1
|
Elsawy H, Famurewa AC, Sedky A. Resveratrol Mitigates Diabetic Testicular Dysfunction, Endocrine Deficits, and Insulin Resistance via Suppression of Sperm-Endocrine Aberrations and Oxidative Inflammation in Rats. Andrologia 2023; 2023:1-10. [DOI: 10.1155/2023/6385767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Diabetes mellitus (DM) provokes reproductive impairments through endocrine disturbance, sperm deficits, and testicular oxidative inflammation. The study investigated the reproductive protective effects of resveratrol (RSV) against testicular oxidative inflammation, sperm/endocrine deficits, and insulin resistance in streptozotocin- (STZ-, 65 mg/kg) induced DM rat model. Male rats were randomly divided into 4 groups (
): control, DM, RSV (150 mg/kg bw, orally), and RSV+DM group (21 days). The nontreated DM rats showed marked decreases in serum insulin, reproductive hormones (T, LH, and FSH), and lipid profile levels compared to control. The homeostatic index of insulin resistance (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI) were adversely modulated. Sperm count and motility were profoundly decreased, whereas sperm abnormality was significantly increased. The testicular activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and malondialdehyde (MDA) level, along with inflammatory cytokines (TNF-α, IL-6, IL-4, and IL-10) were significantly dysregulated. The DM induced histopathological lesions compared to control rats. Interestingly, the RSV administration to DM rats attenuated the altered reproductive parameters, restored antioxidant mechanism, and anti-inflammatory responses with improved insulin resistance. RSV could prevent DM-induced reproductive deficits and insulin resistance via modulating oxidative stress-mediated testicular inflammation in rats.
Collapse
Affiliation(s)
- Hany Elsawy
- Department of Chemistry, College of Science, King Faisal University, PO Box 400 Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, India
| | - Azza Sedky
- Department of Biological Sciences, College of Science, King Faisal University, PO Box 400, 31982 Al-Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Alturki HA, Elsawy HA, Famurewa AC. Silymarin abrogates acrylamide-induced oxidative stress-mediated testicular toxicity via modulation of antioxidant mechanism, DNA damage, endocrine deficit and sperm quality in rats. Andrologia 2022; 54:e14491. [PMID: 35753048 DOI: 10.1111/and.14491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/27/2022] Open
Abstract
Acrylamide (ACR) is a toxic chemical formed in foods processed at high temperature; it is a food-borne toxicant with increasing public health attention due to its carcinogenic, neurotoxic and reproductive toxicities. However, till date, it is unknown whether silymarin (SIL) could attenuate ACR testicular toxicity. Therefore, the present study investigated the effect of SIL on ACR testiculotoxicity in rats. Rats were randomly divided and administered respective agents in Control group, ACR group, SIL group and ACR + SIL group for consecutive 14 days. Rat exposure to ACR resulted in significant reduction in the level of serum testosterone, whereas FSH and LH levels prominently increased compared to control. Acrylamide induced marked decreases in sperm count and sperm motility followed by a considerable increase in sperm abnormality percentage in the ACR-exposed rats in comparison to control. The testicular activities of glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were significantly diminished, whereas malondialdehyde (MDA) level considerably increased. Additionally, ACR induced marked DNA fragmentation and histopathological lesions compared to control. Interestingly, the co-treatment of SIL with ACR attenuated the altered reproductive indices and restored antioxidant balance and DNA integrity. Overall, SIL prevents ACR-induced testicular reproductive deficits via modulation of antioxidant mechanism in rats.
Collapse
Affiliation(s)
- Hissah Ahmed Alturki
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hany Amin Elsawy
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ademola Clement Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
3
|
Gu X, Li SY, Matsuyama S, DeFalco T. Immune Cells as Critical Regulators of Steroidogenesis in the Testis and Beyond. Front Endocrinol (Lausanne) 2022; 13:894437. [PMID: 35573990 PMCID: PMC9096076 DOI: 10.3389/fendo.2022.894437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Steroidogenesis is an essential biological process for embryonic development, reproduction, and adult health. While specific glandular cells, such as Leydig cells in the testis, are traditionally known to be the principal players in steroid hormone production, there are other cell types that contribute to the process of steroidogenesis. In particular, immune cells are often an important component of the cellular niche that is required for the production of steroid hormones. For several decades, studies have reported that testicular macrophages and Leydig cells are intimately associated and exhibit a dependency on the other cell type for their proper development; however, the mechanisms that underlie the functional relationship between macrophages and Leydig cells are unclear. Beyond the testis, in certain instances immune cells themselves, such as certain types of lymphocytes, are capable of steroid hormone production, thus highlighting the complexity and diversity that underlie steroidogenesis. In this review we will describe how immune cells are critical regulators of steroidogenesis in the testis and in extra-glandular locations, as well as discuss how this area of research offers opportunities to uncover new insights into steroid hormone production.
Collapse
Affiliation(s)
- Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Satoko Matsuyama
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
4
|
Banihani SA. Human semen quality as affected by SARS-CoV-2 infection: An up-to-date review. Andrologia 2021; 54:e14295. [PMID: 34716614 PMCID: PMC8646253 DOI: 10.1111/and.14295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Revealing the effect of SARS‐CoV‐2 infection on semen quality is a dynamic priority for many healthcare providers in the field as well as subfertile patients. Therefore, the collective summary in this research approach is still highly needed, especially with the continuous increase in original publications. Here, we provide an up‐to‐date review and discussion to collectively reveal the effect of SARS‐CoV‐2 infection on human semen quality. To do this, we reviewed all articles and abstracts published in Scopus and PubMed using the keywords ‘SARS‐CoV‐2’ and ‘COVID’ versus ‘sperm’ and ‘semen’. In summary, it can be revealed that, at both symptomatic and recovery stages of infection, no investigational evidence of SARS‐CoV‐2 shedding in human semen. Also, the mainstream of the up‐to‐date published work reveals a negative impact of SARS‐CoV‐2 infection on semen quality parameters, particularly sperm count and motility. However, long‐term post‐recovery comparative studies seem very important in this particular setting.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Advances in stem cell research for the treatment of primary hypogonadism. Nat Rev Urol 2021; 18:487-507. [PMID: 34188209 DOI: 10.1038/s41585-021-00480-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
In Leydig cell dysfunction, cells respond weakly to stimulation by pituitary luteinizing hormone, and, therefore, produce less testosterone, leading to primary hypogonadism. The most widely used treatment for primary hypogonadism is testosterone replacement therapy (TRT). However, TRT causes infertility and has been associated with other adverse effects, such as causing erythrocytosis and gynaecomastia, worsening obstructive sleep apnoea and increasing cardiovascular morbidity and mortality risks. Stem-cell-based therapy that re-establishes testosterone-producing cell lineages in the body has, therefore, become a promising prospect for treating primary hypogonadism. Over the past two decades, substantial advances have been made in the identification of Leydig cell sources for use in transplantation surgery, including the artificial induction of Leydig-like cells from different types of stem cells, for example, stem Leydig cells, mesenchymal stem cells, and pluripotent stem cells (PSCs). PSC-derived Leydig-like cells have already provided a powerful in vitro model to study the molecular mechanisms underlying Leydig cell differentiation and could be used to treat men with primary hypogonadism in a more specific and personalized approach.
Collapse
|
6
|
Badr GM, Elsawy H, Sedky A, Eid R, Ali A, Abdallah BM, Alzahrani AM, Abdel-Moneim AM. Protective effects of quercetin supplementation against short-term toxicity of cadmium-induced hematological impairment, hypothyroidism, and testicular disturbances in albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8202-8211. [PMID: 30697654 DOI: 10.1007/s11356-019-04276-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to evaluate the probable protective effect of quercetin (QUE) against cadmium (Cd)-induced sub-chronic toxicity in rats. Adult male rats were given either Cd (as cadmium chloride; 5 mg/kg) alone or in combination with QUE (50 mg/kg) daily for 4 weeks by oral gavage. At the end of the experimental period, Cd accumulation, and selected hematological, thyroid, and reproductive markers were assessed. Results revealed that Cd treatment significantly increased Cd concentrations in blood, thyroid gland, and testicular tissue of rats. Cd also caused a decline in hemoglobin content, hematocrit value, and total erythrocyte and leucocyte counts. Further, significant suppressions in the blood levels of hormones related to thyroid gland function, and male reproductive hormones (i.e., testosterone, luteinizing hormone and follicle-stimulating hormone), were observed in Cd-treated rats compared to the control. In parallel, low sperm count and sperm motility, increased sperm abnormalities, and marked pathology occurred in testis. Combination with QUE recorded amelioration of the deleterious effects of Cd, involving regulation of hematological toxicity and thyroid hormonal levels and subsequently modulation of testicular function. In conclusion, it appears that dietary QUE can rescue from Cd-induced hematological dysfunctions and testicular damage by reversing the hypothyroid state.
Collapse
Affiliation(s)
- Gehan M Badr
- Department of Biological Sciences, Faculty of Science, College of Science, King Faisal University, Hofuf, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hany Elsawy
- Department of Chemistry, Faculty of Science, King Faisal University, Hofuf, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Azza Sedky
- Department of Biological Sciences, Faculty of Science, College of Science, King Faisal University, Hofuf, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Rania Eid
- Department of Physiology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Awatef Ali
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Basem M Abdallah
- Department of Biological Sciences, Faculty of Science, College of Science, King Faisal University, Hofuf, Al-Ahsa, 31982, Saudi Arabia
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Abdullah M Alzahrani
- Department of Biological Sciences, Faculty of Science, College of Science, King Faisal University, Hofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Ashraf M Abdel-Moneim
- Department of Biological Sciences, Faculty of Science, College of Science, King Faisal University, Hofuf, Al-Ahsa, 31982, Saudi Arabia.
