1
|
Wilson R, Mukherjee-Roy N, Gattineni J. The role of fibroblast growth factor 23 in regulation of phosphate balance. Pediatr Nephrol 2024; 39:3439-3451. [PMID: 38874635 DOI: 10.1007/s00467-024-06395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
Phosphate is essential for numerous biological processes, and serum levels are tightly regulated to accomplish these functions. The regulation of serum phosphate in a narrow physiological range is a well-orchestrated process and involves the gastrointestinal (GI) tract, bone, kidneys, and several hormones, namely, parathyroid hormone, fibroblast growth factor 23 (FGF23), and 1,25-dihydroxyvitamin D (1,25 Vitamin D). Although primarily synthesized in the bone, FGF23, an endocrine FGF, acts on the kidney to regulate phosphate and Vitamin D homeostasis by causing phosphaturia and reduced levels of 1,25 Vitamin D. Recent studies have highlighted the complex regulation of FGF23 including transcriptional and post-translational modification and kidney-bone cross talk. Understanding FGF23 biology has led to the identification of novel therapeutic agents to treat diseases that disrupt phosphate metabolism secondary to FGF23. The focus of this review is to provide an overview of phosphate homeostasis, FGF23 biology, and the role of FGF23 in phosphate balance.
Collapse
Affiliation(s)
| | - Neije Mukherjee-Roy
- Division of Pediatric Nephrology, Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Jyothsna Gattineni
- Division of Pediatric Nephrology, Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA.
| |
Collapse
|
2
|
Lee SJ, Kim JA, Ihn HJ, Choi JY, Kwon TY, Shin HI, Cho ES, Bae YC, Jiang R, Kim JE, Park EK. The transcription factor BBX regulates phosphate homeostasis through the modulation of FGF23. Exp Mol Med 2024:10.1038/s12276-024-01341-9. [PMID: 39482539 DOI: 10.1038/s12276-024-01341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/19/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Fibroblast growth factor 23 (FGF23) plays an important role in phosphate homeostasis, and increased FGF23 levels result in hypophosphatemia; however, the molecular mechanism underlying increased FGF23 expression has not been fully elucidated. In this study, we found that mice lacking the bobby sox homolog (Bbx-/-) presented increased FGF23 expression and low phosphate levels in the serum and skeletal abnormalities such as a low bone mineral density (BMD) and bone volume (BV), as well as short and weak bones associated with low bone formation. Osteocyte-specific deletion of Bbx using Dmp-1-Cre resulted in similar skeletal abnormalities, elevated serum FGF23 levels, and reduced serum phosphate levels. In Bbx-/- mice, the expression of sodium phosphate cotransporter 2a (Npt2a) and Npt2c in the kidney and Npt2b in the small intestine, which are negatively regulated by FGF23, was downregulated, leading to phosphate excretion/wasting and malabsorption. An in vitro Fgf23 promoter analysis revealed that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-induced transactivation of the Fgf23 promoter was significantly inhibited by BBX overexpression, whereas it was increased following Bbx knockdown. Interestingly, 1,25(OH)2D3 induced an interaction of the 1,25(OH)2D3 receptor (VDR) with BBX and downregulated BBX protein levels. Cycloheximide (CHX) only partially downregulated BBX protein levels, indicating that 1,25(OH)2D3 regulates BBX protein stability. Furthermore, the ubiquitination of BBX followed by proteasomal degradation was required for the increase in Fgf23 expression induced by 1,25(OH)2D3. Collectively, our data demonstrate that BBX negatively regulates Fgf23 expression, and consequently, the ubiquitin-dependent proteasomal degradation of BBX is required for FGF23 expression, thereby regulating phosphate homeostasis and bone development in mice.
Collapse
Affiliation(s)
- Su Jeong Lee
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio‑tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio‑tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Hye Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Yub Kwon
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hong-In Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio‑tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Ohio, TX, USA
| | - Jung-Eun Kim
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio‑tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
3
|
Sakamoto E, Kitase Y, Fitt AJ, Zhu Z, Awad K, Brotto M, White KE, Welc SS, Bergwitz C, Bonewald LF. Both enantiomers of β-aminoisobutyric acid BAIBA regulate Fgf23 via MRGPRD receptor by activating distinct signaling pathways in osteocytes. Cell Rep 2024; 43:114397. [PMID: 38935499 PMCID: PMC11350516 DOI: 10.1016/j.celrep.2024.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
With exercise, muscle and bone produce factors with beneficial effects on brain, fat, and other organs. Exercise in mice increased fibroblast growth factor 23 (FGF23), urine phosphate, and the muscle metabolite L-β-aminoisobutyric acid (L-BAIBA), suggesting that L-BAIBA may play a role in phosphate metabolism. Here, we show that L-BAIBA increases in serum with exercise and elevates Fgf23 in osteocytes. The D enantiomer, described to be elevated with exercise in humans, can also induce Fgf23 but through a delayed, indirect process via sclerostin. The two enantiomers both signal through the same receptor, Mas-related G-protein-coupled receptor type D, but activate distinct signaling pathways; L-BAIBA increases Fgf23 through Gαs/cAMP/PKA/CBP/β-catenin and Gαq/PKC/CREB, whereas D-BAIBA increases Fgf23 indirectly through sclerostin via Gαi/NF-κB. In vivo, both enantiomers increased Fgf23 in bone in parallel with elevated urinary phosphate excretion. Thus, exercise-induced increases in BAIBA and FGF23 work together to maintain phosphate homeostasis.
Collapse
Affiliation(s)
- Eijiro Sakamoto
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Yukiko Kitase
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Alexander J Fitt
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Zewu Zhu
- Section of Endocrinology and Metabolism, Yale School of Medicine, New Haven, CT 06519, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA
| | - Kenneth E White
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Molecular and Medical Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Steven S Welc
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale School of Medicine, New Haven, CT 06519, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
4
|
Powała A, Żołek T, Brown G, Kutner A. Structure and the Anticancer Activity of Vitamin D Receptor Agonists. Int J Mol Sci 2024; 25:6624. [PMID: 38928329 PMCID: PMC11203455 DOI: 10.3390/ijms25126624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Vitamin D is a group of seco-steroidal fat-soluble compounds. The two basic forms, vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol), do not have biological activity. They are converted in the body by a two-step enzymatic hydroxylation into biologically active forms, 1α,25-dihydroxyvitamin D2 [ercalcitriol, 1,25(OH)2D2] and 1α,25-dihydroxyvitamin D3 [calcitriol, 1,25(OH)2D3], which act as classical steroid hormones. 1,25(OH)2D3 exerts most of its physiological functions by binding to the nuclear vitamin D receptor (VDR), which is present in most body tissues to provide support to a broad range of physiological processes. Vitamin D-liganded VDR controls the expression of many genes. High levels of 1,25(OH)2D3 cause an increase in calcium in the blood, which can lead to harmful hypercalcemia. Several analogs of 1,25(OH)2D3 and 1,25(OH)2D2 have been designed and synthesized with the aim of developing compounds that have a specific therapeutic function, for example, with potent anticancer activity and a reduced toxic calcemic effect. Particular structural modifications to vitamin D analogs have led to increased anticancer activity and reduced calcemic action with the prospect of extending work to provide future innovative therapies.
Collapse
Affiliation(s)
- Agnieszka Powała
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Stefana Banacha, 02-097 Warsaw, Poland
| | - Teresa Żołek
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Stefana Banacha, 02-097 Warsaw, Poland
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Andrzej Kutner
- Department of Drug Chemistry Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Stefana Banacha, 02-097 Warsaw, Poland;
| |
Collapse
|
5
|
Shi H, Chen M. The brain-bone axis: unraveling the complex interplay between the central nervous system and skeletal metabolism. Eur J Med Res 2024; 29:317. [PMID: 38849920 PMCID: PMC11161955 DOI: 10.1186/s40001-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The brain-bone axis has emerged as a captivating field of research, unveiling the intricate bidirectional communication between the central nervous system (CNS) and skeletal metabolism. This comprehensive review delves into the current state of knowledge surrounding the brain-bone axis, exploring the complex mechanisms, key players, and potential clinical implications of this fascinating area of study. The review discusses the neural regulation of bone metabolism, highlighting the roles of the sympathetic nervous system, hypothalamic neuropeptides, and neurotransmitters in modulating bone remodeling. In addition, it examines the influence of bone-derived factors, such as osteocalcin and fibroblast growth factor 23, on brain function and behavior. The therapeutic potential of targeting the brain-bone axis in the context of skeletal and neurological disorders is also explored. By unraveling the complex interplay between the CNS and skeletal metabolism, this review aims to provide a comprehensive resource for researchers, clinicians, and students interested in the brain-bone axis and its implications for human health and disease.
Collapse
Affiliation(s)
- Haojun Shi
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China.
| |
Collapse
|
6
|
Vermeulen S, Scheffer‐Rath MEA, Besouw MTP, van der Vaart A, de Borst MH, Boot AM. Fibroblast growth factor 23 and calcium-phosphate metabolism in relation to cardiovascular risk factors in patients with type 1 diabetes. J Diabetes 2024; 16:e13500. [PMID: 38124483 PMCID: PMC11128753 DOI: 10.1111/1753-0407.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the major cause of mortality in type 1 diabetes (T1D). The objective of this study is to evaluate fibroblast growth factor 23 (FGF23) and calcium-phosphate metabolism in relation to cardiovascular risk factors in adults with and without T1D. METHODS A case-control study was conducted using data from patients with T1D and age- and sex matched controls without T1D from the Lifelines Cohort Study. RESULTS We included 302 adults in the T1D group and 302 adults in the control group. Median age was 42 years. Median glycosylated hemoglobin (HbA1c) in the T1D group was 7.8%. FGF23 of all patients with T1D was not significantly different from controls. Females with T1D had significantly higher FGF23 than males with T1D (83.3 vs 69.3 U/mL, p = 0.002), this was not observed in controls. Serum phosphate, calcium, and alkaline phosphatase were higher and parathyroid hormone was lower in patients with T1D, compared to controls (all p < .001), all within normal range. In the T1D group, FGF23 was positively correlated with serum phosphate (p < .001), alkaline phosphatase (p = .01), and calcium (p = .030), these correlations were not observed in controls. Median FGF23 was significantly higher in current smokers than in nonsmokers with T1D (84.9 vs 73.5 U/mL, p < .05). CONCLUSIONS Serum calcium, phosphate, and alkaline phosphatase were higher in patients with T1D than in controls and were positively correlated to FGF23 in patients with T1D. Current smokers with T1D had higher FGF23 than nonsmokers with T1D. These findings may contribute to the increased risk of CVD in patients with T1D.
Collapse
Affiliation(s)
- Stephanie Vermeulen
- Department of Pediatric Endocrinology, Beatrix Children's HospitalUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
- Diabeter Center for Pediatric and Adolescent Diabetes Care and ResearchGroningenthe Netherlands
| | | | - Martine T. P. Besouw
- Department of Pediatric Nephrology, Beatrix Children's HospitalUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Amarens van der Vaart
- Department of Internal Medicine, Division of NephrologyUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
- Department of Internal Medicine, Division of EndocrinologyUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Martin H. de Borst
- Department of Internal Medicine, Division of NephrologyUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Annemieke M. Boot
- Department of Pediatric Endocrinology, Beatrix Children's HospitalUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
- Diabeter Center for Pediatric and Adolescent Diabetes Care and ResearchGroningenthe Netherlands
| |
Collapse
|
7
|
Secondulfo C, Visco V, Virtuoso N, Fortunato M, Migliarino S, Rispoli A, La Mura L, Stellato A, Caliendo G, Settembre E, Galluccio F, Hamzeh S, Bilancio G. Vitamin D: A Bridge between Kidney and Heart. Life (Basel) 2024; 14:617. [PMID: 38792638 PMCID: PMC11123235 DOI: 10.3390/life14050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) are highly prevalent conditions, each significantly contributing to the global burden of morbidity and mortality. CVD and CKD share a great number of common risk factors, such as hypertension, diabetes, obesity, and smoking, among others. Their relationship extends beyond these factors, encompassing intricate interplay between the two systems. Within this complex network of pathophysiological processes, vitamin D has emerged as a potential linchpin, exerting influence over diverse physiological pathways implicated in both CKD and CVD. In recent years, scientific exploration has unveiled a close connection between these two prevalent conditions and vitamin D, a crucial hormone traditionally recognized for its role in bone health. This article aims to provide an extensive review of vitamin D's multifaceted and expanding actions concerning its involvement in CKD and CVD.
