1
|
McLaughlin CM, Harnedy-Rothwell PA, Lafferty RA, Sharkey S, Parthsarathy V, Allsopp PJ, McSorley EM, FitzGerald RJ, O'Harte FPM. Macroalgal protein hydrolysates from Palmaria palmata influence the 'incretin effect' in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion. Eur J Nutr 2021; 60:4439-4452. [PMID: 34081167 PMCID: PMC8572210 DOI: 10.1007/s00394-021-02583-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE This study investigated metabolic benefits of protein hydrolysates from the macroalgae Palmaria palmata, previously shown to inhibit dipeptidylpeptidase-4 (DPP-4) activity in vitro. METHODS Previously, Alcalase/Flavourzyme-produced P. palmata protein hydrolysate (PPPH) improved glycaemia and insulin production in streptozotocin-induced diabetic mice. Here the PPPH, was compared to alternative Alcalase, bromelain and Promod-derived hydrolysates and an unhydrolysed control. All PPPH's underwent simulated gastrointestinal digestion (SGID) to establish oral bioavailability. PPPH's and their SGID counterparts were tested in pancreatic, clonal BRIN-BD11 cells to assess their insulinotropic effect and associated intracellular mechanisms. PPPH actions on the incretin effect were assessed via measurement of DPP-4 activity, coupled with GLP-1 and GIP release from GLUTag and STC-1 cells, respectively. Acute in vivo effects of Alcalase/Flavourzyme PPPH administration on glucose tolerance and satiety were assessed in overnight-fasted mice. RESULTS PPPH's (0.02-2.5 mg/ml) elicited varying insulinotropic effects (p < 0.05-0.001). SGID of the unhydrolysed protein control, bromelain and Promod PPPH's retained, or improved, bioactivity regarding insulin secretion, DPP-4 inhibition and GIP release. Insulinotropic effects were retained for all SGID-hydrolysates at higher PPPH concentrations. DPP-4 inhibitory effects were confirmed for all PPPH's and SGID counterparts (p < 0.05-0.001). PPPH's were shown to directly influence the incretin effect via upregulated GLP-1 and GIP (p < 0.01-0.001) secretion in vitro, largely retained after SGID. Alcalase/Flavourzyme PPPH produced the greatest elevation in cAMP (p < 0.001, 1.7-fold), which was fully retained post-SGID. This hydrolysate elicited elevations in intracellular calcium (p < 0.01) and membrane potential (p < 0.001). In acute in vivo settings, Alcalase/Flavourzyme PPPH improved glucose tolerance (p < 0.01-0.001) and satiety (p < 0.05-0.001). CONCLUSION Bioavailable PPPH peptides may be useful for the management of T2DM and obesity.
Collapse
Affiliation(s)
- C M McLaughlin
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Derry, BT52 1SA, Northern Ireland
| | - P A Harnedy-Rothwell
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - R A Lafferty
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Derry, BT52 1SA, Northern Ireland
| | - S Sharkey
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Derry, BT52 1SA, Northern Ireland
| | - V Parthsarathy
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Derry, BT52 1SA, Northern Ireland
| | - P J Allsopp
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Derry, BT52 1SA, Northern Ireland
| | - E M McSorley
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Derry, BT52 1SA, Northern Ireland
| | - R J FitzGerald
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - F P M O'Harte
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Derry, BT52 1SA, Northern Ireland.
| |
Collapse
|
2
|
Mulvihill EE. Dipeptidyl peptidase inhibitor therapy in type 2 diabetes: Control of the incretin axis and regulation of postprandial glucose and lipid metabolism. Peptides 2018; 100:158-164. [PMID: 29412815 DOI: 10.1016/j.peptides.2017.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a widely expressed, serine protease which regulates the bioactivity of many peptides through cleavage and inactivation including the incretin hormones, glucagon like peptide -1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP). Inhibitors of DPP4 are used therapeutically to treat patients with Type 2 Diabetes Mellitus (T2DM) as they potentiate incretin action to regulate islet hormone secretion and improve glycemia and post-prandial lipid excursions. The widespread clinical use of DPP4 inhibitors has increased interest in the molecular mechanisms by which these drugs mediate their beneficial effects. Traditionally, focus has remained on inhibiting the catalytic activity of DPP4 within the plasma compartment, however evidence is emerging on the importance of inactivation of membrane-bound DPP4 in selective tissue beds to potentiate local hormone gradients. Here we review the recent advances in identifying the cellular sources of both circulating and membrane-bound DPP4 important for cleavage of the incretin hormones and regulation of glucose and lipoprotein metabolism.
Collapse
Affiliation(s)
- Erin E Mulvihill
- University of Ottawa Heart Institute, University of Ottawa, Department of Biochemistry, Microbiology and Immunology, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada.
| |
Collapse
|
3
|
Li Y, Li L, Hölscher C. Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases. Rev Neurosci 2018; 27:689-711. [PMID: 27276528 DOI: 10.1515/revneuro-2016-0018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Incretin hormones include glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Due to their promising action on insulinotropic secretion and improving insulin resistance (IR), incretin-based therapies have become a new class of antidiabetic agents for the treatment of type 2 diabetes mellitus (T2DM). Recently, the links between neurodegenerative diseases and T2DM have been identified in a number of studies, which suggested that shared mechanisms, such as insulin dysregulation or IR, may underlie these conditions. Therefore, the effects of incretins in neurodegenerative diseases have been extensively investigated. Protease-resistant long-lasting GLP-1 mimetics such as lixisenatide, liraglutide, and exenatide not only have demonstrated promising effects for treating neurodegenerative diseases in preclinical studies but also have shown first positive results in Alzheimer's disease (AD) and Parkinson's disease (PD) patients in clinical trials. Furthermore, the effects of other related incretin-based therapies such as GIP agonists, dipeptidyl peptidase-IV (DPP-IV) inhibitors, oxyntomodulin (OXM), dual GLP-1/GIP, and triple GLP-1/GIP/glucagon receptor agonists on neurodegenerative diseases have been tested in preclinical studies. Incretin-based therapies are a promising approach for treating neurodegenerative diseases.
Collapse
|
4
|
Sekar R, Singh K, Arokiaraj AWR, Chow BKC. Pharmacological Actions of Glucagon-Like Peptide-1, Gastric Inhibitory Polypeptide, and Glucagon. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:279-341. [PMID: 27572131 DOI: 10.1016/bs.ircmb.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucagon family of peptide hormones is a group of structurally related brain-gut peptides that exert their pleiotropic actions through interactions with unique members of class B1 G protein-coupled receptors (GPCRs). They are key regulators of hormonal homeostasis and are important drug targets for metabolic disorders such as type-2 diabetes mellitus (T2DM), obesity, and dysregulations of the nervous systems such as migraine, anxiety, depression, neurodegeneration, psychiatric disorders, and cardiovascular diseases. The current review aims to provide a detailed overview of the current understanding of the pharmacological actions and therapeutic advances of three members within this family including glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and glucagon.
