1
|
Bogdanova E, Sadykov A, Ivanova G, Zubina I, Beresneva O, Semenova N, Galkina O, Parastaeva M, Sharoyko V, Dobronravov V. Mild Chronic Kidney Disease Associated with Low Bone Formation and Decrease in Phosphate Transporters and Signaling Pathways Gene Expression. Int J Mol Sci 2023; 24:ijms24087270. [PMID: 37108433 PMCID: PMC10138582 DOI: 10.3390/ijms24087270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The initial phases of molecular and cellular maladaptive bone responses in early chronic kidney disease (CKD) remain mostly unknown. We induced mild CKD in spontaneously hypertensive rats (SHR) by either causing arterial hypertension lasting six months (sham-operated rats, SO6) or in its' combination with 3/4 nephrectomy lasting two and six months (Nx2 and Nx6, respectively). Sham-operated SHRs (SO2) and Wistar Kyoto rats (WKY2) with a two-month follow-up served as controls. Animals were fed standard chow containing 0.6% phosphate. Upon follow-up completion in each animal, we measured creatinine clearance, urine albumin-to-creatinine ratio, renal interstitial fibrosis, inorganic phosphate (Pi) exchange, intact parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, Dickkopf-1, sclerostin, and assessed bone response by static histomorphometry and gene expression profiles. The mild CKD groups had no increase in renal Pi excretion, FGF23, or PTH levels. Serum Pi, Dickkopf-1, and sclerostin were higher in Nx6. A decrease in trabecular bone area and osteocyte number was obvious in SO6. Nx2 and Nx6 had additionally lower osteoblast numbers. The decline in eroded perimeter, a resorption index, was only apparent in Nx6. Significant downregulation of genes related to Pi transport, MAPK, WNT, and BMP signaling accompanied histological alterations in Nx2 and Nx6. We found an association between mild CKD and histological and molecular features suggesting lower bone turnover, which occurred at normal levels of systemic Pi-regulating factors.
Collapse
Affiliation(s)
- Evdokia Bogdanova
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Airat Sadykov
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation Pavlov University, 197022 Saint Petersburg, Russia
| | - Galina Ivanova
- Laboratory of Cardiovascular and Lymphatic Systems, Physiology Pavlov Institute of Physiology, 199034 Saint Petersburg, Russia
| | - Irina Zubina
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Olga Beresneva
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Natalia Semenova
- Research Department of Pathomorphology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Olga Galkina
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Marina Parastaeva
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Vladimir Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov University, 197022 Saint Petersburg, Russia
| | - Vladimir Dobronravov
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| |
Collapse
|
2
|
Mouse Models of Mineral Bone Disorders Associated with Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24065325. [PMID: 36982400 PMCID: PMC10048881 DOI: 10.3390/ijms24065325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Patients with chronic kidney disease (CKD) inevitably develop mineral and bone disorders (CKD–MBD), which negatively impact their survival and quality of life. For a better understanding of underlying pathophysiology and identification of novel therapeutic approaches, mouse models are essential. CKD can be induced by surgical reduction of a functional kidney mass, by nephrotoxic compounds and by genetic engineering specifically interfering with kidney development. These models develop a large range of bone diseases, recapitulating different types of human CKD–MBD and associated sequelae, including vascular calcifications. Bones are usually studied by quantitative histomorphometry, immunohistochemistry and micro-CT, but alternative strategies have emerged, such as longitudinal in vivo osteoblast activity quantification by tracer scintigraphy. The results gained from the CKD–MBD mouse models are consistent with clinical observations and have provided significant knowledge on specific pathomechanisms, bone properties and potential novel therapeutic strategies. This review discusses available mouse models to study bone disease in CKD.
Collapse
|
3
|
Magbri A, El-Magbri M, Hernandez PA. Get-up and Go: Adynamic Bone Disease in Chronic Kidney Disease Patient. ARCHIVES OF PHARMACY PRACTICE 2023. [DOI: 10.51847/suxosrek5t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
4
|
Nagy E, Sobh MM, Abdalbary M, Elnagar S, Elrefaey R, Shabaka S, Elshabrawy N, Shemies R, Tawfik M, Santos CGS, Barreto FC, El-Husseini A. Is Adynamic Bone Always a Disease? Lessons from Patients with Chronic Kidney Disease. J Clin Med 2022; 11:jcm11237130. [PMID: 36498703 PMCID: PMC9736225 DOI: 10.3390/jcm11237130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Renal osteodystrophy (ROD) is a common complication of end-stage kidney disease that often starts early with loss of kidney function, and it is considered an integral part in management of patients with chronic kidney disease (CKD). Adynamic bone (ADB) is characterized by suppressed bone formation, low cellularity, and thin osteoid seams. There is accumulating evidence supporting increasing prevalence of ADB, particularly in early CKD. Contemporarily, it is not very clear whether it represents a true disease, an adaptive mechanism to prevent bone resorption, or just a transitional stage. Several co-players are incriminated in its pathogenesis, such as age, diabetes mellitus, malnutrition, uremic milieu, and iatrogenic factors. In the present review, we will discuss the up-to-date knowledge of the ADB and focus on its impact on bone health, fracture risk, vascular calcification, and long-term survival. Moreover, we will emphasize the proper preventive and management strategies of ADB that are pivotal issues in managing patients with CKD. It is still unclear whether ADB is always a pathologic condition or whether it can represent an adaptive process to suppress bone resorption and further bone loss. In this article, we tried to discuss this hard topic based on the available limited information in patients with CKD. More studies are needed to be able to clearly address this frequent ROD finding.
