1
|
Rooney AM, McNeill TJ, Ross FP, Bostrom MPG, van der Meulen MCH. PTH Treatment Increases Cortical Bone Mass More in Response to Compression than Tension in Mice. J Bone Miner Res 2023; 38:59-69. [PMID: 36281491 DOI: 10.1002/jbmr.4728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 01/10/2023]
Abstract
Parathyroid hormone (PTH) is an anabolic osteoporosis treatment that increases bone mass and reduces fracture risk. Clinically, the effects of PTH are site-specific, increasing bone mass more at the spine than the hip and not increasing bone mass at the radius. Differences in local loading environment between the spine, hip, and radius may help explain the variation in efficacy, as PTH and mechanical loading have been shown to synergistically increase bone mass. We hypothesized that differences in loading mode might further explain these variations. Owing to the curvature of the mouse tibia, cyclic compression of the hindlimb causes bending at the tibial midshaft, placing the anterior surface under tension and the posterior surface under compression. We investigated the combination of PTH treatment and tibial loading in an osteoblast-specific estrogen receptor-alpha knockout mouse model of low bone mass (pOC-ERαKO) and their littermate controls (LCs) and analyzed bone morphology in the tensile, compressive, and neutral regions of the tibial midshaft. We also hypothesized that pretreating wild-type C57Bl/6J (WT) mice with PTH prior to mechanical loading would enhance the synergistic anabolic effects. Compression was more anabolic than tension, and PTH enhanced the effect of loading, particularly under compression. PTH pretreatment maintained the synergistic anabolic effect for longer durations than concurrent treatment and loading alone. Together these data provide insights into more effective physical therapy and exercise regimens for patients receiving PTH treatment. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Amanda M Rooney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Tyler J McNeill
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | | | | - Marjolein C H van der Meulen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Research Division, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
2
|
Sieklucka B, Pawlak D, Domaniewski T, Hermanowicz J, Lipowicz P, Doroszko M, Pawlak K. Serum PTH, PTH1R/ATF4 pathway, and the sRANKL/OPG system in bone as a new link between bone growth, cross-sectional geometry, and strength in young rats with experimental chronic kidney disease. Cytokine 2021; 148:155685. [PMID: 34411988 DOI: 10.1016/j.cyto.2021.155685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
The progression of chronic kidney disease (CKD) in children is associated with deregulated parathyroid hormone (PTH), growth retardation, and low bone accrual. PTH can cause both catabolic and anabolic impact on bone, and the activating transcription factor 4 (ATF4), a downstream target gene of PTH, is related to its anabolic effect. Osteoprotegerin (OPG) and receptor activator of NF-κB ligand (RANKL) are PTH-dependent cytokines, which may play an important role in the regulation of bone remodeling. This study aimed to evaluate the impact of endogenous PTH and the bone RANKL/OPG system on bone growth, cross-sectional geometry and strength utilizing young, nephrectomized rats. The parameters of cross-sectional geometry were significantly elevated in rats with CKD during the three-month experimental period compared with the controls, and they were strongly associated with serum PTH levels and the expression of parathyroid hormone 1 receptor (PTH1R)/ATF4 genes in bone. Low bone soluble RANKL (sRANKL) levels and sRANKL/OPG ratios were also positively correlated with cross-sectional bone geometry and femoral length. Moreover, the analyzed geometric parameters were strongly related to the biomechanical properties of femoral diaphysis. In summary, the mild increase in endogenous PTH, its anabolic PTH1R/ATF4 axis and PTH-dependent alterations in the bone RANKL/OPG system may be one of the possible mechanisms responsible for the favorable impact on bone growth, cross-sectional geometry and strength in young rats with experimental CKD.
Collapse
Affiliation(s)
- Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Justyna Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Paweł Lipowicz
- Institute of Biocybernetics and Biomedical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland
| | - Michał Doroszko
- Department of Mechanics and Applied Computer Science, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| |
Collapse
|
3
|
Xu Y, Lv C, Zhang J, Li Y, Li T, Zhang C, Chen J, Bai D, Yin X, Zou S. Intermittent parathyroid hormone promotes cementogenesis in a PKA- and ERK1/2-dependent manner. J Periodontol 2019; 90:1002-1013. [PMID: 31026057 DOI: 10.1002/jper.18-0639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/27/2019] [Accepted: 02/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intermittent parathyroid hormone (PTH) promotes cementogenesis and provides a promising biotherapeutic to rehabilitate resorbed roots. However, the underlying mechanisms remain inconclusive. Cyclic aenosine monophosphate (AMP)-dependent protein kinases A (PKA) and extracellular signal-regulated MAP kinases 1/2 (ERK1/2) are key regulators of bone remodeling. The present study aims to investigate whether PKA and ERK1/2 are involved in the process of intermittent PTH-promoted cementogenesis. METHODS Sprague-Dawley rats in experimental group (n = 30) received a daily subcutaneous injection of PTH and the control (n = 30) received placebo vehicle for 1, 2, 3, 4, and 5 weeks. Results were evaluated by hematoxylin and eosin and immunohistochemistry staining. In vitro, OCCM-30 cells were incubated with intermittent PTH. H89 and U0126 were used to determine the role of PKA and ERK1/2, respectively. The cementogenic results were analyzed by reverse transcription-polymerase chain reaction (RT-PCR), western blotting, alkaline phosphatase activity assay and Alizarin Red S staining. The interaction of PKA and p-ERK1/2 was determined by co-immunoprecipitation (Co-IP). RESULTS Intermittent PTH exerted anabolic effect on cellular cementum in developing teeth with elevated expression of osteocalcin, osteopontin, and PKA (catalytic subunit) in PTH injection group. The promoting effects of intermittent PTH on cementogenesis and osteogenic differentiation were abrogated by H89 and U0126 in vitro, respectively. Blocking of PKA pathway downregulated intermittent PTH-induced ERK1/2 phosphorylation. CONCLUSIONS Intermittent PTH promotes cementogenesis in a PKA- and ERK1/2-dependent manner. In this process, PKA and p-ERK1/2 interact with each other. These results support the future biotherapeutic applications of PTH in cementum resorption.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Chunxiao Lv
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Jiawei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Yuyu Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Tiancheng Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Cheng Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Xing Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| |
Collapse
|
4
|
Weng SJ, Xie ZJ, Wu ZY, Yan DY, Tang JH, Shen ZJ, Li H, Bai BL, Boodhun V, Eric Dong XD, Yang L. Effects of combined menaquinone-4 and PTH 1-34 treatment on osetogenesis and angiogenesis in calvarial defect in osteopenic rats. Endocrine 2019; 63:376-384. [PMID: 30244350 DOI: 10.1007/s12020-018-1761-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effect of combining human parathyroid hormone (1-34) (PTH1-34; PTH) and menaquinone-4 (MK-4) on calvarial bone defect repair in osteopenic rats. METHODS Fourteen week olds were subject to craniotomy for the establishment of osteopenic animal models fed through a chronically low-protein diet. After that, critical calvarial defect model was established and all rats were randomly divided into four groups: sham, MK-4, PTH, and PTH + MK-4. The animals received MK-4 (30 mg/kg/day), PTH1-34 (60 μg/kg, three times a week), or PTH1-34 (60 μg/kg, three times a week) plus MK-4 (30 mg/kg/day) for 8 weeks, respectively. Serum γ-carboxylated osteocalcin (Gla-OC) levels, histological and immunofluorescent labeling were employed to evaluate the bone formation and mineralization in calvarial bone defect. In addition, Microfil perfusion, immunohistochemical, and micro-CT suggested enhanced angiogenesis and bone formation in calvarial bone healing. RESULTS In this study, treatment with either PTH1-34 or MK-4 promoted bone formation and vascular formation in calvarial bone defects compared with the sham group. In addition, combined treatment of PTH1-34 plus MK-4 increased serum level of Gla-OC, improved vascular number and vascular density, and enhanced bone formation in calvarial bone defect in osteopenic conditions as compared with monotherapy. CONCLUSIONS In summary, this study indicated that PTH1-34 plus MK-4 combination therapy accelerated bone formation and angiogenesis in calvarial bone defects in presence of osteopenia.