Collapse
Affiliation(s)
- R Sekar
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - K Singh
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - A W R Arokiaraj
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - B K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Sharma A, Paliwal G, Upadhyay N, Tiwari A. Therapeutic stimulation of GLP-1 and GIP protein with DPP-4 inhibitors for type-2 diabetes treatment. J Diabetes Metab Disord 2015; 14:15. [PMID: 26473146 PMCID: PMC4607261 DOI: 10.1186/s40200-015-0143-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibition is a new treatment for type-2 diabetes. DPP-4 inhibition increases levels of active GLP-1. GLP-1 enhances insulin secretion and diminishes glucagon secretion, in this manner reducing glucose concentrations in blood. A number of DPP-4 inhibitors are under clinical development. However, the durability and long-term safety of DPP-4 inhibition remain to be established. These synthetic DPP-4 inhibitors are showing some side effects. Herbal medicines are alternative medicine over synthetic drugs that can relieve the patients. Various research studies have been carried all over the world to evaluate the efficacy of herbs in the treatment of Type II diabetes mellitus. For a long time type II diabetes mellitus has been treated orally with herbal medicines, because plant products are frequently prescribed due to their less toxicity than conventional medicines.
Collapse
Affiliation(s)
- Alok Sharma
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State
Technological University of Madhya Pradesh), Bhopal, India
| | - Geetanjali Paliwal
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State
Technological University of Madhya Pradesh), Bhopal, India
| | - Nisha Upadhyay
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State
Technological University of Madhya Pradesh), Bhopal, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State
Technological University of Madhya Pradesh), Bhopal, India
| |
Collapse
|
6
|
Mabilleau G, Mieczkowska A, Irwin N, Simon Y, Audran M, Flatt PR, Chappard D. Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties. Bone 2014; 63:61-8. [PMID: 24594344 DOI: 10.1016/j.bone.2014.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/15/2022]
Abstract
Bone remodeling is under complex regulation from nervous, hormonal and local signals, including gut hormones. Among the gut hormones, a role for the glucose-dependent insulinotropic polypeptide (GIP) has been suggested. However, the rapid degradation of GIP in the bloodstream by the ubiquitous enzyme dipeptidyl peptidase-4 (DPP-4) precludes therapeutic use. To circumvent this problem, a series of N-terminally modified GIP agonists have been developed, with N-AcGIP being the most promising. The aims of the present study were to investigate the effects of N-AcGIP on bone at the micro-level using trabecular and cortical microstructural morphology, and at the tissue-level in rats. Copenhagen rats were randomly assigned into control or N-AcGIP-treated groups and received daily injection for 4 weeks. Bone microstructural morphology was assessed by microCT and dynamic histomorphometry and tissue-level properties by nanoindentation, qBEI and infra-red microscopy. Four week treatment with N-AcGIP did not alter trabecular or cortical microstructural morphology. In addition, no significant modifications of mechanical response and properties at the tissue-level were observed in trabecular bone. However, significant augmentations in maximum load (12%), hardness (14%), indentation modulus (13%) and dissipated energy (16%) were demonstrated in cortical bone. These beneficial modifications of mechanical properties at the tissue-level were associated with increased mineralization (22%) and collagen maturity (13%) of the bone matrix. Taken together, the results support a beneficial role of GIP, and particularly stable analogs such as N-AcGIP, on tissue material properties of bone.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- LUNAM Université, GEROM-LHEA, Institut de Biologie en Santé, Angers, France; LUNAM Université, SCIAM, Institut de Biologie en Santé, Angers, France.
| | | | - Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, U K
| | - Yannick Simon
- LUNAM Université, GEROM-LHEA, Institut de Biologie en Santé, Angers, France; Service de Rhumatologie, CHU d'Angers, Angers, France
| | - Maurice Audran
- LUNAM Université, GEROM-LHEA, Institut de Biologie en Santé, Angers, France; Service de Rhumatologie, CHU d'Angers, Angers, France
| | - Peter R Flatt
- School of Biomedical Sciences, University of Ulster, Coleraine, U K
| | - Daniel Chappard
- LUNAM Université, GEROM-LHEA, Institut de Biologie en Santé, Angers, France; LUNAM Université, SCIAM, Institut de Biologie en Santé, Angers, France
| |
Collapse
|
7
|
Abstract
Glucose-dependent insulinotropic polypeptide (GIP or gastric inhibitory polypeptide) is a 42-amino-acid hormone, secreted from the enteroendocrine K cells, which has insulin-releasing and extrapancreatic glucoregulatory actions. However, the unfavourable pharmacokinetic profile and the weak biological effects of native GIP limit its effectiveness for the treatment of type 2 diabetes. To overcome this, longer-acting GIP agonists exhibiting enzymatic stability and enhanced bioactivity have been generated and successfully tested in animal models of diabetes. Thus, GIP receptor agonists offer one of the newest classes of potential antidiabetic drug. GIP is also known to play a role in lipid metabolism and fat deposition. Accordingly, both genetic and chemical ablation of GIP signalling in mice with obesity-diabetes can protect against, or even reverse many of the obesity-associated metabolic disturbances. Strong parallels exist with the beneficial metabolic effects of Roux-en-Y gastric bypass in obese, insulin-resistant humans that surgically ablates GIP-secreting K cells. The purpose of this article is to highlight the therapeutic potential of GIP-based therapeutics in the treatment of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland, UK.
| | | |
Collapse
|
8
|
Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 2009; 52:289-298. [PMID: 19082577 PMCID: PMC4308617 DOI: 10.1007/s00125-008-1202-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/16/2008] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone with anti-apoptotic effects on the pancreatic beta cell. The aim of this study was to generate transgenic mice with fluorescently labelled GIP-secreting K cells and to use these to investigate pathways by which K cells detect nutrients. METHODS Transgenic mice were generated in which the GIP promoter drives the expression of the yellow fluorescent protein Venus. Fluorescent cells were purified by flow cytometry and analysed by quantitative RT-PCR. GIP secretion was assayed in primary cultures of small intestine. RESULTS Expression of Venus in transgenic mice was restricted to K cells, as assessed by immunofluorescence and measurements of the Gip mRNA and GIP protein contents of purified cells. K cells expressed high levels of mRNA for Kir6.2 (also known as Kcnj11), Sur1 (also known as Abcc8), Sglt1 (also known as Slc5a1), and of the G-protein-coupled lipid receptors Gpr40 (also known as Ffar1), Gpr119 and Gpr120. In primary cultures, GIP release was stimulated by glucose, glutamine and linoleic acid, and potentiated by forskolin plus 3-isobutyl-1-methylxanthine (IBMX), but was unaffected by the artificial sweetener sucralose. Secretion was half-maximal at 0.6 mmol/l glucose and partially mimicked by alpha-methylglucopyranoside, suggesting the involvement of SGLT1. Tolbutamide triggered secretion under basal conditions, whereas diazoxide suppressed responses in forskolin/IBMX. CONCLUSIONS/INTERPRETATION These transgenic mice and primary culture techniques provide novel opportunities to interrogate the mechanisms of GIP secretion. Glucose-triggered GIP secretion was SGLT1-dependent and modulated by K(ATP) channel activity but not determined by sweet taste receptors. Synergistic stimulation by elevated cAMP and glucose suggests that targeting appropriate G-protein-coupled receptors may provide opportunities to modulate GIP release in vivo.