Collapse
Affiliation(s)
- Carmine Secondulfo
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Valeria Visco
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Nicola Virtuoso
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Martino Fortunato
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Serena Migliarino
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Antonella Rispoli
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Lucia La Mura
- Centro Medico Ascione Srl, 80059 Torre del Greco, Italy
| | - Adolfo Stellato
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Giuseppe Caliendo
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Emanuela Settembre
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Fabiana Galluccio
- Department of Medicine and Surgery, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Sarah Hamzeh
- Department of Medicine and Surgery, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Giancarlo Bilancio
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Nephrology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
8
|
Baroncelli GI, Sessa MR, Pelosini C, Bertelloni S, Michelucci A, Toschi B, Piaggi P, Peroni D, Comberiati P. Intact FGF23 concentration in healthy infants, children, and adolescents, and diagnostic usefulness in patients with X-linked hypophosphatemic rickets. J Endocrinol Invest 2024; 47:873-882. [PMID: 37991698 DOI: 10.1007/s40618-023-02202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/14/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE FGF23 measurement may have a diagnostic role to investigate patients with phosphate disorders. However, normal values for infants, children, and adolescents have not been defined. METHODS In a total of 282 (males 145, females 137) healthy infants (n = 30), prepubertal (n = 147), pubertal (n = 59), and postpubertal (n = 46), and in twenty patients with X-linked hypophosphatemic rickets (XLH, age 10.2 ± 5.6 years) serum phosphate (automated analyzer), and plasma intact FGF23 (immunochemiluminescent sandwich assay, DiaSorin) concentrations were measured. RESULTS Intact FGF23 concentrations were higher in healthy infants than in prepubertal (P < 0.01) and postpubertal subjects (P < 0.05); pubertal subjects showed higher values (P < 0.05) than postpubertal subjects. Serum phosphate concentrations were higher (P < 0.001) in healthy infants than in prepubertal, pubertal, and postpubertal subjects. Pubertal subjects had higher (P < 0.001) serum phosphate concentrations than postpubertal subjects. Intact FGF23 and serum phosphate concentrations did not differ (P = NS) by sex, age of menarche, and time after menarche. In healthy subjects, there was no correlation between intact FGF23 and serum phosphate concentrations. Intact FGF23 concentrations were higher (P < 0.0001) in patients with XLH than in healthy subjects according to chronological age and pubertal development. In all patients, intact FGF23 concentrations were above 40 pg/mL; intact FGF23 concentrations were inversely correlated with serum phosphate concentrations (r = -0.65; P < 0.01). CONCLUSION In healthy subjects, chronological age and puberty were main determinants of intact FGF23 concentrations. Intact FGF23 concentrations may be a useful marker for the early diagnosis of XLH in pediatric patients.
Collapse
Affiliation(s)
- G I Baroncelli
- Pediatric and Adolescent Endocrinology, Division of Pediatrics, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
| | - M R Sessa
- Chemistry and Endocrinology Laboratory, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - C Pelosini
- Chemistry and Endocrinology Laboratory, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - S Bertelloni
- Pediatric and Adolescent Endocrinology, Division of Pediatrics, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
| | - A Michelucci
- Unit of Molecular Genetics, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - B Toschi
- Section of Medical Genetics, Department of Medical and Oncological Area, University Hospital, Pisa, Italy
| | - P Piaggi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - D Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - P Comberiati
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy.
| |
Collapse
|
9
|
Nakanishi T, Yamazaki M, Tachikawa K, Ueta A, Kawai M, Ozono K, Michigami T. Complex intrinsic abnormalities in osteoblast lineage cells of X-linked hypophosphatemia: Analysis of human iPS cell models generated by CRISPR/Cas9-mediated gene ablation. Bone 2024; 181:117044. [PMID: 38331306 DOI: 10.1016/j.bone.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
X-linked hypophosphatemia (XLH) is caused by inactivating variants of the phosphate regulating endopeptidase homolog X-linked (PHEX) gene. Although the overproduction of fibroblast growth factor 23 (FGF23) is responsible for hypophosphatemia and impaired vitamin D metabolism, the pathogenesis of XLH remains unclear. We herein generated PHEX-knockout (KO) human induced pluripotent stem (iPS) cells by applying CRISPR/Cas9-mediated gene ablation to an iPS clone derived from a healthy male, and analyzed PHEX-KO iPS cells with deletions extending from exons 1 to 3 and frameshifts by inducing them to differentiate into the osteoblast lineage. We confirmed the increased production of FGF23 in osteoblast lineage cells differentiated from PHEX-KO iPS cells. In vitro mineralization was enhanced in osteoblast lineage cells from PHEX-KO iPS cells than in those from isogenic control iPS cells, which reminded us of high bone mineral density and enthesopathy in patients with XLH. The extracellular level of pyrophosphate (PPi), an inhibitor of mineralization, was elevated, and this increase appeared to be partly due to the reduced activity of tissue non-specific alkaline phosphatase (TNSALP). Osteoblast lineage cells derived from PHEX-KO iPS cells also showed the increased expression of multiple molecules such as dentine matrix protein 1, osteopontin, RUNX2, FGF receptor 1 and early growth response 1. This gene dysregulation was similar to that in the osteoblasts/osteocytes of Phex-deficient Hyp mice, suggesting that common pathogenic mechanisms are shared between human XLH and Hyp mice. Moreover, we found that the phosphorylation of CREB was markedly enhanced in osteoblast lineage cells derived from PHEX-KO iPS cells, which appeared to be associated with the up-regulation of the parathyroid hormone related protein gene. PHEX deficiency also affected the response of the ALPL gene encoding TNSALP to extracellular Pi. Collectively, these results indicate that complex intrinsic abnormalities in osteoblasts/osteocytes underlie the pathogenesis of human XLH.
Collapse
Affiliation(s)
- Tatsuro Nakanishi
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Ayu Ueta
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan; 1st Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | | | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
10
|
Yang Z, Zarbl H, Guo GL. Circadian Regulation of Endocrine Fibroblast Growth Factors on Systemic Energy Metabolism. Mol Pharmacol 2024; 105:179-193. [PMID: 38238100 PMCID: PMC10877735 DOI: 10.1124/molpharm.123.000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
The circadian clock is an endogenous biochemical timing system that coordinates the physiology and behavior of organisms to earth's ∼24-hour circadian day/night cycle. The central circadian clock synchronized by environmental cues hierarchically entrains peripheral clocks throughout the body. The circadian system modulates a wide variety of metabolic signaling pathways to maintain whole-body metabolic homeostasis in mammals under changing environmental conditions. Endocrine fibroblast growth factors (FGFs), namely FGF15/19, FGF21, and FGF23, play an important role in regulating systemic metabolism of bile acids, lipids, glucose, proteins, and minerals. Recent evidence indicates that endocrine FGFs function as nutrient sensors that mediate multifactorial interactions between peripheral clocks and energy homeostasis by regulating the expression of metabolic enzymes and hormones. Circadian disruption induced by environmental stressors or genetic ablation is associated with metabolic dysfunction and diurnal disturbances in FGF signaling pathways that contribute to the pathogenesis of metabolic diseases. Time-restricted feeding strengthens the circadian pattern of metabolic signals to improve metabolic health and prevent against metabolic diseases. Chronotherapy, the strategic timing of medication administration to maximize beneficial effects and minimize toxic effects, can provide novel insights into linking biologic rhythms to drug metabolism and toxicity within the therapeutical regimens of diseases. Here we review the circadian regulation of endocrine FGF signaling in whole-body metabolism and the potential effect of circadian dysfunction on the pathogenesis and development of metabolic diseases. We also discuss the potential of chrononutrition and chronotherapy for informing the development of timing interventions with endocrine FGFs to optimize whole-body metabolism in humans. SIGNIFICANCE STATEMENT: The circadian timing system governs physiological, metabolic, and behavioral functions in living organisms. The endocrine fibroblast growth factor (FGF) family (FGF15/19, FGF21, and FGF23) plays an important role in regulating energy and mineral metabolism. Endocrine FGFs function as nutrient sensors that mediate multifactorial interactions between circadian clocks and metabolic homeostasis. Chronic disruption of circadian rhythms increases the risk of metabolic diseases. Chronological interventions such as chrononutrition and chronotherapy provide insights into linking biological rhythms to disease prevention and treatment.
Collapse
Affiliation(s)
- Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Helmut Zarbl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| |
Collapse
|
11
|
Courbon G, Kentrup D, Thomas JJ, Wang X, Tsai HH, Spindler J, Von Drasek J, Ndjonko LM, Martinez-Calle M, Lynch S, Hivert L, Wang X, Chang W, Feng JQ, David V, Martin A. FGF23 directly inhibits osteoprogenitor differentiation in Dmp1-knockout mice. JCI Insight 2023; 8:e156850. [PMID: 37943605 PMCID: PMC10807721 DOI: 10.1172/jci.insight.156850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphate-regulating (Pi-regulating) hormone produced by bone. Hereditary hypophosphatemic disorders are associated with FGF23 excess, impaired skeletal growth, and osteomalacia. Blocking FGF23 became an effective therapeutic strategy in X-linked hypophosphatemia, but testing remains limited in autosomal recessive hypophosphatemic rickets (ARHR). This study investigates the effects of Pi repletion and bone-specific deletion of Fgf23 on bone and mineral metabolism in the dentin matrix protein 1-knockout (Dmp1KO) mouse model of ARHR. At 12 weeks, Dmp1KO mice showed increased serum FGF23 and parathyroid hormone levels, hypophosphatemia, impaired growth, rickets, and osteomalacia. Six weeks of dietary Pi supplementation exacerbated FGF23 production, hyperparathyroidism, renal Pi excretion, and osteomalacia. In contrast, osteocyte-specific deletion of Fgf23 resulted in a partial correction of FGF23 excess, which was sufficient to fully restore serum Pi levels but only partially corrected the bone phenotype. In vitro, we show that FGF23 directly impaired osteoprogenitors' differentiation and that DMP1 deficiency contributed to impaired mineralization independent of FGF23 or Pi levels. In conclusion, FGF23-induced hypophosphatemia is only partially responsible for the bone defects observed in Dmp1KO mice. Our data suggest that combined DMP1 repletion and FGF23 blockade could effectively correct ARHR-associated mineral and bone disorders.
Collapse
Affiliation(s)
- Guillaume Courbon
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jane Joy Thomas
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hao-Hsuan Tsai
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jadeah Spindler
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John Von Drasek
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Laura Mazudie Ndjonko
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marta Martinez-Calle
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sana Lynch
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lauriane Hivert
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xiaofang Wang
- Texas A&M School of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Wenhan Chang
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jian Q. Feng
- Shanxi Medical University School and Hospital of Stomatology, Clinical Medical Research Center of Oral Diseases of Shanxi Province, Taiyuan, China
| | - Valentin David
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Máčová L, Kancheva R, Bičíková M. Molecular Regulation of the CNS by Vitamin D. Physiol Res 2023; 72:S339-S356. [PMID: 38116771 DOI: 10.33549/physiolres.935248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Vitamin D is a lipid-soluble vitamin that can be found in some foods. It is also produced endogenously (in the presence of ultraviolet light), transported through the blood to the targets organs and this is the reason to consider vitamin D as a hormone. It is known that vitamin D has genomic and non-genomic effects. This review is focused mainly on the vitamin D receptors, the importance of vitamin D as a neuromodulator, the role of vitamin D in the pathophysiology of devastating neurological disorders such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and the benefit of vitamin D and its derivates in alleviating these disorders.
