1
|
Poignant F, Pariset E, Plante I, Ponomarev AL, Evain T, Viger L, Slaba TC, Blattnig SR, Costes SV. DNA break clustering as a predictor of cell death across various radiation qualities: influence of cell size, cell asymmetry, and beam orientation. Integr Biol (Camb) 2024; 16:zyae015. [PMID: 39299711 DOI: 10.1093/intbio/zyae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Cosmic radiation, composed of high charge and energy (HZE) particles, causes cellular DNA damage that can result in cell death or mutation that can evolve into cancer. In this work, a cell death model is applied to several cell lines exposed to HZE ions spanning a broad range of linear energy transfer (LET) values. We hypothesize that chromatin movement leads to the clustering of multiple double strand breaks (DSB) within one radiation-induced foci (RIF). The survival probability of a cell population is determined by averaging the survival probabilities of individual cells, which is function of the number of pairwise DSB interactions within RIF. The simulation code RITCARD was used to compute DSB. Two clustering approaches were applied to determine the number of RIF per cell. RITCARD outputs were combined with experimental data from four normal human cell lines to derive the model parameters and expand its predictions in response to ions with LET ranging from ~0.2 keV/μm to ~3000 keV/μm. Spherical and ellipsoidal nuclear shapes and two ion beam orientations were modeled to assess the impact of geometrical properties on cell death. The calculated average number of RIF per cell reproduces the saturation trend for high doses and high-LET values that is usually experimentally observed. The cell survival model generates the recognizable bell shape of LET dependence for the relative biological effectiveness (RBE). At low LET, smaller nuclei have lower survival due to increased DNA density and DSB clustering. At high LET, nuclei with a smaller irradiation area-either because of a smaller size or a change in beam orientation-have a higher survival rate due to a change in the distribution of DSB/RIF per cell. If confirmed experimentally, the geometric characteristics of cells would become a significant factor in predicting radiation-induced biological effects. Insight Box: High-charge and energy (HZE) ions are characterized by dense linear energy transfer (LET) that induce unique spatial distributions of DNA damage in cell nuclei that result in a greater biological effect than sparsely ionizing radiation like X-rays. HZE ions are a prominent component of galactic cosmic ray exposure during human spaceflight and specific ions are being used for radiotherapy. Here, we model DNA damage clustering at sub-micrometer scale to predict cell survival. The model is in good agreement with experimental data for a broad range of LET. Notably, the model indicates that nuclear geometry and ion beam orientation affect DNA damage clustering, which reveals their possible role in mediating cell radiosensitivity.
Collapse
Affiliation(s)
- Floriane Poignant
- Analytical Mechanics Associates Inc., 21 Enterprise Parkway, Hampton, VA 23666, United States
| | - Eloise Pariset
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, United States
| | - Ianik Plante
- KBR, 2400 NASA Parkway, Houston, TX 77058, United States
| | | | - Trevor Evain
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Louise Viger
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Tony C Slaba
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Steve R Blattnig
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Sylvain V Costes
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
| |
Collapse
|
2
|
Edwards S, Adams J, Tchernikov A, Edwards JG. Low-dose X-ray radiation induces an adaptive response: A potential countermeasure to galactic cosmic radiation exposure. Exp Physiol 2024. [PMID: 38180298 DOI: 10.1113/ep091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Space exploration involves many dangers including galactic cosmic radiation (GCR). This class of radiation includes high-energy protons and heavy ionizing ions. NASA has defined GCR as a carcinogenic risk for long-duration space missions. To date, no clear strategy has been developed to counter chronic GCR exposure. We hypothesize that preconditioning cells with low levels of radiation will be protective from subsequent higher radiation exposures. H9C2 cells were pretreated with 0.1 to 1.0 Gy X-rays. The challenge radiation exposure consisted of either 8 Gy X-rays or 75 cGy of GCR, using a five-ion GCRsim protocol. A cell doubling time assay was used to determine cell viability. An 8 Gy X-ray challenge alone significantly (P < 0.05) increased cell doubling time compared to the no-radiation control group. Low-dose radiation pre-treatment ameliorated the 8 Gy X-ray-induced increases in cell doubling time. A 75 cGy GCR challenge alone significantly increased cell doubling time compared to the no-radiation group. Following the 75 cGy challenge, only the 0.5 and 1.0 Gy pre-treatment ameliorated the 75 cGy-induced increases in cell doubling time. DNA damage or pathological oxidant stress will delay replicative functions and increase cell doubling time. Our results suggested that pretreatment with low-dose X-rays induced an adaptive response which offered a small but significant protection against a following higher radiation challenge. Although perhaps not a practical countermeasure, these findings may serve to offer insight into cell signalling pathways activated in response to low-dose irradiation and targeted for countermeasure development.
Collapse
|
3
|
Buglewicz DJ, Buglewicz JKF, Hirakawa H, Kato TA, Liu C, Fang Y, Kusumoto T, Fujimori A, Sai S. The impact of DNA double-strand break repair pathways throughout the carbon ion spread-out Bragg peak beam. Cancer Sci 2023; 114:4548-4557. [PMID: 37786999 PMCID: PMC10727999 DOI: 10.1111/cas.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
Following carbon ion beam irradiation in mammalian cells, such as used in carbon ion radiotherapy (CIRT), it has been suggested that the balance between whether nonhomologous end joining (NHEJ) or homologous recombination (HR) is utilized depends on the DNA double-strand break (DSB) complexity. Here, we quantified DSB distribution and identified the importance of each DSB repair pathway at increasing depths within the carbon ion spread-out Bragg peak (SOBP) beam range. Chinese hamster ovary (CHO) cell lines were irradiated in a single biological system capable of incorporating the full carbon ion SOBP beam range. Cytotoxicity and DSB distribution/repair kinetics were examined at increasing beam depths using cell survival as an endpoint and γ-H2AX as a surrogate marker for DSBs. We observed that proximal SOBP had the highest number of total foci/cell and lowest survival, while distal SOBP had the most dense tracks. Both NHEJ- and HR-deficient CHO cells portrayed an increase in radiosensitivity throughout the full carbon beam range, although NHEJ-deficient cells were the most radiosensitive cell line from beam entrance up to proximal SOBP and demonstrated a dose-dependent decrease in ability to repair DSBs. In contrast, HR-deficient cells had the greatest ratio of survival fraction at entrance depth to the lowest survival fraction within the SOBP and demonstrated a linear energy transfer (LET)-dependent decrease in ability to repair DSBs. Collectively, our results provide insight into treatment planning and potential targets to inhibit, as HR was a more beneficial pathway to inhibit than NHEJ to enhance the cell killing effect of CIRT in targeted tumor cells within the SOBP while maintaining limited unwanted damage to surrounding healthy cells.
Collapse
Affiliation(s)
- Dylan J. Buglewicz
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | | | - Hirokazu Hirakawa
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Takamitsu A. Kato
- Department of Environmental & Radiological Health SciencesColorado State UniversityFort CollinsCOUSA
| | - Cuihua Liu
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - YaQun Fang
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Tamon Kusumoto
- Department of Radiation Measurement and Dose Assessment, Institute of Radiological SciencesNational Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Akira Fujimori
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Sei Sai
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| |
Collapse
|
4
|
Chaudhary P, Milluzzo G, McIlvenny A, Ahmed H, McMurray A, Maiorino C, Polin K, Romagnani L, Doria D, McMahon SJ, Botchway SW, Rajeev PP, Prise KM, Borghesi M. Cellular irradiations with laser-driven carbon ions at ultra-high dose rates. Phys Med Biol 2023; 68. [PMID: 36625355 DOI: 10.1088/1361-6560/aca387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023]
Abstract
Objective.Carbon is an ion species of significant radiobiological interest, particularly in view of its use in cancer radiotherapy, where its large Relative Biological Efficiency is often exploited to overcome radio resistance. A growing interest in highly pulsed carbon delivery has arisen in the context of the development of the FLASH radiotherapy approach, with recent studies carried out at dose rates of 40 Gy s-1. Laser acceleration methods, producing ultrashort ion bursts, can now enable the delivery of Gy-level doses of carbon ions at ultra-high dose rates (UHDRs), exceeding 109Gy s-1. While studies at such extreme dose rate have been carried out so far using low LET particles such as electrons and protons, the radiobiology of high-LET, UHDR ions has not yet been explored. Here, we report the first application of laser-accelerated carbon ions generated by focussing 1020W cm-2intense lasers on 10-25 nm carbon targets, to irradiate radioresistant patient-derived Glioblastoma stem like cells (GSCs).Approach.We exposed GSCs to 1 Gy of 9.5 ± 0.5 MeV/n carbon ions delivered in a single ultra-short (∼400-picosecond) pulse, at a dose rate of 2 × 109Gy s-1, generated using the ASTRA GEMINI laser of the Central Laser Facility at the Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK. We quantified carbon ion-induced DNA double strand break (DSB) damage using the 53BP1 foci formation assay and used 225 kVp x-rays as a reference radiation.Main Results.Laser-accelerated carbon ions induced complex DNA DSB damage, as seen through persistent 53BP1 foci (11.5 ± 0.4 foci/cell/Gy) at 24 h and significantly larger foci (1.69 ± 0.07μm2) than x-rays induced ones (0.63 ± 0.02μm2). The relative foci induction value for laser-driven carbon ions relative to conventional x-rays was 3.2 ± 0.3 at 24 h post-irradiation also confirming the complex nature of the induced damage.Significance.Our study demonstrates the feasibility of radiobiology investigations at unprecedented dose rates using laser-accelerated high-LET carbon ions in clinically relevant models.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom.,Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Giuliana Milluzzo
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare,, via S Sofia 62, I-95123 Catania, Sicily, Italy
| | - Aodhan McIlvenny
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Hamad Ahmed
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Experimental Science Group, Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Aaron McMurray
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Carla Maiorino
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom.,Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare,, via S Sofia 62, I-95123 Catania, Sicily, Italy.,Extreme Light Infrastructure (ELI-NP) and Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering (IFIN-HH), Str. Reactorului No. 30, 077125 Bucharest, Magurele, Romania.,University College Cork, College of Medicine and Health, Discipline of Diagnostic Radiography and Radiation Therapy, Brookfield Health Sciences Complex, Brookfield College Road, T12AK54, Cork, United Kingdom
| | - Kathryn Polin
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Lorenzo Romagnani
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Laboratoire LULI, École Polytechnique, Route de Saclay, F-91128 Palaiseau, Paris, France
| | - Domenico Doria
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Extreme Light Infrastructure (ELI-NP) and Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering (IFIN-HH), Str. Reactorului No. 30, 077125 Bucharest, Magurele, Romania
| | - Stephen J McMahon
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Stanley W Botchway
- Research Complex at Harwell & Central Laser facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Pattathil P Rajeev
- Experimental Science Group, Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Kevin M Prise
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Marco Borghesi
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
5
|
Weiss M, Nikisher B, Haran H, Tefft K, Adams J, Edwards JG. High throughput screen of small molecules as potential countermeasures to galactic cosmic radiation induced cellular dysfunction. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:76-87. [PMID: 36336373 DOI: 10.1016/j.lssr.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 06/16/2023]
Abstract
Space travel increases galactic cosmic ray exposure to flight crews and this is significantly elevated once travel moves beyond low Earth orbit. This includes combinations of high energy protons and heavy ions such as 56Fe or 16O. There are distinct differences in the biological response to low-energy transfer (x-rays) or high-energy transfer (High-LET). However, given the relatively low fluence rate of exposure during flight operations, it might be possible to manage these deleterious effects using small molecules currently available. Virtually all reports to date examining small molecule management of radiation exposure are based on low-LET challenges. To that end an FDA approved drug library (725 drugs) was used to perform a high throughput screen of cultured cells following exposure to galactic cosmic radiation. The H9c2 myoblasts, ES-D3 pluripotent cells, and Hy926 endothelial cell lines were exposed to a single exposure (75 cGy) using the 5-ion GCRsim protocol developed at the NASA Space Radiation Laboratory (NSRL). Following GCR exposure cells were maintained for up to two weeks. For each drug (@10µM), a hierarchical cumulative score was developed incorporating measures of mitochondrial and cellular function, oxidant stress and cell senescence. The top 160 scores were retested following a similar protocol using 1µM of each drug. Within the 160 drugs, 33 are considered to have an anti-inflammatory capacity, while others also indirectly suppressed pro-inflammatory pathways or had noted antioxidant capacity. Lead candidates came from different drug classes that included angiotensin converting enzyme inhibitors or AT1 antagonists, COX2 inhibitors, as well as drugs mediated by histamine receptors. Surprisingly, different classes of anti-diabetic medications were observed to be useful including sulfonylureas and metformin. Using a hierarchical decision structure, we have identified several lead candidates. That no one drug or even drug class was completely successful across all parameters tested suggests the complexity of managing the consequences of galactic cosmic radiation exposure.