Collapse
MESH Headings
- Animals
- Bone Diseases, Metabolic/complications
- Bone Diseases, Metabolic/diagnosis
- Bone Diseases, Metabolic/drug therapy
- Bone Diseases, Metabolic/pathology
- Drug Therapy, Combination
- Female
- Fracture Healing/drug effects
- Fractures, Spontaneous/diagnosis
- Fractures, Spontaneous/drug therapy
- Fractures, Spontaneous/etiology
- Fractures, Spontaneous/pathology
- Neovascularization, Physiologic/drug effects
- Osteogenesis/drug effects
- Parathyroid Hormone/administration & dosage
- Rats
- Rats, Sprague-Dawley
- Skull/diagnostic imaging
- Skull/drug effects
- Skull/injuries
- Skull/pathology
- Skull Fractures/diagnosis
- Skull Fractures/drug therapy
- Skull Fractures/etiology
- Skull Fractures/pathology
- Vitamin K 2/administration & dosage
- Vitamin K 2/analogs & derivatives
- X-Ray Microtomography
Collapse
Affiliation(s)
- She-Ji Weng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhong-Jie Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zong-Yi Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - De-Yi Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia-Hao Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zi-Jian Shen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing-Li Bai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Viraj Boodhun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang Da Eric Dong
- Department of Surgery, Westchester Medical Center / New York Medical College, Valhalla, NY, USA
| | - Lei Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Combined treatment with vitamin K2 and PTH enhanced bone formation in ovariectomized rats and increased differentiation of osteoblast in vitro. Chem Biol Interact 2019; 300:101-110. [PMID: 30639440 DOI: 10.1016/j.cbi.2019.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/22/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Osteoporosis is accompanied by insufficient osteogenic capacity. Several lines of evidence suggested that solutions to enhance osteoblastogenesis were important strategies for osteoporotic bone defect repair. This study investigated the effect of combined treatment with vitamin K2 and PTH on bone formation in calvarial bone defect in osteoporotic rats and its influence on osteoblast in vitro. Bilateral ovariectomy was used in SPF Sprague Dawley rats to generate an osteoporosis model. Subsequently, a calvarial defect model was established and all osteoporotic rats were randomly assigned to the following groups: control, VK (vitamin K2, 30 mg/kg everyday), PTH (recombinant human PTH (1-34), 60 μg/kg, three times a week) or VK + PTH (vitamin K2, 30 mg/kg everyday plus PTH, 60 μg/kg three times a week) for 8 weeks. In vitro, bone marrow-derived stem cells (BMSCs) were cultured and treated with vitamin K2, PTH or vitamin K2+PTH. ALP staining and western blot were performed to observe the influence of combined treatment on BMSCs. Bone formation within calvarial defect were assessed by serum γ-carboxylated osteocalcin (Gla-OC), micro-CT, histological and immunofluorescent labeling. In this study, combined treatment of PTH and vitamin K2 showed positive effects on preventing bone loss in femurs in OVX rats. Combined treatment increased serum Gla-OC and promoted bone formation in osteoporotic calvarial bone defects. Immunohistochemistry showed that OCN and RUNX2 were more highly expressed in the VK + PTH group than in the control groups. In vitro studies results suggested that combined treatment with PTH and vitamin K2 increased expression of ALP, BMP2 and RUNX2 in BMSCs. Our data suggested that the combination of vitamin K2 and PTH increased differentiation of osteoblast and had a synergistic effect on bone formation in osteoporotic calvarial bone defect.
Collapse
|
6
|
Cho CS, Jeong HS, Kim IY, Jung GW, Ku BH, Park DC, Moon SB, Cho HR, Bashir KMI, Ku SK, Choi JS. Anti-osteoporotic effects of mixed compositions of extracellular polymers isolated from Aureobasidium pullulans and Textoria morbifera in ovariectomized mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:295. [PMID: 30400922 PMCID: PMC6220464 DOI: 10.1186/s12906-018-2362-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022]
Abstract
Background Extracellular polymeric substances isolated from Aureobasidium pullulans (EAP), containing specifically 13% β-1,3/1,6-glucan, have shown various favorable bone-preserving effects. Textoria morbifera Nakai (TM) tree has been used as an ingredient in traditional medicine and tea for various pharmacological purposes. Thus, the present study was aimed to examine the synergistic anti-osteoporotic potential of mixtures containing different proportions of EAP and TM compared with that of the single formulations of each herbal extract using bilateral ovariectomized (OVX) mice, a renowned rodent model for studying human osteoporosis. Methods Thirty five days after bilateral-OVX surgery, 9 combinations of EAP:TM (ratios = 1:1, 1:3, 1:5, 1:7, 1:9, 3:1, 5:1, 7:1, 9:1) and single separate formulations of EAP or TM were supplied orally, once a day for 35 days at a final concentration of 200 mg/kg. Variations in body weight gains during the experimental periods, as well as femur weights, bone mineral density (BMD), bone strength (failure load), and mineral content (calcium [Ca] and inorganic phosphorus [IP]) following sacrifice were measured. Furthermore, histomorphometric and histological profile analyses of serum biochemical parameters (osteocalcin content and bone specific alkaline phosphatase [bALP] activity) were conducted following sacrifice. Femurs histomorphometric analyses were also conducted for bone resorption, structure and mass. The results for the mixed formulations of EAP:TM and separate formulations were compared with those of risedronate sodium (RES). Results The EAP:TM (3:1) formulation synergistically enhanced the anti-osteoporotic potential of individual EAP or TM formulations, possibly due to enhanced variety of the active ingredients. Furthermore, the effects of EAP:TM were comparable to those of RES (2.5 mg/kg) treatment. Conclusion The results of this study suggest that, the EAP:TM (3:1) combination might act as a new pharmaceutical agent and/or health functional food substance for curing osteoporosis in menopausal women. Electronic supplementary material The online version of this article (10.1186/s12906-018-2362-y) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Wu Z, Yan D, Xie Z, Weng S, Zhou Q, Li H, Bai B, Boodhun V, Shen Z, Tang J, Yang L. Combined treatment with cinnamaldehyde and PTH enhances the therapeutic effect on glucocorticoid-induced osteoporosis through inhibiting osteoclastogenesis and promoting osteoblastogenesis. Biochem Biophys Res Commun 2018; 505:945-950. [PMID: 30309646 DOI: 10.1016/j.bbrc.2018.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
The study was to investigate the effect of combining treatment with cinnamaldehyde and parathyroid hormone (1-34) (PTH) on glucocorticoid-induced osteoporosis (GIO) and compare with monotherapy. Forty Sprague-Dawley male rats with GIO were divided into four groups randomly: control group (CON group, N = 10); group that intragastric administration with cinnamaldehyde (CIN group, N = 10); group that subcutaneous injection with PTH, three times per week(PTH group, N = 10); both administration with cinnamaldehyde and PTH (CIN + PTH group, N = 10). Distal femurs were harvested for hematoxylin and eosin (H&E) staining, micro-CT scanning and immunohistochemical analysis. Murine mesenchymal stem cells were cultured and dealt with the presence of dexamethasone(DEX group), DEX + cinnamaldehyde(DEX + CIN group), DEX + PTH(DEX + PTH group) or DEX + cinnamaldehyde + PTH(DEX + CIN + PTH group). Alkaline phosphatase (ALP) staining was performed subsequently. The results showed that bone formation in CIN + PTH group was notably promoted compared with other groups. And the expression of tartrate-resistant acid phosphatase (trap) and runt-related transcription factor 2 (runx2) in CIN + PTH group were down-regulated and up-regulated respectively compared with PTH group. In vitro study revealed that ALP-positive cell number in DEX + CIN + PTH group was obviously enhanced compared with other groups. The study revealed that combined treatment with cinnamaldehyde and PTH enhances the therapeutic effect on GIO through inhibiting osteoclastogenesis and promoting osteoblastogenesis.