Collapse
Affiliation(s)
- L Máčová
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic
| | | | | |
Collapse
|
13
|
Voltan G, Cannito M, Ferrarese M, Ceccato F, Camozzi V. Vitamin D: An Overview of Gene Regulation, Ranging from Metabolism to Genomic Effects. Genes (Basel) 2023; 14:1691. [PMID: 37761831 PMCID: PMC10531002 DOI: 10.3390/genes14091691] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Vitamin D is a pro-hormone characterized by an intricate metabolism and regulation. It is well known for its role in calcium and phosphate metabolism, and in bone health. However, several studies have assessed a huge number of extra-skeletal functions, ranging from cell proliferation in some oncogenic pathways to antioxidant and immunomodulatory functions. Vitamin D exerts its role by binding to VDRs (vitamin D receptors), which are located in many different tissues. Moreover, VDRs are able to bind hundreds of genomic loci, modulating the expression of various primary target genes. Interestingly, plenty of gene polymorphisms regarding VDRs are described, each one carrying a potential influence against gene expression, with relapses in several chronic diseases and metabolic complications. In this review, we provide an overview of the genetic aspects of vitamin D and VDR, emphasizing the gene regulation of vitamin D, and the genetic modulation of VDR target genes. In addition, we briefly summarize the rare genetic disease linked to vitamin D metabolism.
Collapse
Affiliation(s)
- Giacomo Voltan
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (G.V.); (M.C.); (M.F.); (V.C.)
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Michele Cannito
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (G.V.); (M.C.); (M.F.); (V.C.)
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Michela Ferrarese
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (G.V.); (M.C.); (M.F.); (V.C.)
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Filippo Ceccato
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (G.V.); (M.C.); (M.F.); (V.C.)
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Valentina Camozzi
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (G.V.); (M.C.); (M.F.); (V.C.)
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| |
Collapse
|
14
|
Pike JW, Lee SM, Meyer MB. Molecular insights into mineralotropic hormone inter-regulation. Front Endocrinol (Lausanne) 2023; 14:1213361. [PMID: 37441497 PMCID: PMC10334211 DOI: 10.3389/fendo.2023.1213361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The regulation of mineral homeostasis involves the three mineralotropic hormones PTH, FGF23 and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Early research efforts focused on PTH and 1,25(OH)2D3 and more recently on FGF23 have revealed that each of these hormones regulates the expression of the other two. Despite early suggestions of transcriptional processes, it has been only recently that research effort have begun to delineate the genomic mechanisms underpinning this regulation for 1,25(OH)2D3 and FGF23; the regulation of PTH by 1,25(OH)2D3, however, remains obscure. We review here our molecular understanding of how PTH induces Cyp27b1 expression, the gene encoding the enzyme responsible for the synthesis of 1,25(OH)2D3. FGF23 and 1,25(OH)2D3, on the other hand, function by suppressing production of 1,25(OH)2D3. PTH stimulates the PKA-induced recruitment of CREB and its coactivator CBP at CREB occupied sites within the kidney-specific regulatory regions of Cyp27b1. PKA activation also promotes the nuclear translocation of SIK bound coactivators such as CRTC2, where it similarly interacts with CREB occupied Cyp27b1 sites. The negative actions of both FGF23 and 1,25(OH)2D3 appear to suppress Cyp27b1 expression by opposing the recruitment of CREB coactivators at this gene. Reciprocal gene actions are seen at Cyp24a1, the gene encoding the enzyme that degrades 1,25(OH)2D3, thereby contributing to the overall regulation of blood levels of 1,25(OH)2D3. Relative to PTH regulation, we summarize what is known of how 1,25(OH)2D3 regulates PTH suppression. These studies suggest that it is not 1,25(OH)2D3 that controls PTH levels in healthy subjects, but rather calcium itself. Finally, we describe current progress using an in vivo approach that furthers our understanding of the regulation of Fgf23 expression by PTH and 1,25(OH)2D3 and provide the first evidence that P may act to induce Fgf23 expression via a complex transcriptional mechanism in bone. It is clear, however, that additional advances will need to be made to further our understanding of the inter-regulation of each of these hormonal genes.
Collapse
Affiliation(s)
- J. Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Seong Min Lee
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
15
|
Youssef ME, Yahya G, Popoviciu MS, Cavalu S, Abd-Eldayem MA, Saber S. Unlocking the Full Potential of SGLT2 Inhibitors: Expanding Applications beyond Glycemic Control. Int J Mol Sci 2023; 24:ijms24076039. [PMID: 37047011 PMCID: PMC10094124 DOI: 10.3390/ijms24076039] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The number of diabetic patients has risen dramatically in recent decades, owing mostly to the rising incidence of type 2 diabetes mellitus (T2DM). Several oral antidiabetic medications are used for the treatment of T2DM including, α-glucosidases inhibitors, biguanides, sulfonylureas, meglitinides, GLP-1 receptor agonists, PPAR-γ agonists, DDP4 inhibitors, and SGLT2 inhibitors. In this review we focus on the possible effects of SGLT2 inhibitors on different body systems. Beyond the diabetic state, SGLT2 inhibitors have revealed a demonstrable ability to ameliorate cardiac remodeling, enhance myocardial function, and lower heart failure mortality. Additionally, SGLT2 inhibitors can modify adipocytes and their production of cytokines, such as adipokines and adiponectin, which enhances insulin sensitivity and delays diabetes onset. On the other hand, SGLT2 inhibitors have been linked to decreased total hip bone mineral deposition and increased hip bone resorption in T2DM patients. More data are needed to evaluate the role of SGLT2 inhibitors on cancer. Finally, the effects of SGLT2 inhibitors on neuroprotection appear to be both direct and indirect, according to scientific investigations utilizing various experimental models. SGLT2 inhibitors improve vascular tone, elasticity, and contractility by reducing oxidative stress, inflammation, insulin signaling pathways, and endothelial cell proliferation. They also improve brain function, synaptic plasticity, acetylcholinesterase activity, and reduce amyloid plaque formation, as well as regulation of the mTOR pathway in the brain, which reduces brain damage and cognitive decline.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt
| | - Mihaela Simona Popoviciu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Marwa A Abd-Eldayem
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
16
|
Ceglia L, Pittas AG, Dawson-Hughes B. Effect of vitamin D supplementation on circulating fibroblast growth factor-23 concentration in adults with prediabetes. Aging Clin Exp Res 2023; 35:525-530. [PMID: 36631721 DOI: 10.1007/s40520-022-02338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Recent meta-analyses report that vitamin D supplementation increases blood fibroblast growth factor-23 (FGF23) level. OBJECTIVES To determine the effect of 4000 IU/day of vitamin D3 for 12 months on circulating FGF23 levels. We also examined the association of the achieved 25-hydroxyvitamin D level [25(OH)D] with the FGF23 level at 12 months and with 12-month changes in FGF23. METHODS An ancillary analysis among adults 70 years and older with prediabetes who participated in a trial comparing vitamin D3 4000 IU/day with placebo. Plasma intact FGF23 and serum 25(OH)D were measured at baseline and month 12 (M12). RESULTS Characteristics of the 52 participants (vitamin D3 n = 28; placebo n = 24) did not differ significantly aside from more women than men in the vitamin D3 group. Mean ± SD age was 73.8 ± 3.7 years, BMI 31.3 ± 4.2 kg/m2, and glomerular filtration rate (GFR) 76.3 ± 11.8 mL/min/1.73m2 Baseline serum 25(OH)D level was 33.4 ± 10.8 ng/mL and increased at M12 to 54.9 ± 14.8 ng/mL in the vitamin D3 group versus 33.4 ± 14.9 in the placebo (p < 0.001). At baseline, GFR was inversely associated with FGF23 (r = - 0.349, p = 0.011). Change in FGF23 level at M12 did not differ significantly between vitamin D3 and placebo. In all participants combined, the achieved serum 25(OH)D level at M12 was not significantly associated with the M12 plasma FGF23 or the M12 change in FGF23. CONCLUSION In obese older adults with sufficient vitamin D status and normal renal function, vitamin D3 4000 IU/day for 12 months did not significantly alter plasma intact FGF23 levels. CLINICALTRIALS gov NCT 01,942,694, registered 9/16/2013.
Collapse
Affiliation(s)
- Lisa Ceglia
- Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, 800 Washington St. Box 268, Boston, MA, 02111, USA.
- Bone Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| | - Anastassios G Pittas
- Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, 800 Washington St. Box 268, Boston, MA, 02111, USA
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
17
|
Williams MJ, White SC, Joseph Z, Hruska KA. Updates in the chronic kidney disease-mineral bone disorder show the role of osteocytic proteins, a potential mechanism of the bone-Vascular paradox, a therapeutic target, and a biomarker. Front Physiol 2023; 14:1120308. [PMID: 36776982 PMCID: PMC9909112 DOI: 10.3389/fphys.2023.1120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The chronic kidney disease-mineral bone disorder (CKD-MBD) is a complex multi-component syndrome occurring during kidney disease and its progression. Here, we update progress in the components of the syndrome, and synthesize recent investigations, which suggest a potential mechanism of the bone-vascular paradox. The discovery that calcified arteries in chronic kidney disease inhibit bone remodeling lead to the identification of factors produced by the vasculature that inhibit the skeleton, thus providing a potential explanation for the bone-vascular paradox. Among the factors produced by calcifying arteries, sclerostin secretion is especially enlightening. Sclerostin is a potent inhibitor of bone remodeling and an osteocyte specific protein. Its production by the vasculature in chronic kidney disease identifies the key role of vascular cell osteoblastic/osteocytic transdifferentiation in vascular calcification and renal osteodystrophy. Subsequent studies showing that inhibition of sclerostin activity by a monoclonal antibody improved bone remodeling as expected, but stimulated vascular calcification, demonstrate that vascular sclerostin functions to brake the Wnt stimulation of the calcification milieu. Thus, the target of therapy in the chronic kidney disease-mineral bone disorder is not inhibition of sclerostin function, which would intensify vascular calcification. Rather, decreasing sclerostin production by decreasing the vascular osteoblastic/osteocytic transdifferentiation is the goal. This might decrease vascular calcification, decrease vascular stiffness, decrease cardiac hypertrophy, decrease sclerostin production, reduce serum sclerostin and improve skeletal remodeling. Thus, the therapeutic target of the chronic kidney disease-mineral bone disorder may be vascular osteoblastic transdifferentiation, and sclerostin levels may be a useful biomarker for the diagnosis of the chronic kidney disease-mineral bone disorder and the progress of its therapy.
Collapse
Affiliation(s)
- Matthew J. Williams
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Sarah C. White
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Zachary Joseph
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Keith A. Hruska
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
- Departments of Medicine and Cell Biology, Washington University, Saint Louis, MO, United States
| |
Collapse
|
18
|
Nepal AK, van Essen HW, Reijnders CMA, Lips P, Bravenboer N. Mechanical loading modulates phosphate related genes in rat bone. PLoS One 2023; 18:e0282678. [PMID: 36881582 PMCID: PMC9990935 DOI: 10.1371/journal.pone.0282678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Mechanical loading determines bone mass and bone structure, which involves many biochemical signal molecules. Of these molecules, Mepe and Fgf23 are involved in bone mineralization and phosphate homeostasis. Thus, we aimed to explore whether mechanical loading of bone affects factors of phosphate homeostasis. We studied the effect of mechanical loading of bone on the expression of Fgf23, Mepe, Dmp1, Phex, Cyp27b1, and Vdr. Twelve-week old female rats received a 4-point bending load on the right tibia, whereas control rats were not loaded. RT-qPCR was performed on tibia mRNA at 4, 5, 6, 7 or 8 hours after mechanical loading for detection of Mepe, Dmp1, Fgf23, Phex, Cyp27b1, and Vdr. Immunohistochemistry was performed to visualise FGF23 protein in tibiae. Serum FGF23, phosphate and calcium levels were measured in all rats. Four-point bending resulted in a reduction of tibia Fgf23 gene expression by 64% (p = 0.002) and a reduction of serum FGF23 by 30% (p<0.001), six hours after loading. Eight hours after loading, Dmp1 and Mepe gene expression increased by 151% (p = 0.007) and 100% (p = 0.007). Mechanical loading did not change Phex, Cyp27b1, and Vdr gene expression at any time-point. We conclude that mechanical loading appears to provoke both a paracrine as well as an endocrine response in bone by modulating factors that regulate bone mineralization and phosphate homeostasis.