Collapse
Affiliation(s)
- H E Parker
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - A M Habib
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - G J Rogers
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - F M Gribble
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - F Reimann
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
9
|
Irwin N, Clarke GC, Green BD, Greer B, Harriott P, Gault VA, O'Harte FPM, Flatt PR. Evaluation of the antidiabetic activity of DPP IV resistant N-terminally modified versus mid-chain acylated analogues of glucose-dependent insulinotropic polypeptide. Biochem Pharmacol 2006; 72:719-28. [PMID: 16859646 DOI: 10.1016/j.bcp.2006.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/12/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
Glucose dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with therapeutic potential for type 2 diabetes due to its insulin-releasing and antihyperglycaemic actions. However, development of GIP-based therapies is limited by N-terminal degradation by DPP IV resulting in a very short circulating half-life. Numerous GIP analogues have now been generated exhibiting DPP IV resistance and extended bioactivity profiles. In this study, we report a direct comparison of the long-term antidiabetic actions of three such GIP molecules, N-AcGIP, GIP(Lys(37)PAL) and N-AcGIP(Lys(37)PAL) in obese diabetic (ob/ob) mice. An extended duration of action of each GIP analogue was demonstrated prior to examining the effects of once daily injections (25nmolkg(-1) body weight) over a 14-day period. Administration of either N-AcGIP, GIP(Lys(37)PAL) or N-AcGIP(Lys(37)PAL) significantly decreased non-fasting plasma glucose and improved glucose tolerance compared to saline treated controls. All three analogues significantly enhanced glucose and nutrient-induced insulin release, and improved insulin sensitivity. The metabolic and insulin secretory responses to native GIP were also enhanced in 14-day analogue treated mice, revealing no evidence of GIP-receptor desensitization. These effects were accompanied by significantly enhanced pancreatic insulin following N-AcGIP(Lys(37)PAL) and increased islet number and islet size in all three groups. Body weight, food intake and circulating glucagon were unchanged. These data demonstrate the therapeutic potential of once daily injection of enzyme resistant GIP analogues and indicate that N-AcGIP is equally as effective as related palmitate derivatised analogues of GIP.
Collapse
Affiliation(s)
- Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hinke SA, Pederson RA, McIntosh CHS. Relative contribution of incretins to the glucose lowering effect of DP IV inhibitors in type 2 diabetes mellitus (T2DM). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 575:119-33. [PMID: 16700515 DOI: 10.1007/0-387-32824-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Simon A Hinke
- Department of Metabolism and Endocrinology, Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | |
Collapse
|
11
|
Green BD, Gault VA, O'Harte FPM, Flatt PR. A comparison of the cellular and biological properties of DPP-IV-resistant N-glucitol analogues of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. Diabetes Obes Metab 2005; 7:595-604. [PMID: 16050953 DOI: 10.1111/j.1463-1326.2004.00455.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The two major incretin hormones--glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP)--are being actively researched by the pharmaceutical industry because of their glucose-lowering and potential anti-diabetic properties. Unfortunately, the inactivation of GLP-1 and GIP in the circulation brought about by dipeptidyl-peptidase-IV (DPP-IV) degradation makes their biological actions short-lived. This study directly compares the cellular and biological properties of GLP-1, GIP and their N-terminally modified counterparts, with glucitol extension at positions His7 and Tyr1 respectively, to confer DPP-IV resistance. METHODS Using both the glucose-responsive pancreatic beta-cell line, BRIN BD11, and the obese diabetic (ob/ob) mouse, we assessed adenosine 3',5'-cyclic monophosphate (cAMP) production and insulinotropic action in vitro as well as in vivo glucose-lowering and insulin-releasing actions. RESULTS The results reveal that glycation of the N-terminus of GLP-1 or GIP stabilized both peptides against DPP-IV degradation. However, N-glucitol-GLP-1 displayed reduced cAMP production, insulinotropic activity and glucose-lowering potency, compared to native GLP-1. By contrast, N-glucitol-GIP exhibited substantially improved biological activities, compared to native GIP, and possessed similar or enhanced in vivo potency to GLP-1. N-terminal extension by means of glucitol addition is more beneficial to bioactivity of GIP than it is to GLP-1. CONCLUSIONS N-terminal glycation generates a super GIP agonist, which possesses acute in vivo glucose-lowering and insulinotropic actions superior to native GLP-1. Therefore, N-glucitol-GIP is a particularly attractive potential candidate molecule for drug therapy of type 2 diabetes.
Collapse
Affiliation(s)
- B D Green
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | | | | | | |
Collapse
|
12
|
Abstract
In recent years, there have been several important advancements in the development of neuropeptide therapeutics. Nevertheless, the targeting of peptide drugs to the CNS remains a formidable obstacle. Delivery of peptide drugs is limited by their poor bioavailability to the brain due to low metabolic stability, high clearance by the liver, and the presence of the blood brain barrier (BBB). Multiple strategies have been devised in an attempt to improve peptide drug delivery to the brain, with variable results. In this review, we discuss several of the strategies that have been used to improve both bioavailability and BBB transport, with an emphasis on antibody based vector delivery, useful for large peptides/small proteins, and glycosylation, useful for small peptides. Further development of these delivery methods may finally enable peptide drugs to be useful for the treatment of neurological disease states.