Collapse
Affiliation(s)
- Zongyi Wu
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Deyi Yan
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Zhongjie Xie
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Sheji Weng
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Qiang Zhou
- Department of Orthopaedics Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, Jingxiu Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Hang Li
- Department of Orthopaedics Surgery, The First People's Hospital of Xiaoshan Hangzhou, No. 199, Shixin South Road, Xiaoshan District, Hangzhou, 310000, Zhejiang Province, People's Republic of China.
| | - Bingli Bai
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Viraj Boodhun
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Zijian Shen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Jiahao Tang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Lei Yang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
8
|
Merlotti D, Materozzi M, Picchioni T, Bianciardi S, Alessandri M, Nuti R, Gennari L. Recent advances in models for screening potential osteoporosis drugs. Expert Opin Drug Discov 2018; 13:741-752. [PMID: 29869573 DOI: 10.1080/17460441.2018.1480609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Osteoporosis is a growing health and health-economic problem due to the increased proportion of elderly people in the population. Basic and clinical advances in research over the past two decades have led to the development of different compounds with antiresorptive or anabolic activity on bone that improved substantially the management of patients with osteoporosis over calcitonin or estrogen replacement. New compounds are in preclinical and clinical development. Areas covered: In this review, the authors review the approaches for the preclinical and clinical development of antiresorptive and anabolic agents for osteoporosis, particularly focusing on the recent advances in technology and in the understanding of skeletal biology, together with their implications on novel osteoporosis drug discovery. Expert opinion: Based on the available evidence from the approved drugs for the treatment osteoporosis as well as from the different compounds under clinical development, it has become clear that long term nonclinical pharmacological studies with either bone quality and off-target effects as the main outcomes should be required for new drugs intended to treat osteoporosis. At the same time, basic and clinical advances in research have underlined the necessity to develop new technologies and new models for a thorough screening of the effects of new drugs on the different components of skeletal aging and bone fragility that cannot be assessed by bone mass measurement.
Collapse
Affiliation(s)
- D Merlotti
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy.,b Division of Genetics and Cell Biology , San Raffaele Hospital , Milan , Italy
| | - M Materozzi
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| | - T Picchioni
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| | - S Bianciardi
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| | - M Alessandri
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| | - R Nuti
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| | - L Gennari
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| |
Collapse
|
9
|
Xie Z, Weng S, Li H, Yu X, Lu S, Huang K, Wu Z, Bai B, Boodhun V, Yang L. Teriparatide promotes healing of critical size femur defect through accelerating angiogenesis and degradation of β-TCP in OVX osteoporotic rat model. Biomed Pharmacother 2017; 96:960-967. [DOI: 10.1016/j.biopha.2017.11.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
|
10
|
Jung MY, Kim JW, Kim KY, Choi SH, Ku SK. Polycan, a β-glucan from Aureobasidium pullulans SM-2001, mitigates ovariectomy-induced osteoporosis in rats. Exp Ther Med 2016; 12:1251-1262. [PMID: 27588046 PMCID: PMC4998138 DOI: 10.3892/etm.2016.3485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/05/2015] [Indexed: 01/16/2023] Open
Abstract
The present study aimed to investigate the protective effects of Polycan, a β-glucan from Aureobasidium pullulans SM-2001, in a rat model of ovariectomy-induced osteoporosis. Ovariectomized (OVX) rats were orally administered 31.25, 62.5 or 125 mg/kg/day Polycan for 126 days, and alterations in body weight, bone mineral content, bone mineral density, failure load, histological profiles and histomorphometric indices were analyzed. In particular, serum levels of osteocalcin, bone-specific alkaline phosphatase (bALP), calcium and phosphorus, and the urine deoxypyridinoline/creatinine ratio, were measured. Furthermore, the femur, tibia and lumbar vertebrae were harvested from all rats, and histomorphometrical analyses were conducted in order to assess the mass and structure of the bones, and the rates of bone resorption and formation. One group of rats was treated with alendronate, which served as the reference drug. The results of the present study suggested that Polycan treatment was able to inhibit ovariectomy-induced alterations in bone resorption and turnover in a dose-dependent manner. In addition, the serum expression levels of bALP and all histomorphometrical indices for bone formation were markedly increased in the Polycan-treated groups. These results indicated that Polycan was able to preserve bone mass and strength, and increase the rate of bone formation in OVX rats; thus suggesting that Polycan may be considered a potential effective anti-osteoporosis agent.
Collapse
Affiliation(s)
- Mi Young Jung
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do 712-715, Republic of Korea
| | - Joo Wan Kim
- Glucan Corp. Research Institute, Marine Bio-Industry Development Center, Busan 619-912, Republic of Korea
| | - Ki Young Kim
- Glucan Corp. Research Institute, Marine Bio-Industry Development Center, Busan 619-912, Republic of Korea
| | - Seong Hun Choi
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do 712-715, Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do 712-715, Republic of Korea
| |
Collapse
|
11
|
Matsumoto T, Itamochi S, Hashimoto Y. Effect of Concurrent Use of Whole-Body Vibration and Parathyroid Hormone on Bone Structure and Material Properties of Ovariectomized Mice. Calcif Tissue Int 2016; 98:520-9. [PMID: 26746476 DOI: 10.1007/s00223-015-0104-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
This study was designed to determine the effectiveness of whole-body vibration (WBV) and intermittent parathyroid hormone (iPTH) in combination against estrogen deficiency-induced osteoporosis. Female C57BL/6J mice were bilaterally ovariectomized (OVX, n = 40) or sham-operated (sham-OVX, n = 8) at 9 weeks of age. Two weeks later, the OVX mice were randomly divided into four groups (n = 10 each): the control group (c-OVX) and groups treated with iPTH (p-OVX), WBV (w-OVX) and both (pw-OVX). The p-OVX and pw-OVX groups were given human PTH (1-34) at a dose of 30 µg/kg/day. The w-OVX and pw-OVX groups were exposed to WBV at an acceleration of 0.3 g and 45 Hz for 20 min/day. All mice were euthanized after the 18-day treatment, and the left tibiae were harvested. The proximal metaphyseal region was µCT-scanned, and its cortical bone cross-section was analyzed by Fourier transform infrared microspectroscopy and nanoindentation testing. A single application of iPTH or WBV to OVX mice had no effect on bone structure or material properties of cortical bone, which were compromised in comparison to those in sham-OVX mice. The combination of iPTH and WBV improved trabecular bone volume, thickness, and connectivity in OVX mice. Although the combined treatment failed to improve cortical bone structure, its mineral maturity and hardness were restored to the levels observed in sham-OVX mice. There was no evidence of interaction between the two treatments, and the combined effects seemed to be additive. These results suggest combining WBV with iPTH has great potential for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Takeshi Matsumoto
- Department of Mechanical Engineering, Tokushima University Graduate School of Advanced Technology and Science, 2-1 Minamijosanjima, Tokushima, 770-8506, Japan.