Collapse
Affiliation(s)
- Ashwini Kumar Nepal
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hubertus W. van Essen
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christianne M. A. Reijnders
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul Lips
- Department of Internal Medicine, Endocrine Section, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Michigami T. Paracrine and endocrine functions of osteocytes. Clin Pediatr Endocrinol 2023; 32:1-10. [PMID: 36761497 PMCID: PMC9887291 DOI: 10.1297/cpe.2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 11/04/2022] Open
Abstract
Osteocytes are dendritic-shaped cells embedded in the bone matrix and are terminally differentiated from osteoblasts. Inaccessibility due to their location has hindered the understanding of the molecular functions of osteocytes. However, scientific advances in the past few decades have revealed that osteocytes play critical roles in bone and mineral metabolism through their paracrine and endocrine functions. Sclerostin produced by osteocytes regulates bone formation and resorption by inhibiting Wnt/β-catenin signaling in osteoblast-lineage cells. Receptor activator of nuclear factor κ B ligand (RANKL) derived from osteocytes is essential for osteoclastogenesis and osteoclast activation during postnatal life. Osteocytes also secrete fibroblast growth factor 23 (FGF23), an endocrine FGF that regulates phosphate metabolism mainly by increasing phosphate excretion and decreasing 1, 25-dihydroxyvitamin D production in the kidneys. The regulation of FGF23 production in osteocytes is complex and multifactorial, involving many local and systemic regulators. Antibodies against sclerostin, RANKL, and FGF23 have emerged as new strategies for the treatment of metabolic bone diseases. Improved undrstanding of the paracrine and endocrine functions of osteocytes will provide insight into future therapeutic options.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute,
Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Osaka,
Japan
| |
Collapse
|
20
|
Corradi V, Samoni S, Mariotto A, Caprara C, Scalzotto E, Frigo AC, Martino FK, Giavarina D, Ronco C, Zanella M. Relationship between Residual Urine Output and Type of Dialysis with FGF23 Levels. J Clin Med 2022; 12:jcm12010222. [PMID: 36615023 PMCID: PMC9821742 DOI: 10.3390/jcm12010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Several studies investigated the role of fibroblast growth factor 23 (FGF23) in the regulation of renal phosphate excretion in chronic kidney disease (CKD). However, patients with residual urine output (UO) seem to control their serum phosphorus levels better. Our aim was to determine whether FGF23 levels are influenced by dialysis modality and UO. We performed a cross-sectional study in hemodialysis (HD) and peritoneal dialysis (PD) patients. The C-terminal FGF23 (cFGF23) levels were determined in plasma with a two-site enzyme-linked immunosorbent assay. The UO collection referred to an mL/day measurement. All p values were two-sided, and the statistical significance was set at p < 0.05. We enrolled 133 patients (58 HD, 75 PD, UO 70%). The median cFGF23 was significantly higher in HD vs. PD patients (p = 0.0017) and not significantly higher in patients without UO (p = 0.12). We found a negative correlation between cFGF23 and the UO volume (p = 0.0250), but the correlation was not significant when considering the type of dialysis treatment. Phosphorus (ß = 0.21677; p = 0.0007), type of dialysis (ß = −0.68392; p = 0.0003), and creatinine (ß = 0.08130; p = 0.0133) were significant and independent predictors of cFGF23 levels. In conclusion, cFGF23 was significantly higher in HD than in PD patients. We found a significant negative correlation between cFGF23 and the residual UO volume, but the correlation was not significant considering the type of dialysis. Our study reveals that dialysis modality is an independent predictor of FGF23 levels. In particular, PD is associated with lower FGF23 levels than HD.
Collapse
Affiliation(s)
- Valentina Corradi
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
- International Renal Research Institute of Vicenza and IRRIV Foundation for Research, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
- Correspondence: ; Tel.: +39-0444-753650
| | - Sara Samoni
- International Renal Research Institute of Vicenza and IRRIV Foundation for Research, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
- Department of Nephrology and Dialysis, S. Anna Hospital, ASST Lariana, 22077 Como, Italy
| | - Alice Mariotto
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
- International Renal Research Institute of Vicenza and IRRIV Foundation for Research, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
| | - Carlotta Caprara
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
- International Renal Research Institute of Vicenza and IRRIV Foundation for Research, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
| | - Elisa Scalzotto
- International Renal Research Institute of Vicenza and IRRIV Foundation for Research, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
| | - Anna Chiara Frigo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padua, Italy
| | - Francesca K. Martino
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
- International Renal Research Institute of Vicenza and IRRIV Foundation for Research, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
| | - Davide Giavarina
- Department of Laboratory Medicine, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
| | - Claudio Ronco
- International Renal Research Institute of Vicenza and IRRIV Foundation for Research, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
- University of Padova, 35122 Padua, Italy
| | - Monica Zanella
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
- International Renal Research Institute of Vicenza and IRRIV Foundation for Research, San Bortolo Hospital, AULSS 8 BERICA Vicenza, 36100 Vicenza, Italy
| |
Collapse
|
21
|
André J, Zhukouskaya VV, Lambert AS, Salles JP, Mignot B, Bardet C, Chaussain C, Rothenbuhler A, Linglart A. Growth hormone treatment improves final height in children with X-linked hypophosphatemia. Orphanet J Rare Dis 2022; 17:444. [PMID: 36544157 PMCID: PMC9768884 DOI: 10.1186/s13023-022-02590-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIM Despite optimal conventional treatment (oral phosphate supplements and active vitamin D analogs), about 40-50% of children with well-controlled X-linked hypophosphatemia (XLH) show linear growth failure, making them less likely to achieve an acceptable final height. Here, we studied the hypothesis that rhGH treatment improves final height in children with XLH and growth failure. METHODS Two cohorts of children with XLH were included in this retrospective longitudinal analysis: (1) a cohort treated with rhGH for short stature (n = 34) and (2) a cohort not treated with rhGH (n = 29). The mean duration of rhGH treatment was 4.4 ± 2.9 years. We collected the auxological parameters at various time points during follow-up until final height. RESULTS In rhGH-treated children, 2 years of rhGH therapy was associated with a significant increase in height from - 2.4 ± 0.9 to - 1.5 ± 0.7 SDS (p < 0.001). Their mean height at rhGH discontinuation was - 1.2 ± 0.9 SDS and at final height was - 1.3 ± 0.9 SDS corresponding to 165.5 ± 6.4 cm in boys and 155.5 ± 6.3 cm in girls. Notably, the two groups had similar final heights; i.e., the final height in children not treated with rhGH being - 1.2 ± 1.1 SDS (165.4 ± 6.8 cm in boys and 153.7 ± 7.8 cm in girls), p = 0.7. CONCLUSION Treatment with rhGH permits to improve final height in children with XLH and growth failure, despite optimal conventional treatment. We propose therefore that rhGH therapy could be considered as an option for short stature in the context of XLH.
Collapse
Affiliation(s)
- Julia André
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France
| | - Volha V. Zhukouskaya
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.508487.60000 0004 7885 7602Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Université Paris Cité, Montrouge, France
| | - Anne-Sophie Lambert
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.413784.d0000 0001 2181 7253AP-HP, Medicine for Adolescents, Bicêtre Paris Saclay Hospital, Le Kremlin Bicêtre, France
| | - Jean-Pierre Salles
- grid.508721.9Unit of Endocrinology and Bone Diseases, Children Hospital, Toulouse University Hospital, CHU de Toulouse, Université de Toulouse, ERN BOND, INSERM UMR 1291/CNRS 5051, INFINITY Center, Toulouse, France
| | - Brigitte Mignot
- grid.411158.80000 0004 0638 9213Department of Pediatrics, CHU of Besancon, Besançon, France
| | - Claire Bardet
- grid.508487.60000 0004 7885 7602Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Université Paris Cité, Montrouge, France
| | - Catherine Chaussain
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.508487.60000 0004 7885 7602Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Université Paris Cité, Montrouge, France ,grid.50550.350000 0001 2175 4109AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Universite de Paris, Paris, France
| | - Anya Rothenbuhler
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France
| | - Agnès Linglart
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.460789.40000 0004 4910 6535INSERM, Physiologie Et Physiopathologie Endocrinienne, Bicêtre Paris Saclay Hospital, Paris Saclay University, Le Kremlin Bicêtre, France
| |
Collapse
|
22
|
Ertl DA, Le Lorier J, Gleiss A, Trabado S, Bensignor C, Audrain C, Zhukouskaya V, Coutant R, Berkenou J, Rothenbuhler A, Haeusler G, Linglart A. Growth pattern in children with X-linked hypophosphatemia treated with burosumab and growth hormone. Orphanet J Rare Dis 2022; 17:412. [PMID: 36371259 PMCID: PMC9652849 DOI: 10.1186/s13023-022-02562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND X-linked hypophosphatemia (XLH) is characterized by increased serum concentrations of fibroblast growth factor 23 (FGF23), hypophosphatemia and insufficient endogenous synthesis of calcitriol. Beside rickets, odonto- and osteomalacia, disproportionate short stature is seen in most affected individuals. Vitamin D analogs and phosphate supplements, i.e., conventional therapy, can improve growth especially when started early in life. Recombinant human growth hormone (rhGH) therapy in XLH children with short stature has positive effects, although few reports are available. Newly available treatment (burosumab) targeting increased FGF23 signaling leads to minimal improvement of growth in XLH children. So far, we lack data on the growth of XLH children treated with concomitant rhGH and burosumab therapies. RESULTS Thirty-six patients received burosumab for at least 1 year after switching from conventional therapy. Of these, 23 received burosumab alone, while the others continued rhGH therapy after switching to burosumab. Children treated with burosumab alone showed a minimal change in height SDS after 1 year (mean ± SD 0.0 ± 0.3 prepubertal vs. 0.1 ± 0.3 pubertal participants). In contrast, rhGH clearly improved height during the first year of treatment before initiating burosumab (mean ± SD of height gain 1.0 ± 0.4); patients continued to gain height during the year of combined burosumab and rhGH therapies (mean ± SD height gain 0.2 ± 0.1). As expected, phosphate serum levels normalized upon burosumab therapy. No change in serum calcium levels, urinary calcium excretion, or 25-OHD levels was seen, though 1,25-(OH)2D increased dramatically under burosumab therapy. CONCLUSION To our knowledge, this is the first study on growth under concomitant rhGH and burosumab treatments. We did not observe any safety issue in this cohort of patients which is one of the largest in Europe. Our data suggest that continuing treatment with rhGH after switching from conventional therapy to burosumab, if the height prognosis is compromised, might be beneficial for the final height.