Collapse
Affiliation(s)
- Richard D Egleton
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA.
| | | |
Collapse
|
13
|
Irwin N, Green BD, Mooney MH, Greer B, Harriott P, Bailey CJ, Gault VA, O'Harte FPM, Flatt PR. A Novel, Long-Acting Agonist of Glucose-Dependent Insulinotropic Polypeptide Suitable for Once-Daily Administration in Type 2 Diabetes. J Pharmacol Exp Ther 2005; 314:1187-94. [PMID: 15923344 DOI: 10.1124/jpet.105.086082] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with a potentially therapeutic role in type 2 diabetes. Rapid degradation by dipeptidylpeptidase IV has prompted the development of enzyme-resistant N-terminally modified analogs, but renal clearance still limits in vivo bioactivity. In this study, we report long-term antidiabetic effects of a novel, N-terminally protected, fatty acid-derivatized analog of GIP, N-AcGIP(LysPAL(37)), in obese diabetic (ob/ob) mice. Once-daily injections of N-AcGIP(LysPAL(37)) over a 14-day period significantly decreased plasma glucose, glycated hemoglobin, and improved glucose tolerance compared with ob/ob mice treated with saline or native GIP. Plasma insulin and pancreatic insulin content were significantly increased by N-AcGIP(LysPAL(37)). This was accompanied by a significant enhancement in the insulin response to glucose together with a notable improvement of insulin sensitivity. No evidence was found for GIP receptor desensitization and the metabolic effects of N-AcGIP(LysPAL(37)) were independent of any change in feeding or body weight. Similar daily injections of native GIP did not affect any of the parameters measured. These data demonstrate the ability of once-daily injections of N-terminally modified, fatty acid-derivatized analogs of GIP, such as N-AcGIP(LysPAL(37)), to improve diabetes control and to offer a new class of agents for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Furman B, Pyne N, Flatt P, O'Harte F. Targeting beta-cell cyclic 3'5' adenosine monophosphate for the development of novel drugs for treating type 2 diabetes mellitus. A review. J Pharm Pharmacol 2005; 56:1477-92. [PMID: 15563754 DOI: 10.1211/0022357044805] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cyclic 3'5'AMP is an important physiological amplifier of glucose-induced insulin secretion by the pancreatic islet beta-cell, where it is formed by the activity of adenylyl cyclase, especially in response to the incretin hormones GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic peptide). These hormones are secreted from the small intestine during and following a meal, and are important in producing a full insulin secretory response to nutrient stimuli. Cyclic AMP influences many steps involved in glucose-induced insulin secretion and may be important in regulating pancreatic islet beta-cell differentiation, growth and survival. Cyclic AMP (cAMP) itself is rapidly degraded in the pancreatic islet beta-cell by cyclic nucleotide phosphodiesterase (PDE) enzymes. This review discusses the possibility of targeting cAMP mechanisms in the treatment of type 2 diabetes mellitus, in which insulin release in response to glucose is impaired. This could be achieved by the use of GLP-1 or GIP to elevate cAMP in the pancreatic islet beta-cell. However, these peptides are normally rapidly degraded by dipeptidyl peptidase IV (DPP IV). Thus longer-acting analogues of GLP-1 and GIP, resistant to enzymic degradation, and orally active inhibitors of DPP IV have also been developed, and these agents were found to improve metabolic control in experimentally diabetic animals and in patients with type 2 diabetes. The use of selective inhibitors of type 3 phosphodiesterase (PDE3B), which is probably the important pancreatic islet beta-cell PDE isoform, would require their targeting to the islet beta-cell, because inhibition of PDE3B in adipocytes and hepatocytes would induce insulin resistance.
Collapse
Affiliation(s)
- Brian Furman
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, Taylor Street, Glasgow G4 ONR, UK.
| | | | | | | |
Collapse
|
15
|
Egleton RD, Davis TP. Development of neuropeptide drugs that cross the blood-brain barrier. Neurotherapeutics 2005. [DOI: 10.1007/bf03206641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Meier JJ, Nauck MA. Clinical endocrinology and metabolism. Glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide. Best Pract Res Clin Endocrinol Metab 2004; 18:587-606. [PMID: 15533777 DOI: 10.1016/j.beem.2004.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The 42 amino acid polypeptide glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide (GIP) is released from intestinal K-cells in response to nutrient ingestion. Based on animal studies, the peptide was initially assumed to act as an endogenous inhibitor of gastric acid secretion. Later it was found that GIP is capable of augmenting glucose-stimulated insulin secretion, and subsequent studies provided evidence that, in humans, the peptide predominantly acts as an incretin hormone. A role for GIP in the regulation of lipid homeostasis and in the development of obesity has been inferred from different animal studies. While GIP strongly stimulates insulin release in healthy humans, the peptide has almost completely lost its insulinotropic effect in patients with type 2 diabetes. This is different from the actions of glucagon-like peptide 1, which stimulates insulin secretion even in the later stages of type 2 diabetes. This suggests that a diminished insulinotropic effect of GIP may contribute to the pathogenesis of type 2 diabetes. This review will summarize the actions of GIP in human physiology and discuss its role in the pathogenesis of type 2 diabetes, as well as the therapeutic options derived from these findings.
Collapse
Affiliation(s)
- Juris J Meier
- Larry Hillblom Islet Research Center, UCLA School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
17
|
Meier JJ, Gallwitz B, Nauck MA. Glucagon-like peptide 1 and gastric inhibitory polypeptide: potential applications in type 2 diabetes mellitus. BioDrugs 2004; 17:93-102. [PMID: 12641488 DOI: 10.2165/00063030-200317020-00002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although the insulinotropic actions of gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) have been known for almost 2 decades, the incretin hormones have not yet become available for clinical application. This can be explained by their unfavourable pharmacological properties. Both hormones are rapidly inactivated by the enzyme dipeptidyl peptidase IV (DPP IV), yielding biologically inactive fragments. There have been several attempts to make use of the antidiabetogenic potential of the incretin hormones. Various analogues of GLP-1 and GIP have been generated in order to achieve resistance to DPP IV degradation. The natural GLP-1 receptor agonist exendin-4, found in the saliva of the Gila monster, has a longer biological half-life after subcutaneous injection than GLP-1, and inhibition of DPP IV using, for example, pyrrolidine derivatives provides elevated concentrations of intact, biologically active GIP and GLP-1 endogenously released from the gut. A continuous intravenous infusion of native GLP-1 for a limited time may be suitable in certain clinical situations. Numerous clinical studies are currently underway to evaluate these approaches. Therefore, an antidiabetic treatment based on incretin hormones may become available within the next 5 years.
Collapse
Affiliation(s)
- Juris J Meier
- Medizinische Klinik I, St. Josef-Hospital, Klinikum der Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
18
|
Abstract
The gut expresses peptide hormones in endocrine cells and neuropeptides in autonomic nerves. Several of these peptides have the ability to stimulate insulin secretion. Gut hormones that are released after meal ingestion and stimulate insulin secretion postprandially are called incretins. In humans, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the most important incretins. The potential use of these insulinotropic gut peptides for the treatment of diabetes has been considered. This has been most successful for GLP-1, which exerts antidiabetogenic properties in subjects with type 2 diabetes by stimulating insulin secretion, increasing beta-cell mass, inhibiting glucagon secretion, delaying gastric emptying, and inducing satiety. However, GLP-1 is rapidly degraded by the enzyme dipeptidyl peptidase IV (DPPIV), making it unattractive as a therapeutic agent because of a very short half-life. Successful strategies to overcome this difficulty are the use of DPPIV-resistant GLP-1 receptor agonists, such as NN2211 or exendin-4, and the use of inhibitors of DPPIV, such as NVPDPP728 and P32/98. These two approaches are explored in clinical investigations.
