1
|
Abstract
Over the last decade, it has been discovered that the transcription factor Sox9 plays several critical roles in governing the development of the embryonic pancreas and the homeostasis of the mature organ. While analysis of pancreata from patients affected by the Sox9 haploinsufficiency syndrome campomelic dysplasia initially alluded to a functional role of Sox9 in pancreatic morphogenesis, transgenic mouse models have been instrumental in mechanistically dissecting such roles. Although initially defined as a marker and maintenance factor for pancreatic progenitors, Sox9 is now considered to fulfill additional indispensable functions during pancreogenesis and in the postnatal organ through its interactions with other transcription factors and signaling pathways such as Fgf and Notch. In addition to maintaining both multipotent and bipotent pancreatic progenitors, Sox9 is also required for initiating endocrine differentiation and maintaining pancreatic ductal identity, and it has recently been unveiled as a key player in the initiation of pancreatic cancer. These functions of Sox9 are discussed in this article, with special emphasis on the knowledge gained from various loss-of-function and lineage tracing mouse models. Also, current controversies regarding Sox9 function in healthy and injured adult pancreas and unanswered questions and avenues of future study are discussed.
Collapse
Affiliation(s)
- Philip A Seymour
- The Danish Stem Cell Center (DanStem), University of Copenhagen, Panum Institute, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
2
|
Gutierrez-Aguilar R, Kim DH, Casimir M, Dai XQ, Pfluger PT, Park J, Haller A, Donelan E, Park J, D’Alessio D, Woods SC, MacDonald PE, Seeley RJ. The role of the transcription factor ETV5 in insulin exocytosis. Diabetologia 2014; 57:383-91. [PMID: 24190582 PMCID: PMC3947344 DOI: 10.1007/s00125-013-3096-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/09/2013] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Genome-wide association studies have revealed an association of the transcription factor ETS variant gene 5 (ETV5) with human obesity. However, its role in glucose homeostasis and energy balance is unknown. METHODS Etv5 knockout (KO) mice were monitored weekly for body weight (BW) and food intake. Body composition was measured at 8 and 16 weeks of age. Glucose metabolism was studied, and glucose-stimulated insulin secretion was measured in vivo and in vitro. RESULTS Etv5 KO mice are smaller and leaner, and have a reduced BW and lower fat mass than their wild-type controls on a chow diet. When exposed to a high-fat diet, KO mice are resistant to diet-induced BW gain. Despite a greater insulin sensitivity, KO mice have profoundly impaired glucose tolerance associated with impaired insulin secretion. Morphometric analysis revealed smaller islets and a reduced beta cell size in the pancreatic islets of Etv5 KO mice. Knockdown of ETV5 in an insulin-secreting cell line or beta cells from human donors revealed intact mitochondrial and Ca(2+) channel activity, but reduced insulin exocytosis. CONCLUSION/INTERPRETATION This work reveals a critical role for ETV5 in specifically regulating insulin secretion both in vitro and in vivo.
Collapse
Affiliation(s)
- Ruth Gutierrez-Aguilar
- Department of Internal Medicine, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Marina Casimir
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Paul T. Pfluger
- Institute for Diabetes and Obesity, Helmholtz Centre Munich, Neuherberg, Germany
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - April Haller
- Department of Internal Medicine, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | - Elizabeth Donelan
- Department of Internal Medicine, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | - Jisoo Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - David D’Alessio
- Department of Internal Medicine, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | - Stephen C. Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Patrick E. MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Randy J. Seeley
- Department of Internal Medicine, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| |
Collapse
|
3
|
Rhodes JA, Criscimanna A, Esni F. Induction of mouse pancreatic ductal differentiation, an in vitro assay. In Vitro Cell Dev Biol Anim 2012; 48:641-9. [DOI: 10.1007/s11626-012-9555-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/07/2012] [Indexed: 02/01/2023]
|
4
|
Bogani D, Siggers P, Brixey R, Warr N, Beddow S, Edwards J, Williams D, Wilhelm D, Koopman P, Flavell RA, Chi H, Ostrer H, Wells S, Cheeseman M, Greenfield A. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol 2009; 7:e1000196. [PMID: 19753101 PMCID: PMC2733150 DOI: 10.1371/journal.pbio.1000196] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/06/2009] [Indexed: 11/29/2022] Open
Abstract
Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and create a novel entry point into the molecular and cellular mechanisms underlying sex determination in mice and disorders of sexual development in humans.