Collapse
Affiliation(s)
- M Weiss
- Department of Physiology, New York Medical College, Valhalla, New York
| | - B Nikisher
- Department of Physiology, New York Medical College, Valhalla, New York
| | - H Haran
- Department of Physiology, New York Medical College, Valhalla, New York
| | - K Tefft
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J Adams
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York.
| |
Collapse
|
6
|
Abu Shqair A, Lee US, Kim EH. Computational modelling of γ-H2AX foci formation in human cells induced by alpha particle exposure. Sci Rep 2022; 12:14360. [PMID: 35999233 PMCID: PMC9399106 DOI: 10.1038/s41598-022-17830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
In cellular experiments, radiation-induced DNA damage can be quantified by counting the number of γ-H2AX foci in cell nucleus by using an immunofluorescence microscope. Quantification of DNA damage carries uncertainty, not only due to lack of full understanding the biological processes but also limitations in measurement techniques. The causes of limited certainty include the possibility of expressing foci in varying sizes responding individual DSBs and the overlapping of foci on the two-dimensional (2D) immunofluorescence microscopy image of γ-H2AX foci, especially when produced due to high-LET radiation exposure. There have been discussions on those limitations, but no successful studies to overcome them. In this paper, a practical modelling has been developed to simulate the occurrences of double-strand breaks (DSBs) and the formations of γ-H2AX foci in response to individual DSB formations, in cell nucleus due to exposure to alpha particles. Cell irradiation and DSB production were simulated using a user-written code that utilizes Geant4-DNA physics models. A C + + code was used to simulate the formation γ-H2AX foci, which were spatially correlated to the loci of DBSs, and to calculate the number of individual foci from the observed 2D image of the cell nucleus containing the overlapping γ-H2AX foci. The average size of focal images was larger from alpha particle exposure than that from X-ray exposure, whereas the number of separate focal images were comparable except at doses up to 0.5 Gy. About 40% of separate focal images consisted of overlapping γ-H2AX foci at 1 Gy of alpha particle exposure. The foci overlapping ratios were obtained by simulation for individual size groups of focal images at varying doses. The size distributions of foci at varying doses were determined with experimentally obtained separate focal images. The correction factor for foci number was calculated using the foci overlapping ratio and foci size distribution, which are specific to dose from alpha particle exposure. The number of individual foci formations induced by applying the correction factor to the experimentally observed number of focal images better reflected the quality of alpha particles in causing DNA damage. Consequently, the conventional γ-H2AX assay can be better implemented by employing this computational modelling of γ-H2AX foci formation.
Collapse
Affiliation(s)
- Ali Abu Shqair
- Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ui-Seob Lee
- Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Hee Kim
- Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Estimation of biological effect of Cu-64 radiopharmaceuticals with Geant4-DNA simulation. Sci Rep 2022; 12:8957. [PMID: 35624130 PMCID: PMC9142517 DOI: 10.1038/s41598-022-13096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
The aim of this work is to estimate the biological effect of targeted radionuclide therapy using Cu-64, which is a well-known Auger electron emitter. To do so, we evaluate the absorbed dose of emitted particles from Cu-64 using the Geant4-DNA Monte Carlo simulation toolkit. The contribution of beta particles to the absorbed dose is higher than that of Auger electrons. The simulation result agrees with experimental ones evaluated using coumarin-3-carboxylic acid chemical dosimeter. The simulation result is also in good agreement with previous ones obtained using fluorescent nuclear track detector. From the results of present simulation (i.e., absorbed dose estimation) and previous biological experiments using two cell lines (i.e., evaluation of survival curves), we have estimated the relative biological effectiveness (RBE) of Cu-64 emitted particles on CHO wild-type cells and xrs5 cells. The RBE of xrs5 cells exposed to Cu-64 is almost equivalent to that with gamma rays and protons and C ions. This result indicates that the radiosensitivity of xrs5 cells is independent of LET. In comparison to this, the RBE on CHO wild-type cells exposed to Cu-64 is significantly higher than gamma rays and almost equivalent to that irradiated with C ions with a linear energy transfer of 70 keV/μm.
Collapse
|
8
|
Buglewicz DJ, Walsh KD, Hirakawa H, Kitamura H, Fujimori A, Kato TA. Biological Effects of Monoenergetic Carbon Ions and Their Associated Secondary Particles. Front Oncol 2022; 12:788293. [PMID: 35251969 PMCID: PMC8892238 DOI: 10.3389/fonc.2022.788293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the main factor behind carbon-ion radiation therapy (CIRT)-induced cell death. Nuclear interactions along the beam path between the primary carbon ions and targets result in nuclear fragmentation of carbon ions and recoiled particles. These secondary particles travel further distances past the Bragg peak to the tail region, leading to unwanted biological effects that may result in cytotoxicity in critical organs and secondary induced tumors following CIRT. Here, we confirmed that the density of the DSB distributions increases as the cell survival decreases at the Bragg peak and demonstrated that by visualizing DSBs, the various LET fragmentation ions and recoiled particles produced differences in their biological effects in the post-Bragg peak tail regions. This suggests that the density of the DSBs within the high-LET track structures, rather than only their presence, is important for inducing cell death. These results are essential for CIRT treatment planning to limit the amount of healthy cell damage and reducing both the late effect and the secondary tumor-associated risk.
Collapse
Affiliation(s)
- Dylan J. Buglewicz
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kade D. Walsh
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hirokazu Hirakawa
- Department of Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hisashi Kitamura
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Akira Fujimori
- Department of Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takamitsu A. Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Takamitsu A. Kato,
| |
Collapse
|
9
|
Pavez Loriè E, Baatout S, Choukér A, Buchheim JI, Baselet B, Dello Russo C, Wotring V, Monici M, Morbidelli L, Gagliardi D, Stingl JC, Surdo L, Yip VLM. The Future of Personalized Medicine in Space: From Observations to Countermeasures. Front Bioeng Biotechnol 2021; 9:739747. [PMID: 34966726 PMCID: PMC8710508 DOI: 10.3389/fbioe.2021.739747] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of personalized medicine is to detach from a “one-size fits all approach” and improve patient health by individualization to achieve the best outcomes in disease prevention, diagnosis and treatment. Technological advances in sequencing, improved knowledge of omics, integration with bioinformatics and new in vitro testing formats, have enabled personalized medicine to become a reality. Individual variation in response to environmental factors can affect susceptibility to disease and response to treatments. Space travel exposes humans to environmental stressors that lead to physiological adaptations, from altered cell behavior to abnormal tissue responses, including immune system impairment. In the context of human space flight research, human health studies have shown a significant inter-individual variability in response to space analogue conditions. A substantial degree of variability has been noticed in response to medications (from both an efficacy and toxicity perspective) as well as in susceptibility to damage from radiation exposure and in physiological changes such as loss of bone mineral density and muscle mass in response to deconditioning. At present, personalized medicine for astronauts is limited. With the advent of longer duration missions beyond low Earth orbit, it is imperative that space agencies adopt a personalized strategy for each astronaut, starting from pre-emptive personalized pre-clinical approaches through to individualized countermeasures to minimize harmful physiological changes and find targeted treatment for disease. Advances in space medicine can also be translated to terrestrial applications, and vice versa. This review places the astronaut at the center of personalized medicine, will appraise existing evidence and future preclinical tools as well as clinical, ethical and legal considerations for future space travel.