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan.
| | - Shinya Itamochi
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| | - Yoshihiro Hashimoto
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| |
Collapse
|
12
|
Tao ZS, Zhou WS, Qiang Z, Tu KK, Huang ZL, Xu HM, Sun T, Lv YX, Cui W, Yang L. Intermittent administration of human parathyroid hormone (1-34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur. J Biomater Appl 2015; 30:952-60. [PMID: 26482573 DOI: 10.1177/0885328215610898] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies have demonstrated the effect of human parathyroid hormone (1-34) (PTH) or strontium-doped hydroxyapatite coating (Sr-HA) on osteoporotic bone implantation. However, reports about effects of PTH plus Sr-HA on bone osseointegration of titanium implants in a state of osteoporosis were limited. This study was designed to investigate the effects of intermittent administration of human parathyroid hormone (1-34) on strontium-doped hydroxyapatite coating (Sr-HA) implant fixation in ovariectomized (OVX) rats. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups including control group, Sr group, PTH group and PTH+Sr group. Forty OVX rats accepted implant insertion in the distal femurs, control group, and PTH group with HA implants and the Sr group and PTH+Sr group with Sr-HA implants. Animals from PTH group and PTH+Sr group then randomly received PTH (60 µg/kg, 3 times a week) until death at 12 weeks. After 12-week healing period, implants from group PTH+Sr revealed improved osseointegration compared with other treatment groups, which is manifested by the exceeding increase of bone area ratio and bone-to-implant contact, the trabecular microarchitecture and the maximal push-out force displayed by tests like histomorphometry, micro-CT, and biomechanics evaluation. These results demonstrated that PTH+ Sr-HA coatings could enhance implant osseointegration in OVX rats, and suggested the feasibility of using this method to improve implant fixation in osteoporotic bone.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Wan-Shu Zhou
- Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medcial University, Guizhou, PR China
| | - Zhou Qiang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Kai-kai Tu
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Zheng-Liang Huang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Hong-Ming Xu
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Tao Sun
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Yang-Xun Lv
- Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang, PR China
| | - Wei Cui
- Sichuan Provincial Orthopedics Hospital, Sichuan, PR China
| | - Lei Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| |
Collapse
|
13
|
Combined treatment with parathyroid hormone (1–34) and beta-tricalcium phosphate had an additive effect on local bone formation in a rat defect model. Med Biol Eng Comput 2015; 54:1353-62. [DOI: 10.1007/s11517-015-1402-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
|
14
|
Tao ZS, Zhou WS, Tu KK, Huang ZL, Zhou Q, Sun T, Lv YX, Cui W, Yang L. Treatment study of distal femur for parathyroid hormone (1-34) and β-tricalcium phosphate on bone formation in critical-sized defects in osteopenic rats. J Craniomaxillofac Surg 2015; 43:2136-43. [PMID: 26507646 DOI: 10.1016/j.jcms.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/12/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022] Open
Abstract
The objective of this study was to evaluate the effect of following combined treatment with parathyroid hormone (1-34) (PTH) and β-tricalcium phosphate (β-TCP) on local bone formation in a rat 3-mm critical-sized defect at the distal femur. Fourteen weeks were allowed to pass before defect surgery for the establishment of osteopenic animal models chronically fed a low-protein diet. All animals were randomly divided into four groups: group PTH; group β-TCP, group PTH + β-TCP, and a control group. All rats then underwent a surgical procedure to create bone defects in the bilateral distal femurs, and β-TCP was implanted into critical-sized defects for the groups designated as β-TCP and group PTH + β-TCP. After the defect operation, all animals from group PTH and group PTH + β-TCP received following subcutaneous injections with PTH (60 μg/kg, three times per week) until euthanasia at 4 and 8 weeks. The distal femurs and blood were collected for evaluation. The results of study showed the strongest effect on accelerating the local bone formation with treatment β-TCP and PTH at 4 weeks and 8 weeks. The results from our study demonstrate that a combination of PTH and β-TCP had an additive effect on local bone formation in osteopenic rats chronically fed a low-protein diet.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, China
| | - Wan-Shu Zhou
- Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medical University, Guizhou, 550001, China
| | - Kai-kai Tu
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, China
| | - Zheng-Liang Huang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, China
| | - Qiang Zhou
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, China
| | - Tao Sun
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, China
| | - Yang-Xun Lv
- Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| | - Wei Cui
- Sichuan Provincial Orthopedics Hospital, NO. 132 West First Section First Ring Road, Chengdu, Sichuan, 610000, China
| | - Lei Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
15
|
Sophocleous A, Idris AI. Rodent models of osteoporosis. BONEKEY REPORTS 2014; 3:614. [PMID: 25852854 PMCID: PMC4388108 DOI: 10.1038/bonekey.2014.109] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/29/2014] [Indexed: 01/11/2023]
Abstract
The aim of this protocol is to provide a detailed description of male and female rodent models of osteoporosis. In addition to indications on the methods of performing the surgical procedures, the choice of reliable and safe anaesthetics is also described. Post-operative care, including analgesia administration for pain management, is also discussed. Ovariectomy in rodents is a procedure where ovaries are surgically excised. Hormonal changes resulting from ovary removal lead to an oestrogen-deprived state, which enhances bone remodelling, causes bone loss and increases bone fracture risk. Therefore, ovariectomy has been considered as the most common preclinical model for understanding the pathophysiology of menopause-associated events and for developing new treatment strategies for tackling post-menopausal osteoporosis. This protocol also provides a detailed description of orchidectomy, a model for androgen-deficient osteoporosis in rodents. Endocrine changes following testes removal lead to hypogonadism, which results in accelerated bone loss, increasing osteoporosis risk. Orchidectomised rodent models have been proposed to mimic male osteoporosis and therefore remain a valuable tool for understanding androgen deficiency in aged men. Although it would have been particularly difficult to assemble an internationally acceptable description of surgical procedures, here we have attempted to provide a comprehensive guide for best practice in performing ovariectomy and orchidectomy in laboratory rodents. Research scientists are reminded that they should follow their own institution's interpretation of such guidelines. Ultimately, however, all animal procedures must be overseen by the local Animal Welfare and Ethical Review Body and conducted under licences approved by a regulatory ethics committee.
Collapse
Affiliation(s)
- Antonia Sophocleous
- Rheumatic Diseases Unit, MRC Institute of Genetics and Molecular Medicine, Centre for Genomic and Experimental Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Aymen I Idris
- Muscular-skeletal pharmacology, Academic Unit of Bone Biology, Mellanby Centre for Bone Research, Department of human metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Jeyabalan J, Shah M, Viollet B, Roux JP, Chavassieux P, Korbonits M, Chenu C. Mice lacking AMP-activated protein kinase α1 catalytic subunit have increased bone remodelling and modified skeletal responses to hormonal challenges induced by ovariectomy and intermittent PTH treatment. J Endocrinol 2012; 214:349-58. [PMID: 22700192 PMCID: PMC3427644 DOI: 10.1530/joe-12-0184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 06/08/2012] [Accepted: 06/14/2012] [Indexed: 12/21/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular and body energy homeostasis. We previously demonstrated that AMPK activation in osteoblasts increases in vitro bone formation while deletion of the Ampkα1 (Prkaa1) subunit, the dominant catalytic subunit expressed in bone, leads to decreased bone mass in vivo. To investigate the cause of low bone mass in the Ampkα1(-/-) mice, we analysed bone formation and resorption in the tibia of these mice by dynamic histomorphometry and determined whether bone turnover can be stimulated in the absence of the Ampkα1 subunit. We subjected 12-week-old Ampkα1(+)(/)(+) and Ampkα1(-/-) mice to ovariectomy (OVX), intermittent PTH (iPTH) administration (80 μg/kg per day, 5 days/week) or both OVX and iPTH hormonal challenges. Tibiae were harvested from these mice and bone micro-architecture was determined by micro-computed tomography. We show for the first time that Ampkα1(-/-) mice have a high bone turnover at the basal level in favour of bone resorption. While both Ampkα1(+)(/)(+) and Ampkα1(-/-) mice lost bone mass after OVX, the bone loss in Ampkα1(-/-) mice was lower compared with controls. iPTH increased trabecular and cortical bone indexes in both ovariectomised Ampkα1(+)(/)(+) and Ampkα1(-/-) mice. However, ovariectomised Ampkα1(-/-) mice showed a smaller increase in bone parameters in response to iPTH compared with Ampkα1(+)(/)(+) mice. By contrast, non-ovariectomised Ampkα1(-/-) mice responded better to iPTH treatment than non-ovariectomised Ampkα1(+)(/)(+) mice. Overall, these data demonstrate that Ampkα1(-/-) mice are less affected by changes in bone turnover induced by OVX but respond better to the anabolic challenge induced by iPTH. These results suggest that AMPKα1 activation may play a role in the hormonal regulation of bone remodelling.