Collapse
Affiliation(s)
- Diana-Alexandra Ertl
- grid.413784.d0000 0001 2181 7253AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.460789.40000 0004 4910 6535University Paris Saclay, Le Kremlin-Bicêtre, France ,grid.50550.350000 0001 2175 4109AP-HP, Department of Endocrinology and Diabetology for Children and Department of Adolescent Medicine, Bicêtre Paris-Saclay Hospital, Le Kremlin-Bicêtre, France ,grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Division of Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria ,Vienna Bone and Growth Center, Vienna, Austria
| | - Justin Le Lorier
- grid.413784.d0000 0001 2181 7253AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.460789.40000 0004 4910 6535University Paris Saclay, Le Kremlin-Bicêtre, France ,grid.50550.350000 0001 2175 4109AP-HP, Department of Endocrinology and Diabetology for Children and Department of Adolescent Medicine, Bicêtre Paris-Saclay Hospital, Le Kremlin-Bicêtre, France
| | - Andreas Gleiss
- grid.22937.3d0000 0000 9259 8492Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Séverine Trabado
- grid.7429.80000000121866389Department of Molecular Genetics, Pharmacogenetics and Hormonology, Inserm U1185 and University Paris Saclay, AP-HP Bicêtre Paris-Saclay Hospital, Le Kremlin-Bicêtre, France
| | | | - Christelle Audrain
- grid.413784.d0000 0001 2181 7253AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.460789.40000 0004 4910 6535University Paris Saclay, Le Kremlin-Bicêtre, France
| | - Volha Zhukouskaya
- grid.413784.d0000 0001 2181 7253AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.508487.60000 0004 7885 7602Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, Platforme d´Imaginerie du Vivant (PIV), University Paris Cite, Montrouge, France ,grid.508487.60000 0004 7885 7602AP-HP Cochin Hospital, Department of Diabetology, University Paris Cite, Paris, France
| | - Régis Coutant
- grid.411147.60000 0004 0472 0283Department of Pediatric Endocrinology and Diabetes, CHU Angers, Anger, France
| | - Jugurtha Berkenou
- grid.413784.d0000 0001 2181 7253AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.460789.40000 0004 4910 6535University Paris Saclay, Le Kremlin-Bicêtre, France
| | - Anya Rothenbuhler
- grid.413784.d0000 0001 2181 7253AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.460789.40000 0004 4910 6535University Paris Saclay, Le Kremlin-Bicêtre, France ,grid.50550.350000 0001 2175 4109AP-HP, Department of Endocrinology and Diabetology for Children and Department of Adolescent Medicine, Bicêtre Paris-Saclay Hospital, Le Kremlin-Bicêtre, France
| | - Gabriele Haeusler
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Division of Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria ,Vienna Bone and Growth Center, Vienna, Austria
| | - Agnès Linglart
- grid.413784.d0000 0001 2181 7253AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.460789.40000 0004 4910 6535University Paris Saclay, Le Kremlin-Bicêtre, France ,grid.50550.350000 0001 2175 4109AP-HP, Department of Endocrinology and Diabetology for Children and Department of Adolescent Medicine, Bicêtre Paris-Saclay Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
23
|
Hu L, Napoletano A, Provenzano M, Garofalo C, Bini C, Comai G, La Manna G. Mineral Bone Disorders in Kidney Disease Patients: The Ever-Current Topic. Int J Mol Sci 2022; 23:12223. [PMID: 36293076 PMCID: PMC9603742 DOI: 10.3390/ijms232012223] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 02/08/2023] Open
Abstract
Chronic kidney disease (CKD) is a complex and multifactorial disease, and one of the most prevalent worldwide. Chronic kidney disease-mineral bone disorders (CKD-MBD) with biochemical and hormonal alterations are part of the complications associated with the progression of CKD. Pathophysiology of CKD-MBD focused on abnormalities in serum levels of several biomarkers (such as FGF-23, klotho, phosphate, calcium, vitamin D, and PTH) which are discussed in this review. We therefore examine the prognostic association between CKD-MBD and the increased risk for cardiovascular events, mortality, and CKD progression to end-stage kidney disease (ESKD). Lastly, we present specific treatments acting on CKD to prevent and treat the complications associated with secondary hyperparathyroidism (SHPT): control of hyperphosphatemia (with dietary restriction, intestinal phosphate binders, and adequate dialysis), the use of calcimimetic agents, vitamin D, and analogues, and the use of bisphosphonates or denosumab in patients with osteoporosis.
Collapse
Affiliation(s)
- Lilio Hu
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Angelodaniele Napoletano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Carlo Garofalo
- Renal Unit, University of Campania “L. Vanvitelli’’, 80138 Naples, Italy
| | - Claudia Bini
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Giorgia Comai
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
24
|
Abstract
Fibroblast growth factor-23 (FGF23) controls the homeostasis of both phosphate and vitamin D. Bone-derived FGF23 can suppress the transcription of 1α-hydroxylase (1α(OH)ase) to reduce renal activation of vitamin D (1,25(OH)2D3). FGF23 can also activate the transcription of 24-hydroxylase to enhance the renal degradation process of vitamin D. There is a counter-regulation for FGF23 and vitamin D; 1,25(OH)2D3 induces the skeletal synthesis and the release of FGF23, while FGF23 can suppress the production of 1,25(OH)2D3 by inhibiting 1α(OH)ase synthesis. Genetically ablating FGF23 activities in mice resulted in higher levels of renal 1α(OH)ase, which is also reflected in an increased level of serum 1,25(OH)2D3, while genetically ablating 1α(OH)ase activities in mice reduced the serum levels of FGF23. Similar feedback control of FGF23 and vitamin D is also detected in various human diseases. Further studies are required to understand the subcellular molecular regulation of FGF23 and vitamin D in health and disease.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| |
Collapse
|
25
|
Sinha S, Haque M. Obesity, Diabetes Mellitus, and Vascular Impediment as Consequences of Excess Processed Food Consumption. Cureus 2022; 14:e28762. [PMID: 36105908 PMCID: PMC9441778 DOI: 10.7759/cureus.28762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 12/15/2022] Open
Abstract
Regular intake of ready-to-eat meals is related to obesity and several noninfectious illnesses, such as cardiovascular diseases, hypertension, diabetes mellitus (DM), and tumors. Processed foods contain high calories and are often enhanced with excess refined sugar, saturated and trans fat, Na+ andphosphate-containing taste enhancers, and preservatives. Studies showed that monosodium glutamate (MSG) induces raised echelons of oxidative stress, and excessive hepatic lipogenesis is concomitant to obesity and type 2 diabetes mellitus (T2DM). Likewise, more than standard salt intake adversely affects the cardiovascular system, renal system, and central nervous system (CNS), especially the brain. Globally, excessive utilization of phosphate-containing preservatives and additives contributes unswervingly to excessive phosphate intake through food. In addition, communities and even health experts, including medical doctors, are not well-informed about the adverse effects of phosphate preservatives on human health. Dietary phosphate excess often leads to phosphate toxicity, ultimately potentiating kidney disease development. The mechanisms involved in phosphate-related adverse effects are not explainable. Study reports suggested that high blood level of phosphate causes vascular ossification through the deposition of Ca2+ and substantially alters fibroblast growth factor-23 (FGF23) and calcitriol.
Collapse
|
26
|
Abstract
Inorganic phosphate (Pi) in the mammalian body is balanced by its influx and efflux through the intestines, kidneys, bones, and soft tissues, at which several sodium/Pi co-transporters mediate its active transport. Pi homeostasis is achieved through the complex counter-regulatory feedback balance between fibroblast growth factor 23 (FGF23), 1,25-dihydroxyvitamin D (1,25(OH)2D), and parathyroid hormone. FGF23, which is mainly produced by osteocytes in bone, plays a central role in Pi homeostasis and exerts its effects by binding to the FGF receptor (FGFR) and αKlotho in distant target organs. In the kidneys, the main target, FGF23 promotes the excretion of Pi and suppresses the production of 1,25(OH)2D. Deficient and excess FGF23 result in hyperphosphatemia and hypophosphatemia, respectively. FGF23-related hypophosphatemic rickets/osteomalacia include tumor-induced osteomalacia and various genetic diseases, such as X-linked hypophosphatemic rickets. Coverage by the national health insurance system in Japan for the measurement of FGF23 and the approval of burosumab, an FGF23-neutralizing antibody, have had a significant impact on the diagnosis and treatment of FGF23-related hypophosphatemic rickets/osteomalacia. Some of the molecules responsible for genetic hypophosphatemic rickets/osteomalacia are highly expressed in osteocytes and function as local regulators of FGF23 production. A number of systemic factors also regulate FGF23 levels. Although the mechanisms responsible for Pi sensing in mammals have not yet been elucidated in detail, recent studies have suggested the involvement of FGFR1. The further clarification of the mechanisms by which osteocytes detect Pi levels and regulate FGF23 production will lead to the development of better strategies to treat hyperphosphatemic and hypophosphatemic conditions.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| |
Collapse
|
27
|
Ewendt F, Kotwan J, Ploch S, Feger M, Hirche F, Föller M, Stangl GI. Tachysterol 2 increases the synthesis of fibroblast growth factor 23 in bone cells. Front Nutr 2022; 9:948264. [PMID: 35958252 PMCID: PMC9358286 DOI: 10.3389/fnut.2022.948264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 12/16/2022] Open
Abstract
Tachysterol2 (T2) is a photoisomer of the previtamin D2 found in UV-B-irradiated foods such as mushrooms or baker’s yeast. Due to its structural similarity to vitamin D, we hypothesized that T2 can affect vitamin D metabolism and in turn, fibroblast growth factor 23 (FGF23), a bone-derived phosphaturic hormone that is transcriptionally regulated by the vitamin D receptor (VDR). Initially, a mouse study was conducted to investigate the bioavailability of T2 and its impact on vitamin D metabolism and Fgf23 expression. UMR106 and IDG-SW3 bone cell lines were used to elucidate the effect of T2 on FGF23 synthesis and the corresponding mechanisms. LC-MS/MS analysis found high concentrations of T2 in tissues and plasma of mice fed 4 vs. 0 mg/kg T2 for 2 weeks, accompanied by a significant decrease in plasma 1,25(OH)2D and increased renal Cyp24a1 mRNA abundance. The Fgf23 mRNA abundance in bones of mice fed T2 was moderately higher than that in control mice. The expression of Fgf23 strongly increased in UMR106 cells treated with T2. After Vdr silencing, the T2 effect on Fgf23 diminished. This effect is presumably mediated by single-hydroxylated T2-derivatives, since siRNA-mediated silencing of Cyp27a1, but not Cyp27b1, resulted in a marked reduction in T2-induced Fgf23 gene expression. To conclude, T2 is a potent regulator of Fgf23 synthesis in bone and activates Vdr. This effect depends, at least in part, on the action of Cyp27a1. The potential of oral T2 to modulate vitamin D metabolism and FGF23 synthesis raises questions about the safety of UV-B-treated foods.
Collapse
Affiliation(s)
- Franz Ewendt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Kotwan
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,NutriCARD Competence Cluster for Nutrition and Cardiovascular Health, Halle (Saale), Germany
| | - Stefan Ploch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,NutriCARD Competence Cluster for Nutrition and Cardiovascular Health, Halle (Saale), Germany
| |
Collapse
|
28
|
Michigami T, Tachikawa K, Yamazaki M, Nakanishi T, Kawai M, Ozono K. Growth-related skeletal changes and alterations in phosphate metabolism. Bone 2022; 161:116430. [PMID: 35577326 DOI: 10.1016/j.bone.2022.116430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022]
Abstract
Serum inorganic phosphate (Pi) levels are higher in children than in adults; however, the underlying mechanisms remain unclear. Therefore, we herein attempted to elucidate the mechanisms altering Pi metabolism from youth to adulthood using 4-week-old (young) and 12-week-old (adult) mice. Despite higher serum Pi levels, serum fibroblast growth factor 23 (FGF23) levels were lower in young mice, and the amount of FGF23 in bone tended to increase from youth to adulthood. Increases in serum FGF23 levels during growth were associated with the up- and down-regulation of the renal expression of Cyp24a1 encoding vitamin D-24-hydroxylase and Slc34a3 encoding the type IIc sodium/phosphate (Na+/Pi) co-transporter, respectively, suggesting an enhancement in the FGF23-mediated bone-kidney axis from youth to adulthood. We then isolated osteoblasts and osteocytes from young and adult mice and compared the expression of genes involved in Pi metabolism and/or mineralization. In contrast to the growth-related increase in Fgf23 expression, the expression of some genes, including the dentin matrix protein 1 (Dmp1) and phosphate-regulating gene with homologies to endopeptidases on the X chromosome (Phex) markedly decreased from youth to adulthood. The down-regulation of Dmp1 and Phex may contribute to growth-related increases in FGF23. The responses of isolated osteoblasts and osteocytes to high Pi levels also markedly differed between young and adult mice. Treatment of isolated osteocytes with high Pi increased the production of FGF23 in adult mice but not in young mice. These results indicate a close relationship between skeletal changes from youth to adulthood and an alteration in Pi metabolism, and provide insights into the mechanisms by which osteoblasts and osteocytes maintain Pi homeostasis.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan.