Collapse
Affiliation(s)
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Judith-Irina Buchheim
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,MRC Centre for Drug Safety Science and Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| | | | - Monica Monici
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Dimitri Gagliardi
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, United Kingdom
| | - Julia Caroline Stingl
- Institute of Clinical Pharmacology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Leonardo Surdo
- Space Applications Services NV/SA for the European Space Agency, Noordwijk, Netherlands
| | - Vincent Lai Ming Yip
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Tabocchini MA. A forty-year journey from "classical" biophysics and radiobiology to hadrontherapy, space radiation and low dose rate underground radiobiology. Int J Radiat Biol 2021; 98:383-394. [PMID: 34259611 DOI: 10.1080/09553002.2021.1948142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE As a biologist who, since the beginning of her involvement in science, has collaborated closely with physicists, I want to share my forty years of experience describing the events that introduced me to the world of charged particle radiation biology as well as that of low doses/dose rates, with related implications in medicine and radiation protection. CONCLUSION The main features of my experience can be summarized in the development of an interdisciplinary culture and in the interest in technological advances for the study of biological responses to radiation in different scenarios, relevant for public health. Mine was a journey that began by chance, but which led me to a world that proved to be of great interest to me. With the current advances in science, the new generations of scientists have new opportunities that I wish them to face with the same interest and enthusiasm that I felt for such an interdisciplinary field as that of radiation biology.
Collapse
Affiliation(s)
- Maria Antonella Tabocchini
- Istituto Nazionale di Fisica Nucleare (INFN), Rome, Italy.,Formerly: Istituto Superiore di Sanità (ISS), National Center for Innovative Technologies in Public Health, Rome, Italy
| |
Collapse
|
11
|
Clinical Progress in Proton Radiotherapy: Biological Unknowns. Cancers (Basel) 2021; 13:cancers13040604. [PMID: 33546432 PMCID: PMC7913745 DOI: 10.3390/cancers13040604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Proton radiation therapy is a more recent type of radiotherapy that uses proton beams instead of classical photon or X-rays beams. The clinical benefit of proton therapy is that it allows to treat tumors more precisely. As a result, proton radiotherapy induces less toxicity to healthy tissue near the tumor site. Despite the experience in the clinical use of protons, the response of cells to proton radiation, the radiobiology, is less understood. In this review, we describe the current knowledge about proton radiobiology. Abstract Clinical use of proton radiation has massively increased over the past years. The main reason for this is the beneficial depth-dose distribution of protons that allows to reduce toxicity to normal tissues surrounding the tumor. Despite the experience in the clinical use of protons, the radiobiology after proton irradiation compared to photon irradiation remains to be completely elucidated. Proton radiation may lead to differential damages and activation of biological processes. Here, we will review the current knowledge of proton radiobiology in terms of induction of reactive oxygen species, hypoxia, DNA damage response, as well as cell death after proton irradiation and radioresistance.
Collapse
|
12
|
Yang Y, Zhang Y, Gao J, Xu W, Xu Z, Li Z, Cheng J, Tao L. Pyrethrum extract induces oxidative DNA damage and AMPK/mTOR-mediated autophagy in SH-SY5Y cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139925. [PMID: 32562985 DOI: 10.1016/j.scitotenv.2020.139925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/25/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Pyrethrum extract is used to produce the most widely applied botanical pesticides in agriculture. Though it primarily targets voltage-gated sodium channels in pests, its toxic effects in non-target systems, particularly in humans, is unclear. In this study, we investigated potential cytotoxic effects and their underlying mechanisms on human nerve cells in vitro. We found that pyrethrum extract exposure markedly inhibited cell viability and triggered oxidative DNA damage in human SH-SY5Y cells. It also induced LC3-II formation, upregulated Beclin-1 protein production, downregulated p62 protein production, and facilitated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR). These results indicate that cytotoxic exposure to pyrethrum extract could be associated with AMPK/mTOR-mediated autophagy in human nerve cells. Furthermore, the oxidative DNA damage suggests that pyrethrum extract exerts severe toxic effects on human nerve cells. In conclusion, pyrethrum extract carries a risk to human health by inducing cytotoxicity.
Collapse
Affiliation(s)
- Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jufang Gao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
13
|
Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space Radiation Biology for "Living in Space". BIOMED RESEARCH INTERNATIONAL 2020; 2020:4703286. [PMID: 32337251 PMCID: PMC7168699 DOI: 10.1155/2020/4703286] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
Abstract
Space travel has advanced significantly over the last six decades with astronauts spending up to 6 months at the International Space Station. Nonetheless, the living environment while in outer space is extremely challenging to astronauts. In particular, exposure to space radiation represents a serious potential long-term threat to the health of astronauts because the amount of radiation exposure accumulates during their time in space. Therefore, health risks associated with exposure to space radiation are an important topic in space travel, and characterizing space radiation in detail is essential for improving the safety of space missions. In the first part of this review, we provide an overview of the space radiation environment and briefly present current and future endeavors that monitor different space radiation environments. We then present research evaluating adverse biological effects caused by exposure to various space radiation environments and how these can be reduced. We especially consider the deleterious effects on cellular DNA and how cells activate DNA repair mechanisms. The latest technologies being developed, e.g., a fluorescent ubiquitination-based cell cycle indicator, to measure real-time cell cycle progression and DNA damage caused by exposure to ultraviolet radiation are presented. Progress in examining the combined effects of microgravity and radiation to animals and plants are summarized, and our current understanding of the relationship between psychological stress and radiation is presented. Finally, we provide details about protective agents and the study of organisms that are highly resistant to radiation and how their biological mechanisms may aid developing novel technologies that alleviate biological damage caused by radiation. Future research that furthers our understanding of the effects of space radiation on human health will facilitate risk-mitigating strategies to enable long-term space and planetary exploration.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chizuru Tsuruoka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Asako J. Nakamura
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Asako Sakaue-Sawano
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Harada
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junya Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Tatsuo Miyamoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
14
|
Barbieri S, Babini G, Morini J, Friedland W, Buonanno M, Grilj V, Brenner DJ, Ottolenghi A, Baiocco G. Predicting DNA damage foci and their experimental readout with 2D microscopy: a unified approach applied to photon and neutron exposures. Sci Rep 2019; 9:14019. [PMID: 31570741 PMCID: PMC6769049 DOI: 10.1038/s41598-019-50408-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023] Open
Abstract
The consideration of how a given technique affects results of experimental measurements is a must to achieve correct data interpretation. This might be challenging when it comes to measurements on biological systems, where it is unrealistic to have full control (e.g. through a software replica) of all steps in the measurement chain. In this work we address how the effectiveness of different radiation qualities in inducing biological damage can be assessed measuring DNA damage foci yields, only provided that artefacts related to the scoring technique are adequately considered. To this aim, we developed a unified stochastic modelling approach that, starting from radiation tracks, predicts both the induction, spatial distribution and complexity of DNA damage, and the experimental readout of foci when immunocytochemistry coupled to 2D fluorescence microscopy is used. The approach is used to interpret γ-H2AX data for photon and neutron exposures. When foci are reconstructed in the whole cell nucleus, we obtain information on damage characteristics "behind" experimental observations, as the average damage content of a focus. We reproduce how the detection technique affects experimental findings, e.g. contributing to the saturation of foci yields scored at 30 minutes after exposure with increasing dose and to the lack of dose dependence for yields at 24 hours.
Collapse
Affiliation(s)
| | | | - Jacopo Morini
- Physics Department, University of Pavia, Pavia, Italy
| | - Werner Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | - Veljko Grilj
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | | | | |
Collapse
|
15
|
Moreno-Villanueva M, Zhang Y, Feiveson A, Mistretta B, Pan Y, Chatterjee S, Wu W, Clanton R, Nelman-Gonzalez M, Krieger S, Gunaratne P, Crucian B, Wu H. Single-Cell RNA-Sequencing Identifies Activation of TP53 and STAT1 Pathways in Human T Lymphocyte Subpopulations in Response to Ex Vivo Radiation Exposure. Int J Mol Sci 2019; 20:ijms20092316. [PMID: 31083348 PMCID: PMC6539494 DOI: 10.3390/ijms20092316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022] Open
Abstract
Detrimental health consequences from exposure to space radiation are a major concern for long-duration human exploration missions to the Moon or Mars. Cellular responses to radiation are expected to be heterogeneous for space radiation exposure, where only high-energy protons and other particles traverse a fraction of the cells. Therefore, assessing DNA damage and DNA damage response in individual cells is crucial in understanding the mechanisms by which cells respond to different particle types and energies in space. In this project, we identified a cell-specific signature for radiation response by using single-cell transcriptomics of human lymphocyte subpopulations. We investigated gene expression in individual human T lymphocytes 3 h after ex vivo exposure to 2-Gy gamma rays while using the single-cell sequencing technique (10X Genomics). In the process, RNA was isolated from ~700 irradiated and ~700 non-irradiated control cells, and then sequenced with ~50 k reads/cell. RNA in each of the cells was distinctively barcoded prior to extraction to allow for quantification for individual cells. Principal component and clustering analysis of the unique molecular identifier (UMI) counts classified the cells into three groups or sub-types, which correspond to CD4+, naïve, and CD8+/NK cells. Gene expression changes after radiation exposure were evaluated using negative binomial regression. On average, BBC3, PCNA, and other TP53 related genes that are known to respond to radiation in human T cells showed increased activation. While most of the TP53 responsive genes were upregulated in all groups of cells, the expressions of IRF1, STAT1, and BATF were only upregulated in the CD4+ and naïve groups, but were unchanged in the CD8+/NK group, which suggests that the interferon-gamma pathway does not respond to radiation in CD8+/NK cells. Thus, single-cell RNA sequencing technique was useful for simultaneously identifying the expression of a set of genes in individual cells and T lymphocyte subpopulation after gamma radiation exposure. The degree of dependence of UMI counts between pairs of upregulated genes was also evaluated to construct a similarity matrix for cluster analysis. The cluster analysis identified a group of TP53-responsive genes and a group of genes that are involved in the interferon gamma pathway, which demonstrate the potential of this method for identifying previously unknown groups of genes with similar expression patterns.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- NASA Johnson Space Center, Houston, TX 77058, USA.