Collapse
Affiliation(s)
- Bo Ahrén
- Department of Medicine, Lund University, B11 BMC, LUND SE-221 84, Sweden.
| |
Collapse
|
19
|
Abstract
OBJECTIVE To examine the mechanisms of action, therapeutic potential, and challenges inherent in the use of incretin peptides and dipeptidyl peptidase-IV (DPP-IV) inhibitors for the treatment of type 2 diabetes. RESEARCH DESIGN AND METHODS The scientific literature describing the biological importance of incretin peptides and DPP-IV inhibitors in the control of glucose homeostasis has been reviewed, with an emphasis on mechanisms of action, experimental diabetes, human physiological experiments, and short-term clinical studies in normal and diabetic human subjects. RESULTS Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) exert important effects on beta-cells to stimulate glucose-dependent insulin secretion. Both peptides also regulate beta-cell proliferation and cytoprotection. GLP-1, but not GIP, inhibits gastric emptying, glucagon secretion, and food intake. The glucose-lowering actions of GLP-1, but not GIP, are preserved in subjects with type 2 diabetes. However, native GLP-1 is rapidly degraded by DPP-IV after parenteral administration; hence, degradation-resistant, long-acting GLP-1 receptor (GLP-1R) agonists are preferable agents for the chronic treatment of human diabetes. Alternatively, inhibition of DPP-IV-mediated incretin degradation represents a complementary therapeutic approach, as orally available DPP-IV inhibitors have been shown to lower glucose in experimental diabetic models and human subjects with type 2 diabetes. CONCLUSIONS GLP-1R agonists and DPP-IV inhibitors have shown promising results in clinical trials for the treatment of type 2 diabetes. The need for daily injections of potentially immunogenic GLP-1-derived peptides and the potential for unanticipated side effects with chronic use of DPP-IV inhibitors will require ongoing scrutiny of the risk-benefit ratio for these new therapies as they are evaluated in the clinic.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Toronto General Hospital, University of Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Gault VA, O'Harte FPM, Flatt PR. Glucose-dependent insulinotropic polypeptide (GIP): anti-diabetic and anti-obesity potential? Neuropeptides 2003; 37:253-63. [PMID: 14607102 DOI: 10.1016/j.npep.2003.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP or gastric inhibitory polypeptide) is a gastrointestinal hormone, which modulates physiological insulin secretion. Due to its insulinotropic activity, there has been a considerable increase of interest in utilising the hormone as a potential therapy for type 2 diabetes. One of the difficulties in attempting to harness the insulinotropic activity of GIP into an effective therapeutic agent is its short biological half-life in the circulation. However, recent years have witnessed the development of a substantial number of designer enzyme-resistant 'super GIP' molecules with potent insulinotropic and anti-diabetic properties. In addition, observations in transgenic GIP receptor deficient mice indicate that GIP directly links overnutrition to obesity, therein playing a crucial role in the development of obesity and related metabolic disorders. The present review aims to highlight the rapidly emerging potential therapeutic applications of GIP, and especially, enzyme-resistant GIP analogues.
Collapse
Affiliation(s)
- Victor A Gault
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK.
| | | | | |
Collapse
|
21
|
Horvat S, Jakas A. Peptide and amino acid glycation: new insights into the Maillard reaction. J Pept Sci 2003; 10:119-37. [PMID: 15113085 DOI: 10.1002/psc.519] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nonenzymatic glycation of proteins, peptides and other macromolecules (the Maillard reaction) has been implicated in a number of pathologies, most clearly in diabetes mellitus. but also in the normal processes of aging and neurodegenerative amyloid diseases such as Alzheimer's. In the early stage, glycation results in the formation of Amadori-modified proteins. In the later stages, advanced glycation end products (AGE) are irreversibly formed from Amadori products leading to the formation of reactive intermediates, crosslinking of proteins, and the formation of brown and fluorescent polymeric materials. Although, the glycation of structural proteins has been attributed a key role in the complications of diabetes, recent attention has been devoted to the physiological significance of glycated peptide hormones. This review focuses on the physico-chemical properties of the Amadori compounds of bioactive peptides of endogenous and exogenous origin, such as Leu-enkephalin and morphiceptin, investigated under different conditions as well as on novel pathways in the Maillard reaction observed from investigating intramolecular events in ester-linked glycopeptides.
Collapse
Affiliation(s)
- Stefica Horvat
- Division of Organic Chemistry and Biochemistry, Ruder Bosković Institute, POB 180, 10002 Zagreb, Croatia.
| | | |
Collapse
|
22
|
Gault VA, Flatt PR, O'Harte FPM. Glucose-dependent insulinotropic polypeptide analogues and their therapeutic potential for the treatment of obesity-diabetes. Biochem Biophys Res Commun 2003; 308:207-13. [PMID: 12901855 DOI: 10.1016/s0006-291x(03)01361-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a key incretin hormone, released postprandially into the circulation in response to feeding, producing a glucose-dependent stimulation of insulin secretion. It is this glucose-dependency that has attracted attention towards GIP as a potential therapeutic agent for the treatment of type 2 diabetes. A major drawback to achieving this goal has been the rapid degradation of circulating GIP by the ubiquitous enzyme, dipeptidylpeptidase IV (DPP IV). However, recent studies have described a number of novel structurally modified analogues of GIP with enhanced plasma stability, insulinotropic and antihyperglycaemic activity. The purpose of this article was to provide an overview of the biological effects of several GIP modifications and to highlight the potential of such analogues in the treatment of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Victor A Gault
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK.
| | | | | |
Collapse
|
23
|
Lambeir AM, Durinx C, Scharpé S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 2003; 40:209-94. [PMID: 12892317 DOI: 10.1080/713609354] [Citation(s) in RCA: 699] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dipeptidyl-peptidase IV/CD26 (DPP IV) is a cell-surface protease belonging to the prolyloligopeptidase family. It selectively removes the N-terminal dipeptide from peptides with proline or alanine in the second position. Apart from its catalytic activity, it interacts with several proteins, for instance, adenosine deaminase, the HIV gp120 protein, fibronectin, collagen, the chemokine receptor CXCR4, and the tyrosine phosphatase CD45. DPP IV is expressed on a specific set of T lymphocytes, where it is up-regulated after activation. It is also expressed in a variety of tissues, primarily on endothelial and epithelial cells. A soluble form is present in plasma and other body fluids. DPP IV has been proposed as a diagnostic or prognostic marker for various tumors, hematological malignancies, immunological, inflammatory, psychoneuroendocrine disorders, and viral infections. DPP IV truncates many bioactive peptides of medical importance. It plays a role in glucose homeostasis through proteolytic inactivation of the incretins. DPP IV inhibitors improve glucose tolerance and pancreatic islet cell function in animal models of type 2 diabetes and in diabetic patients. The role of DPP IV/ CD26 within the immune system is a combination of its exopeptidase activity and its interactions with different molecules. This enables DPP IV/CD26 to serve as a co-stimulatory molecule to influence T cell activity and to modulate chemotaxis. DPP IV is also implicated in HIV-1 entry, malignant transformation, and tumor invasion.