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Green DP, Patil MJ, Akopian AN. Influence of hypophysectomy, ovariectomy and gonadectomy on postoperative hypersensitivity in rats. ACTA ACUST UNITED AC 2016; 2:171-175. [PMID: 29399371 PMCID: PMC5791901 DOI: 10.15761/gapm.1000145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surgical procedures lead to profound and sustained (up to 1–2 weeks) activation of the pituitary gland, resulting in changes in endocrine function. Questions remain on whether activation of the pituitary influences the threshold and development time-course of postoperative pain. To address these questions, we evaluated postoperative hypersensitivity in female and male rats with ablated pituitary and gonadal hormone productions via hypophysectomy, ovariectomy and gonadectomy, respectively. Plantar incision, a model of acute postoperative pain, or sham operation was performed on rat hind paws. Hypophysectomy, ovariectomy and gonadectomy were achieved by surgical disconnection of pituitary, ovaries and testicles, respectively. Postoperative thermal and mechanical hypersensitivity were monitored for 7 days post incision. Hypophysectomy on female and male rats produced statistically similar thermal and mechanical postoperative hypersensitivity thresholds and time-courses as compared to intact estrous female and male rats. Moreover, ovariectomy and gonadectomy did not significantly change postoperative hypersensitivity observed in control female and male animals. Our experiments demonstrate that hypophysectomy, ovariectomy and gonadectomy do not significantly impact postoperative hypersensitivity observed in normal female and male animals. These data suggest that surgery-induced changes in the endocrine system via activation of pituitary and subsequently gonadal tissues have little impact on the threshold and development of postoperative pain in female and male rats.
Collapse
Affiliation(s)
- Dustin P Green
- Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, USA
| | - Mayur J Patil
- Department of Pharmacology, UT Health Science Center, San Antonio, TX, USA
| | - Armen N Akopian
- Department of Pharmacology, UT Health Science Center, San Antonio, TX, USA.,Department of Endodontics, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
8
|
Hardeland R. Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:627-46. [PMID: 25240067 DOI: 10.1093/jxb/eru386] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Melatonin is synthesized in Alphaproteobacteria, Cyanobacteria, Dinoflagellata, Euglenoidea, Rhodophyta, Phae ophyta, and Viridiplantae. The biosynthetic pathways have been identified in dinoflagellates and plants. Other than in dinoflagellates and animals, tryptophan is not 5-hydroxylated in plants but is first decarboxylated. Serotonin is formed by 5-hydroxylation of tryptamine. Serotonin N-acetyltransferase is localized in plastids and lacks homology to the vertebrate aralkylamine N-acetyltransferase. Melatonin content varies considerably among species, from a few picograms to several micrograms per gram, a strong hint for different actions of this indoleamine. At elevated levels, the common and presumably ancient property as an antioxidant may prevail. Although melatonin exhibits nocturnal maxima in some phototrophs, it is not generally a mediator of the signal 'darkness'. In various plants, its formation is upregulated by visible and/or UV light. Increases are often induced by high or low temperature and several other stressors including drought, salinity, and chemical toxins. In Arabidopsis, melatonin induces cold- and stress-responsive genes. It has been shown to support cold resistance and to delay experimental leaf senescence. Transcriptome data from Arabidopsis indicate upregulation of genes related to ethylene, abscisic acid, jasmonic acid, and salicylic acid. Auxin-like actions have been reported concerning root growth and inhibition, and hypocotyl or coleoptile lengthening, but effects caused by melatonin and auxins can be dissected. Assumptions on roles in flower morphogenesis and fruit ripening are based mainly on concentration changes. Whether or not melatonin will find a place in the phytohormone network depends especially on the identification of molecular signals regulating its synthesis, high-affinity binding sites, and signal transduction pathways.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner Strasse 28, D-37073 Göttingen, Germany
| |
Collapse
|
9
|
|
10
|
Verhagen I, Ramaswamy S, Teerds KJ, Keijer J, Plant TM. Time course and role of luteinizing hormone and follicle-stimulating hormone in the expansion of the Leydig cell population at the time of puberty in the rhesus monkey (Macaca mulatta). Andrology 2014; 2:924-30. [PMID: 25269763 PMCID: PMC4205165 DOI: 10.1111/andr.275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/04/2014] [Accepted: 08/13/2014] [Indexed: 11/28/2022]
Abstract
In higher primates, development of the adult population of Leydig cells has received little attention. Here, the emergence of 3β-hydroxysteroid dehydrogenase (HSD3B) positive cells in the testis of the rhesus monkey was examined during spontaneous puberty, and correlated with S-phase labeling in the interstitium at this critical stage of development. In addition, the relative role of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in initiating the pubertal expansion of Leydig cells was studied by precociously stimulating the juvenile testis in vivo with pulsatile 11-day infusions of recombinant LH and FSH, either alone or in combination. At the time of castration, testes were immersion fixed in Bouin's, embedded in paraffin, and sectioned at 5 μm. Leydig cells/testis were enumerated using HSD3B as a Leydig cell marker. Leydig cell number per testis increased progressively during puberty to reach values in the adult approximately 10 fold greater than in early-pubertal animals. The rise in cell number was associated with an increase in nuclear diameter. That the pubertal expansion of Leydig cell number was driven primarily by the increase in LH secretion at this stage of development was suggested by the finding that precocious stimulation of mid-juvenile monkeys with LH, either alone or in combination with that of FSH, resulted in a 20-30 fold increase in the number of HSD3B-positive cells. Interestingly, precocious FSH stimulation, alone, also resulted in appearance of Leydig cells as indicated by the occasional HSD3B-positive cell in the interstitium. The nuclear diameter of these Leydig cells, however, was less than that of those generated in response to LH.
Collapse
Affiliation(s)
- I Verhagen
- Department of Animal Sciences, Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
11
|
Zhang Y, Piao Y, Li Y, Song M, Tang P, Li C. 4-Nitrophenol induces Leydig cells hyperplasia, which may contribute to the differential modulation of the androgen receptor and estrogen receptor-α and -β expression in male rat testes. Toxicol Lett 2013; 223:228-35. [DOI: 10.1016/j.toxlet.2013.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/15/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
|
12
|
Hazra R, Jimenez M, Desai R, Handelsman DJ, Allan CM. Sertoli cell androgen receptor expression regulates temporal fetal and adult Leydig cell differentiation, function, and population size. Endocrinology 2013; 154:3410-22. [PMID: 23766127 DOI: 10.1210/en.2012-2273] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently created a mouse model displaying precocious Sertoli cell (SC) and spermatogenic development induced by SC-specific transgenic androgen receptor expression (TgSCAR). Here we reveal that TgSCAR regulates the development, function, and absolute number of Leydig cells (LCs). Total fetal and adult type LC numbers were reduced in postnatal and adult TgSCAR vs control testes, despite normal circulating LH levels. Normal LC to SC ratios found in TgSCAR testes indicate that SC androgen receptor (SCAR)-mediated activity confers a quorum-dependent relationship between total SC and LC numbers. TgSCAR enhanced LC differentiation, shown by elevated ratios of advanced to immature LC types, and reduced LC proliferation in postnatal TgSCAR vs control testes. Postnatal TgSCAR testes displayed up-regulated expression of coupled ligand-receptor transcripts (Amh-Amhr2, Dhh-Ptch1, Pdgfa-Pdgfra) for potential SCAR-stimulated paracrine pathways, which may coordinate LC differentiation. Neonatal TgSCAR testes displayed normal T and dihydrotestosterone levels despite differential changes to steroidogenic gene expression, with down-regulated Star, Cyp11a1, and Cyp17a1 expression contrasting with up-regulated Hsd3b1, Hsd17b3, and Srd5a1 expression. TgSCAR males also displayed elevated postnatal and normal adult serum testosterone levels, despite reduced LC numbers. Enhanced adult-type LC steroidogenic output was revealed by increased pubertal testicular T, dihydrotestosterone, 3α-diol and 3β-diol levels per LC and up-regulated steroidogenic gene (Nr5a1, Lhr, Cyp11a1, Cyp17a1, Hsd3b6, Srd5a1) expression in pubertal or adult TgSCAR vs control males, suggesting regulatory mechanisms maintain androgen levels independently of absolute LC numbers. Our unique gain-of-function TgSCAR model has revealed that SCAR activity controls temporal LC differentiation, steroidogenic function, and population size.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Biomarkers/metabolism
- Cell Count
- Cell Differentiation
- Hemizygote
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Leydig Cells/cytology
- Leydig Cells/metabolism
- Ligands
- Male
- Mice
- Mice, Transgenic
- Patched Receptors
- Patched-1 Receptor
- Receptor, Platelet-Derived Growth Factor alpha/biosynthesis
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Peptide/biosynthesis
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Sertoli Cells/cytology
- Sertoli Cells/metabolism
- Sexual Development
- Testis/cytology
- Testis/growth & development
- Testis/metabolism
- Testosterone Congeners/blood
- Testosterone Congeners/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Rasmani Hazra
- ANZAC Research Institute, Concord Hospital, Sydney, New South Wales 2139, Australia
| | | | | | | | | |
Collapse
|
13
|
Migrenne S, Moreau E, Pakarinen P, Dierich A, Merlet J, Habert R, Racine C. Mouse testis development and function are differently regulated by follicle-stimulating hormone receptors signaling during fetal and prepubertal life. PLoS One 2012; 7:e53257. [PMID: 23300903 PMCID: PMC3531970 DOI: 10.1371/journal.pone.0053257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/27/2012] [Indexed: 12/30/2022] Open
Abstract
It is currently admitted that Follicle-Stimulating Hormone (FSH) is physiologically involved in the development and function of fetal/neonatal Sertoli cells in the rat but not the mouse. However, FSH is produced by both species from late fetal life onwards. We thus reinvestigated the role of FSH in mouse testis development at day 0 (birth) 6, 8 and 10 post-partum (dpp) by using mice that lack functional FSH receptors (FSH-R−/−). At birth, the number and proliferative index of Sertoli cells were significantly lower in FSH-R−/− mice than in wild type neonates. Claudin 11 mRNA expression also was significantly reduced in FSH-R−/− testes at 0 and 8 dpp, whereas the mRNA levels of other Sertoli cell markers (Transferrin and Desert hedgehog) were comparable in FSH-R−/− and wild type testes. Conversely, AMH mRNA and protein levels were higher at birth, comparable at 6 dpp and then significantly lower in FSH-R−/− testes at 8–10 dpp in FSH-R−/− mice than in controls. Although the plasma concentration of LH and the number of Leydig cells were similar in FSH-R−/− and control (wild type), testosterone concentration and P450c17 mRNA expression were significantly increased in FSH-R−/− testes at birth. Conversely, at 10 dpp when adult Leydig cells appear, expression of the steroidogenic genes P450scc, P450c17 and StAR was lower in FSH-R−/− testes than in controls. In conclusion, our results show that 1) like in the rat, signaling via FSH-R controls Sertoli cell development and function during late fetal life in the mouse as well; 2) paracrine factors produced by Sertoli cells are involved in the FSH-R-dependent regulation of the functions of fetal Leydig cells in late fetal life; and 3) the role of FSH-R signaling changes during the prepubertal period.