Collapse
Affiliation(s)
- Debora Bogani
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Pam Siggers
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Rachel Brixey
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Nick Warr
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Sarah Beddow
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Jessica Edwards
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Debbie Williams
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Dagmar Wilhelm
- The Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Peter Koopman
- The Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Harry Ostrer
- Human Genetics Program, New York University School of Medicine, New York, New York, United States of America
| | - Sara Wells
- The Mary Lyon Centre, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Michael Cheeseman
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
- The Mary Lyon Centre, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
5
|
Messersmith WA, Rajeshkumar NV, Tan AC, Wang XF, Diesl V, Choe SE, Follettie M, Coughlin C, Boschelli F, Garcia-Garcia E, Lopez-Rios F, Jimeno A, Hidalgo M. Efficacy and pharmacodynamic effects of bosutinib (SKI-606), a Src/Abl inhibitor, in freshly generated human pancreas cancer xenografts. Mol Cancer Ther 2009; 8:1484-93. [PMID: 19509264 DOI: 10.1158/1535-7163.mct-09-0075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, Src tyrosine kinase has emerged as an attractive target for anticancer therapy, and Src is overexpressed in pancreatic cancer. The purpose of the study was to investigate the in vivo efficacy and pharmacodynamic effects of bosutinib (SKI-606), a Src/Abl inhibitor, using a panel of human pancreatic tumor xenografts. Surgically resected human pancreatic tumors were implanted into female nude mice and randomized to bosutinib versus control. Src and other pathways were analyzed by Western Blot, IHC, and Affymetrix U133 Plus 2.0 gene arrays. Of 15 patient tumors, 3 patient tumors were found to be sensitive to bosutinib, defined as tumor growth of <45% than that of control tumors. There were no definite differences between sensitive and resistant tumors in the baseline Src kinase pathway protein expression assessed by Western Blot. Caveolin-1 expression, as assessed by reverse transcription-PCR and immunohistochemistry, was frequently higher in sensitive cases. In sensitive tumors, bosutinib resulted in increased apoptosis. Phosphorylation of key signaling molecules downstream of Src, signal transducers and activators of transcription 3, and signal transducers and activators of transcription 3, were significantly inhibited by bosutinib. K-Top Scoring Pairs analysis of gene arrays gave a six-gene classifier that predicted resistance versus sensitivity in six validation cases. These results may aid the clinical development of bosutinib and other Src inhibitors in pancreas cancer.
Collapse
Affiliation(s)
- Wells A Messersmith
- Gastrointestinal Medical Oncology Program, University of Colorado Cancer Center, 12801 East 17th Avenue, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Feanny MA, Fagan SP, Ballian N, Liu SH, Li Z, Wang X, Fisher W, Brunicardi FC, Belaguli NS. PDX-1 expression is associated with islet proliferation in vitro and in vivo. J Surg Res 2007; 144:8-16. [PMID: 17583748 DOI: 10.1016/j.jss.2007.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 03/21/2007] [Accepted: 04/08/2007] [Indexed: 12/31/2022]
Abstract
BACKGROUND Transcription factor pancreatic duodenal homeobox-1 (PDX-1) is critical for beta-cell differentiation and insulin gene expression. In this study, we investigated the role of PDX-1 in ductal-to-islet cell transdifferentiation, islet cell apoptosis, and proliferation in addition to other regulators associated with these processes in two developing beta-cell models. MATERIALS AND METHODS CAPAN-1 cells were cultured with the GLP-1 analogue Exendin-4 (Ex-4) to induce transdifferentiation to an insulin-producing phenotype. Expression patterns of PDX-1, somatostatin receptors (SSTR) 1, 2, and 5, p27, and p38 were analyzed. To model pancreatic regeneration in vivo, subtotal pancreatectomies were performed in rats and remnant pancreata were compared to sham laparotomy controls to determine islet size, morphology, apoptosis, and PDX-1 expression. RESULTS In Ex-4-treated cells, PDX-1 expression increased 67% above basal levels within 24 h and was followed by a 10-fold decline in expression by the end of the study. Expression of cell-cycle inhibitor p27 was down-regulated by 81% at 24 h, while levels of the pro-apoptotic modulator p38 significantly increased 4-fold. When compared to controls, SSTR1 expression declined, while SSTR2 and SSTR5 expression were significantly up-regulated in treated cells. Immunofluorescence of pancreatic remnants following subtotal pancreatectomy revealed increased PDX-1 staining at 24 h followed by a significant decline at 72 h post-pancreatectomy. CONCLUSION GLP-1 analogue Ex-4 resulted in up-regulation of PDX-1 in CAPAN-1 cells and PDX-1 was up-regulated in proliferating islets following subtotal pancreatectomy in rats. The increase was seen in the first 24 h. These findings suggest a possible relationship between PDX-1 and the state of islet proliferation, islet-to-ductal transdifferentiation, apoptosis, and the expression of SSTRs.