Collapse
Affiliation(s)
- J Jeyabalan
- Department of Veterinary Basic Sciences, Royal Veterinary College, London NW1 0TU, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Duque G, Huang DC, Dion N, Macoritto M, Rivas D, Li W, Yang XF, Li J, Lian J, Marino FT, Barralet J, Lascau V, Deschênes C, Ste-Marie LG, Kremer R. Interferon-γ plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. J Bone Miner Res 2011; 26:1472-83. [PMID: 21308779 DOI: 10.1002/jbmr.350] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon γ (IFN-γ) is a cytokine produced locally in the bone microenvironment by cells of immune origin as well as mesenchymal stem cells. However, its role in normal bone remodeling is still poorly understood. In this study we first examined the consequences of IFN-γ ablation in vivo in C57BL/6 mice expressing the IFN-γ receptor knockout phenotype (IFNγR1(-/-)). Compared with their wild-type littermates (IFNγR1(+/+)), IFNγR1(-/-) mice exhibit a reduction in bone volume associated with significant changes in cortical and trabecular structural parameters characteristic of an osteoporotic phenotype. Bone histomorphometry of IFNγR1(-/-) mice showed a low-bone-turnover pattern with a decrease in bone formation, a significant reduction in osteoblast and osteoclast numbers, and a reduction in circulating levels of bone-formation and bone-resorption markers. Furthermore, administration of IFN-γ (2000 and 10,000 units) to wild-type C57BL/6 sham-operated (SHAM) and ovariectomized (OVX) female mice significantly improved bone mass and microarchitecture, mechanical properties of bone, and the ratio between bone formation and bone resorption in SHAM mice and rescued osteoporosis in OVX mice. These data therefore support an important physiologic role for IFN-γ signaling as a potential new anabolic therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Gustavo Duque
- Ageing Bone Research Program, Sydney Medical School, The University of Sydney, Penrith, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rissanen JP, Halleen JM. Models and screening assays for drug discovery in osteoporosis. Expert Opin Drug Discov 2010; 5:1163-74. [DOI: 10.1517/17460441.2010.532484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Seo BI, Joo SJ, Park JH, Roh SS, Kim SM, Choi HS, Ku SK. The Anti-osteoporotic Effect of Aqueous Extracts of Gastrodiae Rhizoma In Vitro and In Vivo. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bu Il Seo
- Department of Herbology, College of Oriental Medicine, Daegu Haany University
| | - Seok Joong Joo
- Department of Herbology, College of Oriental Medicine, Daegu Haany University
| | - Ji Ha Park
- Department of Herbology, College of Oriental Medicine, Daegu Haany University
| | - Seong Soo Roh
- Department of Herbology, College of Oriental Medicine, Daegu Haany University
| | - Seong Mo Kim
- Department of Korean Internal Medicine, College of Oriental Medicine, Daegu Haany University
| | - Hong Sik Choi
- Department of Korean Internal Medicine, College of Oriental Medicine, Daegu Haany University
| | - Sae Kwang Ku
- Department of Histology and Anatomy, College of Oriental Medicine, Daegu Haany University
| |
Collapse
|
20
|
Wang L, Wang YD, Wang WJ, Li DJ. Differential regulation of dehydroepiandrosterone and estrogen on bone and uterus in ovariectomized mice. Osteoporos Int 2009; 20:79-92. [PMID: 18690485 DOI: 10.1007/s00198-008-0631-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 03/25/2008] [Indexed: 01/01/2023]
Abstract
UNLABELLED Dehydroepiandrosterone (DHEA) may be useful in the treatment of postmenopausal osteoporosis (PMO). Our present study has found the preferable stimulatory effect of DHEA on bone, in contrast to the proliferative effects of estradiol (E2) on the endometrium and the uterus, which suggests that DHEA has greater potential clinical value than estrogens in prophylaxis and therapeutics for PMO. INTRODUCTION A series of findings raise the possibility that DHEA may be useful in the treatment of PMO. Our present study thus aimed at the differential effects of DHEA and E2 on bone and the uterus in ovariectomized mice as well as the involvement of aromatase, ERalpha, ERbeta, and AR in the effects. METHODS Ovariectomized and sham BALB/c mice were given daily treatment with either DHEA or E2 for three months, respectively. Bone mineral density was determined by DEXA after the last treatment. Mice were necropsied in 3 months after the treatment to analyze the ultrastructure of their femur osteoblasts (OBs) with a transmission electron microscope (TEM); DHEA, DHEA sulfate (DHEAS) and E2 levels were assayed by EIA; production in vitro of E2 in the uterus or tibia was assayed to evaluate the profile of P450arom activity; ERalpha and ERbeta mRNA levels in the uterus and tibia were determined by real-time PCR. The primary murine OBs were treated with DHEA and E2, respectively for 72 h. Real-time polymerase chain reaction (PCR) and western blot were carried out to evaluate aromatase, ERalpha, ERbeta and AR expression in OBs. RESULTS Both DHEA and E2 significantly improved BMD and OB ultrastructure; E2 but not DHEA has significantly increased uterus wet weight, endometrium epithelial and gland thickness. Dehydroepiandrosterone not only increased serum, femoral DHEA, DHEAS and E2 concentration, but also increased uterine DHEA and DHEAS other than E2 concentration in site, while E2 only increased serum, uterine and femoral E2 concentration, but failed to alter the concentrations of DHEA and DHEAS. Moreover, DHEA significantly increased tibia P450arom enzyme activity, while E2 increased uterine and tibia aromatase activity. Furthermore, DHEA increased uterine ERbeta and ERalpha, and ERbeta transcription in the tibia, while E2 increased ERalpha transcription in the uterus and tibia. Dehydroepiandrosterone increased aromatase, ERalpha, ERbeta and AR expression in OBs, and increased significantly, but E2 apparently decreased the ratio of ERbeta/ERalpha. CONCLUSIONS Although both DHEA and E2 augment BMD, the proliferative effects of E2 on the endometrium and uterus reflect the different modes of action on bone and the uterus, indicating that the preferable stimulatory effect of DHEA on bone appears to the more potential clinical values than estrogens in prophylaxis and therapeutics for PMO. But applicability of the findings from rodents in humans needs further study.
Collapse
MESH Headings
- Absorptiometry, Photon
- Animals
- Aromatase/genetics
- Aromatase/metabolism
- Bone Density
- Cells, Cultured
- Dehydroepiandrosterone/metabolism
- Dehydroepiandrosterone/pharmacology
- Estradiol/metabolism
- Estradiol/pharmacology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Microscopy, Electron, Transmission
- Models, Animal
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/pathology
- Ovariectomy
- RNA, Messenger/analysis
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stimulation, Chemical
- Tibia/drug effects
- Tibia/metabolism
- Tibia/ultrastructure
- Uterus/drug effects
- Uterus/metabolism
- Uterus/ultrastructure
Collapse
Affiliation(s)
- L Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 413 Zhaozhou Road, Shanghai, 200011, China
| | | | | | | |
Collapse
|
21
|
Kaji H, Yamauchi M, Nomura R, Sugimoto T. Improved peripheral cortical bone geometry after surgical treatment of primary hyperparathyroidism in postmenopausal women. J Clin Endocrinol Metab 2008; 93:3045-50. [PMID: 18544624 DOI: 10.1210/jc.2007-2480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Cortical bone geometry is one of the most important components of bone strength. Excess endogenous PTH or intermittent PTH administration affects cortical bone geometry; however, the changes in cortical bone geometry in patients with primary hyperparathyroidism (pHPT) after parathyroidectomy (PTX) remain unknown. OBJECTIVE The present study was performed to examine the longitudinal effects of treating endogenous PTH excess on cortical bone geometry in postmenopausal patients with pHPT by using peripheral quantitative computed tomography. PATIENTS Twenty postmenopausal pHPT patients and 30 postmenopausal control subjects matched for age participated in this study. MAIN OUTCOME MEASURES Volumetric bone mineral density (vBMD), cortical bone geometric parameters, polar strength strain index, and polar cross-sectional moment of inertia were measured using peripheral quantitative computed tomography at the radius during the year after PTX. RESULTS After 1 yr, total and cortical vBMD significantly increased after PTX in the pHPT group (2.9 and 1.6%, respectively), whereas they significantly decreased in the control group (-2.1 and -1.3%, respectively). Significant decreases in cortical thickness and area were observed in the control group (-3.0 and -2.5%, respectively). In contrast, the pHPT group showed increases in cortical thickness and area (8.5 and 7.6%, respectively) as well as polar strength strain index 1 year after PTX. CONCLUSION The present longitudinal study showed significant beneficial changes in volumetric BMD, cortical bone geometry, and bone strength index after PTX in postmenopausal women with pHPT.