Collapse
Affiliation(s)
- Stéphanie Migrenne
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay-aux-Roses, France
| | - Evelyne Moreau
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay-aux-Roses, France
| | - Pirjo Pakarinen
- University of Turku, Institute of Biomedicine, Department of Physiology, Turku, Finland
| | - Andrée Dierich
- CNRS 7104, IGBMC, Illkirch, France
- INSERM, U964, Illkirch , France
| | - Jorge Merlet
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay-aux-Roses, France
| | - René Habert
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay-aux-Roses, France
- * E-mail:
| | - Chrystèle Racine
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay-aux-Roses, France
| |
Collapse
|
14
|
Avital-Cohen N, Heiblum R, Argov N, Rosenstrauch A, Chaiseha Y, Mobarkey N, Rozenboim I. The effect of active immunization against vasoactive intestinal peptide (VIP) and inhibin on reproductive performance of aging White Leghorn roosters. Poult Sci 2012; 91:161-74. [PMID: 22184441 DOI: 10.3382/ps.2011-01439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Decreasing fertility in aging domestic roosters is a well-known phenomenon. Aging is manifested by a decrease in plasma testosterone level, testis function, and spermatogenesis, resulting in a low level of fertility. The roles of vasoactive intestinal peptide (VIP) and testicular inhibin in this aging process are not clear. The effects of active immunization against VIP, inhibin, or the combination of both hormones on the reproduction of aging White Leghorn (WL) roosters were assayed. In experiment 1a, 60 White Leghorn roosters (67 wk of age) were divided into 4 groups (n = 15/group). The first group was actively immunized against VIP, the second against inhibin, the third against VIP and inhibin, and the fourth served as a control. Active immunization against VIP decreased semen quality parameters, plasma steroid levels, and gene expression of gonadotropin-releasing hormone-I (GnRH-I), follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH receptor, VIP, and prolactin (Prl). Immunization against inhibin increased some of the semen quality parameters and FSH mRNA gene expression but decreased inhibin gene expression. In experiment 1b, at 94 wk of age, we took the actively immunized against VIP group and the control group and divided them into 2 subgroups (n = 7 or 8): the first group was injected with 1 mg of ovine Prl (oPrl) daily for 7 d, and the second group served as a control. Administration of oPrl to previously VIP-immunized birds significantly elevated semen quality parameters. We suggest that VIP, Prl, and inhibin have an important effect on the reproductive axis in aging roosters. Active immunization against VIP-depressed reproductive activity and Prl administration restored their reproduction, indicating that both VIP and Prl are essential for reproduction in aging roosters. Immunization against inhibin improved FSH mRNA gene expression, suggesting a negative role of inhibin on FSH secretion in aging roosters. Not all semen quality parameters increased significantly after immunization against inhibin, even though FSH mRNA gene expression increased, suggesting interference in testicular function in aging roosters.
Collapse
Affiliation(s)
- N Avital-Cohen
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Avital-Cohen N, Heiblum R, Argov N, Rosenstrauch A, Chaiseha Y, Mobarkey N, Rozenboim I. The effect of active immunization against vasoactive intestinal peptide and inhibin on reproductive performance of young White Leghorn roosters. Poult Sci 2011; 90:2321-31. [DOI: 10.3382/ps.2011-01438] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
16
|
Hu GX, Lin H, Chen GR, Chen BB, Lian QQ, Hardy DO, Zirkin BR, Ge RS. Deletion of the Igf1 gene: suppressive effects on adult Leydig cell development. JOURNAL OF ANDROLOGY 2010; 31:379-87. [PMID: 20203337 PMCID: PMC4103413 DOI: 10.2164/jandrol.109.008680] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deletion of the insulin-like growth factor 1 (Igf1) gene was shown in previous studies to result in reduced numbers of Leydig cells in the testes of 35-day-old mice, and in reduced circulating testosterone levels. In the current study, we asked whether deletion of the Igf1 gene affects the number, proliferation, and/or steroidogenic function of some or all of the precursor cell types in the developmental sequence that leads to the establishment of adult Leydig cells (ALCs). Decreased numbers of cells in the Leydig cell lineage (ie, 3β-hydroxysteroid dehydrogenase-positive cells) were seen in testes of postnatal day (PND) 14-90 Igf1(-/-) mice compared with age-matched Igf1(+/+) controls. The development of ALCs proceeds from stem Leydig cells (SLCs) through progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs). The bromodeoxyuridine labeling index of putative SLCs was similar in the Igf1(-/-) and Igf1(+/+) mice. In contrast, the labeling index of PLCs was reduced in the Igf1(-/-) mice on each day of PND 14 through PND 35, and that of more mature Leydig cells (referred to herein as LCs, a combination of ILCs plus ALCs) was reduced from PND 21 through PND 56. In Igf1(-/-) mice that received recombinant IGF-I, the labeling indices of PLCs and LCs were similar to those of age-matched Igf1(+/+) mice, indicating that the reductions in the labeling indices seen in the PLCs and LCs of the Igf1(-/-) mice were a consequence of reduced IGF-I. On each day of PND 21 through PND 90, testicular testosterone concentrations were significantly reduced in the Igf1(-/-) mice, as were the expressions of testis-specific mRNAs involved in steroidogenesis, including Star, Cyp11a1, and Cyp17a1. The increased expression of the gene for 5α-reductase (Srd5a1) in adult Igf1(-/-) testes suggests that the depletion of Igf1 might suppress or delay Leydig cell maturation. These observations, taken together, indicate that the reduced numbers of Leydig cells in the adult testes of Igf1(-/-) mice result at least in part from altered proliferation and differentiation of ALC precursor cells, but not of the stem cells that give rise to these cells.
Collapse
Affiliation(s)
- Guo-Xin Hu
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kolthur-Seetharam U, Teerds K, de Rooij DG, Wendling O, McBurney M, Sassone-Corsi P, Davidson I. The Histone Deacetylase SIRT1 Controls Male Fertility in Mice Through Regulation of Hypothalamic-Pituitary Gonadotropin Signaling1. Biol Reprod 2009; 80:384-91. [DOI: 10.1095/biolreprod.108.070193] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
18
|
KHALAJ M, ABBASI AR, NISHIMURA R, AKIYAMA K, TSUJI T, NOGUCHI J, OKUDA K, KUNIEDA T. Leydig Cell Hyperplasia in an ENU-induced Mutant Mouse with Germ Cell Depletion. J Reprod Dev 2008; 54:225-8. [DOI: 10.1262/jrd.19191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Maryam KHALAJ
- Graduate School of Natural Science and Technology, Okayama University
| | | | - Ryo NISHIMURA
- Graduate School of Natural Science and Technology, Okayama University
| | - Kouyou AKIYAMA
- Graduate School of Natural Science and Technology, Okayama University
| | - Takehito TSUJI
- Graduate School of Natural Science and Technology, Okayama University
| | - Junko NOGUCHI
- Reproductive Biology Research Unit, National Institute of Agrobiological Sciences
| | - Kiyoshi OKUDA
- Graduate School of Natural Science and Technology, Okayama University
| | - Tetsuo KUNIEDA
- Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
19
|
Eacker SM, Agrawal N, Qian K, Dichek HL, Gong EY, Lee K, Braun RE. Hormonal regulation of testicular steroid and cholesterol homeostasis. Mol Endocrinol 2007; 22:623-35. [PMID: 18032697 DOI: 10.1210/me.2006-0534] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The male sex steroid, testosterone (T), is synthesized from cholesterol in the testicular Leydig cell under control of the pituitary gonadotropin LH. Unlike most cells that use cholesterol primarily for membrane synthesis, steroidogenic cells have additional requirements for cholesterol, because it is the essential precursor for all steroid hormones. Little is known about how Leydig cells satisfy their specialized cholesterol requirements for steroid synthesis. We show that in mice with a unique hypomorphic androgen mutation, which disrupts the feedback loop governing T synthesis, that genes involved in cholesterol biosynthesis/uptake and steroid biosynthesis are up-regulated. We identify LH as the central regulatory molecule that controls both steroidogenesis and Leydig cell cholesterol homeostasis in vivo. In addition to the primary defect caused by high levels of LH, absence of T signaling exacerbates the lipid homeostasis defect in Leydig cells by eliminating a short feedback loop. We show that T signaling can affect the synthesis of steroids and modulates the expression of genes involved in de novo cholesterol synthesis. Surprisingly, accumulation of active sterol response element-binding protein 2 is not required for up-regulation of genes involved in cholesterol biosynthesis and uptake in Leydig cells.