Collapse
Affiliation(s)
- Anne-Marie Lambeir
- Department of Pharmaceutical Sciences, Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| | | | | | | |
Collapse
|
24
|
Gault VA, O'Harte FPM, Harriott P, Flatt PR. Degradation, cyclic adenosine monophosphate production, insulin secretion, and glycemic effects of two novel N-terminal Ala2-substituted analogs of glucose-dependent insulinotropic polypeptide with preserved biological activity in vivo. Metabolism 2003; 52:679-87. [PMID: 12800091 DOI: 10.1016/s0026-0495(03)00027-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) has significant potential in diabetes therapy due to its ability to serve as a glucose-dependent activator of insulin secretion. However, its biological activity is severely compromised by the ubiquitous enzyme dipeptidylpeptidase IV (DPP IV), which removes the N-terminal Tyr(1)-Ala(2) dipeptide from GIP. Therefore, 2 novel N-terminal Ala(2)-substituted analogs of GIP, with Ala substituted by 2-aminobutyric acid (Abu) or sarcosine (Sar), were synthesized and tested for metabolic stability and biological activity both in vitro and in vivo. Incubation with DPP IV gave half-lives for degradation of native GIP, (Abu(2))GIP, and (Sar(2))GIP to be 2.3, 1.9, and 1.6 hours, respectively, while in human plasma, the half-lives were 6.2, 7.6, and 5.4 hours, respectively. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, native GIP, (Abu(2))GIP, and (Sar(2))GIP dose-dependently stimulated cyclic adenosine monophosphate (camp) production with EC(50) values of 18.2, 38.5, and 54.6 nmol/L, respectively. In BRIN-BD11 cells, both (Abu(2))GIP and (Sar(2))GIP (10(-13) to 10(-8) mol/L) dose-dependently stimulated insulin secretion with significantly enhanced effects at 16.7 mmol/L compared with 5.6 mmol/L glucose. In obese diabetic (ob/ob) mice, GIP and (Sar(2))GIP significantly increased (1.4-fold to 1.5-fold; P <.05) plasma insulin concentrations, whereas (Abu(2))GIP exerted only minor effects. Changes in plasma glucose were small reflecting the severe insulin resistance of this mutant. The present data show that substitution of the penultimate N-terminal Ala(2) in GIP by Abu or Sar results in analogs with moderately reduced metabolic stability and biological activity in vitro, but with preserved biological activity in vivo.
Collapse
Affiliation(s)
- Victor A Gault
- School of Biomedical Sciences, University of Ulster, Coleraine, N. Ireland, UK
| | | | | | | |
Collapse
|
25
|
Mayo KE, Miller LJ, Bataille D, Dalle S, Göke B, Thorens B, Drucker DJ. International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 2003; 55:167-94. [PMID: 12615957 DOI: 10.1124/pr.55.1.6] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peptide hormones within the secretin-glucagon family are expressed in endocrine cells of the pancreas and gastrointestinal epithelium and in specialized neurons in the brain, and subserve multiple biological functions, including regulation of growth, nutrient intake, and transit within the gut, and digestion, energy absorption, and energy assimilation. Glucagon, glucagon-like peptide-1, glucagon-like peptide-2, glucose-dependent insulinotropic peptide, growth hormone-releasing hormone and secretin are structurally related peptides that exert their actions through unique members of a structurally related G protein-coupled receptor class 2 family. This review discusses advances in our understanding of how these peptides exert their biological activities, with a focus on the biological actions and structural features of the cognate receptors. The receptors have been named after their parent and only physiologically relevant ligand, in line with the recommendations of the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR).
Collapse
Affiliation(s)
- Kelly E Mayo
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Hinke SA, Gelling R, Manhart S, Lynn F, Pederson RA, Kühn-Wache K, Rosche F, Demuth HU, Coy D, McIntosh CHS. Structure-activity relationships of glucose-dependent insulinotropic polypeptide (GIP). Biol Chem 2003; 384:403-7. [PMID: 12715891 DOI: 10.1515/bc.2003.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Six GIP(1-NH2) analogs were synthesized with modifications (de-protonation, N-methylation, reversed chirality, and substitution) at positions 1, 3, and 4 of the N-terminus, and additionally, a cyclized GIP derivative was synthesized. The relationship between altered structure to biological activity was assessed by measuring receptor binding affinity and ability to stimulate adenylyl cyclase in CHO-K1 cells transfected with the wild-type GIP receptor (wtGIPR). These structure-activity relationship studies demonstrate the importance of the GIP N-terminus and highlight structural constraints that can be introduced in GIP analogs. These analogs may be useful starting points for design of peptides with enhanced in vivo bioactivity.
Collapse
Affiliation(s)
- Simon A Hinke
- Department of Physiology, University of British Columbia, Vancouver, B.C., Canada V6T 1Z3
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gault VA, O'Harte FPM, Harriott P, Mooney MH, Green BD, Flatt PR. Effects of the novel (Pro3)GIP antagonist and exendin(9-39)amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin. Diabetologia 2003; 46:222-30. [PMID: 12627321 DOI: 10.1007/s00125-002-1028-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Revised: 09/10/2002] [Indexed: 01/17/2023]
Abstract
AIMS/HYPOTHESIS This study examined the biological effects of the GIP receptor antagonist, (Pro3)GIP and the GLP-1 receptor antagonist, exendin(9-39)amide. METHODS Cyclic AMP production was assessed in Chinese hamster lung fibroblasts transfected with human GIP or GLP-1 receptors, respectively. In vitro insulin release studies were assessed in BRIN-BD11 cells while in vivo insulinotropic and glycaemic responses were measured in obese diabetic ( ob/ ob) mice. RESULTS In GIP receptor-transfected fibroblasts, (Pro(3))GIP or exendin(9-39)amide inhibited GIP-stimulated cyclic AMP production with maximal inhibition of 70.0+/-3.5% and 73.5+/-3.2% at 10(-6) mol/l, respectively. In GLP-1 receptor-transfected fibroblasts, exendin(9-39)amide inhibited GLP-1-stimulated cyclic AMP production with maximal inhibition of 60+/-0.7% at 10(-6) mol/l, whereas (Pro(3))GIP had no effect. (Pro(3))GIP specifically inhibited GIP-stimulated insulin release (86%; p<0.001) from clonal BRIN-BD11 cells, but had no effect on GLP-1-stimulated insulin release. In contrast, exendin(9-39)amide inhibited both GIP and GLP-1-stimulated insulin release (57% and 44%, respectively; p<0.001). Administration of (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides (25 nmol/kg body weight, i.p.) to fasted (ob/ob) mice decreased the plasma insulin responses by 42%, 54% and 49%, respectively (p<0.01 to p<0.001). The hyperinsulinaemia of non-fasted (ob/ob) mice was decreased by 19%, 27% and 18% (p<0.05 to p<0.01) by injection of (Pro3)GIP, exendin(9-39)amide or combined peptides but accompanying changes of plasma glucose were small. CONCLUSIONS/INTERPRETATION These data show that (Pro(3))GIP is a specific GIP receptor antagonist. Furthermore, feeding studies in one commonly used animal model of obesity and diabetes, (ob/ob) mice, suggest that GIP is the major physiological component of the enteroinsular axis, contributing approximately 80% to incretin-induced insulin release.