- Human Performance Research Center, University of Konstanz, 78457 Konstanz, Germany.
| | - Ye Zhang
- NASA Kennedy Space Center, Cape Canaveral, FL 32899, USA.
| | | | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Yinghong Pan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Sujash Chatterjee
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Winston Wu
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Ryan Clanton
- NASA Johnson Space Center, Houston, TX 77058, USA.
| | | | | | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX 77058, USA.
| |
Collapse
|
16
|
Hagiwara Y, Oike T, Niimi A, Yamauchi M, Sato H, Limsirichaikul S, Held KD, Nakano T, Shibata A. Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation. JOURNAL OF RADIATION RESEARCH 2019; 60:69-79. [PMID: 30476166 PMCID: PMC6373698 DOI: 10.1093/jrr/rry096] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 05/16/2023]
Abstract
Photons, such as X- or γ-rays, induce DNA damage (distributed throughout the nucleus) as a result of low-density energy deposition. In contrast, particle irradiation with high linear energy transfer (LET) deposits high-density energy along the particle track. High-LET heavy-ion irradiation generates a greater number and more complex critical chromosomal aberrations, such as dicentrics and translocations, compared with X-ray or γ irradiation. In addition, the formation of >1000 bp deletions, which is rarely observed after X-ray irradiation, has been identified following high-LET heavy-ion irradiation. Previously, these chromosomal aberrations have been thought to be the result of misrepair of complex DNA lesions, defined as DNA damage through DNA double-strand breaks (DSBs) and single-strand breaks as well as base damage within 1-2 helical turns (<3-4 nm). However, because the scale of complex DNA lesions is less than a few nanometers, the large-scale chromosomal aberrations at a micrometer level cannot be simply explained by complex DNA lesions. Recently, we have demonstrated the existence of clustered DSBs along the particle track through the use of super-resolution microscopy. Furthermore, we have visualized high-level and frequent formation of DSBs at the chromosomal boundary following high-LET heavy-ion irradiation. In this review, we summarize the latest findings regarding the hallmarks of DNA damage structure and the repair pathway following heavy-ion irradiation. Furthermore, we discuss the mechanism through which high-LET heavy-ion irradiation may induce dicentrics, translocations and large deletions.
Collapse
Affiliation(s)
- Yoshihiko Hagiwara
- Department of Radiation Oncology, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
| | - Atsuko Niimi
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
| | | | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- International Open Laboratory, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Atsushi Shibata
- Education and Research Support Center (ERSC), Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
- Corresponding author. Education and Research Support Center, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan. Tel: +81-27-220-7977; Fax: +81-27-220-7909;
| |
Collapse
|
17
|
Radiobiological Characterization of 64CuCl₂ as a Simple Tool for Prostate Cancer Theranostics. Molecules 2018; 23:molecules23112944. [PMID: 30423862 PMCID: PMC6278521 DOI: 10.3390/molecules23112944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
64CuCl2 has recently been proposed as a promising agent for prostate cancer (PCa) theranostics, based on preclinical studies in cellular and animal models, and on the increasing number of human studies documenting its use for PCa diagnosis. Nevertheless, the use of 64CuCl2 raises important radiobiological questions that have yet to be addressed. In this work, using a panel of PCa cell lines in comparison with a non-tumoral prostate cell line, we combined cytogenetic approaches with radiocytotoxicity assays to obtain significant insights into the cellular consequences of exposure to 64CuCl2. PCa cells were found to exhibit increased 64CuCl2 uptake, which could not be attributed to increased expression of the main copper cellular importer, hCtr1, as had been previously suggested. Early DNA damage and genomic instability were also higher in PCa cells, with the tumoral cell lines exhibiting deficient DNA-damage repair upon exposure to 64CuCl2. This was corroborated by the observation that 64CuCl2 was more cytotoxic in PCa cells than in non-tumoral cells. Overall, we showed for the first time that PCa cells had a higher sensitivity to 64CuCl2 than healthy cells, supporting the idea that this compound deserved to be further evaluated as a theranostic agent in PCa.
Collapse
|
18
|
Cortese F, Klokov D, Osipov A, Stefaniak J, Moskalev A, Schastnaya J, Cantor C, Aliper A, Mamoshina P, Ushakov I, Sapetsky A, Vanhaelen Q, Alchinova I, Karganov M, Kovalchuk O, Wilkins R, Shtemberg A, Moreels M, Baatout S, Izumchenko E, de Magalhães JP, Artemov AV, Costes SV, Beheshti A, Mao XW, Pecaut MJ, Kaminskiy D, Ozerov IV, Scheibye-Knudsen M, Zhavoronkov A. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget 2018; 9:14692-14722. [PMID: 29581875 PMCID: PMC5865701 DOI: 10.18632/oncotarget.24461] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.
Collapse
Affiliation(s)
- Franco Cortese
- Biogerontology Research Foundation, London, UK
- Department of Biomedical and Molecular Sciences, Queen's University School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andreyan Osipov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Jakub Stefaniak
- Biogerontology Research Foundation, London, UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Alexey Moskalev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Jane Schastnaya
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Charles Cantor
- Boston University, Department of Biomedical Engineering, Boston, MA, USA
| | - Alexander Aliper
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Laboratory of Bioinformatics, D. Rogachev Federal Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Polina Mamoshina
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Computer Science Department, University of Oxford, Oxford, UK
| | - Igor Ushakov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Alex Sapetsky
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Quentin Vanhaelen
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Irina Alchinova
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Institute for Space Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Mikhail Karganov
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Olga Kovalchuk
- Canada Cancer and Aging Research Laboratories, Ltd., Lethbridge, Alberta, Canada
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ruth Wilkins
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Andrey Shtemberg
- Laboratory of Extreme Physiology, Institute of Medical and Biological Problems RAS, Moscow, Russia
| | - Marjan Moreels
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Evgeny Izumchenko
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- The Johns Hopkins University, School of Medicine, Department of Otolaryngology, Head and Neck Cancer Research, Baltimore, MD, USA
| | - João Pedro de Magalhães
- Biogerontology Research Foundation, London, UK
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Artem V. Artemov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | | | - Afshin Beheshti
- Wyle Laboratories, Space Biosciences Division, NASA Ames Research Center, Mountain View, CA, USA
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Michael J. Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Dmitry Kaminskiy
- Biogerontology Research Foundation, London, UK
- Deep Knowledge Life Sciences, London, UK
| | - Ivan V. Ozerov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | | | - Alex Zhavoronkov
- Biogerontology Research Foundation, London, UK
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Processing-Challenges Generated by Clusters of DNA Double-Strand Breaks Underpin Increased Effectiveness of High-LET Radiation and Chromothripsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:149-168. [DOI: 10.1007/978-981-13-0593-1_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Hagiwara Y, Niimi A, Isono M, Yamauchi M, Yasuhara T, Limsirichaikul S, Oike T, Sato H, Held KD, Nakano T, Shibata A. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation. Oncotarget 2017; 8:109370-109381. [PMID: 29312614 PMCID: PMC5752527 DOI: 10.18632/oncotarget.22679] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1–2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G2-phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm3. These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation.
Collapse
Affiliation(s)
- Yoshihiko Hagiwara
- Education and Research Support Center (ERSC), Gunma University, Maebashi 371-8511, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Atsuko Niimi
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Mayu Isono
- Department of Molecular Metabolic Regulation Research, Sasaki Institute, Tokyo 101-0062, Japan
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Takaaki Yasuhara
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA.,International Open Laboratory, Gunma University Initiative for Advanced Research (GIAR), Gunma 371-8511, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.,Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Atsushi Shibata
- Education and Research Support Center (ERSC), Gunma University, Maebashi 371-8511, Japan
| |
Collapse
|
21
|
Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas AG. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis. Cancers (Basel) 2017; 9:cancers9070091. [PMID: 28718816 PMCID: PMC5532627 DOI: 10.3390/cancers9070091] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.
Collapse
Affiliation(s)
- Ifigeneia V Mavragani
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Maria P Souli
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Asef Aziz
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Somaira Nowsheen
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Khaled Aziz
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA.
| | - Emmy Rogakou
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, 11527 Athens, Greece.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
22
|
Sayed AEDH, Igarashi K, Watanabe-Asaka T, Mitani H. Double strand break repair and γ-H2AX formation in erythrocytes of medaka (Oryzias latipes) after γ-irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:35-43. [PMID: 28347471 DOI: 10.1016/j.envpol.2016.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/14/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023]
Abstract
The study of the DNA damage response in erythrocytes after γ-irradiation may provide evidence for its effectiveness as a biomarkers for genotoxic environmental stress. We previously reported various malformations in erythrocytes of medaka irradiated with10 Gy, but not in their micronuclei. In this study, we optimized an assay method for γ-H2AX and double strand breaks in erythrocytes of adult medaka fish after 15 Gy of γ-irradiation. The highest level of apoptosis and nuclear abnormalities, including in micronuclei, were recorded 4 h after γ-irradiation, as was the highest level of γ-H2AX foci in erythrocytes. These results suggest that recognition and repair processes occur as a response to DNA damage in erythrocytes in medaka.
Collapse
Affiliation(s)
- Alaa El-Din Hamid Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| | - Kento Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Tomomi Watanabe-Asaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| |
Collapse
|
23
|
Lu T, Zhang Y, Wong M, Feiveson A, Gaza R, Stoffle N, Wang H, Wilson B, Rohde L, Stodieck L, Karouia F, Wu H. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station. LIFE SCIENCES IN SPACE RESEARCH 2017; 12:24-31. [PMID: 28212705 DOI: 10.1016/j.lssr.2016.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37°C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37°C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.