Collapse
Affiliation(s)
- Stephen M Eacker
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Teerds KJ, van Dissel-Emiliani FMF, De Miguel MP, de Boer-Brouwer M, Körting LM, Rijntjes E. Oncostatin-M inhibits luteinizing hormone stimulated Leydig cell progenitor formation in vitro. Reprod Biol Endocrinol 2007; 5:43. [PMID: 17996055 PMCID: PMC2174940 DOI: 10.1186/1477-7827-5-43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 11/08/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The initial steps of stem Leydig cell differentiation into steroid producing progenitor cells are thought to take place independent of luteinizing hormone (LH), under the influence of locally produced factors such as leukaemia inhibitory factor (LIF), platelet derived growth factor A and stem cell factor. For the formation of a normal sized Leydig cell population in the adult testis, the presence of LH appears to be essential. Oncostatin M (OSM) is a multifunctional cytokine and member of the interleukin (IL)-6 family that also includes other cytokines such as LIF. In the rat OSM is highly expressed in the late fetal and neonatal testis, and may thus be a candidate factor involved in Leydig cell progenitor formation. METHODS Interstitial cells were isolated from 13-day-old rat testes and cultured for 1, 3 or 8 days in the presence of different doses of OSM (range: 0.01 to 10 ng/ml) alone or in combination with LH (1 ng/ml). The effects of OSM and LH on cell proliferation were determined by incubating the cultures with [3H]thymidine or bromodeoxyuridine (BrdU). Developing progenitor cells were identified histochemically by the presence of the marker enzyme 3beta-hydroxysteroid dehydrogenase (3beta-HSD). RESULTS OSM, when added at a dose of 10 ng/ml, caused a nearly 2-fold increase in the percentage of Leydig cell progenitors after 8 days of culture. Immunohistochemical double labelling experiments with 3beta-HSD and BrdU antibodies showed that this increase was the result of differentiation of stem Leydig cells/precursor cells and not caused by proliferation of progenitor cells themselves. The addition of LH to the cultures consistently resulted in an increase in progenitor formation throughout the culture period. Surprisingly, when OSM and LH were added together, the LH induced rise in progenitor cells was significantly inhibited after 3 and 8 days of culture. CONCLUSION Taken together, the results of the present study suggest that locally produced OSM may not only play a role in the regulation of Sertoli cell proliferation and the initiation of spermatogenesis but may also play a role in the regulation of Leydig cell progenitor formation by keeping the augmenting effects of LH on this process in abeyance.
Collapse
Affiliation(s)
- Katja J Teerds
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Animal Sciences, Human and Animal Physiology Group, Wageningen University, Wageningen, the Netherlands
| | | | - Maria P De Miguel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Cell Engineering Laboratory, La Paz Hospital, Madrid, Spain
| | - Mieke de Boer-Brouwer
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lina M Körting
- Department of Animal Sciences, Human and Animal Physiology Group, Wageningen University, Wageningen, the Netherlands
| | - Eddy Rijntjes
- Department of Animal Sciences, Human and Animal Physiology Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
21
|
Gonzales PH, Rhoden CR, Luz C, Corrêa G, Barbosa-Coutinho LM, Oliveira MC. Male gonadal function, prolactin secretion and lactotroph population in an experimental model of cirrhosis. ACTA ACUST UNITED AC 2007; 40:1383-8. [PMID: 17713659 DOI: 10.1590/s0100-879x2006005000150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 06/12/2007] [Indexed: 11/22/2022]
Abstract
Liver cirrhosis, a highly prevalent chronic disease, is frequently associated with endocrine dysfunctions, notably in the gonadal axis. We evaluated lactotroph population by immunohistochemistry, gonadotropins and prolactin by immunoradiometric assay and testosterone and estradiol by radioimmunoassay in adult male Wistar rats with cirrhosis induced by carbon tetrachloride. No significant difference in mean +/- SEM percentages of lactotrophs was found between cirrhotic animals and controls (N = 12, mean 18.95 +/- 1.29%). Although there was no significant difference between groups in mean serum levels of prolactin (control: 19.2 +/- 4 ng/mL), luteinizing hormone (control: 1.58 +/- 0.43 ng/mL), follicle-stimulating hormone (control: 19.11 +/- 2.28 ng/mL), estradiol (control: 14.65 +/- 3.22 pg/mL), and total testosterone (control: 138.41 +/- 20.07 ng/dL), 5 of the cirrhotic animals presented a hormonal profile consistent with hypogonadism, all of them pointing to a central origin of this dysfunction. Four of these animals presented high levels of estradiol and/or prolactin, with a significant correlation between these two hormones in both groups (r = 0.54; P = 0.013). It was possible to detect the presence of central hypogonadism in this model of cirrhotic animals. The hyperestrogenemia and hyperprolactinemia found in some hypogonadal animals suggest a role in the genesis of hypogonadism, and in the present study they were not associated with lactotroph hyperplasia.
Collapse
Affiliation(s)
- P H Gonzales
- Departamento de Endocrinologia, Fundação Faculdade Federal de Ciências Médicas de Porto Alegre, RS, Brasil
| | | | | | | | | | | |
Collapse
|
22
|
Fombonne J, Charrier C, Goddard I, Moyse E, Krantic S. Leptin-mediated decrease of cyclin A2 and increase of cyclin D1 expression: relevance for the control of prepubertal rat Leydig cell division and differentiation. Endocrinology 2007; 148:2126-37. [PMID: 17303663 DOI: 10.1210/en.2006-1218] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of adult Leydig cells is one of the factors controlling testosterone secretion by sexually mature testis, and it depends on the proliferative capacity of prepubertal Leydig cells. We investigated here whether this capacity is controlled by leptin because this hormone regulates proliferation in other cell types and has a crucial role in male fertility. Our data show that prebupertal Leydig cells express the Ob/Rb form of leptin receptor and are thus direct targets of this hormone. The analysis of G1/S-phase cyclins by quantitative (real-time) RT-PCR and Western blot points to the leptin-induced decrease in cyclin A2 and subsequent increase in cyclin D1 expression that precedes a leptin-triggered decrease in the number of prepubertal Leydig cells. Quantitative assessments of DNA synthesis by bromodeoxyuridine incorporation and of cycling cell population by Ki67 immunocytochemistry indicate that leptin decreases the cell number by inhibiting cell division and increases mRNA levels of Leydig cell differentiation markers such as relaxin-like factor. Immunohistochemistry of cyclin D1 and relaxin-like factor pointed to the parallel increase of their expression coinciding with the onset of Leydig cell differentiation. Moreover, leptin-treated Leydig cells display increased expression of another differentiation marker (3beta-hydroxysteroid dehydrogenase) that is abolished by knocking down cyclin D1 with small interference RNA. Altogether, our data show that leptin inhibits division of prepubertal Leydig cells via a cyclin D-independent mechanism and suggest that cyclin D1 might be involved in leptin-induced differentiation of Leydig cells.
Collapse
Affiliation(s)
- Joanna Fombonne
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 29, Parc Scientifique de Luminy-BP13, F-13273 Marseille, Cedex 09, France
| | | | | | | | | |
Collapse
|
23
|
van Bragt MPA, Ciliberti N, Stanford WL, de Rooij DG, van Pelt AMM. LY6A/E (SCA-1) expression in the mouse testis. Biol Reprod 2005; 73:634-8. [PMID: 15930324 DOI: 10.1095/biolreprod.105.040303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Recently, it was found by two research groups that LY6A, known widely in the stem cell community as stem cell antigen-1 or SCA-1, is expressed on testicular side population (SP) cells. Whether these SP cells are spermatogonial stem cells is a point of disagreement and, therefore, the identity of the LY6A-positive cells as well. We studied the expression pattern of LY6A in testis by immunohistochemistry and found it to be expressed in the interstitial tissue on peritubular myoid, endothelial, and spherical-shaped peritubular mesenchymal cells. To address the question whether LY6A has a function in spermatogenesis or testis development, we studied the testis of Ly6a(-/-) mice (allele Ly6a(tm1Pmf)). We found no morphological abnormalities or differences in numbers of spermatogonia, spermatocytes, Leydig cells, or macrophages in relation to the number of Sertoli cells. Therefore, we conclude that LY6A expression does not influence testis development or spermatogenesis and that spermatogonial stem cells are LY6A negative.
Collapse
Affiliation(s)
- Maaike P A van Bragt
- Department of Endocrinology, Faculty of Biology, Utrecht University, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Sriraman V, Anbalagan M, Rao AJ. Hormonal regulation of Leydig cell proliferation and differentiation in rodent testis: a dynamic interplay between gonadotrophins and testicular factors. Reprod Biomed Online 2005; 11:507-18. [PMID: 16274617 DOI: 10.1016/s1472-6483(10)61147-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Studies over the last few decades have documented that LH is the principal regulator of Leydig cell function. Recent studies indicate that locally produced intratesticular factors are equally important in modulating Leydig cell development and function. In the present review, results of studies on Leydig development and function with rodent models, in conjunction with recent advances in our understanding, are discussed. Studies on Leydig cell development revealed that there are two different waves of proliferation: the first one is independent of LH and the other is dependent on LH. In addition to LH, FSH plays a major role in Leydig cell development and function by modulating the production of Sertoli cell-derived factors. Studies directed towards understanding the oestrogen-mediated inhibition of Leydig cell proliferation revealed that collagen IV-mediated signalling is involved in Leydig cell proliferation and 17beta-oestradiol inhibits this event. Leydig cell proliferation and differentiation is associated with changes in gene expression. Research in this area has identified several genes that are involved in Leydig cell proliferation and differentiation; the possible role of these genes in the context of Leydig cell development are discussed in this review.
Collapse
|
25
|
Millena AC, Reddy SC, Bowling GH, Khan SA. Autocrine regulation of steroidogenic function of Leydig cells by transforming growth factor-alpha. Mol Cell Endocrinol 2004; 224:29-39. [PMID: 15353178 DOI: 10.1016/j.mce.2004.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2004] [Revised: 07/08/2004] [Accepted: 07/12/2004] [Indexed: 11/20/2022]
Abstract
We have determined the effects of LH on the expression of transforming growth factor-alpha (TGFalpha) and epidermal growth factor receptor (EGFR) system in rat Leydig cells and investigated its role in steroidogenesis. LH and TGFalpha/epidermal growth factor (EGF) significantly increased the levels of TGFalpha mRNA and protein, and the levels of EGFR protein in immature rat Leydig cells (ILC). Treatment with TGFalpha or EGF for 24h resulted in significant increase in androgen production in ILC. The increase in androgen production in response to TGFalpha was associated with increased mRNA levels of SR-BI, steroidogenic acute regulatory (StAR) and P450scc but not of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and P450c17. TGFalpha also caused a marked increase in the levels StAR protein in ILC. EGFR inhibitor (AG1478) blocked the effects of TGFalpha while MEK-inhibitor (PD98059) potentiated TGFalpha or LH effects on steroidogenesis. A PKA inhibitor (H89) blocked both TGFalpha and LH effects on steroidogenesis. We conclude that TGFalpha plays an autocrine role in LH dependent development and function of Leydig cells.