Collapse
Affiliation(s)
- V A Gault
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA Northern Ireland, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Lambeir AM, Durinx C, Scharpé S, De Meester I. Dipeptidyl-Peptidase IV from Bench to Bedside: An Update on Structural Properties, Functions, and Clinical Aspects of the Enzyme DPP IV. Crit Rev Clin Lab Sci 2003. [DOI: 10.1080/713609354/?{alert(1)}] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
29
|
Gault VA, Flatt PR, Bailey CJ, Harriott P, Greer B, Mooney MH, O'harte FPM. Enhanced cAMP generation and insulin-releasing potency of two novel Tyr1-modified enzyme-resistant forms of glucose-dependent insulinotropic polypeptide is associated with significant antihyperglycaemic activity in spontaneous obesity-diabetes. Biochem J 2002; 367:913-20. [PMID: 12150711 PMCID: PMC1222937 DOI: 10.1042/bj20020319] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Revised: 07/04/2002] [Accepted: 08/01/2002] [Indexed: 11/17/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type II diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC(50) values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP ( P <0.01 to P <0.001). In obese diabetic ( ob / ob ) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type II diabetes mellitus.
Collapse
Affiliation(s)
- Victor A Gault
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Meier JJ, Nauck MA, Schmidt WE, Gallwitz B. Gastric inhibitory polypeptide: the neglected incretin revisited. REGULATORY PEPTIDES 2002; 107:1-13. [PMID: 12137960 DOI: 10.1016/s0167-0115(02)00039-3] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
After the ingestion of fat- and glucose-rich meals, gut hormones are secreted into the circulation in order to stimulate insulin secretion. This so-called "incretin effect" is primarily conferred by Glucagon-like peptide 1 (GLP-1) and Gastric Inhibitory Polypeptide (GIP). In contrast to GLP-1, GIP has lost most of its insulinotropic effect in type 2 diabetic patients. In addition to its main physiological role in the regulation of endocrine pancreatic secretion, GIP exerts various peripheral effects on adipose tissue and lipid metabolism, thereby leading to increased lipid deposition in the postprandial state. In some animal models, an influence on gastrointestinal functions has been described. However, such effects do not seem to play an important role in humans. During the last years, the major line of research has focussed on GLP-1, due to its promising potential for the treatment of type 2 diabetes mellitus. However, the physiological importance of GIP in the regulation of insulin secretion has been shown to even exceed that of GLP-1. Furthermore, work from various groups has provided evidence that GIP contributes to the pathogenesis of type 2 diabetes to a considerable degree. Recent data with modified GIP analogues further suggested a possibility of therapeutic use in the treatment of type 2 diabetes. Thus, it seems worthwhile to refocus on this important and-sometimes-neglected incretin hormone. The present work aims to review the physiological functions of GIP, to characterize its role in the pathogenesis of type 2 diabetes, and to discuss possible clinical applications and future perspectives in the light of new findings.
Collapse
Affiliation(s)
- Juris J Meier
- Medizinische Klinik I, St. Josef-Hospital, Klinikum der Ruhr-Universität Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | | | | | | |
Collapse
|
31
|
Hinke SA, Gelling RW, Pederson RA, Manhart S, Nian C, Demuth HU, McIntosh CHS. Dipeptidyl peptidase IV-resistant [D-Ala(2)]glucose-dependent insulinotropic polypeptide (GIP) improves glucose tolerance in normal and obese diabetic rats. Diabetes 2002; 51:652-61. [PMID: 11872663 DOI: 10.2337/diabetes.51.3.652] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The therapeutic potential of glucose-dependent insulinotropic polypeptide (GIP) for improving glycemic control has largely gone unstudied. A series of synthetic GIP peptides modified at the NH(2)-terminus were screened in vitro for resistance to dipeptidyl peptidase IV (DP IV) degradation and potency to stimulate cyclic AMP and affinity for the transfected rat GIP receptor. In vitro experiments indicated that [D-Ala(2)]GIP possessed the greatest resistance to enzymatic degradation, combined with minimal effects on efficacy at the receptor. Thus, [D-Ala(2)]GIP(1--42) was selected for further testing in the perfused rat pancreas and bioassay in conscious Wistar and Zucker rats. When injected subcutaneously in normal Wistar, Fa/?, or fa/fa Vancouver Diabetic Fatty (VDF) Zucker rats, both GIP and [D-Ala(2)]GIP significantly reduced glycemic excursions during a concurrent oral glucose tolerance test via stimulation of insulin release. The latter peptide displayed greater in vivo effectiveness, likely because of resistance to enzymatic degradation. Hence, despite reduced bioactivity in diabetic models at physiological concentrations, GIP and analogs with improved plasma stability still improve glucose tolerance when given in supraphysiological doses, and thus may prove useful in the treatment of diabetic states.