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Tatsuro Nakanishi
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Hou YC, Zheng CM, Chiu HW, Liu WC, Lu KC, Lu CL. Role of Calcimimetics in Treating Bone and Mineral Disorders Related to Chronic Kidney Disease. Pharmaceuticals (Basel) 2022; 15:952. [PMID: 36015101 PMCID: PMC9415417 DOI: 10.3390/ph15080952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/17/2022] Open
Abstract
Renal osteodystrophy is common in patients with chronic kidney disease and end-stage renal disease and leads to the risks of fracture and extraosseous vascular calcification. Secondary hyperparathyroidism (SHPT) is characterized by a compensatory increase in parathyroid hormone (PTH) secretion in response to decreased renal phosphate excretion, resulting in potentiating bone resorption and decreased bone quantity and quality. Calcium-sensing receptors (CaSRs) are group C G-proteins and negatively regulate the parathyroid glands through (1) increasing CaSR insertion within the plasma membrane, (2) increasing 1,25-dihydroxy vitamin D3 within the kidney and parathyroid glands, (3) inhibiting fibroblast growth factor 23 (FGF23) in osteocytes, and (4) attenuating intestinal calcium absorption through Transient Receptor Potential Vanilloid subfamily member 6 (TRPV6). Calcimimetics (CaMs) decrease PTH concentrations without elevating the serum calcium levels or extraosseous calcification through direct interaction with cell membrane CaSRs. CaMs reduce osteoclast activity by reducing stress-induced oxidative autophagy and improving Wnt-10b release, which promotes the growth of osteoblasts and subsequent mineralization. CaMs also directly promote osteoblast proliferation and survival. Consequently, bone quality may improve due to decreased bone resorption and improved bone formation. CaMs modulate cardiovascular fibrosis, calcification, and renal fibrosis through different mechanisms. Therefore, CaMs assist in treating SHPT. This narrative review focuses on the role of CaMs in renal osteodystrophy, including their mechanisms and clinical efficacy.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan;
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan;
| | - Hui-Wen Chiu
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 11031, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan;
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation, Anti Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, School of Medicine, Buddhist Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factor 23 (FGF23) excess is associated with left ventricular hypertrophy (LVH) and early mortality in patients with chronic kidney disease (CKD) and in animal models. Elevated Lipocalin-2 (LCN2), produced by the injured kidneys, contributes to CKD progression and might aggravate cardiovascular outcomes. The current review aims to highlight the role of LCN2 in CKD, particularly its interactions with FGF23. RECENT FINDINGS Inflammation, disordered iron homeostasis and altered metabolic activity are common complications of CKD, and are associated with elevated levels of kidney-produced LCN2 and bone-secreted FGF23. A recent study shows that elevated LCN2 increases FGF23 production, and contributes to cardiac injury in patients and animals with CKD, whereas LCN2 reduction in mice with CKD reduces FGF23, improves cardiovascular outcomes and prolongs lifespan. SUMMARY In this manuscript, we discuss the potential pathophysiological functions of LCN2 as a major kidney-bone crosstalk molecule, linking the progressive decline in kidney function to excessive bone FGF23 production. We also review associations of LCN2 with kidney, cardiovascular and bone and mineral alterations. We conclude that the presented data support the design of novel therapeutic approaches to improve outcomes in CKD.
Collapse
Affiliation(s)
- Guillaume Courbon
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Valentin David
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
31
|
Exercise: A Possibly Effective Way to Improve Vitamin D Nutritional Status. Nutrients 2022; 14:nu14132652. [PMID: 35807833 PMCID: PMC9268447 DOI: 10.3390/nu14132652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D deficiency has become a widespread public health problem owing to its potential adverse health effects. Generally, the nutritional status of vitamin D depends on sunlight exposure and dietary or supplementary intake. However, recent studies have found that exercise can influence circulating 25(OH)D levels; although, the results have been inconclusive. In this review, we focused on the effect of exercise on circulating vitamin D metabolites and their possible mechanisms. We found that endurance exercise can significantly increase serum 25(OH)D levels in vitamin D-deficient people but has no significant effect on vitamin D-sufficient people. This benefit has not been observed with resistance training. Only chronic endurance exercise training can significantly increase serum 1,25(OH)2D, and the effect may be sex-dependent. Exercise may influence 25(OH)D levels in the circulation by regulating either the vitamin D metabolites stored in tissues or the utilization by target tissues. The effects of exercise on 25(OH)D levels in the circulation may be dependent on many factors, such as the vitamin D nutritional status, exercise type and intensity, and sex. Therefore, further research on the effects and mechanisms of exercise on vitamin D metabolites is required.
Collapse
|
32
|
The Increase in FGF23 Induced by Calcium Is Partially Dependent on Vitamin D Signaling. Nutrients 2022; 14:nu14132576. [PMID: 35807756 PMCID: PMC9268463 DOI: 10.3390/nu14132576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Increased FGF23 levels are an early pathological feature in chronic kidney disease (CKD), causing increased cardiovascular risk. The regulation of FGF23 expression is complex and not completely understood. Thus, Ca2+ has been shown to induce an increase in FGF23 expression, but whether that increase is mediated by simultaneous changes in parathyroid hormone (PTH) and/or vitamin D is not fully known. Methods: Osteoblast-like cells (OLCs) from vitamin D receptor (VDR)+/+ and VDR−/− mice were incubated with Ca2+ for 18 h. Experimental hypercalcemia was induced by calcium gluconate injection in thyro-parathyroidectomized (T-PTX) VDR +/+ and VDR−/− mice with constant PTH infusion. Results: Inorganic Ca2+ induced an increase in FGF23 gene and protein expression in osteoblast-like cells (OLCs), but the increase was blunted in cells lacking VDR. In T-PTX VDR +/+ and VDR−/− mice with constant PTH levels, hypercalcemia induced an increase in FGF23 levels, but to a lower extent in animals lacking VDR. Similar results were observed in FGF23 expression in bone. Renal and bone 1α-hydroxylase expression was also modulated. Conclusions: Our study demonstrates that Ca2+ can increase FGF23 levels independently of vitamin D and PTH, but part of the physiological increase in FGF23 induced by Ca2+ is mediated by vitamin D signaling.
Collapse
|
33
|
Jena S, Sarangi P, Das UK, Lamare AA, Rattan R. Serum α- Klotho Protein Can Be an Independent Predictive Marker of Oxidative Stress (OS) and Declining Glomerular Function Rate in Chronic Kidney Disease (CKD) Patients. Cureus 2022; 14:e25759. [PMID: 35812534 PMCID: PMC9268485 DOI: 10.7759/cureus.25759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Chronic kidney disease (CKD) has been recognized as a global health problem. Progression of CKD to advanced stages is associated with a significant increase in the generation of reactive oxygen species (ROS). An antiaging protein, α-Klotho, is found expressed in the distal convoluted tubules of the kidney where, predominantly, it works to increase calcium absorption and potassium excretion in distal tubule via N-linked glycans. The association of serum α-Klotho with oxidative stress, inflammation, and fibrosis, as seen in CKD, highlights its importance for studying disease prognosis with declining glomerular function rate (GFR). Material and methods This was a case-control study consisting of 90 subjects. Fifty diagnosed cases of CKD attending the department of nephrology, SCB Medical College, Cuttack, Odisha, were included, and 40 age and sex-matched healthy volunteers were taken as control. Serum α-Klotho levels were measured using enzyme-linked immunosorbent assay kits. Oxidative stress by estimating the total oxidant load by ferrous oxidation-xylenol orange version 2 (FOX2) method and the total antioxidant capacity of serum by the ferric reducing ability of plasma (FRAP) method. Estimation of the estimated glomerular filtration rate (eGFR) was done using the Cockcroft and Gault equation. Results Serum α-Klotho (ng/ml) was found to be 2.59±0.98 in cases as compared to 0.24±0.09 in controls (p< 0.01). The serum total oxidant load (ng/ml) was 1.96±1.01 and 0.05±0.02 in cases and controls, respectively. Serum total antioxidant capacity (µM) was measured as 281.80±78.0 in cases and 862.82±51.86 in controls. (p< 0.01). Serum Klotho has a negative correlation with eGFR in CKD patients (r = -0.065; p = 0.648). Conclusion The serum α-Klotho level was significantly higher in CKD patients than in healthy volunteers. Both serum α-Klotho and oxidative stress were negatively correlated with eGFR in CKD patients. Serum α-Klotho can be a suitable biomarker in CKD patients with declining GFR.
Collapse
|
34
|
Pathogenesis of FGF23-Related Hypophosphatemic Diseases Including X-linked Hypophosphatemia. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since phosphate is indispensable for skeletal mineralization, chronic hypophosphatemia causes rickets and osteomalacia. Fibroblast growth factor 23 (FGF23), which is mainly produced by osteocytes in bone, functions as the central regulator of phosphate metabolism by increasing the renal excretion of phosphate and suppressing the production of 1,25-dihydroxyvitamin D. The excessive action of FGF23 results in hypophosphatemic diseases, which include a number of genetic disorders such as X-linked hypophosphatemic rickets (XLH) and tumor-induced osteomalacia (TIO). Phosphate-regulating gene homologous to endopeptidase on the X chromosome (PHEX), dentin matrix protein 1 (DMP1), ectonucleotide pyrophosphatase phosphodiesterase-1, and family with sequence similarity 20c, the inactivating variants of which are responsible for FGF23-related hereditary rickets/osteomalacia, are highly expressed in osteocytes, similar to FGF23, suggesting that they are local negative regulators of FGF23. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by cleavage-resistant variants of FGF23, and iron deficiency increases serum levels of FGF23 and the manifestation of symptoms in ADHR. Enhanced FGF receptor (FGFR) signaling in osteocytes is suggested to be involved in the overproduction of FGF23 in XLH and autosomal recessive hypophosphatemic rickets type 1, which are caused by the inactivation of PHEX and DMP1, respectively. TIO is caused by the overproduction of FGF23 by phosphaturic tumors, which are often positive for FGFR. FGF23-related hypophosphatemia may also be associated with McCune-Albright syndrome, linear sebaceous nevus syndrome, and the intravenous administration of iron. This review summarizes current knowledge on the pathogenesis of FGF23-related hypophosphatemic diseases.
Collapse
|
35
|
The human pathogenic 91del7 mutation in SLC34A1 has no effect in mineral homeostasis in mice. Sci Rep 2022; 12:6102. [PMID: 35414099 PMCID: PMC9005600 DOI: 10.1038/s41598-022-10046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Kidneys are key regulators of phosphate homeostasis. Biallelic mutations of the renal Na+/phosphate cotransporter SLC34A1/NaPi-IIa cause idiopathic infantile hypercalcemia, whereas monoallelic mutations were frequently noted in adults with kidney stones. Genome-wide-association studies identified SLC34A1 as a risk locus for chronic kidney disease. Pathogenic mutations in SLC34A1 are present in 4% of the general population. Here, we characterize a mouse model carrying the 91del7 in-frame deletion, a frequent mutation whose significance remains unclear. Under normal dietary conditions, 12 weeks old heterozygous and homozygous males have similar plasma and urinary levels of phosphate as their wild type (WT) littermates, and comparable concentrations of parathyroid hormone, fibroblast growth factor 23 (FGF-23) and 1,25(OH)2 vitamin D3. Renal phosphate transport, and expression of NaPi-IIa and NaPi-IIc cotransporters, was indistinguishable in the three genotypes. Challenging mice with low dietary phosphate did not result in differences between genotypes with regard to urinary and plasma phosphate. Urinary and plasma phosphate, plasma FGF-23 and expression of cotransporters were similar in all genotypes after weaning. Urinary phosphate and bone mineral density were also comparable in 300 days old WT and mutant mice. In conclusion, mice carrying the 91del7 truncation do not show signs of impaired phosphate homeostasis.