Collapse
Affiliation(s)
- Ana Cecilia Millena
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
26
|
Wang G, Hardy MP. Development of Leydig Cells in the Insulin-Like Growth Factor-I (IGF-I) Knockout Mouse: Effects of IGF-I Replacement and Gonadotropic Stimulation1. Biol Reprod 2004; 70:632-9. [PMID: 14585811 DOI: 10.1095/biolreprod.103.022590] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Targeted gene deletion of insulin-like growth factor-I (IGF-I) results in diminished numbers of Leydig cells (LCs) and lower circulating testosterone (T) levels in adult males. The impact of endogenous IGF-I withdrawal on proliferation (labeling index, LI) and differentiation of LCs was investigated, testing for restorative effects of IGF-I replacement and/or LH stimulation. With IGF-I replacement in mutant mice, LIs increased more than 200% (P < 0.05). LC numbers were also increased by 200%, whereas the numbers of intermediate cell progenitors (PLCs) were unchanged compared to mutant vehicle controls. LIs of PLCs in wild-type males increased by 200% after LH stimulation, and LC numbers increased by 50% compared to vehicle-treated controls (P < 0.05). In contrast, there was no effect of LH on LI in mutant mice, but LC numbers still increased by 30% (P < 0.05). Additive effects on LI and cell numbers were observed in response to IGF-I plus LH in mutants, implying that the two hormones use separate signaling pathways. Serum T and LH levels in wild-type and mutant males were equivalent. Exogenous LH increased T production 8-fold in wild-type males (P < 0.01). In mutant mice, neither LH stimulation nor IGF-I alone affected serum T levels, but IGF-I plus LH stimulation increased serum T 2-fold (P < 0.05). These data support the conclusions that 1) IGF-I is a critical autocrine and/or paracrine factor in the control of adult LC numbers and function; and 2) LH is not a direct mitogenic factor for LCs, and acts in part through IGF-I to stimulate proliferative activity.
Collapse
Affiliation(s)
- Guimin Wang
- Population Council and The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
27
|
Calikoglu AS. Adrenocorticotropic hormone, a new player in the control of testicular steroidogenesis. Endocrinology 2003; 144:3277-8. [PMID: 12865301 DOI: 10.1210/en.2003-0618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Baker PJ, Johnston H, Abel M, Charlton HM, O'Shaughnessy PJ. Differentiation of adult-type Leydig cells occurs in gonadotrophin-deficient mice. Reprod Biol Endocrinol 2003; 1:4. [PMID: 12646077 PMCID: PMC151561 DOI: 10.1186/1477-7827-1-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 02/05/2003] [Indexed: 11/14/2022] Open
Abstract
During mammalian testis development distinct generations of fetal and adult Leydig cells arise. Luteinising hormone (LH) is required for normal adult Leydig cell function and for the establishment of normal adult Leydig cell number but its role in the process of adult Leydig cell differentiation has remained uncertain. In this study we have examined adult Leydig cell differentiation in gonadotrophin-releasing hormone (GnRH)-null mice which are deficient in circulating gonadotrophins. Adult Leydig cell differentiation was assessed by measuring expression of mRNA species encoding four specific markers of adult Leydig cell differentiation in the mouse. Each of these markers (3beta-hydroxysteroid dehydrogenase type VI (3betaHSD VI), 17beta-hydroxysteroid dehydrogenase type III (17betaHSD III), prostaglandin D (PGD)-synthetase and oestrogen sulphotransferase (EST)) is expressed only in the adult Leydig cell lineage in the normal adult animal. Real-time PCR studies showed that all four markers are expressed in adult GnRH-null mice. Localisation of 3betaHSD VI and PGD-synthetase expression by in situ hybridisation confirmed that these genes are expressed in the interstitial tissue of the GnRH-null mouse. Treatment of animals with human chorionic gonadotrophin increased expression of 3betaHSD VI and 17betaHSD III within 12 hours further indicating that differentiated, but unstimulated cells already exist in the GnRH-null mouse. Thus, while previous studies have shown that LH is required for adult Leydig cell proliferation and activity, results from the present study show that adult Leydig cell differentiation will take place in animals deficient in LH.
Collapse
Affiliation(s)
- PJ Baker
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden Rd, Glasgow G61 1QH, UK
| | - H Johnston
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden Rd, Glasgow G61 1QH, UK
| | - M Abel
- Department of Human Anatomy, University of Oxford South Parks Rd, Oxford OX1 3QX, UK
| | - HM Charlton
- Department of Human Anatomy, University of Oxford South Parks Rd, Oxford OX1 3QX, UK
| | - PJ O'Shaughnessy
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden Rd, Glasgow G61 1QH, UK
| |
Collapse
|
29
|
Dickson C, Webster DR, Johnson H, Cecilia Millena A, Khan SA. Transforming growth factor-beta effects on morphology of immature rat Leydig cells. Mol Cell Endocrinol 2002; 195:65-77. [PMID: 12354673 DOI: 10.1016/s0303-7207(02)00216-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transforming growth factor-beta (TGF beta) has been shown to regulate steroid production and DNA synthesis in rat Leydig cells. We have investigated the effects of TGF beta on the secretion of extracellular matrix (ECM) proteins and on the cytoskeleton of immature rat Leydig cells in vitro. TGF beta caused significant morphological changes in Leydig cells, which were accompanied by significant increases in secretion of fibronectin, laminin and collagen IV and rearrangement of actin filaments in TGF beta-treated cells. The cells cultured on plates pre-coated with fibronectin or fibronectin plus laminin and collagen IV, displayed morphological and cytoskeletal changes similar to those induced by TGF beta. Immunofluorescence localization studies revealed significantly higher fibronectin staining in Leydig cells in adult animals and in LH-treated immature animals than those in untreated immature animals. We conclude that TGF beta participates in the morphological differentiation of immature Leydig cells into adult Leydig cells in the rat testis by inducing the expression of ECM proteins.
Collapse
Affiliation(s)
- Cole Dickson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | | | | | | | | |
Collapse
|
30
|
Bansode FW, Dwivedi AK, Chowdhury SR. Effect of compound CDRI 84/35 and synthetic estrogen on the seminiferous epithelium of immature rat. Endocr Res 2002; 28:103-17. [PMID: 12108785 DOI: 10.1081/erc-120004542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Compound CDRI 84/35 (a piperazine derivative--a potent antispermatogenic agent) has been shown to cause significant inhibition in testicular spermatogenesis without affecting Leydig cell and accessory sex organ function in adult rats. The present study was conducted to determine its effect on the germ cell population and Leydig cell morphology in immature rats (40-50 gm) administered CDRI 84/35 (100 mg/kg/day p.o.), synthetic estradiol benzoate (EB; 5 microg/rat/day) and vehicle at the age of 21 days. Animals were killed 24 h later following 7 and 14 days' treatments. Bouin's fixed testes were sectioned (at 5 microm) and stained with PAS-hematoxylin. Quantitative determination of Sertoli Cell-Germ Cell ratio was carried out in 150 round seminiferous tubules in each group of 5 rats. Results revealed a significant decrease in number of the spermatocytes (non-pachytene and pachytene) and early (round) spermatids in step 1-8 of spermiogenesis without affecting Leydig cell morphology in rats administered CDRI 84/35 for 7 and 14 days as compared to corresponding controls. In contrast, the testes of rats injected with synthetic EB, caused a marked inhibition in these meiotic and post-meiotic germ cell types, as well as in the diameters of round seminiferous tubules, and Leydig cells nuclei (only in 14 days treatment), and testicular weight on autopsy days 8 and 15 as compared to CDRI 84/35-treated rats. While the number of pre-meiotic spermatogoniae was observed to be slightly decreased after only 14 days treatment in both CDRI 84/35 and EB treatment groups, the Sertoli cell number did not show any significant change as compared to controls. The present investigation confirms the antispermatogenic effect of compound CDRI 84/35 in immature rats similar to that reported in adult rats. Marked inhibition in pachytene spermatocytes and other testicular parameters following synthetic estrogen treatment might be due to its antiandrogenic action, contrasting with the non-hormonal profile of CDRI compound.
Collapse
Affiliation(s)
- F W Bansode
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.
| | | | | |
Collapse
|
31
|
Roelants H, Schneider F, Göritz F, Streich J, Blottner S. Seasonal changes of spermatogonial proliferation in roe deer, demonstrated by flow cytometric analysis of c-kit receptor, in relation to follicle-stimulating hormone, luteinizing hormone, and testosterone. Biol Reprod 2002; 66:305-12. [PMID: 11804943 DOI: 10.1095/biolreprod66.2.305] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The roe deer (Capreolus capreolus) is a seasonal breeder. The cyclic changes between totally arrested and highly activated spermatogenesis offer an ideal model to study basic mechanisms of spermatogenesis. In this study, we demonstrated, to our knowledge for the first time, c-kit receptor-positive cells in the testis of roe deer. They were immunohistologically identified mainly as spermatogonia. Analysis of the amount of those cells by flow cytometry shows a distinct seasonal pattern, with pronounced differences between cells in the diploid state and in the G2/M phase of mitosis. The specific seasonal pattern of spermatogonial proliferation results in the increased relative abundance of spermatogonia as well as in their increased total number per testis in November and December. This suggests that cell divisions continue on a level sufficient to accumulate spermatogonia during winter. The serum concentrations of LH and FSH showed a peak in spring; testosterone showed a maximum concentration during the rut (July/August). The peak of both gonadotropins seems to precede the period of stimulated spermatogonial proliferation in spring. The testosterone peak coincides with maximal meiotic intensity in August. The results suggest the importance of testosterone for sperm production, and they provide a basis for detailed investigations of regulatory factors of the proliferation of spermatogonia.