Collapse
Affiliation(s)
- Hiroshi Kaji
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | |
Collapse
|
22
|
Rey A, Manen D, Rizzoli R, Ferrari SL, Caverzasio J. Evidences for a role of p38 MAP kinase in the stimulation of alkaline phosphatase and matrix mineralization induced by parathyroid hormone in osteoblastic cells. Bone 2007; 41:59-67. [PMID: 17434817 DOI: 10.1016/j.bone.2007.02.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/21/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
Increased bone formation by PTH mainly results from activation of osteoblasts, an effect largely mediated by the cAMP-PKA pathway. Other pathways, however, are likely to be involved in this process. In this study we investigated whether PTH can activate p38 MAPK and the role of this kinase in osteoblastic cells. Bovine PTH(1-34) and forskolin markedly increased alkaline phosphatase (ALP) activity and doubled osteocalcin (Oc) expression in early differentiating MC3T3-E1 cells. These effects were associated with increase in cellular cAMP and activation of the MAP kinases ERK and p38. Activation of these MAP kinases was detectable after 1 h incubation with 10(-7) M PTH and lasted 1-2 h. Activation of p38 was mimicked by 10 microM forskolin and prevented by H89 suggesting a cAMP-PKA-dependent mechanism of p38 activation. Interestingly, PTH-induced ALP stimulation was dose-dependently inhibited by a specific p38 inhibitor with no change in the generation of cAMP and the production of osteocalcin. Similar inhibitory effect was obtained in cells stably expressing a dominant-negative p38 molecule. Finally, treatment of MC3T3-E1 cells with PTH for 3 weeks significantly enhanced matrix mineralization and this effect was markedly reduced by a selective p38 but not a specific MEK inhibitor. In conclusion, data presented in this study indicate that PTH can activate p38 in early differentiating osteoblastic cells. Activation of p38 is cAMP-PKA-dependent and mediates PTH-induced stimulation of ALP which plays a critical role for the calcification of the bone matrix.
Collapse
Affiliation(s)
- A Rey
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, University Hospital of Geneva, CH-1211 Geneva 14, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Iwaniec UT, Wronski TJ, Liu J, Rivera MF, Arzaga RR, Hansen G, Brommage R. PTH stimulates bone formation in mice deficient in Lrp5. J Bone Miner Res 2007; 22:394-402. [PMID: 17147489 DOI: 10.1359/jbmr.061118] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED Lrp5 deficiency decreases bone formation and results in low bone mass. This study evaluated the bone anabolic response to intermittent PTH treatment in Lrp5-deficient mice. Our results indicate that Lrp5 is not essential for the stimulatory effect of PTH on cancellous and cortical bone formation. INTRODUCTION Low-density lipoprotein receptor-related protein 5 (Lrp5), a co-receptor in canonical Wnt signaling, increases osteoblast proliferation, differentiation, and function. The purpose of this study was to use Lrp5-deficient mice to evaluate the potential role of this gene in mediating the bone anabolic effects of PTH. MATERIALS AND METHODS Adult wildtype (WT, 23 male and 25 female) and Lrp5 knockout (KO, 27 male and 26 female) mice were treated subcutaneously with either vehicle or 80 microg/kg human PTH(1-34) on alternate days for 6 weeks. Femoral BMC and BMD were determined using DXA. Lumbar vertebrae were processed for quantitative bone histomorphometry. Bone architecture was evaluated by microCT. Data were analyzed using a multiway ANOVA. RESULTS Cancellous and cortical bone mass were decreased with Lrp5 deficiency. Compared with WT mice, cancellous bone volume in the distal femur and the lumbar vertebra in Lrp5 KO mice was 54% and 38% lower, respectively (p<0.0001), whereas femoral cortical thickness was 11% lower in the KO mice (p<0.0001). The decrease in cancellous bone volume in the lumbar vertebrae was associated with a 45% decrease in osteoblast surface (p<0.0001) and a comparable decrease in bone formation rate (p<0.0001). Osteoclast surface, an index of bone resorption, was 24% lower in Lrp5 KO compared with WT mice (p<0.007). Treatment of mice with PTH for 6 weeks resulted in a 59% increase in osteoblast surface (p<0.0001) and a 19% increase in osteoclast surface (p=0.053) in both genotypes, but did not augment cancellous bone volume in either genotype. Femur cortical thickness was 11% higher in PTH-treated mice in comparison with vehicle-treated mice (p<0.0001), regardless of genotype. CONCLUSIONS Whereas disruption of Lrp5 results in decreased bone mass because of decreased bone formation, Lrp5 does not seem to be essential for the stimulatory effects of PTH on cancellous and cortical bone formation.
Collapse
Affiliation(s)
- Urszula T Iwaniec
- Department of Physiological Sciences, University of Florida, Gainesville, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Merciris D, Schiltz C, Legoupil N, Marty-Morieux C, de Vernejoul MC, Geoffroy V. Over-expression of TIMP-1 in osteoblasts increases the anabolic response to PTH. Bone 2007; 40:75-83. [PMID: 16949899 DOI: 10.1016/j.bone.2006.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/31/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
Intermittent PTH treatment induces structural changes that affect cancellous bone mass and have led to its indication for the treatment of osteoporosis. PTH is also known to upregulate the expression of matrix metalloproteinases (MMP) in osteoblasts. We wanted to find out whether inhibiting osteoblastic MMPs can affect the anabolic action of PTH in vivo. We had shown previously that mice over-expressing TIMP-1 (tissue inhibitor of MMPs) specifically in osteoblasts display an increase in bone mineral density and bone mass combined with an overall decrease in bone turnover. In the present study, 10-week-old wild-type (WT) and transgenic (TG) mice were treated with PTH at 40 microg/kg/day for 1.5 months. DEXA analysis was performed before and after treatment, and histomorphometric and molecular analysis were carried out at the end of the experiment. Our findings indicate that the transgene boosted the anabolic action of PTH. The femurs of PTH-treated TG mice displayed a greater increase in bone mineral density and trabecular bone volume than treated WT mice. Interestingly, the positive effect of the transgene on the action of PTH resulted from both reduced bone resorption activity and an increase in the bone formation rate. Osteoclastic surfaces that were increased in PTH-treated WT mice remained unchanged in TG mice, suggesting a decrease in osteoclastic differentiation. Histomorphometric data also indicate that PTH administration increased osteoblast activity in TG mice and affected the number of osteoblasts in WT mice. In conclusion, we demonstrate that inhibiting osteoblastic MMPs can potentiate the anabolic effect of PTH by decreasing osteoclast activity and increasing osteoblast activity. Our data also suggest that osteoblastic MMPs have some role in mediating the anabolic effects of PTH in vivo and indicate that inhibitors of MMPs could constitute a new therapy for degenerative diseases.
