed by panel discussions with subject-matter experts from academia, industry partners, and select governmental agencies.
Collapse
Affiliation(s)
- Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | | | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - John E. Esker
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), US Department of Health and Human Services (HHS), Washington, DC
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Toby A. Silverman
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), US Department of Health and Human Services (HHS), Washington, DC
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland,Corresponding author: Lanyn P. Taliaferro, PhD, DAIT, NIAID, NIH, 5601 Fishers Lane, Rockville, MD 20852;
| |
Collapse
|
8
|
Rittase WB, Slaven JE, Suzuki YJ, Muir JM, Lee SH, Rusnak M, Brehm GV, Bradfield DT, Symes AJ, Day RM. Iron Deposition and Ferroptosis in the Spleen in a Murine Model of Acute Radiation Syndrome. Int J Mol Sci 2022; 23:ijms231911029. [PMID: 36232330 PMCID: PMC9570444 DOI: 10.3390/ijms231911029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Total body irradiation (TBI) can result in death associated with hematopoietic insufficiency. Although radiation causes apoptosis of white blood cells, red blood cells (RBC) undergo hemolysis due to hemoglobin denaturation. RBC lysis post-irradiation results in the release of iron into the plasma, producing a secondary toxic event. We investigated radiation-induced iron in the spleens of mice following TBI and the effects of the radiation mitigator captopril. RBC and hematocrit were reduced ~7 days (nadir ~14 days) post-TBI. Prussian blue staining revealed increased splenic Fe3+ and altered expression of iron binding and transport proteins, determined by qPCR, western blotting, and immunohistochemistry. Captopril did not affect iron deposition in the spleen or modulate iron-binding proteins. Caspase-3 was activated after ~7–14 days, indicating apoptosis had occurred. We also identified markers of iron-dependent apoptosis known as ferroptosis. The p21/Waf1 accelerated senescence marker was not upregulated. Macrophage inflammation is an effect of TBI. We investigated the effects of radiation and Fe3+ on the J774A.1 murine macrophage cell line. Radiation induced p21/Waf1 and ferritin, but not caspase-3, after ~24 h. Radiation ± iron upregulated several markers of pro-inflammatory M1 polarization; radiation with iron also upregulated a marker of anti-inflammatory M2 polarization. Our data indicate that following TBI, iron accumulates in the spleen where it regulates iron-binding proteins and triggers apoptosis and possible ferroptosis.
Collapse
Affiliation(s)
- W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yuichiro J. Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jeannie M. Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sang-Ho Lee
- Department of Laboratory Animal Research, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Grace V. Brehm
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Aviva J. Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3236; Fax: +1-301-295-3220
| |
Collapse
|
9
|
Macintyre AN, French MJ, Sanders BR, Riebe KJ, Shterev ID, Wiehe K, Hora B, Evangelous T, Dugan G, Bourland JD, Cline JM, Sempowski GD. Long-Term Recovery of the Adaptive Immune System in Rhesus Macaques After Total Body Irradiation. Adv Radiat Oncol 2021; 6:100677. [PMID: 34646962 PMCID: PMC8498734 DOI: 10.1016/j.adro.2021.100677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Ionizing radiation causes acute damage to hematopoietic and immune cells, but the long-term immunologic consequences of irradiation are poorly understood. We therefore performed a prospective study of the delayed immune effects of radiation using a rhesus macaque model. METHODS AND MATERIALS Ten macaques received 4 Gy high-energy x-ray total body irradiation (TBI) and 6 control animals received sham irradiation. TBI caused transient lymphopenia that resolved over several weeks. Once white blood cell counts recovered, flow cytometry was used to immunophenotype the circulating adaptive immune cell populations 4, 9, and 21 months after TBI. Data were fit using a mixed-effects model to determine age-dependent, radiation-dependent, and interacting effects. T cell receptor (TCR) sequencing and quantification of TCR Excision Circles were used to determine relative contributions of thymopoiesis and peripheral expansion to T cell repopulation. Two years after TBI, the cohort was vaccinated with a 23-valent pneumococcal polysaccharide vaccine and a tetravalent influenza hemagglutinin vaccine. RESULTS Aging, but not TBI, led to significant changes in the frequencies of dendritic cells, CD4 and CD8 T cells, and B cells. However, irradiated animals exhibited increased frequencies of central memory T cells and decreased frequencies of naïve T cells. These consequences of irradiation were time-dependent and more prolonged in the CD8 T cell population. Irradiation led to transient increases in CD8+ T cell TCR Excision Circles and had no significant effect on TCR sequence entropy, indicating T cell recovery was partially mediated by thymopoiesis. Animals that were irradiated and then vaccinated showed normal immunoglobulin G binding and influenza neutralization titers in response to the 4 protein antigens but weaker immunoglobulin G binding titers to 10 of the 23 polysaccharide antigens. CONCLUSIONS These findings indicate that TBI causes subtle but long-lasting immune defects that are evident years after recovery from lymphopenia.