Collapse
Affiliation(s)
- Hannelore Roelants
- Institute for Zoo Biology and Wildlife Research, PF 601103, 10252 Berlin, Germany.
| | | | | | | | | |
Collapse
|
32
|
Mendis-Handagama SM, Ariyaratne HB. Differentiation of the adult Leydig cell population in the postnatal testis. Biol Reprod 2001; 65:660-71. [PMID: 11514326 DOI: 10.1095/biolreprod65.3.660] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Five main cell types are present in the Leydig cell lineage, namely the mesenchymal precursor cells, progenitor cells, newly formed adult Leydig cells, immature Leydig cells, and mature Leydig cells. Peritubular mesenchymal cells are the precursors to Leydig cells at the onset of Leydig cell differentiation in the prepubertal rat as well as in the adult rat during repopulation of the testis interstitium after ethane dimethane sulfonate (EDS) treatment. Leydig cell differentiation cannot be viewed as a simple process with two distinct phases as previously reported, simply because precursor cell differentiation and Leydig cell mitosis occur concurrently. During development, mesenchymal and Leydig cell numbers increase linearly with an approximate ratio of 1:2, respectively. The onset of precursor cell differentiation into progenitor cells is independent of LH; however, LH is essential for the later stages in the Leydig cell lineage to induce cell proliferation, hypertrophy, and establish the full organelle complement required for the steroidogenic function. Testosterone and estrogen are inhibitory to the onset of precursor cell differentiation, and these hormones produced by the mature Leydig cells may be of importance to inhibit further differentiation of precursor cells to Leydig cells in the adult testis to maintain a constant number of Leydig cells. Once the progenitor cells are formed, androgens are essential for the progenitor cells to differentiate into mature adult Leydig cells. Although early studies have suggested that FSH is required for the differentiation of Leydig cells, more recent studies have shown that FSH is not required in this process. Anti-Müllerian hormone has been suggested as a negative regulator in Leydig cell differentiation, and this concept needs to be further explored to confirm its validity. Insulin-like growth factor I (IGF-I) induces proliferation of immature Leydig cells and is associated with the promotion of the maturation of the immature Leydig cells into mature adult Leydig cells. Transforming growth factor alpha (TGFalpha) is a mitogen for mesenchymal precursor cells. Moreover, both TGFalpha and TGFbeta (to a lesser extent than TGFalpha) stimulate mitosis in Leydig cells in the presence of LH (or hCG). Platelet-derived growth factor-A is an essential factor for the differentiation of adult Leydig cells; however, details of its participation are still not known. Some cytokines secreted by the testicular macrophages are mitogenic to Leydig cells. Moreover, retarded or absence of Leydig cell development has been observed in experimental models with impaired macrophage function. Thyroid hormone is critical to trigger the onset of mesenchymal precursor cell differentiation into Leydig progenitor cells, proliferation of mesenchymal precursors, acceleration of the differentiation of mesenchymal cells into Leydig cell progenitors, and enhance the proliferation of newly formed Leydig cells in the neonatal and EDS-treated adult rat testes.
Collapse
Affiliation(s)
- S M Mendis-Handagama
- Department of Comparative Medicine, The University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA.
| | | |
Collapse
|
33
|
Affiliation(s)
- R Habert
- INSERM-INRA U 418, Université Paris 7, 2 Place Jussieu, 75251, Paris, France
| | | | | |
Collapse
|
34
|
Minucci S, De Rienzo G, Di Sena R, Cobellis G, Meccariello R, Pierantoni R, Fasano S. Effects of multiple injections of ethane 1,2-dimethane sulphonate (EDS) on the frog, Rana esculenta, testicular activity. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2000; 287:384-93. [PMID: 10980496 DOI: 10.1002/1097-010x(20001001)287:5<384::aid-jez6>3.0.co;2-i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ethane 1,2-dimethane sulphonate (EDS) is an alkylating agent, which has a selective cytotoxic effect on Leydig cells in some mammalian species. Similarly, in the frog, Rana esculenta, Leydig cells are destroyed after a single EDS injection and regenerate after 28 days. Regeneration of Leydig cells in frogs appears to be independent of the pituitary. The present experiments in R. esculenta were carried out: a) to investigate Leydig cell responsiveness to gonadotropin stimulation during 58 days after a single EDS injection; and b) to assess whether four consecutive EDS injections induce additional effects on the testicular cell population. Our results show that androgen stimulation after gonadotropin injections is restored after 44 days from a single EDS injection. Since the interstitial compartment appears to be normal at least 28 days after EDS treatment, it is likely that new Leydig cells lack gonadotropin receptors. With respect to multiple-EDS injections, Leydig cells completely disappear in several areas and the adjacent germinal compartment is disorganised. In some cases damaged germinal compartment is still surrounded by intact Leydig cells. Surprisingly, testicular and plasma androgens strongly increase in EDS-treated animals. Therefore, Sertoli cells may produce substances inhibiting androgen production in Leydig cells. J. Exp. Zool. 287:384-393, 2000.
Collapse
Affiliation(s)
- S Minucci
- Departimento di Fisiologia Umana e Funzione Biologiche Integrate F Bottazzi, Il Università di Napoli, Facoltà di Medicina e Chirurgia, 80138 Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Siril Ariyaratne HB, Chamindrani Mendis-Handagama S, Buchanan Hales D, Ian Mason J. Studies on the onset of Leydig precursor cell differentiation in the prepubertal rat testis. Biol Reprod 2000; 63:165-71. [PMID: 10859256 DOI: 10.1095/biolreprod63.1.165] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Leydig cells of the adult rat testis differentiate postnatally from spindle-shaped cells in the testis interstitium during the neonatal-prepubertal period. Which spindle-shaped cell types are the precursor for Leydig cells and the stimulus for initiation of their differentiation are, however, two unresolved issues. In the present study, our objectives were to identify unequivocally which spindle-shaped cells are the precursors to Leydig cells and to test whether the initiation of their differentiation into Leydig cells depends on LH. Testes from fifteen groups of Sprague-Dawley rats (n = 4 per group) from 7-21 days of age were fixed in Bouin solution and embedded in paraffin. Immunoexpression of 3beta-hydroxysteroid dehydrogenase (3betaHSD), cytochrome P450 side-chain cleavage (P450(scc)), 17alpha-hydroxylase cytochrome P450 (P450(c17)), and LH receptors (LHR) in interstitial cells (other than fetal Leydig cells) was observed using the avidin biotin method. Of all spindle-shaped cell types in the testis interstitium, only the peritubular mesenchymal cells showed positive immunolabeling for all three steroidogenic enzymes, beginning from the 11th postnatal day. All three enzymes were expressed simultaneously in these cells, and their numbers increased significantly thereafter. Immunoexpression of LHR in a few of these cells was just evident for the first time on postnatal Day 12 (i.e., after acquiring the steroidogenic enzyme activity). Their numbers gradually increased with time. The number of immunolabeled cells per 1000 interstitial cells (excluding fetal Leydig cells and capillary endothelial cells) was not significantly different for the three steroidogenic enzymes tested at all ages; however, a lower value was observed for LHR at each time-point. Based on these observations, we suggest that 1) the precursor cell type for the adult generation of Leydig cells in the postnatal rat testis is the peritubular mesenchymal cells, 2) precursor cells acquire 3beta-HSD, P450(scc), and P450(c17) enzyme activity simultaneously during Leydig cell differentiation, and 3) onset of precursor cell differentiation during Leydig cell development does not depend on LH.
Collapse
Affiliation(s)
- H B Siril Ariyaratne
- Department of Animal Science, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- M P Hedger
- Monash University Institute of Reproduction and Development, Monash Medical Centre, Clayton, Victoria, Australia
| | | |
Collapse
|
37
|
Tripepi S, Carelli A, Perrotta E, Brunelli E, Tavolaro R, Facciolo RM, Canonaco M. Morphological and functional variations of Leydig cells in testis of the domestic pig during the different biological stages of development. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-010x(20000701)287:2<167::aid-jez7>3.0.co;2-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Teerds KJ, de Boer-Brouwer M, Dorrington JH, Balvers M, Ivell R. Identification of markers for precursor and leydig cell differentiation in the adult rat testis following ethane dimethyl sulphonate administration. Biol Reprod 1999; 60:1437-45. [PMID: 10330103 DOI: 10.1095/biolreprod60.6.1437] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Administration of ethane dimethane sulphonate (EDS) to adult rats results in the destruction of all Leydig cells, followed by a complete regeneration. We investigated this regeneration process in more detail, using different markers for precursor and developing Leydig cells: the LH receptor, 3beta-hydroxysteroid dehydrogenase (3beta-HSD), transforming growth factor alpha (TGFalpha), and a new marker for Leydig cell maturation, relaxin-like factor (RLF). LH receptor immunoreactivity was found in Leydig cell-depleted testes at 3 and 8 days after EDS administration. The positive (precursor) cells had a mesenchymal-like morphology. The number of LH receptor-positive cells 8 days after EDS administration was 15 +/- 4 per 500 Sertoli cell nuclei. Fifteen days after EDS administration, the first new Leydig cells could be observed. These cells stained positively with both the antibodies against the LH receptor and 3beta-HSD, while some cells also stained positively for TGFalpha. After EDS administration, RLF mRNA disappeared from the testis and reappeared again at the time of the appearance of the first Leydig cells. Concomitant with the increase in the number of Leydig cells, the number of RLF-expressing cells increased. The observations of the present study give further support to the hypothesis that Leydig cell development in the prepubertal testis, and in the adult testis following EDS administration, takes place along the same cell lineage and suggest, therefore, that the adult EDS-treated rat can serve as a model for studying the adult-type Leydig cell development that normally occurs in the prepubertal rat testis.