Collapse
Affiliation(s)
- D Merciris
- INSERM U606, Hôpital Lariboisière, Centre Viggo Petersen, 2 rue Ambroise Paré 75475 Paris Cedex 10, France
| | | | | | | | | | | |
Collapse
|
25
|
Pierroz DD, Bouxsein ML, Rizzoli R, Ferrari SL. Combined treatment with a beta-blocker and intermittent PTH improves bone mass and microarchitecture in ovariectomized mice. Bone 2006; 39:260-7. [PMID: 16531131 DOI: 10.1016/j.bone.2006.01.145] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 01/04/2006] [Accepted: 01/05/2006] [Indexed: 11/16/2022]
Abstract
Intermittent administration of parathyroid hormone (PTH) induces bone remodeling and renewed bone modeling, resulting in net bone gain. beta-blockers improve trabecular bone architecture in young ovariectomized mice by preventing the inhibition of bone formation and stimulation of bone resorption induced by the adrenergic system. To test the hypothesis that PTH and beta-blockers may exert synergistic effects on the skeleton, 15-week-old ovariectomized mice were either given oral propranolol (PRO) or left untreated for 8 weeks, adding daily hPTH(1-34) (80 microg/kg/day) or vehicle (VEH) during the last 4 weeks. The skeletal response was evaluated using pDXA, microCT, histomorphometry and biochemical markers. PRO significantly attenuated loss of bone mineral density (BMD) at whole body (WB) (-0.1% in PRO vs. -2.4% in VEH, P < 0.05), but not at spine or femur 4 weeks after OVX. Thereafter, PTH increased BMD at all sites in both PRO- and VEH-treated mice (+6.7% to +14%, P < 0.05 to P < 0.0001 vs. VEH). Over 8 weeks, sequential-combined treatment of PRO and PTH significantly improved BMD over PTH alone at WB (+9.1% vs. +4.4% over baseline, respectively, P < 0.005) and spine (+9% vs. -1.7%, respectively, P < 0.05). These effects were paralleled by a decrease in TRACP5b with PRO (P < 0.05 vs. VEH) and an increase in osteocalcin with PTH, irrespective of PRO (P < 0.0001 vs. VEH). Trabecular bone microarchitecture, such as BV/TV, trabecular number and ConnD, was significantly improved by sequential-combined treatment of PRO and PTH compared to PTH alone. At midshaft femur, both PRO and PTH significantly increased cross-sectional area (CSA), but the effects of the two drugs on CSA and cortical thickness were not additive. Dynamic histomorphometry indicated that bone formation was increased by PTH at both cortical and trabecular surfaces, whereas PRO increased osteoblast number and surface on trabecular surfaces. The combined treatment further improved the extent of mineralization and BFR over PTH alone (P < 0.05) at endocortical surfaces and recapitulated the effects of PTH and PRO alone on trabecular surfaces. These results indicate that beta-adrenergic blockade may partially improve the bone remodeling balance induced by estrogen deficiency. In turn, PRO exerted synergistic effects with intermittent PTH on bone mass and cancellous bone architecture. As such, combined therapy of beta-blockers and PTH may be of interest in the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Dominique D Pierroz
- Service of Bone Diseases, WHO Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, Geneva University Hospital, HUGs, 24, rue Micheli-du-Crest, 1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
26
|
Cheng X, Kinosaki M, Takami M, Choi Y, Zhang H, Murali R. Disabling of Receptor Activator of Nuclear Factor-κB (RANK) Receptor Complex by Novel Osteoprotegerin-like Peptidomimetics Restores Bone Loss in Vivo. J Biol Chem 2004; 279:8269-77. [PMID: 14679212 DOI: 10.1074/jbc.m309690200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor necrosis factor family ligand, tumor necrosis factor-related activation-induced cytokine (TRANCE), and its receptors, receptor activator of nuclear factor-kappaB (RANK) and osteoprotegerin (OPG), are known to be regulators of development and activation of osteoclasts in bone remodeling. Sustained osteoclast activation that occurs through TRANCE-RANK causes osteopenic disorders such as osteoporosis and contributes to osteolytic metastases. Here, we report a rationally designed small molecule mimic of osteoprotegerin to inhibit osteoclast formation in vitro and limit bone loss in an animal model of osteoporosis. One of the mimetics, OP3-4, significantly inhibited osteoclast formation in vitro (IC(50) = 10 microm) and effectively inhibited total bone loss in ovariectomized mice at a dosage of 2 mg/kg/day. Unlike soluble OPG receptors, which preclude TRANCE binding to RANK, OP3-4 shows the ability to modulate RANK-TRANCE signaling pathways and alters the biological functions of the RANK-TRANCE receptor complex by facilitating a defective receptor complex. These features suggest that OPG-derived small molecules can be used as a probe to understand complex biological functions of RANK-TRANCE-OPG receptors and also can be used as a platform to develop more useful therapeutic agents for inflammation and bone disease.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute for Cancer Research, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
27
|
Schmidt C, Priemel M, Kohler T, Weusten A, Müller R, Amling M, Eckstein F. Precision and accuracy of peripheral quantitative computed tomography (pQCT) in the mouse skeleton compared with histology and microcomputed tomography (microCT). J Bone Miner Res 2003; 18:1486-96. [PMID: 12929938 DOI: 10.1359/jbmr.2003.18.8.1486] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED pQCT was evaluated for accuracy of phenotypic characterization of mouse bone in vivo. Bones (tibia, femur, spine) of 27 animals were measured ex vivo with pQCT, microCT, and histomorphometry and of 23 mice in vivo (pQCT). pQCT yielded satisfactory in vivo precision and accuracy in skeletal characterization. INTRODUCTION Important aspects of modern skeletal research depend on the phenotypic characterization of genetically manipulated mice, with some approaches requiring in vivo measurement. Peripheral quantitative computed tomography (pQCT) is applicable in vivo and provides opportunities to determine a large variety of bone parameters. Here we test the ex vivo and in vivo reproducibility of pQCT, and its accuracy in comparison with histomorphometry and microcomputed tomography (microCT). MATERIALS AND METHODS We examined the tibia, femur, and lumbar spine of 27 mice ex vivo with high-resolution pQCT, using two mouse models (wild-type and ob/ob) with known differences in bone density. Measurements were repeated three times at different days in nine animals. In a second experiment, 23 animals (10 wild-type and 13 bGH transgenic mice) were repeatedly measured in vivo at 12 and 13 weeks of age, respectively. RESULTS Among metaphyseal sites, the ex vivo precision was highest at the distal femur (RMS CV < 1% for density and < 2% for area). The correlation between density (pQCT) and bone volume fraction (histomorphometry) was r2 = 0.79 (tibia, femur, and spine), and that with microCT was r2 = 0.94 (femur). At the diaphysis, the precision was highest at the femur (< 2% for total and cortical area), and the correlation with microCT was r2 > 0.77. The in vivo precision for bone density (distal femur) was 2.3-5.1%, and that for absolute and relative cortical area (tibia) was 3.1% and 2.2%. CONCLUSIONS The results show that pQCT can yield satisfactory precision and accuracy in skeletal characterization of mouse bones, if properly applied. The potential advantage of pQCT is that it provides a large set of parameters on bone properties and that it can be used in vivo, extending the available methodological repertoire for genetic studies.