Collapse
Affiliation(s)
- Andrew N. Macintyre
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Matthew J. French
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Brittany R. Sanders
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kristina J. Riebe
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Ivo D. Shterev
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kevin Wiehe
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Bhavna Hora
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Tyler Evangelous
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Greg Dugan
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Mark Cline
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
10
|
Li Y, Singh J, Varghese R, Zhang Y, Fatanmi OO, Cheema AK, Singh VK. Transcriptome of rhesus macaque (Macaca mulatta) exposed to total-body irradiation. Sci Rep 2021; 11:6295. [PMID: 33737626 PMCID: PMC7973550 DOI: 10.1038/s41598-021-85669-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
The field of biodosimetry has seen a paradigm shift towards an increased use of molecular phenotyping technologies including omics and miRNA, in addition to conventional cytogenetic techniques. Here, we have used a nonhuman primate (NHP) model to study the impact of gamma-irradiation on alterations in blood-based gene expression. With a goal to delineate radiation induced changes in gene expression, we followed eight NHPs for 60 days after exposure to 6.5 Gy gamma-radiation for survival outcomes. Analysis of differential gene expression in response to radiation exposure yielded 26,944 dysregulated genes that were not significantly impacted by sex. Further analysis showed an increased association of several pathways including IL-3 signaling, ephrin receptor signaling, ErbB signaling, nitric oxide signaling in the cardiovascular system, Wnt/β-catenin signaling, and inflammasome pathway, which were associated with positive survival outcomes in NHPs after acute exposure to radiation. This study provides novel insights into major pathways and networks involved in radiation-induced injuries that may identify biomarkers for radiation injury.
Collapse
Affiliation(s)
- Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jatinder Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Serices University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rency Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yubo Zhang
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Serices University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Serices University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA. .,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
11
|
Johnson CSC, Shively C, Michalson KT, Lea AJ, DeBo RJ, Howard TD, Hawkins GA, Appt SE, Liu Y, McCall CE, Herrington DM, Ip EH, Register TC, Snyder-Mackler N. Contrasting effects of Western vs Mediterranean diets on monocyte inflammatory gene expression and social behavior in a primate model. eLife 2021; 10:68293. [PMID: 34338633 PMCID: PMC8423447 DOI: 10.7554/elife.68293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023] Open
Abstract
Dietary changes associated with industrialization increase the prevalence of chronic diseases, such as obesity, type II diabetes, and cardiovascular disease. This relationship is often attributed to an 'evolutionary mismatch' between human physiology and modern nutritional environments. Western diets enriched with foods that were scarce throughout human evolutionary history (e.g. simple sugars and saturated fats) promote inflammation and disease relative to diets more akin to ancestral human hunter-gatherer diets, such as a Mediterranean diet. Peripheral blood monocytes, precursors to macrophages and important mediators of innate immunity and inflammation, are sensitive to the environment and may represent a critical intermediate in the pathway linking diet to disease. We evaluated the effects of 15 months of whole diet manipulations mimicking Western or Mediterranean diet patterns on monocyte polarization in a well-established model of human health, the cynomolgus macaque (Macaca fascicularis). Monocyte transcriptional profiles differed markedly between diets, with 40% of transcripts showing differential expression (FDR < 0.05). Monocytes from Western diet consumers were polarized toward a more proinflammatory phenotype. The Western diet shifted the co-expression of 445 gene pairs, including small RNAs and transcription factors associated with metabolism and adiposity in humans, and dramatically altered behavior. For example, Western-fed individuals were more anxious and less socially integrated. These behavioral changes were also associated with some of the effects of diet on gene expression, suggesting an interaction between diet, central nervous system activity, and monocyte gene expression. This study provides new molecular insights into an evolutionary mismatch and uncovers new pathways through which Western diets alter monocyte polarization toward a proinflammatory phenotype.
Collapse
Affiliation(s)
- Corbin SC Johnson
- Department of Psychology, University of WashingtonSeattleUnited States
| | - Carol Shively
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Kristofer T Michalson
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Amanda J Lea
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States,Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Ryne J DeBo
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Timothy D Howard
- Department of Biochemistry, Wake Forest School of MedicineWinston-SalemUnited States
| | - Gregory A Hawkins
- Department of Biochemistry, Wake Forest School of MedicineWinston-SalemUnited States
| | - Susan E Appt
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Yongmei Liu
- Division of Cardiology, Duke University School of MedicineDurhamUnited States
| | - Charles E McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - David M Herrington
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Edward H Ip
- Department of Biostatistics and Data Science, Wake Forest School of MedicineWinston-SalemUnited States
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Noah Snyder-Mackler
- Department of Psychology, University of WashingtonSeattleUnited States,Center for Studies in Demography and Ecology, University of WashingtonSeattleUnited States,Department of Biology, University of WashingtonSeattleUnited States,School of Life Sciences, Arizona State UniversityTempeUnited States,Center for Evolution & Medicine, Arizona State UniversityTempeUnited States
| |
Collapse
|