Collapse
Affiliation(s)
- K J Teerds
- Department of Cell Biology and Histology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Cook JC, Klinefelter GR, Hardisty JF, Sharpe RM, Foster PM. Rodent Leydig cell tumorigenesis: a review of the physiology, pathology, mechanisms, and relevance to humans. Crit Rev Toxicol 1999; 29:169-261. [PMID: 10213111 DOI: 10.1080/10408449991349203] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Leydig cells (LCs) are the cells of the testis that have as their primary function the production of testosterone. LCs are a common target of compounds tested in rodent carcinogenicity bioassays. The number of reviews on Leydig cell tumors (LCTs) has increased in recent years because of its common occurrence in rodent bioassays and the importance in assessing the relevance of this tumor type to humans. To date, there have been no comprehensive reviews to identify all the compounds that have been shown to induce LCTs in rodents or has any review systematically evaluated the epidemiology data to determine whether humans were at increased risk for developing LCTs from exposure to these agents. This review attempts to fill these deficiencies in the literature by comparing the cytology and ontogeny of the LC, as well as the endocrine and paracrine regulation of both normal and tumorigenic LCs. In addition, the pathology of LCTs in rodents and humans is compared, compounds that induce LC hyperplasia or tumors are enumerated, and the human relevance of chemical-induced LCTs is discussed. There are plausible mechanisms for the chemical induction of LCTs, as typified by agonists of estrogen, gonadotropin releasing hormone (GnRH), and dopamine receptors, androgen receptor antagonists, and inhibitors of 5alpha-reductase, testosterone biosynthesis, and aromatase. Most of these ultimately involve elevation in serum luteinizing hormone (LH) and/or LC responsiveness to LH as proximate mediators. It is expected that further work will uncover additional mechanisms by which LCTs may arise, especially the role of growth factors in modulating LC tumorigenesis. Regarding human relevance, the pathways for regulation of the hypothalamo-pituitary-testis (HPT) axis of rats and humans are similar, such that compounds that either decrease testosterone or estradiol levels or their recognition will increase LH levels. Hence, compounds that induce LCTs in rats by disruption of the HPT axis pose a risk to human health, except for possibly two classes of compounds (GnRH and dopamine agonists). Because GnRH and prolactin receptors are either not expressed or are expressed at very low levels in the testes in humans, the induction of LCTs in rats by GnRH and dopamine agonists would appear not to be relevant to humans; however, the potential relevance to humans of the remaining five pathways of LCT induction cannot be ruled out. Therefore, the central issue becomes what is the relative sensitivity between rat and human LCs in their response to increased LH levels; specifically, is the proliferative stimulus initiated by increased levels of LH attenuated, similar, or enhanced in human vs. rat LCs? There are several lines of evidence that suggest that human LCs are quantitatively less sensitive than rats in their proliferative response to LH, and hence in their sensitivity to chemically induced LCTs. This evidence includes the following: (1) the human incidence of LCTs is much lower than in rodents even when corrected for detection bias; (2) several comparative differences exist between rat and human LCs that may contribute, at least in part, to the greater susceptibility of the rat to both spontaneous and xenobiotic-induced LCTs; (3) endocrine disease states in man (such as androgen-insensitivity syndrome and familial male precocious puberty) underscore the marked comparative differences that exist between rats and man in the responsiveness of their LC's to proliferative stimuli; and (4) several human epidemiology studies are available on a number of compounds that induce LCTs in rats (1,3-butadiene, cadmium, ethanol, lactose, lead, nicotine) that demonstrate no association between human exposure to these compounds and induction of LC hyperplasia or adenomas. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- J C Cook
- DuPont Haskell Laboratory, Newark, DE, USA
| | | | | | | | | |
Collapse
|
40
|
Khan SA, Mirsafian M, Howdeshell K, Dorrington JH. Transforming growth factor-beta inhibits DNA synthesis in immature rat Leydig cells in vitro. Mol Cell Endocrinol 1999; 148:21-8. [PMID: 10221767 DOI: 10.1016/s0303-7207(98)00244-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
TGFbeta isoforms and its receptors are present in the testis and regulate in vitro function of various testicular cells. We have investigated the effects of TGFbeta on basal and mitogen stimulated in vitro proliferation of immature rat Leydig cells. Leydig cells were cultured with TGFbeta1, either alone or in combination with hCG, steroidogenesis-inducing protein (SIP), interleukin-1beta (IL-1beta), insulin or TGFalpha, and the incorporation of [3H]thymidine into DNA was determined. TGFbeta1 blocked the stimulatory effects of hCG, SIP, IL-1beta, insulin and TGF-alpha on DNA synthesis. Since G1- to S-phase transition depends upon cyclins and their associated kinases (cdks), we investigated the effects of TGFbeta on cdks. Immunoreactive levels of cdc2 (or cdk1) and cdk2 were significantly decreased in Leydig cells treated with TGFbeta1. We conclude that TGFbeta1 inhibits proliferation of immature rat Leydig cells and this effect may be mediated, at least in part, through down-regulation of cdc2 and cdk2 synthesis.
Collapse
Affiliation(s)
- S A Khan
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
41
|
Mendis-Handagama SM, Ariyaratne HB, Teunissen van Manen KR, Haupt RL. Differentiation of adult Leydig cells in the neonatal rat testis is arrested by hypothyroidism. Biol Reprod 1998; 59:351-7. [PMID: 9687307 DOI: 10.1095/biolreprod59.2.351] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The effects of propyl thiouracil (PTU)-induced hypothyroidism on testicular interstitial cells and androgen secretion in vitro in the neonatal rat were investigated using Sprague Dawley rats of 1, 7, 14, and 21 days. The results revealed that the fetal Leydig cell (FLC) number per testis was unchanged between and within treatment groups at all ages tested. FLC size was 50% smaller in 21-day controls than in all other groups. Adult Leydig cells (ALCs) were present at Days 14 and 21 in controls but were absent in PTU rats. ALCs approximated FLCs of 21-day controls in size. ALC number per testis showed a sharp increase at Day 21. 11ss-HSD1-positive cells were absent in 21-day PTU testes, but a few were present in 21-day control testes. Testosterone secretion per testis was unchanged in 1- to 21-day controls and 7- to 21-day PTU rats. However, at Day 21, a significantly lower value was seen in controls compared to PTU rats. Testicular androstenedione secretion was not significantly different between control and PTU rats up to 14 days, but a sharp rise was observed in controls at Day 21. At this age, androstenedione levels in PTU rats were similar to those at younger ages. In summary, histological studies showed that hypothyroidism prevented the hypotrophy of FLC and the emergence of ALC in the neonatal rat testis, and agreed favorably with results concerning testicular androgen secretion in vitro. These findings suggest that thyroid hormones have a regulatory role in precursor cell differentiation into Leydig cells in the neonatal rat testis to establish the ALC population.
Collapse
Affiliation(s)
- S M Mendis-Handagama
- Department of Animal Science, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
The time structure of a biological system is at least as intricate as its spatial structure. Whereas we have detailed information about the latter, our understanding of the former is still rudimentary. As techniques for monitoring intracellular processes continuously in single cells become more refined, it becomes increasingly evident that periodic behaviour abounds in all time domains. Circadian timekeeping dominates in natural environments. Here the free-running period is about 24 h. Circadian rhythms in eukaryotes and prokaryotes allow predictive matching of intracellular states with environmental changes during the daily cycles. Unicellular organisms provide excellent systems for the study of these phenomena, which pervade all higher life forms. Intracellular timekeeping is essential. The presence of a temperature-compensated oscillator provides such a timer. The coupled outputs (epigenetic oscillations) of this ultradian clock constitute a special class of ultradian rhythm. These are undamped and endogenously driven by a device which shows biochemical properties characteristic of transcriptional and translational elements. Energy-yielding processes, protein turnover, motility and the timing of the cell-division cycle processes are all controlled by the ultradian clock. Different periods characterize different species, and this indicates a genetic determinant. Periods range from 30 min to 4 h. Mechanisms of clock control are being elucidated; it is becoming evident that many different control circuits can provide these functions.
Collapse
Affiliation(s)
- D Lloyd
- Microbiology Group (PABIO), University of Wales Cardiff, UK
| |
Collapse
|
43
|
Feinberg MJ, Lumia AR, McGinnis MY. The effect of anabolic-androgenic steroids on sexual behavior and reproductive tissues in male rats. Physiol Behav 1997; 62:23-30. [PMID: 9226338 DOI: 10.1016/s0031-9384(97)00105-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study assessed the effects of high doses of anabolic-androgenic steroids (AAS) and their withdrawal on male reproductive behavior and reproductive tissues during development. Prepubertal, peripubertal, and adult male Long Evans rats were divided into 4 groups: 1) Testosterone propionate for 16 weeks (TP), 2) TP for 3 weeks and withdrawn for 13 weeks (TPWL), 3) TP for 16 weeks and withdrawn for 3 weeks (TPWS), 4) propylene glycol (control vehicle) for 16 weeks (PG). As determined by sexual performance and sexual preference tests, administration of high doses of AAS to the peripubertal animals enhanced sexual performance and sexual motivation. There was no significant effect on sexual behavior of the prepubertal animals. High doses of anabolic-androgenic steroids depleted Leydig cell number in the prepubertal and adult rats, but had no effect on the Leydig cell number of the peripubertal animals. After long-term withdrawal from AAS no significant effects on sexual behavior were found. The depletion of Leydig cells that occurred in the prepubertal animals after withdrawal was reversible, while the depletion of the Leydig cells of the adult animals did not return to the control level suggesting a long lasting alteration.
Collapse
Affiliation(s)
- M J Feinberg
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
44
|
Majumdar SS, Winters SJ, Plant TM. A study of the relative roles of follicle-stimulating hormone and luteinizing hormone in the regulation of testicular inhibin secretion in the rhesus monkey (Macaca mulatta). Endocrinology 1997; 138:1363-73. [PMID: 9075690 DOI: 10.1210/endo.138.4.5058] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to examine the relative roles of FSH and LH in stimulating testicular inhibin secretion in the male rhesus monkey. Recombinant human (rh) FSH and rhCG were used as the gonadotropic stimuli, and juvenile rhesus monkeys, in which the endocrine activity of the pituitary-testicular axis was being driven in an adult manner with an intermittent i.v. GnRH infusion, were studied. Immunoactive inhibin levels were measured by the Monash RIA. Initiation of an intermittent i.v. infusion of rhFSH (10 IU every 3 h) resulted, after a delay of 5-6 h, in a progressive increase in the concentrations of immunoactive inhibin, which achieved, after 48 h of stimulation, a value twice that observed during vehicle treatment. Gel filtration chromatography revealed that the FSH-induced elevation in immunoactive inhibin was the result of an increase in three distinct mol wt fractions: peak I (100 kDa), peak II (50-60 kDa), and peak III (31 kDa). Although peak III accounted for most of the inhibin immunoactivity in vehicle-treated animals, peaks I and II were most responsive to FSH stimulation. Application of recently developed enzyme-linked immunosorbent assays for inhibin B and pro-alpha-C-related peptides provided additional insights into the nature of the FSH-sensitive forms of circulating immunoactive inhibin. Most notably, the 31-kDa fraction (peak III) was comprised of inhibin B and pro-alpha-C. In contrast to FSH stimulation, an intermittent infusion of rhCG (40 IU every 3 h), which markedly elevated testicular testosterone secretion, failed to increase immunoactive inhibin concentrations. These findings indicate that various forms of immunoactive inhibin are present in the circulation of the rhesus monkey, and that in this species, FSH is the principal stimulus of the secretion of testicular inhibins, including inhibin B. Additionally, they further underline the importance of the FSH-inhibin feedback loop in governing testicular function in primates.