Collapse
Affiliation(s)
- Corina Schmidt
- Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilians-Universität München, München, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Rotllant J, Worthington GP, Fuentes J, Guerreiro PM, Teitsma CA, Ingleton PM, Balment RJ, Canario AVM, Power DM. Determination of tissue and plasma concentrations of PTHrP in fish: development and validation of a radioimmunoassay using a teleost 1-34 N-terminal peptide. Gen Comp Endocrinol 2003; 133:146-53. [PMID: 12899855 DOI: 10.1016/s0016-6480(03)00166-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A specific and sensitive radioimmunoassay (RIA) for the N-terminus of sea bream (Sparus auratus) and flounder (Platichthys flesus) parathyroid hormone-related protein (PTHrP) was developed. A (1-34) amino-terminal sequence of flounder PTHrP was synthesized commercially and used as the antigen to generate specific antiserum. The same sequence with an added tyrosine (1-35(Tyr)) was used for iodination. Human (1-34) parathyroid hormone (PTH), human (1-34) PTHrP, and rat (1-34) PTHrP did not cross-react with the antiserum or displace the teleost peptide. Measurement of PTHrP in fish plasma was only possible after denaturing by heat treatment due to endogenous plasma binding activity. The minimum detectable concentration of (1-34) PTHrP in the assay was 2.5 pg/tube. The level of immunoreactive (1-34) PTHrP in plasma was 5.2+/-0.44 ng/ml (mean+/-SEM, n=20) for flounder and 2.5+/-0.29 ng/ml (n=64) for sea bream. Dilution curves of denatured fish plasma were parallel to the assay standard curve, indicating that the activity in the samples was indistinguishable immunologically from (1-34) PTHrP. Immunoreactivity was present, in order of abundance, in extracts of pituitary, oesophagus, kidney, head kidney, gills, intestine, skin, muscle, and liver. The pituitary gland and oesophagus contained the most abundant levels of PTHrP, 37.7+/-6.1 ng/g wet tissue and 2.3+/-0.7 ng/g wet tissue, respectively. The results suggest that in fish PTHrP may act in a paracrine and/or autocrine manner but may also be a classical hormone with the pituitary gland as a potential major source of the protein.
Collapse
Affiliation(s)
- J Rotllant
- Centre of Marine Science, (CCMAR), University of Algarve, Campus de Gambelas, Faro 8005-349, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kitahara K, Ishijima M, Rittling SR, Tsuji K, Kurosawa H, Nifuji A, Denhardt DT, Noda M. Osteopontin deficiency induces parathyroid hormone enhancement of cortical bone formation. Endocrinology 2003; 144:2132-40. [PMID: 12697722 DOI: 10.1210/en.2002-220996] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intermittent PTH treatment increases cancellous bone mass in osteoporosis patients; however, it reveals diverse effects on cortical bone mass. Underlying molecular mechanisms for anabolic PTH actions are largely unknown. Because PTH regulates expression of osteopontin (OPN) in osteoblasts, OPN could be one of the targets of PTH in bone. Therefore, we examined the role of OPN in the PTH actions in bone. Intermittent PTH treatment neither altered whole long-bone bone mineral density nor changed cortical bone mass in wild-type 129 mice, although it enhanced cancellous bone volume as reported previously. In contrast, OPN deficiency induced PTH enhancement of whole-bone bone mineral density as well as cortical bone mass. Strikingly, although PTH suppressed periosteal bone formation rate (BFR) and mineral apposition rate (MAR) in cortical bone in wild type, OPN deficiency induced PTH activation of periosteal BFR and MAR. In cancellous bone, OPN deficiency further enhanced PTH increase in BFR and MAR. Analysis on the cellular bases for these phenomena indicated that OPN deficiency augmented PTH enhancement in the increase in mineralized nodule formation in vitro. OPN deficiency did not alter the levels of PTH enhancement of the excretion of deoxypyridinoline in urine, the osteoclast number in vivo, and tartrate-resistant acid phosphatase-positive cell development in vitro. These observations indicated that OPN deficiency specifically induces PTH activation of periosteal bone formation in the cortical bone envelope.
Collapse
Affiliation(s)
- Keiichiro Kitahara
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kolta S, De Vernejoul MC, Meneton P, Fechtenbaum J, Roux C. Bone mineral measurements in mice: comparison of two devices. J Clin Densitom 2003; 6:251-8. [PMID: 14514995 DOI: 10.1385/jcd:6:3:251] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 02/23/2003] [Indexed: 11/11/2022]
Abstract
Animal models are widely used to explore the pathogenesis and management of osteoporosis. Mice are increasingly being used in animal models. We have evaluated the precision, accuracy, and ability to monitor changes in bone mineral measurements of mice with the Piximus and Hologic QDR 2000 devices. One hundred and twenty-two C57/BL6 mice were used in this study; 70 of them were put on a low calcium diet and followed prospectively for 14 wk. They were measured using both devices at baseline and at wk 14. Using the Piximus, we measured the whole body, the tibia, and two caudal vertebrae. Using the Hologic, we measured the tibia, which we divided into three equal parts. The remaining mice were used to evaluate the precision and accuracy of the measurement. The accuracy, which was determined only for the Hologic device, revealed a mean difference between the in vivo bone mineral content (BMC) and the ash weight of 0.1 mg. The precision, evaluated from the coefficient of variation (%) and the Smallest Detectable Difference (SDD, in absolute values) was good for both devices, confirming their ability to detect small differences in longitudinal studies: as little as 0.004 g for the BMC of the total tibia on both devices, and 0.003 g/cm2 for whole body bone mineral density (BMD) on the Piximus. The BMC found using the two devices was comparable, whereas the BMD obtained on the Hologic device was nearly double that found using the Piximus. The comparison of the results by Bland and Altman's method showed that the difference between the results was not dependent on the magnitude of the measurement. We concluded that bone density and bone-density changes in mice can be measured precisely in vivo using the Hologic and Piximus devices; the latter being able to measure the whole body BMD with good precision.
Collapse
Affiliation(s)
- Sami Kolta
- Rheumatology Department, Cochin Hospital, Assistance Publique, Hôpitaux de Paris René Descartes University, Paris, France
| | | | | | | | | |
Collapse
|
31
|
Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 2002; 17:1545-54. [PMID: 12162508 DOI: 10.1359/jbmr.2002.17.8.1545] [Citation(s) in RCA: 340] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mechanical loading presents a potent osteogenic stimulus to bone cells, but bone cells desensitize rapidly to mechanical stimulation. Resensitization must occur before the cells can transduce future mechanical signals effectively. Previous experiments show that mechanical loading protocols are more osteogenic if the load cycles are divided into several discrete bouts, separated by several hours, than if the cycles are applied in a single uninterrupted bout. We investigated the effect of discrete mechanical loading bouts on structure and biomechanical properties of the rat ulna after 16 weeks of loading. The right ulnas of 26 adult female rats were subjected to 360 load cycles/day, delivered in a haversine waveform at 17 N peak force, 3 days/week for 16 weeks. One-half of the animals (n = 13) were administered all 360 daily cycles in a single uninterrupted bout (360 x 1); the other half were administered 90 cycles four times per day (90 x 4), with 3 h between bouts. A nonloaded baseline control (BLC) group and an age-matched control (AMC) group (n = 9/group) were included in the experiment. The following measurements were collected after death: in situ mechanical strain at the ulna midshaft; ulnar length; maximum and minimum second moments of area (I(MAx) and I(MIN)) along the entire length of the ulnas (1-mm increments); and ultimate force, energy to failure, and stiffness of whole ulnas. Qualitative observations of bone morphology were made from whole bone images reconstructed from microcomputed tomography (microCT) slices. Loading according to the 360 x 1 and 90 x 4 schedules improved ultimate force by 64% and 87%, energy to failure by 94% and 165%, I(MAX) by 13% and 26% (in the middistal diaphysis), I(MIN) by 69% and 96% (in the middistal diaphysis), and reduced peak mechanical strain by 40% and 36%, respectively. The large increases in biomechanical properties occurred despite very low 5-12% gains in areal bone mineral density (aBMD) and bone mineral content (BMC). Mechanical loading is more effective in enhancing bone biomechanical and structural properties if the loads are applied in discrete bouts, separated by recovery periods (90 x 4 schedule), than if the loads are applied in a single session (360 x 1). Modest increases in aBMD and BMC can improve biomechanical properties substantially if the new bone formation is localized to the most biomechanically relevant sites, as occurs during load-induced bone formation.
Collapse
Affiliation(s)
- Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | |
Collapse
|