Collapse
|
36
|
Christodoulou M, Aspray TJ, Piec I, Washbourne C, Tang JCY, Fraser WD, Schoenmakers I, Francis RM, McColl E, Chadwick T, Prentice A, Schoenmakers I. Vitamin D Supplementation for 12 Months in Older Adults Alters Regulators of Bone Metabolism but Does Not Change Wnt Signaling Pathway Markers. JBMR Plus 2022; 6:e10619. [PMID: 35509637 PMCID: PMC9059470 DOI: 10.1002/jbm4.10619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 03/02/2022] [Indexed: 01/19/2023] Open
Abstract
Vitamin D status and supplementation regulates bone metabolism and may modulate Wnt signaling. We studied the response of hormonal regulators of bone metabolism, markers of Wnt signaling and bone turnover and bone mineral density (BMD) and bone mineral content (BMC) in a randomized vitamin D intervention trial (12,000 IU, 24,000 IU, 48,000 IU/mo for 1 year; men and women aged >70 years; n = 379; ISRCTN35648481). Associations with total and free 25(OH)D concentrations were analyzed by linear regression. Baseline vitamin D status was (mean ± SD) 25(OH)D: 40.0 ± 20.1 nmol/L. Supplementation dose-dependently increased total and free 25(OH)D concentrations and decreased plasma phosphate and parathyroid hormone (PTH) (all p < 0.05). The procollagen 1 intact N-terminal (PINP)/C-terminal telopeptide (CTX) ratio, C-terminal fibroblast growth factor-23 (cFGF23), and intact FGF23 (iFGF23) significantly increased with no between-group differences, whereas Klotho was unchanged. 1,25(OH)2D and PINP significantly increased in the 24 IU and 48,000 IU groups. Sclerostin (SOST), osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), BMD, BMC, and CTX remained unchanged. Subgroup analyses with baseline 25(OH)D <25 nmol/L (n = 94) provided similar results. Baseline total and free 25(OH)D concentrations were positively associated with 1,25(OH)2D, 24,25(OH)2D (p < 0.001), vitamin D binding protein (DBP) (p < 0.05), BMD, and BMC (p < 0.05). Associations with PTH (p <0.001), cFGF23 (p < 0.01), and BAP (p < 0.05) were negative. After supplementation, total and free 25(OH)D concentrations remained positively associated only with 24,25(OH)2D (p < 0.001) and DBP (p < 0.001) and negatively with estimated glomerular filtration rate (eGFR) (p < 0.01). PTH and SOST were significantly associated only with free 25(OH)D. There were no significant relationships with BMD and BMC after supplementation. The decrease in PTH and increase in PINP/CTX ratio suggest a protective effect of supplementation on bone metabolism, although no significant effect on BMD or pronounced changes in regulators of Wnt signaling were found. The increase in FGF23 warrants caution because of its negative association with skeletal and cardiovascular health. Associations of total and free 25(OH)D with biomarkers were similar and known positive associations between vitamin D status and BMD were confirmed. The change in associations after supplementation might suggest a threshold effect. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Terence J Aspray
- Freeman Hospital, Bone ClinicUniversity of Newcastle upon TyneNewcastle upon TyneUK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang Y, Wang Y, Shen Y, Liu M, Dai S, Wang X, Liu H. Identification of a Novel Missense Mutation of the PHEX Gene in a Large Chinese Family with X-Linked Hypophosphataemia. Front Genet 2022; 13:792183. [PMID: 35251124 PMCID: PMC8891598 DOI: 10.3389/fgene.2022.792183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
X-linked hypophosphataemia (XLH) is an X-linked dominant rare disease that refers to the most common hereditary hypophosphatemia (HH) caused by mutations in the phosphate-regulating endopeptidase homolog X-linked gene (PHEX; OMIM: * 300550). However, mutations that have already been reported cannot account for all cases of XLH. Extensive genetic analysis can thus be helpful for arriving at the diagnosis of XLH. Herein, we identified a novel heterozygous mutation of PHEX (NM_000444.5: c.1768G > A) in a large Chinese family with XLH by whole-exome sequencing (WES). In addition, the negative effect of this mutation in PHEX was confirmed by both bioinformatics analysis and in vitro experimentation. The three-dimensional protein-model analysis predicted that this mutation might impair normal zinc binding. Immunofluorescence staining, qPCR, and western blotting analysis confirmed that the mutation we detected attenuated PHEX protein expression. The heterozygous mutation of PHEX (NM_000444.5: c.1768G > A) identified in this study by genetic and functional experiments constitutes a novel genetic cause of XLH, but further study will be required to expand its use in clinical and molecular diagnoses of XLH.
Collapse
Affiliation(s)
- Yanting Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yuanda Wang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mohan Liu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Siyu Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaodong Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Xiaodong Wang, ; Hongqian Liu,
| | - Hongqian Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Xiaodong Wang, ; Hongqian Liu,
| |
Collapse
|
38
|
Alber J, Föller M. Lactic acid induces fibroblast growth factor 23 (FGF23) production in UMR106 osteoblast-like cells. Mol Cell Biochem 2022; 477:363-370. [PMID: 34731356 PMCID: PMC8800909 DOI: 10.1007/s11010-021-04287-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023]
Abstract
Endocrine and paracrine fibroblast growth factor 23 (FGF23) is a protein predominantly produced by bone cells with strong impact on phosphate and vitamin D metabolism by targeting the kidney. Plasma FGF23 concentration early rises in kidney and cardiovascular diseases correlating with progression and outcome. Lactic acid is generated in anaerobic glycolysis. Lactic acidosis is the consequence of various physiological and pathological conditions and may be fatal. Since FGF23 production is stimulated by inflammation and lactic acid induces pro-inflammatory signaling, we investigated whether and how lactic acid influences FGF23. Experiments were performed in UMR106 osteoblast-like cells, Fgf23 mRNA levels estimated from quantitative real-time polymerase chain reaction, and FGF23 protein determined by enzyme-linked immunosorbent assay. Lactic acid dose-dependently induced Fgf23 gene expression and up-regulated FGF23 synthesis. Also, Na+-lactate as well as formic acid and acetic acid up-regulated Fgf23. The lactic acid effect was significantly attenuated by nuclear factor kappa-light-chain enhancer of activated B-cells (NFκB) inhibitors wogonin and withaferin A. Lactic acid induces FGF23 production, an effect at least in part mediated by NFκB. Lactic acidosis may, therefore, be paralleled by a surge in plasma FGF23.
Collapse
Affiliation(s)
- Jana Alber
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
39
|
Endocrine Fibroblast Growth Factors in Relation to Stress Signaling. Cells 2022; 11:cells11030505. [PMID: 35159314 PMCID: PMC8834311 DOI: 10.3390/cells11030505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Fibroblast growth factors (FGFs) play important roles in various growth signaling processes, including proliferation, development, and differentiation. Endocrine FGFs, i.e., atypical FGFs, including FGF15/19, FGF21, and FGF23, function as endocrine hormones that regulate energy metabolism. Nutritional status is known to regulate the expression of endocrine FGFs through nuclear hormone receptors. The increased expression of endocrine FGFs regulates energy metabolism processes, such as fatty acid metabolism and glucose metabolism. Recently, a relationship was found between the FGF19 subfamily and stress signaling during stresses such as endoplasmic reticulum stress and oxidative stress. This review focuses on endocrine FGFs and the recent progress in FGF studies in relation to stress signaling. In addition, the relevance of the stress-FGF pathway to disease and human health is discussed.
Collapse
|
40
|
Vitamin D and Phosphate Interactions in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:37-46. [DOI: 10.1007/978-3-030-91623-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Grigore TV, Zuidscherwoude M, Witasp A, Barany P, Wernerson A, Bruchfeld A, Xu H, Olauson H, Hoenderop J. Fibroblast growth factor 23 is independently associated with renal magnesium handling in patients with chronic kidney disease. Front Endocrinol (Lausanne) 2022; 13:1046392. [PMID: 36699036 PMCID: PMC9869122 DOI: 10.3389/fendo.2022.1046392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Disturbances in magnesium homeostasis are common in patients with chronic kidney disease (CKD) and are associated with increased mortality. The kidney is a key organ in maintaining normal serum magnesium concentrations. To this end, fractional excretion of magnesium (FEMg) increases as renal function declines. Despite recent progress, the hormonal regulation of renal magnesium handling is incompletely understood. Fibroblast Growth Factor 23 (FGF23) is a phosphaturic hormone that has been linked to renal magnesium handling. However, it has not yet been reported whether FGF23 is associated with renal magnesium handling in CKD patients. METHODS The associations between plasma FGF23 levels, plasma and urine magnesium concentrations and FEMg was investigated in a cross-sectional cohort of 198 non-dialysis CKD patients undergoing renal biopsy. RESULTS FGF23 was significantly correlated with FEMg (Pearson's correlation coefficient = 0.37, p<0.001) and urinary magnesium (-0.14, p=0.04), but not with plasma magnesium. The association between FGF23 and FEMg remained significant after adjusting for potential confounders, including estimated glomerular filtration rate (eGFR), parathyroid hormone and 25-hydroxyvitamin D. CONCLUSIONS We report that plasma FGF23 is independently associated with measures of renal magnesium handling in a cohort of non-dialysis CKD patients. A potential causal relationship should be investigated in future studies.
Collapse
Affiliation(s)
- Teodora V. Grigore
- Radboud Institute for Molecular Life Sciences, Department of Physiology, Radboudumc, Nijmegen, Netherlands
| | - Malou Zuidscherwoude
- Radboud Institute for Molecular Life Sciences, Department of Physiology, Radboudumc, Nijmegen, Netherlands
| | - Anna Witasp
- Karolinska Institutet, Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Stockholm, Sweden
| | - Peter Barany
- Karolinska Institutet, Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Stockholm, Sweden
| | - Annika Wernerson
- Karolinska Institutet, Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Stockholm, Sweden
| | - Annette Bruchfeld
- Karolinska Institutet, Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Stockholm, Sweden
- Linköpings universitet Hälsouniversitetet, Department of Health, Medicine and Caring Sciences, Linköping, Sweden
| | - Hong Xu
- Karolinska Institutet, Division of Clinical Geriatrics, Department of Neurobiology, Department of Care Sciences and Society, Stockholm, Sweden
| | - Hannes Olauson
- Karolinska Institutet, Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Stockholm, Sweden
| | - Joost Hoenderop
- Radboud Institute for Molecular Life Sciences, Department of Physiology, Radboudumc, Nijmegen, Netherlands
- *Correspondence: Joost Hoenderop,
| |
Collapse
|
42
|
Abstract
Osteocytes are dendritic cells in the mineralized bone matrix that descend from osteoblasts. They play critical roles in controlling bone mass through the production of sclerostin, an inhibitor of bone formation, and receptor activator of nuclear factor κ B ligand, an inducer of osteoblastic bone resorption. Osteocytes also govern phosphate homeostasis through the production of fibroblast growth factor 23 (FGF23), which lowers serum phosphate levels by increasing renal phosphate excretion and reducing the synthesis of 1,25-dihydroxyvitamin D (1,25(OH)2D), an active metabolite of vitamin D. The production of FGF23 in osteocytes is regulated by various local and systemic factors. Phosphate-regulating gene homologous to endopeptidase on X chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with sequence similarity 20, member C function as local negative regulators of FGF23 production in osteocytes, and their inactivation causes the overproduction of FGF23 and hypophosphatemia. Sclerostin has been suggested to regulate the production of FGF23, which may link the two functions of osteocytes, namely, the control of bone mass and regulation of phosphate homeostasis. Systemic regulators of FGF23 production include 1,25(OH)2D, phosphate, parathyroid hormone, insulin, iron, and inflammation. Therefore, the regulation of FGF23 in osteocytes is complex and multifactorial. Recent mouse studies have suggested that decreases in serum phosphate levels from youth to adulthood are caused by growth-related increases in FGF23 production by osteocytes, which are associated with the down-regulation of Phex and Dmp1.