Collapse
Affiliation(s)
- S S Majumdar
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
45
|
Gaytan F, Bellido C, Morales C, Aguilar E. Response of the testis to gonadotrophin replacement in young hypophysectomized vs. gonadotrophin-releasing hormone antagonist-treated rats. Andrologia 1997; 29:85-90. [PMID: 9111880 DOI: 10.1111/j.1439-0272.1997.tb00468.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have studied the response of atrophic Leydig cells to gonadotrophin replacement in young hypophysectomized (HX) and GnRH antagonist (GnRH-ANT)-treated rats. Hypophysectomy was performed at 28 days of age. Age-matched rats were treated with GnRH-ANT from 28 to 51 days of age. From 45 to 51 days of age, animals were injected with 5 IU recFSH, 10 IU hCG or vehicle. Body and testicular weights, as well as the diameter of the seminiferous tubules were significantly higher in GnRH-ANT-treated than in HX rats. Both recombinant FSH and hCG treatments induced a similar increase in testicular weight and tubule diameter in HX and GnRH-ANT-treated rats. However, hCG treatment induced a significantly higher increase in Leydig cell size in HX (3.2-fold) than in GnRH-ANT-treated (1.4-fold) rats. These results suggest that the response of atrophic Leydig cells to gonadotrophin supplementation was partially inhibited in the presence of GnRH antagonist, whereas Sertoli cell-mediated responses seem not to be affected.
Collapse
Affiliation(s)
- F Gaytan
- Department of Cell Biology, Faculty of Medicine, University of Cordoba, Spain
| | | | | | | |
Collapse
|
46
|
Boujrad N, Ogwuegbu SO, Garnier M, Lee CH, Martin BM, Papadopoulos V. Identification of a stimulator of steroid hormone synthesis isolated from testis. Science 1995; 268:1609-12. [PMID: 7777858 DOI: 10.1126/science.7777858] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gonadal steroidogenesis is regulated by pituitary gonadotropins and a locally produced, unidentified factor. A 70-kilodalton (kD) protein complex secreted from rat Sertoli cells was isolated. The complex, composed of 28- and 38-kD proteins, stimulated steroidogenesis by Leydig cells and ovarian granulosa cells in a dose-dependent and adenosine 3',5'-monophosphate-independent manner. The follicle-stimulating hormone-induced 28-kD protein appeared to be responsible for the bioactivity, but the 38-kD protein was indispensable for maximal activity. The 28- and 38-kD proteins were shown to be identical to the tissue inhibitor of metalloproteinase-1 (TIMP-1) and the proenzyme form of cathepsin L, respectively. Thus, a TIMP-1-procathepsin L complex is a potent activator of steroidogenesis and may regulate steroid concentrations and, thus, germ cell development in both males and females.
Collapse
Affiliation(s)
- N Boujrad
- Department of Cell Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Adult Leydig cells originate within the testis postnatally. Their formation is a continuous process involving gradual transformation of progenitors into the mature cell type. Despite the gradual nature of these changes, studies of proliferation, differentiation and steroidogenic function in the rat Leydig cell led to the recognition of three distinct developmental stages in the adult Leydig cell lineage: Leydig cell progenitors, immature Leydig cells and adult Leydig cells. In the first stage, Leydig cell progenitors arise from active proliferation of mesenchymal-like stem cells in the testicular interstitium during the third week of postnatal life and are recognizable by the presence of Leydig cell markers such as histochemical staining for 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and the present of luteinizing hormone (LH) receptors. They proliferate actively and by day 28 postpartum differentiate into immature Leydig cells. In the second stage, immature Leydig cells are morphologically recognizable as Leydig cells. They have an abundant smooth endoplasmic reticulum and are steroidogenically active, but primarily produce 5 alpha-reduced androgens rather than testosterone. Immature Leydig cells divide only once, giving rise to the total adult Leydig cell population. In the third and final stage, adult Leydig cells are fully differentiated, primarily produce testosterone and rarely divide. LH and androgen act together to stimulate differentiation of Leydig cell progenitors into immature Leydig cells. Preliminary data indicate that insulin like growth factor-1 (IGF-1) acts subsequently in the transformation of immature Leydig cells into adult Leydig cells.
Collapse
Affiliation(s)
- L Benton
- Population Council, New York, NY 10021, USA
| | | | | |
Collapse
|
48
|
Gaytan F, Bellido C, Morales C, Reymundo C, Aguilar E, van Rooijen N. Response to Leydig cell apoptosis in the absence of testicular macrophages. J Reprod Immunol 1995; 29:81-94. [PMID: 8531194 DOI: 10.1016/0165-0378(95)00934-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Removal of apoptotic cells from the tissues appears to be a major function of resident tissue macrophages. In order to investigate further the role of testicular macrophages after massive Leydig cell death, adult rats were injected intra-testicularly with liposome-entrapped dichloromethylene diphosphonate (Cl2MDP-lp, right testis) to deplete testicular macrophages, and with NaCl (left testis) as control. Ten days later, the animals were injected intraperitoneally with ethylene dimethane sulphonate (EDS) to induce Leydig cell apoptosis. In macrophage-containing testes there was a 2-fold increase in the number of macrophages on days 1-3 after EDS treatment and Leydig cells were completely eliminated from the interstitium by the second day after treatment. The main differences in the response to Leydig cell death in macrophage-depleted testes were: (1) an early rise in the concentration of small mononuclear, lymphocyte-like cells, (2) a greater influx of circulating monocytes, (3) the existence of variable inflammatory infiltrates on days 3-4, and (4) the disappearance of infiltrating monocytes by day 10. These results suggest that resident macrophages prevent the inflammatory reaction elicited by massive Leydig cell death.
Collapse
Affiliation(s)
- F Gaytan
- Department of Cell Biology, School of Medicine, University of Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Savage GN, Kerr JB. Effect of seminiferous tubule size on hCG-induced regeneration of peritubular Leydig cells in hypophysectomized, EDS-treated rats. INTERNATIONAL JOURNAL OF ANDROLOGY 1995; 18:35-45. [PMID: 7782130 DOI: 10.1111/j.1365-2605.1995.tb00932.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Following their selective destruction 3 weeks previously by administration of ethane dimethanesulphonate (EDS) the regenerative capacity of Leydig cells was assessed in relation to seminiferous tubule morphology in hypophysectomized adult rats administered 7 daily injections of 100 iu hCG. Total Leydig cell volume per testis in hCG-treated rats (30.2 +/- 3.2 microliters, mean +/- SEM) was significantly (p < 0.01) greater than in the testes of rats at 3 and 4 weeks after EDS-treatment (7.6 +/- 0.7 and 22.7 +/- 1.4 microliters, respectively). Regeneration of Leydig cells in hCG-treated rats significantly (p < 0.05) favoured peritubular locations (18.6 +/- 2.8 microliters/testis) compared to central or perivascular sites of origin (11.6 +/- 1.2 microliters/testis). Partial restoration of spermatogenesis occurred in hCG-treated rats (tubule diameters usually > 250 microns) and a significant inverse correlation was found between peritubular Leydig cell percentage, or total volume per testis, and the volumetric proportion of seminiferous tubules (r = -0.94, p < 0.001) or the seminiferous epithelium (r = -0.73 to -0.79, p < 0.05-0.01). No significant (p > 0.4-0.9) correlation existed between centrally-regenerated Leydig cells and these parameters. The results show that in response to hCG stimulation, Leydig cells are more likely to develop around smaller seminiferous tubules, suggesting that hCG alone cannot mimic the expected pattern of Leydig cell regeneration (central and peritubular origins) which occurs during normal sexual maturation or at 3-4 weeks after EDS treatment. It is concluded that other factors, possibly FSH, are required for typical Leydig cell development which in turn may be influenced by local cellular growth factors originating from either the seminiferous tubules or the adjacent intertubular tissue.
Collapse
Affiliation(s)
- G N Savage
- Department of Anatomy, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
50
|
Wu N, Murono EP. A Sertoli cell-secreted paracrine factor(s) stimulates proliferation and inhibits steroidogenesis of rat Leydig cells. Mol Cell Endocrinol 1994; 106:99-109. [PMID: 7895920 DOI: 10.1016/0303-7207(94)90191-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies have shown that disruption or damage to the seminiferous tubules by radiation, antiandrogen, vitamin A deficiency or experimental cryptorchidism causes Leydig cell hypertrophy and hyperplasia, suggesting that Sertoli cells secrete a mitogenic factor(s) that stimulates Leydig cell proliferation. To study the possible paracrine regulation of Leydig cell proliferation by Sertoli cells, highly purified Leydig cells and Sertoli cells were co-cultured in a two-chambered co-culture system. Our results revealed that co-culture of immature rat Sertoli cells with Leydig cells stimulated Leydig cell DNA synthesis by 19-fold, increased cell number by about 3.9-fold and increased the labeling index from 0.5% to 15.8%. In addition to these changes, co-culture reduced Leydig cell testosterone formation and luteinizing hormone (LH) receptor levels, and dramatically altered the morphology of Leydig cells. The addition of concentrates from Sertoli cell conditioned medium (SCCM) mimicked these biological effects. The Leydig cell mitogenic activity in SCCM was trypsin sensitive and inactivated by boiling for 2 h, suggesting that it is a protein. However, it was resistant to acid and dithiothreitol. The molecular weight of this putative factor(s) is above 10 kDa. The responsiveness of Leydig cells to this mitogenic protein(s) decreased with age, whereas the secretion of this protein(s) by Sertoli cells in culture did not change with age. The addition of 10 ng/ml of follicle stimulating hormone (FSH) dramatically decreased the mitogenic activity in SCCM, indicating that the secretion of this mitogenic factor(s) is inhibited by FSH. This paracrine factor(s) may be as yet an unidentified testicular growth factor(s) because it differs in molecular weight, stability and other characteristics from all previously reported Sertoli cell-produced or expressed growth factors.
Collapse
Affiliation(s)
- N Wu
- Research Service, Dorn Veterans' Hospital, Columbia, SC
| | | |
Collapse
|