Collapse
Affiliation(s)
- Simon A Hinke
- Department of Physiology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Gault VA, O'Harte FPM, Harriott P, Flatt PR. Characterization of the cellular and metabolic effects of a novel enzyme-resistant antagonist of glucose-dependent insulinotropic polypeptide. Biochem Biophys Res Commun 2002; 290:1420-6. [PMID: 11820780 DOI: 10.1006/bbrc.2002.6364] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel N-terminally substituted Pro(3) analogue of glucose-dependent insulinotropic polypeptide (GIP) was synthesized and tested for plasma stability and biological activity both in vitro and in vivo. Native GIP was rapidly degraded by human plasma with only 39 +/- 6% remaining intact after 8 h, whereas (Pro(3))GIP was completely stable even after 24 h. In CHL cells expressing the human GIP receptor, (Pro(3))GIP antagonized the cyclic adenosine monophosphate (cAMP) stimulatory ability of 10(-7) M native GIP, with an IC(50) value of 2.6 microM. In the clonal pancreatic beta cell line BRIN-BD11, (Pro(3))GIP over the concentration range 10(-13) to 10(-8) M dose dependently inhibited GIP-stimulated (10(-7) M) insulin release (1.2- to 1.7-fold; P < 0.05 to P < 0.001). In obese diabetic (ob/ob) mice, intraperitoneal administration of (Pro(3))GIP (25 nmol/kg body wt) countered the ability of native GIP to stimulate plasma insulin (2.4-fold decrease; P < 0.001) and lower the glycemic excursion (1.5-fold decrease; P < 0.001) induced by a glucose load (18 mmol/kg body wt). Collectively these data demonstrate that (Pro(3))GIP is a novel and potent enzyme-resistant GIP receptor antagonist capable of blocking the ability of native GIP to increase cAMP, stimulate insulin secretion, and improve glucose homeostasis in a commonly employed animal model of type 2 diabetes.
Collapse
Affiliation(s)
- Victor A Gault
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, United Kingdom
| | | | | | | |
Collapse
|
33
|
Mooney MH, Abdel-Wahab YH, Morgan LM, O'Harte FP, Flatt PR. Detection of glycated gastric inhibitory polypeptide within the intestines of diabetic obese (ob/ob) mice. Endocrine 2001; 16:167-71. [PMID: 11954659 DOI: 10.1385/endo:16:3:167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2001] [Revised: 10/23/2001] [Accepted: 10/23/2001] [Indexed: 12/31/2022]
Abstract
Gastric inhibitory polypeptide (GIP) is produced within endocrine cells of the small intestine and released into the circulation upon nutrient ingestion. This study has quantified the levels of this insulinotropic peptide in the intestines of lean and diabetic obese ob/ob mice and estimated the proportion that is glycated. The total intestinal GIP concentration and content of the diabetic mice were significantly greater (p < 0.01) than that of control animals. Affinity chromatographic separation and side-viewing GIP radioimmunoassay demonstrated that approx 20% of the GIP extracted from intestines of ob/ob mice was present in glycated form. Less than 2% of intestinal GIP was glycated in lean mice. In conclusion substantial quantities of glycated GIP exist within the intestines of diabetic ob/ob mice, suggesting that this may be a contributing factor to the physiological disarray of this syndrome.
Collapse
Affiliation(s)
- M H Mooney
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland.
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Deacon CF, Danielsen P, Klarskov L, Olesen M, Holst JJ. Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes 2001; 50:1588-97. [PMID: 11423480 DOI: 10.2337/diabetes.50.7.1588] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucose-dependent insulinotropic peptide (GIP) is known to be degraded by dipeptidyl peptidase IV (DPP IV), forming an inactive metabolite, but the extent of the enzyme's role in regulating the biological activity of GIP in vivo is still largely unknown. In nonfasted anesthetized pigs given an intravenous infusion of GIP, the intact peptide (determined by a novel NH(2)-terminally directed radioimmunoassay) accounts for only 14.5 +/- 2.5% of total immunoreactivity. This is increased (to 40.9 +/- 0.9%, P < 0.0001) by coadministration of valine-pyrrolidide (a specific DPP IV inhibitor) at a dose that completely inhibits plasma DPP IV activity. The plasma t(1/2) of intact GIP is prolonged by the inhibitor (from 3.3 +/- 0.3 to 8.1 +/- 0.6 min; P < 0.001), whereas the t(1/2) for COOH-terminal immunoreactivity is unaffected (13.2 +/- 0.5 and 11.5 +/- 0.8 min, pre- and postinhibitor). Measurement of arteriovenous concentration differences revealed that the liver, kidney, and extremities are the main sites of removal of exogenous intact GIP (organ extractions, 28.0 +/- 2.2, 26.3 +/- 5.7, and 21.8 +/- 3.0%, respectively). These organ extractions are reduced (P < 0.02) but not eliminated (kidney and extremities) by valine-pyrrolidide (to 6.5 +/- 4.6, 14.1 +/- 3.1, and 13.9 +/- 2.4%, respectively). Valine-pyrrolidide potentiates the insulinotropic effect of GIP (P < 0.02), resulting in an enhanced glucose disappearance rate (k, from 8.0 +/- 0.5 to 15.5 +/- 2.2%/min; P < 0.01) and a reduction in the glucose excursion after an intravenous glucose load (area under the curve, from 133 +/- 23 to 75 +/- 9 min. mmol/l; P < 0.05). These results suggest that DPP IV plays an important role in GIP metabolism but is not the sole enzyme responsible for its NH(2)-terminal degradation. Nevertheless, DPP IV inhibition increases the proportion of intact peptide sufficiently to enhance its insulinotropic and antihyperglycemic effects.
Collapse
Affiliation(s)
- C F Deacon
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
36
|
Hinke SA, Manhart S, Pamir N, Demuth H, W Gelling R, Pederson RA, McIntosh CH. Identification of a bioactive domain in the amino-terminus of glucose-dependent insulinotropic polypeptide (GIP). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:143-55. [PMID: 11343800 DOI: 10.1016/s0167-4838(01)00181-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The incretins are a class of hormones released from the small bowel that act on the endocrine pancreas to potentiate insulin secretion in a glucose-dependent manner. Due to the requirement for an elevated glucose concentration for activity, the incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1, have potential in the treatment of non-insulin-dependent diabetes mellitus. A series of synthetic peptide GIP fragments was generated for the purpose of elucidating the bioactive domain of the molecule. Peptides were screened for stimulation of cyclic AMP (cAMP) accumulation in Chinese hamster ovary cells transfected with the rat islet GIP receptor. Of the GIP fragments tested, GIP(1-14) and GIP(19-30) demonstrated the greatest cAMP-stimulating ability over the range of concentrations tested (up to 20 microM). In contrast, GIP fragments corresponding to amino acids 15-42, 15-30, 16-30 and 17-30 all demonstrated weak antagonism of GIP(1-42) activity. Competitive-binding displacement studies indicated that these peptides were low-affinity ligands for the GIP receptor. To examine biological activity in vivo, a bioassay was developed in the anesthetized rat. Intravenous infusion of GIP(1-42) (1 pmol/min/100 g) with a concurrent intraperitoneal glucose load (1 g/kg) significantly reduced circulating blood glucose excursions through stimulation of insulin release. Higher doses of GIP(1-14) and GIP(19-30) (100 pmol/min/100 g) also reduced blood glucose excursions.
Collapse
Affiliation(s)
- S A Hinke
- Department of Physiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|