Collapse
|
43
|
Meshkini F, Soltani S, Clark CCT, Tam V, Meyre D, Toupchian O, Saraf-Bank S, Abdollahi S. The effect of vitamin D supplementation on serum levels of fibroblast growth factor- 23: A systematic review and meta-analysis of randomized controlled trials. J Steroid Biochem Mol Biol 2022; 215:106012. [PMID: 34710560 DOI: 10.1016/j.jsbmb.2021.106012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/18/2021] [Accepted: 10/21/2021] [Indexed: 12/29/2022]
Abstract
Previous studies of the effect of vtamin D on serum levels of fibroblast growth factor- 23 (FGF-23) have yeilded an inconsistent findings. This systematic review and meta-analysis of randomized controlled trials (RCTs) sought to investigate the effect of vitamin D supplementation on serum levels of FGF-23. PubMed, Scopus, ISI Web of Science, and the Cochrane Library were searched, from database inception to November 2020, for RCTs that evaluated the effects of native or active vitamin D supplementation on serum levels of FGF-23 in adults. Weighted mean difference (WMD) were calculated and random effects meta-analysis was used to estimate the overall effects. Twenty-seven trials were included in the meta-analysis. Supplementation with native vitamin D (23 studies, n = 2247 participants; weighted mean difference [WMD] = 0.5 pg/mL, 95 % CI: -0.52 to 1.51, P = 0.33; I2 = 29.9 %), and active vitamin D (5 studies, n = 342 participants, WMD = 29.45 pg/mL, 95 % CI: -3.9 to 62.81, P = 0.08; I2 = 99.3%) had no significant effects on serum FGF-23 concentration. In subgroup analyses, supplementation with ergocalciferol (3 studies, n = 205 participants; WMD = 18.27 pg/mL, 95 % CI: 5.36-31.17, P = 0.006), and daily dosing regimens (9 studies, n = 1374 participants; WMD = 0.41 pg/mL, 95 % CI: 0.22 to 0.59, P < 0.001) increased serum FGF-23 levels compared to control. Overall, our findings revealed no significan effect of vitamin D supplementation on serum FGF-23 concentration. However, further high quality, large-scale studies are needed to better elucidate this relationship.
Collapse
Affiliation(s)
- Fatemeh Meshkini
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Vivian Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Omid Toupchian
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Saraf-Bank
- Food Security Research Center, Department of Community Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
44
|
Abstract
Apart from its phosphaturic action, the bone-derived hormone fibroblast growth factor-23 (FGF23) is also an essential regulator of vitamin D metabolism. The main target organ of FGF23 is the kidney, where FGF23 suppresses transcription of the key enzyme in vitamin D hormone (1,25(OH)2D) activation, 1α-hydroxylase, and activates transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase, in proximal renal tubules. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in bone, forming a feedback loop between kidney and bone. The importance of FGF23 as regulator of vitamin D metabolism is underscored by the fact that in the absence of FGF23 signaling, the tight control of renal 1α-hydroxylase fails, resulting in overproduction of 1,25(OH)2D in mice and men. During recent years, big strides have been made toward a more complete understanding of the mechanisms underlying the FGF23-mediated regulation of vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. Importantly, the intracellular signaling cascades downstream of FGF receptors regulating transcription of 1α-hydroxylase and 24-hydroxylase in proximal renal tubules still remain unresolved. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the regulation of vitamin D metabolism by FGF23, and to discuss the role of these mechanisms in physiology and pathophysiology. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nejla Latic
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| |
Collapse
|
45
|
Du Y, Zhang L, Wang Z, Zhao X, Zou J. Endocrine Regulation of Extra-skeletal Organs by Bone-derived Secreted Protein and the effect of Mechanical Stimulation. Front Cell Dev Biol 2021; 9:778015. [PMID: 34901023 PMCID: PMC8652208 DOI: 10.3389/fcell.2021.778015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Bone serves as the support for body and provide attachment points for the muscles. The musculoskeletal system is the basis for the human body to complete exercise. Studies believe that bone is not only the basis for constructing structures, but also participates in the regulation of organs outside bone. The realization of this function is closely related to the protein secreted by bone. Whether bone can realize their positions in the human body is also related to their secretion. Bone-derived proteins provide a medium for the targeted regulation of bones on organs, making the role of bone in human body more profound and concrete. Mechanical stimulation effects the extra-skeletal organs by causing quantitative changes in bone-derived factors. When bone receives mechanical stimulation, the nichle of bone responds, and the secretion of various factors changes. However, whether the proteins secreted by bone can interfere with disease requires more research. In this review article, we will first introduce the important reasons and significance of the in-depth study on bone-derived secretory proteins, and summarize the locations, structures and functions of these proteins. These functions will not only focus on the bone metabolism process, but also be reflected in the cross-organ regulation. We specifically explain the role of typical bone-derived secretory factors such as osteocalcin (OCN), osteopontin (OPN), sclerostin (SOST) and fibroblast growth factor 23 (FGF23) in different organs and metabolic processes, then establishing the relationship between them and diseases. Finally, we will discuss whether exercise or mechanical stimulation can have a definite effect on bone-derived secretory factors. Understanding their important role in cross-organ regulation is of great significance for the treatment of diseases, especially for the elderly people with more than one basic disease.
Collapse
Affiliation(s)
- Yuxiang Du
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Zhikun Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xuan Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
46
|
Gembillo G, Visconti L, Giusti MA, Siligato R, Gallo A, Santoro D, Mattina A. Cardiorenal Syndrome: New Pathways and Novel Biomarkers. Biomolecules 2021; 11:1581. [PMID: 34827580 PMCID: PMC8615764 DOI: 10.3390/biom11111581] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiorenal syndrome (CRS) is a multi-organ disease characterized by the complex interaction between heart and kidney during acute or chronic injury. The pathogenesis of CRS involves metabolic, hemodynamic, neurohormonal, and inflammatory mechanisms, and atherosclerotic degeneration. In the process of better understanding the bi-directional pathophysiological aspects of CRS, the need to find precise and easy-to-use markers has also evolved. Based on the new pathophysiological standpoints and an overall vision of the CRS, the literature on renal, cardiac, metabolic, oxidative, and vascular circulating biomarkers was evaluated. Though the effectiveness of different extensively applied biomarkers remains controversial, evidence for several indicators, particularly when combined, has increased in recent years. From new aspects of classic biomarkers to microRNAs, this review aimed at a 360-degree analysis of the pathways that balance the kidney and the heart physiologies. In this delicate system, different markers and their combination can shed light on the diagnosis, risk, and prognosis of CRS.
Collapse
Affiliation(s)
- Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Luca Visconti
- Unit of Nephrology and Dialysis, Ospedali Riuniti Villa Sofia Cervello, University of Palermo, 90146 Palermo, Italy;
| | - Maria Ausilia Giusti
- Diabetes and Islet Transplantation Unit, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), UPMC Italy, 90127 Palermo, Italy; (M.A.G.); (A.M.)
| | - Rossella Siligato
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), UPMC Italy, 90127 Palermo, Italy;
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Alessandro Mattina
- Diabetes and Islet Transplantation Unit, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), UPMC Italy, 90127 Palermo, Italy; (M.A.G.); (A.M.)
| |
Collapse
|
47
|
Jejunal transcriptomic profiling of two layer strains throughout the entire production period. Sci Rep 2021; 11:20086. [PMID: 34635722 PMCID: PMC8505660 DOI: 10.1038/s41598-021-99566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
The jejunum plays crucial roles for the digestion and absorption of nutrients and minerals and for barrier functions that are essential for a healthy, productive life cycle of farm animals, including laying hens. Accordingly, knowledge of the molecular pathways that emerge in the intestine during development, and particularly at the beginning of laying activity, will help to derive strategies for improving nutrient efficiency in laying hens. In this study, jejunal samples were obtained from two high-yielding layer strains at five developmental stages (weeks 10, 16, 24, 30 and 60 of life) for RNA-sequencing, alongside the profiling of blood plasma parameters to approximate the dynamics of mineral homeostasis. The results reflected a marked distinction between the pre-laying and laying phase as inferred from levels of parathyroid hormone, triiodothyronine, estradiol, vitamin D, and calcium. Moreover, the expression patterns of the intestinal mucosa responded directly to the changing metabolic and nutritional profiles at the beginning of the laying phase in maturing high-yielding strains of laying hens. These comprise signaling events namely RANK/RANKL signaling and cellular senescence. Taken together, the timing of sexual maturity of laying hens demands closer examination to unravel metabolic requirements and associated endogenous mechanisms.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA.
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
49
|
Abstract
Fibroblast growth factors (FGFs) are cell-signaling proteins with diverse functions in cell development, repair, and metabolism. The human FGF family consists of 22 structurally related members, which can be classified into three separate groups based on their action of mechanisms, namely: intracrine, paracrine/autocrine, and endocrine FGF subfamilies. FGF19, FGF21, and FGF23 belong to the hormone-like/endocrine FGF subfamily. These endocrine FGFs are mainly associated with the regulation of cell metabolic activities such as homeostasis of lipids, glucose, energy, bile acids, and minerals (phosphate/active vitamin D). Endocrine FGFs function through a unique protein family called klotho. Two members of this family, α-klotho, or β-klotho, act as main cofactors which can scaffold to tether FGF19/21/23 to their receptor(s) (FGFRs) to form an active complex. There are ongoing studies pertaining to the structure and mechanism of these individual ternary complexes. These studies aim to provide potential insights into the physiological and pathophysiological roles and therapeutic strategies for metabolic diseases. Herein, we provide a comprehensive review of the history, structure–function relationship(s), downstream signaling, physiological roles, and future perspectives on endocrine FGFs.
Collapse
|
50
|
Jähn-Rickert K, Zimmermann EA. Potential Role of Perilacunar Remodeling in the Progression of Osteoporosis and Implications on Age-Related Decline in Fracture Resistance of Bone. Curr Osteoporos Rep 2021; 19:391-402. [PMID: 34117624 DOI: 10.1007/s11914-021-00686-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW We took an interdisciplinary view to examine the potential contribution of perilacunar/canalicular remodeling to declines in bone fracture resistance related to age or progression of osteoporosis. RECENT FINDINGS Perilacunar remodeling is most prominent as a result of lactation; recent advances further elucidate the molecular players involved and their effect on bone material properties. Of these, vitamin D and calcitonin could be active during aging or osteoporosis. Menopause-related hormonal changes or osteoporosis therapies affect bone material properties and mechanical behavior. However, investigations of lacunar size or osteocyte TRAP activity with age or osteoporosis do not provide clear evidence for or against perilacunar remodeling. While the occurrence and potential role of perilacunar remodeling in aging and osteoporosis progression are largely under-investigated, widespread changes in bone matrix composition in OVX models and following osteoporosis therapies imply osteocytic maintenance of bone matrix. Perilacunar remodeling-induced changes in bone porosity, bone matrix composition, and bone adaptation could have significant implications for bone fracture resistance.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Heisenberg Research Group, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany.
- Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Elizabeth A Zimmermann
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, 3640 Rue University, Montreal, Canada.
| |
Collapse
|