Collapse
Affiliation(s)
- Tao Lu
- NASA Johnson Space Center, Houston, TX, USA; University of Houston Clear Lake, Houston, TX, USA
| | - Ye Zhang
- NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | | | | | - Ramona Gaza
- NASA Johnson Space Center, Houston, TX, USA; Leidos Exploration & Mission Support, Houston, TX, USA
| | - Nicholas Stoffle
- NASA Johnson Space Center, Houston, TX, USA; Leidos Exploration & Mission Support, Houston, TX, USA
| | - Huichen Wang
- Prairie View A&M University, Prairie View, TX, USA
| | | | - Larry Rohde
- University of Houston Clear Lake, Houston, TX, USA
| | | | - Fathi Karouia
- NASA Ames Research Center, Moffett Field, CA, USA; University of California San Francisco, San Francisco, CA, USA
| | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, USA.
| |
Collapse
|
24
|
Bayart E, Pouzoulet F, Calmels L, Dadoun J, Allot F, Plagnard J, Ravanat JL, Bridier A, Denozière M, Bourhis J, Deutsch E. Enhancement of IUdR Radiosensitization by Low-Energy Photons Results from Increased and Persistent DNA Damage. PLoS One 2017; 12:e0168395. [PMID: 28045991 PMCID: PMC5207426 DOI: 10.1371/journal.pone.0168395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/29/2016] [Indexed: 01/10/2023] Open
Abstract
Low-energy X-rays induce Auger cascades by photoelectric absorption in iodine present in the DNA of cells labeled with 5-iodo-2’-deoxyuridine (IUdR). This photoactivation therapy results in enhanced cellular sensitivity to radiation which reaches its maximum with 50 keV photons. Synchrotron core facilities are the only way to generate such monochromatic beams. However, these structures are not adapted for the routine treatment of patients. In this study, we generated two beams emitting photon energy means of 42 and 50 keV respectively, from a conventional 225 kV X-ray source. Viability assays performed after pre-exposure to 10 μM of IUdR for 48h suggest that complex lethal damage is generated after low energy photons irradiation compared to 137Cs irradiation (662KeV). To further decipher the molecular mechanisms leading to IUdR-mediated radiosensitization, we analyzed the content of DNA damage-induced foci in two glioblastoma cell lines and showed that the decrease in survival under these conditions was correlated with an increase in the content of DNA damage-induced foci in cell lines. Moreover, the follow-up of repair kinetics of the induced double-strand breaks showed the maximum delay in cells labeled with IUdR and exposed to X-ray irradiation. Thus, there appears to be a direct relationship between the reduction of radiation survival parameters and the production of DNA damage with impaired repair of these breaks. These results further support the clinical potential use of a halogenated pyrimidine analog combined with low-energy X-ray therapy.
Collapse
Affiliation(s)
- Emilie Bayart
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- * E-mail:
| | - Frédéric Pouzoulet
- Plateforme de Radiothérapie Expérimentale, Département de Recherche Translationnelle, Institut Curie, Orsay, France
| | - Lucie Calmels
- Département de Radiothérapie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jonathan Dadoun
- Département de Radiothérapie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Fabien Allot
- Département de Radiothérapie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Johann Plagnard
- CEA, DRT/LIST, Laboratoire National Henri Becquerel, Gif-sur-Yvette cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, Grenoble, France; CEA, INAC-SCIB, Grenoble, France
| | - André Bridier
- Département de Radiothérapie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marc Denozière
- CEA, DRT/LIST, Laboratoire National Henri Becquerel, Gif-sur-Yvette cedex, France
| | - Jean Bourhis
- Department of Oncology, Radiation Oncology Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Eric Deutsch
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Faculté de médecine du Kremlin Bicêtre, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
25
|
|
26
|
Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats. Sci Rep 2016; 6:30018. [PMID: 27445126 PMCID: PMC4957115 DOI: 10.1038/srep30018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022] Open
Abstract
The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.
Collapse
|
27
|
Lopez Perez R, Best G, Nicolay NH, Greubel C, Rossberger S, Reindl J, Dollinger G, Weber KJ, Cremer C, Huber PE. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci. FASEB J 2016; 30:2767-76. [PMID: 27166088 DOI: 10.1096/fj.201500106r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
Abstract
Carbon ion radiation is a promising new form of radiotherapy for cancer, but the central question about the biologic effects of charged particle radiation is yet incompletely understood. Key to this question is the understanding of the interaction of ions with DNA in the cell's nucleus. Induction and repair of DNA lesions including double-strand breaks (DSBs) are decisive for the cell. Several DSB repair markers have been used to investigate these processes microscopically, but the limited resolution of conventional microscopy is insufficient to provide structural insights. We have applied superresolution microscopy to overcome these limitations and analyze the fine structure of DSB repair foci. We found that the conventionally detected foci of the widely used DSB marker γH2AX (Ø 700-1000 nm) were composed of elongated subfoci with a size of ∼100 nm consisting of even smaller subfocus elements (Ø 40-60 nm). The structural organization of the subfoci suggests that they could represent the local chromatin structure of elementary DSB repair units at the DSB damage sites. Subfocus clusters may indicate induction of densely spaced DSBs, which are thought to be associated with the high biologic effectiveness of carbon ions. Superresolution microscopy might emerge as a powerful tool to improve our knowledge of interactions of ionizing radiation with cells.-Lopez Perez, R., Best, G., Nicolay, N. H., Greubel, C., Rossberger, S., Reindl, J., Dollinger, G., Weber, K.-J., Cremer, C., Huber, P. E. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci.
Collapse
Affiliation(s)
- Ramon Lopez Perez
- Clinical Cooperation Unit and Molecular Radiation Oncology, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany;
| | - Gerrit Best
- Department of Ophthalmology, Heidelberg University Hospital, Heidelberg, Germany; Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Nils H Nicolay
- Clinical Cooperation Unit and Molecular Radiation Oncology, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Greubel
- Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Neubiberg, Germany; and
| | - Sabrina Rossberger
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Judith Reindl
- Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Neubiberg, Germany; and
| | - Günther Dollinger
- Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Neubiberg, Germany; and
| | - Klaus-Josef Weber
- Clinical Cooperation Unit and Molecular Radiation Oncology, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Cremer
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany; Superresolution Microscopy of Functional Nuclear Nanostructure, Institute of Molecular Biology, Mainz, Germany
| | - Peter E Huber
- Clinical Cooperation Unit and Molecular Radiation Oncology, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany;
| |
Collapse
|
28
|
Howell RW. Physical Considerations for Understanding Responses of Biological Systems to Low Doses of Ionizing Radiation: Nucleosome Clutches Constitute a Heterogeneous Distribution of Target Volumes. HEALTH PHYSICS 2016; 110:283-286. [PMID: 26808884 PMCID: PMC5484631 DOI: 10.1097/hp.0000000000000467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Humans are exposed to low doses of ionizing radiation that arise from a variety of sources. The response of biological systems to low doses of ionizing radiation depend on many factors. Some of the physical factors include distribution of the radiation sources, radiation track structure, structure and dimensions of the biological targets, temporal patterns of radiation exposure(s), absorbed dose rate and total absorbed dose. Recent discoveries suggest that assumptions regarding the structure of an important biological target, namely chromatin, may not be correct. It is now believed that chromatin fiber consists of heterogeneous groups of nucleosomes called clutches, and the distribution of clutch sizes differs between somatic cells and stem cells. This shift in paradigm may have implications for radiation target theory and its explanation of observations of clustered DNA damage.
Collapse
Affiliation(s)
- Roger W. Howell
- Division of Radiation Research, Department of Radiology, New
Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey,
Newark, NJ 07101
| |
Collapse
|
29
|
Averbeck NB, Topsch J, Scholz M, Kraft-Weyrather W, Durante M, Taucher-Scholz G. Efficient Rejoining of DNA Double-Strand Breaks despite Increased Cell-Killing Effectiveness following Spread-Out Bragg Peak Carbon-Ion Irradiation. Front Oncol 2016; 6:28. [PMID: 26904506 PMCID: PMC4751252 DOI: 10.3389/fonc.2016.00028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy of solid tumors with charged particles holds several advantages in comparison to photon therapy; among them conformal dose distribution in the tumor, improved sparing of tumor-surrounding healthy tissue, and an increased relative biological effectiveness (RBE) in the tumor target volume in the case of ions heavier than protons. A crucial factor of the biological effects is DNA damage, of which DNA double-strand breaks (DSBs) are the most deleterious. The reparability of these lesions determines the cell survival after irradiation and thus the RBE. Interestingly, using phosphorylated H2AX as a DSB marker, our data in human fibroblasts revealed that after therapy-relevant spread-out Bragg peak irradiation with carbon ions DSBs are very efficiently rejoined, despite an increased RBE for cell survival. This suggests that misrepair plays an important role in the increased RBE of heavy-ion radiation. Possible sources of erroneous repair will be discussed.
Collapse
Affiliation(s)
- Nicole B Averbeck
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH , Darmstadt , Germany
| | - Jana Topsch
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH , Darmstadt , Germany
| | - Michael Scholz
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH , Darmstadt , Germany
| | - Wilma Kraft-Weyrather
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH , Darmstadt , Germany
| | - Marco Durante
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; Technische Universität Darmstadt, Darmstadt, Germany
| | - Gisela Taucher-Scholz
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
30
|
Rithidech KN, Honikel LM, Reungpathanaphong P, Tungjai M, Jangiam W, Whorton EB. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ((28)Si) ions. Mutat Res 2015; 781:22-31. [PMID: 26398320 DOI: 10.1016/j.mrfmmm.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/18/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to (28)Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n (28)Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p<0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n (28)Si ions. Slight increases in the levels of 5 mC were observed in all treatment groups, as compared to the sham-control level. In contrast, there was a significant reduction in levels of 5 hmC (ANOVA, p<0.01). Since these endpoints were evaluated in the same mouse, our data suggested for the first time a link between a reduction in 5 hmC and genomic instability in HSPC-derived myeloid colonies of CBA/CaJ mice exposed to 300 MeV/n (28)Si ions.