Collapse
Affiliation(s)
- Mark A Feanny
- The Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Arnaud-Dabernat S, Sarvetnick N. Tyrosine kinase receptors are crucial for normal β-cell development and function. Expert Rev Endocrinol Metab 2007; 2:175-183. [PMID: 30754179 DOI: 10.1586/17446651.2.2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signaling pathways play critical roles in most physiological and pathological processes and convert an extracellular stimulus into a change of function in the recipient cell. Intracellular messages originate from the activation of membrane receptors by a variety of ligands, such as hormones, nutrients or growth factors. The receptors subsequently interact with specific intracellular cascades, triggering the phosphorylation of cell effectors. In the pancreas, these processes control the organogenesis, maintenance and function of endocrine cells within the islets. Growth factors acting through tyrosine kinase receptors play a prominent role among the multitude of signaling pathways active in pancreatic β cells. Deregulation of these processes leads to the development of disorders such as hypoglycemia or diabetes. This review will describe recent advances made on the understanding of the roles of major tyrosine kinase receptors in pancreatic β-cell physiology.
Collapse
Affiliation(s)
- Sandrine Arnaud-Dabernat
- a Université Victor Segalen Bordeaux, INSERM U876, 146 rue Léo saignat, 33076 Bordeaux Cedex, France.
| | - Nora Sarvetnick
- b The Scripps Research Institute, Department of Immunology, IMM23, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Tao H, Ono K, Kurose H, Noji S, Ohuchi H. Exogenous FGF10 can rescue an eye-open at birth phenotype of Fgf10-null mice by activating activin and TGFalpha-EGFR signaling. Dev Growth Differ 2006; 48:339-46. [PMID: 16759284 DOI: 10.1111/j.1440-169x.2006.00869.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutant mice deficient in the fibroblast growth factor 10 (Fgf10) gene exhibit an eye-open phenotype at birth. It has previously been shown that FGF10 has a dual role in proliferation and migration during the early and later stages of eyelid development, respectively. To verify the role of FGF10 during eyelid closure, explant culture of Fgf10-null eyelid anlagen was performed, by which it was examined whether or not exogenous FGF10 could rescue the expression of activin betaB and transforming growth factor alpha, known to be required for eyelid closure. We found that the expression of these genes was markedly induced while that of Shh or Ptch1, Ptch2 was not. We also observed the distribution of filamentous actin (F-actin) after FGF10 application in the mutant eyelid explant, finding that the FGF10 protein induced F-actin accumulation. We further examined filopodia of the eyelid leading edge cells, finding the length of the filopodia was significantly reduced in the mutant. These results verify that FGF10 promotes eyelid closure through activating activin and TGFalpha-EGFR signaling.
Collapse
Affiliation(s)
- Hirotaka Tao
- Department of Biological Science and Technology, Faculty of Engineering, University of Tokushima, 2-1 Minami-Jyosanjima, Tokushima 770-8506, Japan
| | | | | | | | | |
Collapse
|
9
|
Hua H, Zhang YQ, Dabernat S, Kritzik M, Dietz D, Sterling L, Sarvetnick N. BMP4 regulates pancreatic progenitor cell expansion through Id2. J Biol Chem 2006; 281:13574-13580. [PMID: 16547003 DOI: 10.1074/jbc.m600526200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inhibitor of DNA binding (Id) proteins bind to and inhibit the function of basic helix-loop-helix (bHLH) transcription factors including those that regulate pancreatic development. Moreover, bone morphogenetic proteins (BMPs) regulate the expression of Ids. We hypothesized that BMP4 and Id proteins play a role in the expansion and differentiation of epithelial progenitor cells. We demonstrate that BMP4 induces the expression of Id2 along with the expansion of AR42J pancreatic epithelial cells. Furthermore, neutralization of BMP4 significantly reduced duct epithelial cell expansion in a mouse model of islet regeneration. BMP4 stimulation promotes Id2 binding to the bHLH transcription factor NeuroD, which is required for the differentiation of pancreatic islet cells. Therefore, our results indicate that BMP4 stimulation blocks the differentiation of endocrine progenitor cells and instead promotes their expansion thereby revealing a novel paradigm of signaling explaining the balance between expansion and differentiation of pancreatic duct epithelial progenitors. Understanding the mechanisms of BMP and Id function elucidates a key step during pancreas embryogenesis, which is important knowledge for expanding pancreatic progenitors in vitro.
Collapse
Affiliation(s)
- Hong Hua
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037
| | - You-Qing Zhang
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037
| | - Sandrine Dabernat
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037
| | - Marcie Kritzik
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037
| | - Daisy Dietz
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037
| | - Lori Sterling
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037
| | - Nora Sarvetnick
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|