Collapse
Affiliation(s)
| | - Louise M Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Paiboon Reungpathanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Chatuchuck, Bangkok 10900, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Excellence for Molecular Imaging, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| | | |
Collapse
|
31
|
Beyreuther E, Karsch L, Laschinsky L, Leßmann E, Naumburger D, Oppelt M, Richter C, Schürer M, Woithe J, Pawelke J. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate. Int J Radiat Biol 2015; 91:643-52. [PMID: 25968557 DOI: 10.3109/09553002.2015.1043755] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. MATERIALS AND METHODS The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. RESULTS The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. CONCLUSIONS The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.
Collapse
Affiliation(s)
- Elke Beyreuther
- a Helmholtz-Zentrum Dresden - Rossendorf , Bautzner Landstraße 400, Dresden , Germany
| | - Leonhard Karsch
- b OncoRay - National Center for Radiation Research in Oncology , Dresden , Germany
| | - Lydia Laschinsky
- a Helmholtz-Zentrum Dresden - Rossendorf , Bautzner Landstraße 400, Dresden , Germany.,b OncoRay - National Center for Radiation Research in Oncology , Dresden , Germany
| | - Elisabeth Leßmann
- a Helmholtz-Zentrum Dresden - Rossendorf , Bautzner Landstraße 400, Dresden , Germany
| | - Doreen Naumburger
- b OncoRay - National Center for Radiation Research in Oncology , Dresden , Germany
| | - Melanie Oppelt
- b OncoRay - National Center for Radiation Research in Oncology , Dresden , Germany
| | - Christian Richter
- a Helmholtz-Zentrum Dresden - Rossendorf , Bautzner Landstraße 400, Dresden , Germany.,b OncoRay - National Center for Radiation Research in Oncology , Dresden , Germany.,c Department of Radiation Oncology , Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden , Dresden , Germany.,d German Cancer Consortium (DKTK), Dresden, Germany and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Michael Schürer
- b OncoRay - National Center for Radiation Research in Oncology , Dresden , Germany
| | - Julia Woithe
- b OncoRay - National Center for Radiation Research in Oncology , Dresden , Germany
| | - Jörg Pawelke
- a Helmholtz-Zentrum Dresden - Rossendorf , Bautzner Landstraße 400, Dresden , Germany.,b OncoRay - National Center for Radiation Research in Oncology , Dresden , Germany
| |
Collapse
|
32
|
Antonelli F, Campa A, Esposito G, Giardullo P, Belli M, Dini V, Meschini S, Simone G, Sorrentino E, Gerardi S, Cirrone GAP, Tabocchini MA. Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death. Radiat Res 2015; 183:417-31. [PMID: 25844944 DOI: 10.1667/rr13855.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The spatial distribution of radiation-induced DNA breaks within the cell nucleus depends on radiation quality in terms of energy deposition pattern. It is generally assumed that the higher the radiation linear energy transfer (LET), the greater the DNA damage complexity. Using a combined experimental and theoretical approach, we examined the phosphorylation-dephosphorylation kinetics of radiation-induced γ-H2AX foci, size distribution and 3D focus morphology, and the relationship between DNA damage and cellular end points (i.e., cell killing and lethal mutations) after exposure to gamma rays, protons, carbon ions and alpha particles. Our results showed that the maximum number of foci are reached 30 min postirradiation for all radiation types. However, the number of foci after 0.5 Gy of each radiation type was different with gamma rays, protons, carbon ions and alpha particles inducing 12.64 ± 0.25, 10.11 ± 0.40, 8.84 ± 0.56 and 4.80 ± 0.35 foci, respectively, which indicated a clear influence of the track structure and fluence on the numbers of foci induced after a dose of 0.5 Gy for each radiation type. The γ-H2AX foci persistence was also dependent on radiation quality, i.e., the higher the LET, the longer the foci persisted in the cell nucleus. The γ-H2AX time course was compared with cell killing and lethal mutation and the results highlighted a correlation between cellular end points and the duration of γ-H2AX foci persistence. A model was developed to evaluate the probability that multiple DSBs reside in the same gamma-ray focus and such probability was found to be negligible for doses lower than 1 Gy. Our model provides evidence that the DSBs inside complex foci, such as those induced by alpha particles, are not processed independently or with the same time constant. The combination of experimental, theoretical and simulation data supports the hypothesis of an interdependent processing of closely associated DSBs, possibly associated with a diminished correct repair capability, which affects cell killing and lethal mutation.
Collapse
Affiliation(s)
- F Antonelli
- a Health and Technology Department, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
In addition to the physical advantages (Bragg peak), the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation) are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE), protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed.
Collapse
|
34
|
Chang J, Feng W, Wang Y, Luo Y, Allen AR, Koturbash I, Turner J, Stewart B, Raber J, Hauer-Jensen M, Zhou D, Shao L. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiat Res 2015; 183:240-8. [PMID: 25635345 DOI: 10.1667/rr13887.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH oxidase 4 (NOX4) mRNA expression and reactive oxygen species (ROS) production. In addition, the increased production of ROS in HSCs was associated with a significant reduction in HSC quiescence and an increase in DNA damage. These findings indicate that exposure to proton radiation can lead to long-term HSC injury, probably in part by radiation-induced oxidative stress.
Collapse
|
35
|
Lehmann HI, Richter D, Prokesch H, Graeff C, Prall M, Simoniello P, Fournier C, Bauer J, Kaderka R, Weymann A, Szabó G, Sonnenberg K, Constantinescu AM, Johnson SB, Misiri J, Takami M, Miller RC, Herman MG, Asirvatham SJ, Brons S, Jäkel O, Haberer T, Debus J, Durante M, Bert C, Packer DL. Atrioventricular node ablation in Langendorff-perfused porcine hearts using carbon ion particle therapy: methods and an in vivo feasibility investigation for catheter-free ablation of cardiac arrhythmias. Circ Arrhythm Electrophysiol 2015; 8:429-38. [PMID: 25609687 DOI: 10.1161/circep.114.002436] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/08/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Particle therapy, with heavy ions such as carbon-12 ((12)C), delivered to arrhythmogenic locations of the heart could be a promising new means for catheter-free ablation. As a first investigation, we tested the feasibility of in vivo atrioventricular node ablation, in Langendorff-perfused porcine hearts, using a scanned 12C beam. METHODS AND RESULTS Intact hearts were explanted from 4 (30-40 kg) pigs and were perfused in a Langendorff organ bath. Computed tomographic scans (1 mm voxel and slice spacing) were acquired and (12)C ion beam treatment planning (optimal accelerator energies, beam positions, and particle numbers) for atrioventricular node ablation was conducted. Orthogonal x-rays with matching of 4 implanted clips were used for positioning. Ten Gray treatment plans were repeatedly administered, using pencil beam scanning. After delivery, positron emission tomography-computed tomographic scans for detection of β(+) ((11)C) activity were obtained. A (12)C beam with a full width at half maximum of 10 mm was delivered to the atrioventricular node. Delivery of 130 Gy caused disturbance of atrioventricular conduction with transition into complete heart block after 160 Gy. Positron emission computed tomography demonstrated dose delivery into the intended area. Application did not induce arrhythmias. Macroscopic inspection did not reveal damage to myocardium. Immunostaining revealed strong γH2AX signals in the target region, whereas no γH2AX signals were detected in the unirradiated control heart. CONCLUSIONS This is the first report of the application of a (12)C beam for ablation of cardiac tissue to treat arrhythmias. Catheter-free ablation using 12C beams is feasible and merits exploration in intact animal studies as an energy source for arrhythmia elimination.
Collapse
Affiliation(s)
- H Immo Lehmann
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.).
| | - Daniel Richter
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Hannah Prokesch
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Christian Graeff
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Matthias Prall
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Palma Simoniello
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Claudia Fournier
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Julia Bauer
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Robert Kaderka
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Alexander Weymann
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Gábor Szabó
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Karin Sonnenberg
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Anna M Constantinescu
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Susan B Johnson
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Juna Misiri
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Mitsuru Takami
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Robert C Miller
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Michael G Herman
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Samuel J Asirvatham
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Stephan Brons
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Oliver Jäkel
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Thomas Haberer
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Jürgen Debus
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Marco Durante
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Christoph Bert
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| | - Douglas L Packer
- From the Mayo Clinic Translational Interventional Electrophysiology Laboratory (H.I.L., S.B.J., J.M., M.T., S.J.A., D.L.P.) and Department of Radiation Oncology (R.C.M., M.G.H.), Mayo Clinic, Rochester, MN; Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (D.R., C.G., M.P., P.S., C.F., R.K., A.M.C., M.D., C.B.); Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (D.R., C.B.); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany (H.P., J.B., S.B., T.H., J.D.); Department of Experimental Cardiothoracic Surgery, University of Heidelberg, Heidelberg, Germany (A.W., G.S., K.S.); and German Cancer Research Center (DKFZ), Heidelberg, Germany (O.J.)
| |
Collapse
|
36
|
Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 2014; 59:R419-72. [PMID: 25361443 DOI: 10.1088/0031-9155/59/22/r419] [Citation(s) in RCA: 628] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton therapy treatments are based on a proton RBE (relative biological effectiveness) relative to high-energy photons of 1.1. The use of this generic, spatially invariant RBE within tumors and normal tissues disregards the evidence that proton RBE varies with linear energy transfer (LET), physiological and biological factors, and clinical endpoint. Based on the available experimental data from published literature, this review analyzes relationships of RBE with dose, biological endpoint and physical properties of proton beams. The review distinguishes between endpoints relevant for tumor control probability and those potentially relevant for normal tissue complication. Numerous endpoints and experiments on sub-cellular damage and repair effects are discussed. Despite the large amount of data, considerable uncertainties in proton RBE values remain. As an average RBE for cell survival in the center of a typical spread-out Bragg peak (SOBP), the data support a value of ~1.15 at 2 Gy/fraction. The proton RBE increases with increasing LETd and thus with depth in an SOBP from ~1.1 in the entrance region, to ~1.15 in the center, ~1.35 at the distal edge and ~1.7 in the distal fall-off (when averaged over all cell lines, which may not be clinically representative). For small modulation widths the values could be increased. Furthermore, there is a trend of an increase in RBE as (α/β)x decreases. In most cases the RBE also increases with decreasing dose, specifically for systems with low (α/β)x. Data on RBE for endpoints other than clonogenic cell survival are too diverse to allow general statements other than that the RBE is, on average, in line with a value of ~1.1. This review can serve as a source for defining input parameters for applying or refining biophysical models and to identify endpoints where additional radiobiological data are needed in order to reduce the uncertainties to clinically acceptable levels.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
37
|
Werner E, Wang H, Doetsch PW. Opposite roles for p38MAPK-driven responses and reactive oxygen species in the persistence and resolution of radiation-induced genomic instability. PLoS One 2014; 9:e108234. [PMID: 25271419 PMCID: PMC4182705 DOI: 10.1371/journal.pone.0108234] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/27/2014] [Indexed: 01/26/2023] Open
Abstract
We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization.
Collapse
Affiliation(s)
- Erica Werner
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (PWD); (EW)
| | - Huichen Wang
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Paul W. Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Hematology and Medical Oncology Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (PWD); (EW)
| |
Collapse
|
38
|
Saha J, Wilson P, Thieberger P, Lowenstein D, Wang M, Cucinotta FA. Biological characterization of low-energy ions with high-energy deposition on human cells. Radiat Res 2014; 182:282-91. [PMID: 25098728 DOI: 10.1667/rr13747.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During space travel, astronauts are exposed to cosmic radiation that is comprised of high-energy nuclear particles. Cancer patients are also exposed to high-energy nuclear particles when treated with proton and carbon beams. Nuclear interactions from high-energy particles traversing shielding materials and tissue produce low-energy (<10 MeV/n) secondary particles of high-LET that contribute significantly to overall radiation exposures. Track structure theories suggest that high charge and energy (HZE) particles and low-energy secondary ions of similar LET will have distinct biological effects for cellular and tissue damage endpoints. We investigated the biological effects of low-energy ions of high LET utilizing the Tandem Van de Graaff accelerator at the Brookhaven National Laboratory (BNL), and compared these to experiments with HZE particles, that mimic the space environment produced at NASA Space Radiation Laboratory (NSRL) at BNL. Immunostaining for DNA damage response proteins was carried out after irradiation with 5.6 MeV/n boron (LET 205 keV/μm), 5.3 MeV/n silicon (LET 1241 keV/μm), 600 MeV/n Fe (LET 180 keV/μm) and 77 MeV/n oxygen (LET 58 keV/μm) particles. Low-energy ions caused more persistent DNA damage response (DDR) protein foci in irradiated human fibroblasts and esophageal epithelial cells compared to HZE particles. More detailed studies comparing boron ions to Fe particles, showed that boron-ion radiation resulted in a stronger G2 delay compared to Fe-particle exposure, and boron ions also showed an early recruitment of Rad51 at double-strand break (DSB) sites, which suggests a preference of homologous recombination for DSB repair in low-energy albeit high-LET particles. Our experiments suggest that the very high-energy radiation deposition by low-energy ions, representative of galactic cosmic radiation and solar particle event secondary radiation, generates massive but localized DNA damage leading to delayed DSB repair, and distinct cellular responses from HZE particles. Thus, low-energy heavy ions provide a valuable probe for studies of homologous recombination repair in radiation responses.
Collapse
Affiliation(s)
- Janapriya Saha
- a Division of Space Life Sciences, Universities Space Research Association, Houston, Texas
| | | | | | | | | | | |
Collapse
|
39
|
The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation – No simple task. DNA Repair (Amst) 2014; 17:64-73. [DOI: 10.1016/j.dnarep.2014.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/10/2014] [Accepted: 01/24/2014] [Indexed: 01/03/2023]
|
40
|
Ding N, Pei H, Hu W, He J, Li H, Wang J, Wang T, Zhou G. Cancer risk of high-charge and -energy ions and the biological effects of the induced secondary particles in space. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2014. [DOI: 10.1007/s12210-014-0288-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Maier I, Berry DM, Schiestl RH. Intestinal microbiota reduces genotoxic endpoints induced by high-energy protons. Radiat Res 2014; 181:45-53. [PMID: 24397477 DOI: 10.1667/rr13352.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing space radiation causes oxidative DNA damage and triggers oxidative stress responses, and compromised DNA repair mechanisms can lead to increased risk of carcinogenesis. Young adult mice with developed innate and adaptive immune systems that harbored either a conventional intestinal microbiota (CM) or an intestinal microbiota with a restricted microbial composition (RM) were irradiated with a total dose of 1 Gy delivered by high-energy protons (2.5 GeV/n, LET = 0.2-2 keV/μm) or silicon or iron ions (850 MeV/n, LET ≈ 50 keV/μm and 1 GeV/n, LET = 150 keV/μm, respectively). Six hours after whole-body irradiation, acute chromosomal DNA lesions were observed for RM mice but not CM mice. High-throughput rRNA gene sequencing of intestinal mucosal bacteria showed that Barnesiella intestinihominis and unclassified Bacterodiales were significantly more abundant in male RM mice than CM mice, and phylotype densities changed in irradiated mice. In addition, Helicobacter hepaticus and Bacteroides stercoris were higher in CM than RM mice. Elevated levels of persistently phosphorylated γ-H2AX were observed in RM mice exposed to high-energy protons compared to nonirradiated RM mice, and they also were associated with a decrease of the antioxidant glutathione in peripheral blood measured at four weeks after irradiation. After radiation exposure, CM mice showed lower levels of γ-H2AX phosphorylation than RM mice and an increase in specific RM-associated phylotypes, indicating a down-regulating force on DNA repair by differentially abundant phylotypes in RM versus a radiation-sensitive complex CM.
Collapse
Affiliation(s)
- Irene Maier
- a Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California
| | | | | |
Collapse
|
42
|
Matthaios D, Hountis P, Karakitsos P, Bouros D, Kakolyris S. H2AX a Promising Biomarker for Lung Cancer: A Review. Cancer Invest 2013; 31:582-99. [DOI: 10.3109/07357907.2013.849721] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Plante I, Ponomarev AL, Cucinotta FA. Calculation of the energy deposition in nanovolumes by protons and HZE particles: geometric patterns of initial distributions of DNA repair foci. Phys Med Biol 2013; 58:6393-405. [PMID: 23999659 DOI: 10.1088/0031-9155/58/18/6393] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The biological effects of high-linear energy transfer (LET) radiation are different from those caused by low-LET radiation due to the difference in the patterns of energy deposition in cells. In this work, we studied the role of the track structure in the spatial distribution of radiation-induced double-strand breaks (DSBs). In the first part, the irradiation of a cubic volume of 12 µm of side by 300 MeV protons (LET ∼0.3 keV µm(-1)) and by 1 GeV/amu iron ion particles (LET∼150 keV µm(-1)) was simulated with the Monte Carlo code RITRACKS (relativistic ion tracks) and the dose was calculated in voxels of different sizes. In the second part, dose calculations were combined with chromosomes simulated by a random walk (RW) model to assess the formation of DSBs. The number of DSBs was calculated as a function of the dose and particle fluence for 1 GeV protons, 293 MeV/u carbon, and 1 GeV/u iron particles. Finally, the DSB yield was obtained as a function of the LET for protons, helium, and carbon. In general, the number and distribution of calculated DSBs were similar to experimental DNA repair foci data. From this study, we concluded that a stochastic model combining nanoscopic dose calculations and chromosomes simulated by RWs is a useful approach to study radiation-induced DSBs.
Collapse
Affiliation(s)
- Ianik Plante
- Division of Space Life Sciences, Universities Space Research Association, 3600 Bay Area Blvd, Houston, TX 77058 USA.
| | | | | |
Collapse
|
44
|
Tungjai M, Whorton EB, Rithidech KN. Persistence of apoptosis and inflammatory responses in the heart and bone marrow of mice following whole-body exposure to ²⁸Silicon (²⁸Si) ions. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:339-350. [PMID: 23756637 DOI: 10.1007/s00411-013-0479-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
It has been well established that the bone marrow (BM) is a radiosensitive tissue, but the radiosensitivity of the heart is poorly understood. In this study, we investigated the comparative effects of ²⁸Silicon (²⁸Si) ions (one type of heavy ion found in space) on tissue from the heart and the BM of exposed mice. We gave adult male CBA/CaJ mice a whole-body exposure to a total dose of 0, 0.1, 0.25, or 0.5 Gy of 300 MeV/nucleon (n) ²⁸Si ions, using a fractionated schedule (two exposures, 15 days apart that totaled each selected dose). The heart and BM were collected from 5 mice per treatment group at various times up to 6 months post-irradiation. In each mouse, we obtained tissue lysates from the heart and from the total population of BM cells for measuring the levels of cleaved poly (ADP-ribose) polymerase (cleaved PARP, a marker of apoptotic cell death) and the levels of activated nuclear factor-kappa B (NF-κB) and selected NF-κB-regulated cytokines known to be involved in inflammatory responses. Our data showed that, up to 6 months post-irradiation, the levels of apoptotic cell death and inflammatory responses in tissues from the heart and BM collected from exposed mice were statistically higher than those in sham controls. Hence, these findings are suggestive of chronic apoptotic cell death and inflammation in both tissues after exposure to ²⁸Si ions. In summary, our data are indicative of a possible association between exposure to ²⁸Si ions during space flight and long-term health risk.
Collapse
Affiliation(s)
- Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | | | | |
Collapse
|
45
|
The potential value of the neutral comet assay and γH2AX foci assay in assessing the radiosensitivity of carbon beam in human tumor cell lines. Radiol Oncol 2013; 47:247-57. [PMID: 24133390 PMCID: PMC3794881 DOI: 10.2478/raon-2013-0045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/19/2013] [Indexed: 01/12/2023] Open
Abstract
Background Carbon ions (12C6+) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The assessment of tumour radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. The aim of the current study was to evaluate the potential value of the neutral comet assay and γH2AX foci assay in assessing 12C6+ radiosensitivity of tumour cells. Materials and methods The doses of 12C6+ and X-rays used in the present study were 2 and 4 Gy. The survival fraction, DNA double-strand breaks (DSB) and repair kinetics of DSB were assayed with clonogenic survival, neutral comet assay and γH2AX foci assay in human cervical carcinoma HeLa cells, hepatoma HepG2 cells, and mucoepidermoid carcinoma MEC-1 cells at the time points of 0.5, 4, 16 and 24 h after 12C6+ and X-rays irradiation. Results The survival fraction for 12C6+ irradiation was much more inhibited than for X-rays (p < 0.05) in all three tumour cell lines tested. Substantial amounts of residual damage, assessed by the neutral comet assay, were present after irradiation (p < 0.05). The highest residual damage was observed at 0.5 or 4 h, both for 12C6+ and X-ray irradiation. However, the residual damage in HeLa and MEC-1 cells was higher for 12C6+ than X-rays (p < 0.05). The strongest induction of γH2AX foci was observed after 30 min, for all three tumour cell lines (p < 0.01). The franction of γH2AX foci persisted for at least 24 h after 12C6+ irradiation; in HeLa cells and MEC-1 was higher than after X-ray irradiation (p < 0.05). The correlation coefficients between the clonogenic survival, neutral comet assay and γH2AX foci assay were not statistically significant, except for some tumour cells at individual irradiation doses and types. Conclusions Our study demonstrated that the neutral comet assay and γ-H2AX foci assay could be used to assess the radiosensitivity of 12C6+ in human tumour cells.
Collapse
|
46
|
Schmid TE, Zlobinskaya O, Multhoff G. Differences in Phosphorylated Histone H2AX Foci Formation and Removal of Cells Exposed to Low and High Linear Energy Transfer Radiation. Curr Genomics 2013; 13:418-25. [PMID: 23450137 PMCID: PMC3426775 DOI: 10.2174/138920212802510501] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 10/17/2011] [Accepted: 06/12/2012] [Indexed: 01/14/2023] Open
Abstract
The use of particle ion beams in cancer radiotherapy has a long history. Today, beams of protons or heavy ions, predominantly carbon ions, can be accelerated to precisely calculated energies which can be accurately targeted to tumors. This particle therapy works by damaging the DNA of tissue cells, ultimately causing their death. Among the different types of DNA lesions, the formation of DNA double strand breaks is considered to be the most relevant of deleterious damages of ionizing radiation in cells. It is well-known that the extremely large localized energy deposition can lead to complex types of DNA double strand breaks. These effects can lead to cell death, mutations, genomic instability, or carcinogenesis. Complex double strand breaks can increase the probability of mis-rejoining by NHEJ. As a consequence differences in the repair kinetics following high and low LET irradiation qualities are attributed mainly to quantitative differences in their contributions of the fast and slow repair component. In general, there is a higher contribution of the slow component of DNA double strand repair after exposure to high LET radiation, which is thought to reflect the increased amount of complex DNA double strand breaks. These can be accurately measured by the γ-H2AX assay, because the number of phosphorylated H2AX foci correlates well with the number of double strand breaks induced by low or / and high LET radiation.
Collapse
Affiliation(s)
- Thomas Ernst Schmid
- Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, D-81675 München, Germany
| | | | | |
Collapse
|
47
|
Girdhani S, Sachs R, Hlatky L. Biological Effects of Proton Radiation: What We Know and Don't Know. Radiat Res 2013; 179:257-72. [DOI: 10.1667/rr2839.1] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Fujii Y, Yurkon CR, Maeda J, Genet SC, Okayasu R, Kitamura H, Fujimori A, Kato TA. Influence of track directions on the biological consequences in cells irradiated with high LET heavy ions. Int J Radiat Biol 2013; 89:401-10. [PMID: 23363030 DOI: 10.3109/09553002.2013.767990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The impact of the damage distribution to cellular survival and chromosomal aberrations following high Linear Energy Transfer (LET) radiation was investigated. MATERIALS AND METHODS High LET iron-ions (500 MeV/n, LET 200 keV/μm) were delivered to G1-phase synchronized Chinese Hamster Ovary (CHO) cells located at a vertical or horizontal angle relative to the ion beam in order to give same dose but different fluence and damage distribution. RESULTS Horizontal irradiation produced DNA double-strand break (DSB) along each ion track represented as clustered lines, and vertical irradiation produced a greater fluence. The initial damages measured by premature chromosome condensation were equal per dose in both irradiation types. Horizontal irradiation proved to be less effective in cell killing than vertical at doses of more than 3 Gy. Vertical irradiation produced a higher number of metaphase chromosomal aberrations compared to horizontally irradiated samples. In particular, formation of exchange-type aberrations was the same, but that of deletion-type aberrations were significantly higher after vertical irradiation than horizontal irradiation. CONCLUSIONS Therefore, we concluded that high fluence per dose is more effective than low fluence per dose to produce radiation-induced chromosomal aberrations and to kill exposed cells following high LET heavy-ion exposure.
Collapse
Affiliation(s)
- Yoshihiro Fujii
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang M, Saha J, Hada M, Anderson JA, Pluth JM, O’Neill P, Cucinotta FA. Novel Smad proteins localize to IR-induced double-strand breaks: interplay between TGFβ and ATM pathways. Nucleic Acids Res 2013; 41:933-42. [PMID: 23221633 PMCID: PMC3553971 DOI: 10.1093/nar/gks1038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 01/03/2023] Open
Abstract
Cellular damage from ionizing radiation (IR) is in part due to DNA damage and reactive oxygen species, which activate DNA damage response (DDR) and cytokine signaling pathways, including the ataxia telangiectasia mutated (ATM) and transforming growth factor (TGF)β/Smad pathways. Using classic double-strand breaks (DSBs) markers, we studied the roles of Smad proteins in DDR and the crosstalk between TGFβ and ATM pathways. We observed co-localization of phospho-Smad2 (pSmad2) and Smad7 with DSB repair proteins following low and high linear energy transfer (LET) radiation in human fibroblasts and epithelial cells. The decays of both foci were similar to that of γH2AX foci. Irradiation with high LET particles induced pSmad2 and Smad7 foci tracks indicating the particle trajectory through cells. pSmad2 foci were absent in S phase cells, while Smad7 foci were present in all phases of cell cycle. pSmad2 (but not Smad7) foci were completely abolished when ATM was depleted or inactivated. In contrast, a TGFβ receptor 1 (TGFβR1) inhibitor abrogated Smad7, but not pSmad2 foci at DSBs sites. In summary, we suggest that Smad2 and Smad7 contribute to IR-induced DSB signaling in an ATM or TGFβR1-dependent manner, respectively.
Collapse
Affiliation(s)
- Minli Wang
- USRA Division of Life Sciences, Houston, TX 77058, USA, Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford OX37DQ, UK, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and NASA Space Radiation Program, Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Janapriya Saha
- USRA Division of Life Sciences, Houston, TX 77058, USA, Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford OX37DQ, UK, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and NASA Space Radiation Program, Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Megumi Hada
- USRA Division of Life Sciences, Houston, TX 77058, USA, Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford OX37DQ, UK, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and NASA Space Radiation Program, Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Jennifer A. Anderson
- USRA Division of Life Sciences, Houston, TX 77058, USA, Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford OX37DQ, UK, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and NASA Space Radiation Program, Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Janice M. Pluth
- USRA Division of Life Sciences, Houston, TX 77058, USA, Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford OX37DQ, UK, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and NASA Space Radiation Program, Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Peter O’Neill
- USRA Division of Life Sciences, Houston, TX 77058, USA, Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford OX37DQ, UK, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and NASA Space Radiation Program, Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Francis A. Cucinotta
- USRA Division of Life Sciences, Houston, TX 77058, USA, Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford OX37DQ, UK, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and NASA Space Radiation Program, Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| |
Collapse
|
50
|
Staaf E, Brehwens K, Haghdoost S, Czub J, Wojcik A. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles. Genome Integr 2012; 3:8. [PMID: 23121736 PMCID: PMC3531250 DOI: 10.1186/2041-9414-3-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/30/2012] [Indexed: 12/16/2022] Open
Abstract
Background Little is known about the cellular effects of exposure to mixed beams of high and low linear energy transfer radiation. So far, the effects of combined exposures have mainly been assessed with clonogenic survival or cytogenetic methods, and the results are contradictory. The gamma-H2AX assay has up to now not been applied in this context, and it is a promising tool for investigating the early cellular response to mixed beam irradiation. Purpose To determine the dose response and repair kinetics of gamma-H2AX ionizing radiation-induced foci in VH10 human fibroblasts exposed to mixed beams of 241Am alpha particles and X-rays. Results VH10 human fibroblasts were irradiated with each radiation type individually or both in combination at 37°C. Foci were scored for repair kinetics 0.5, 1, 3 and 24 h after irradiation (one dose per irradiation type), and for dose response at the 1 h time point. The dose response effect of mixed beam was additive, and the relative biological effectiveness for alpha particles (as compared to X-rays) was of 0.76 ± 0.52 for the total number of foci, and 2.54 ± 1.11 for large foci. The repair kinetics for total number of foci in cells exposed to mixed beam irradiation was intermediate to that of cells exposed to alpha particles and X-rays. However, for mixed beam-irradiated cells the frequency and area of large foci were initially lower than predicted and increased during the first 3 hours of repair (while the predicted number and area did not). Conclusions The repair kinetics of large foci after mixed beam exposure was significantly different from predicted based on the effect of the single dose components. The formation of large foci was delayed and they did not reach their maximum area until 1 h after irradiation. We hypothesize that the presence of low X-ray-induced damage engages the DNA repair machinery leading to a delayed DNA damage response to the more complex DNA damage induced by alpha particles.
Collapse
Affiliation(s)
- Elina Staaf
- Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 106 91, Sweden.
| | | | | | | | | |
Collapse
|