Collapse
Affiliation(s)
- Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud M. Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Rabab Elrefaey
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Shimaa Shabaka
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Rasha Shemies
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mona Tawfik
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Cássia Gomes S. Santos
- Department of Internal Medicine, Division of Nephrology, Federal University of Paraná, Curitiba 80060-00, PR, Brazil
| | - Fellype C. Barreto
- Department of Internal Medicine, Division of Nephrology, Federal University of Paraná, Curitiba 80060-00, PR, Brazil
| | - Amr El-Husseini
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40536-0298, USA
- Correspondence: ; Tel.: +1-859-218-0934; Fax: +1-859-323-0232
| |
Collapse
|
5
|
Udomkarnjananun S, Phannajit J, Takkavatakarn K, Tumkosit M, Kingpetch K, Avihingsanon Y, Praditpornsilpa K, Eiam-Ong S, Susantitaphong P. Effects of Phosphate Binders on Bone Biomarkers and Bone Density in Hemodialysis Patients. Nephrology (Carlton) 2022; 27:441-449. [PMID: 35044029 DOI: 10.1111/nep.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUNDS The incidences of osteoporosis, fracture, and vascular calcification increase concordantly with the progression of chronic kidney disease (CKD). CKD-mineral bone disease (CKD-MBD) induced by hyperphosphatemia is a major pathophysiologic mechanism. The effects of phosphate binders on bone turnover biomarkers and bone mineral density (BMD) in hemodialysis patients are still inconclusive. Our aim is to demonstrate the effects of these phosphate binders on different aspects of CKD-MBD. METHODS We conducted a prospective cohort of 65 hemodialysis patients to investigate the effect of 12-month monotherapy of phosphate binders composing calcium-based phosphate binders (CPB) or non-calcium-based phosphate binders (NCPB), including sevelamer and lanthanum, on bone turnover biomarkers and BMD changes. The performance of bone turnover biomarkers to predict low BMD was attentively determined. RESULTS When compared with CPB, NCPB use was associated with higher levels of bone turnover biomarkers. NCPB was also associated with lower BMD at lumbar and distal radius. Total procollagen type 1 N-terminal propeptide (P1NP), bone-specific alkaline phosphatase (BALP), and tartrate-resistant acid phosphatase 5b (TRAP5b) provided the best performance for diagnosing low BMD in hemodialysis patients. CONCLUSIONS Switching from CPB to NCPB might increase bone biomarkers and prevent the development of adynamic bone disease. On the contrary, NCPB should be cautiously used in hemodialysis patients who already had low BMD. P1NP, BALP, and TRAP5b could be used to guide the appropriate management, including anti-resorptive and anabolic medications, and predict low BMD in hemodialysis patients treated with phosphate binders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Jeerath Phannajit
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Research Unit for Metabolic Bone Disease in CKD Patients, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kullaya Takkavatakarn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Monravee Tumkosit
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kanaungnit Kingpetch
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Paweena Susantitaphong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Research Unit for Metabolic Bone Disease in CKD Patients, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Sharma S, Gupta A. Adynamic bone disease: Revisited. Nefrologia 2022; 42:8-14. [PMID: 36153902 DOI: 10.1016/j.nefroe.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/16/2020] [Indexed: 06/16/2023] Open
Abstract
The bone and mineral disorders form an integral part of the management of a chronic kidney disease (CKD) patient. Amongst various types of bone pathologies in chronic kidney disease-mineral bone disorder (CKD-MBD), the prevalence of adynamic bone disease (ABD) is increasing. The present review discusses the updated pathophysiology, risk factors, and management of this disorder.
Collapse
Affiliation(s)
- Sonia Sharma
- Pediatric Nephrology, Max Superspeciality Hospital, Shalimar Bagh, New Delhi, India
| | - Ankur Gupta
- Department of Medicine, Whakatane Hospital, Whakatane, New Zealand.
| |
Collapse
|
7
|
Matsumoto KI, Nakanishi I, Zhelev Z, Bakalova R, Aoki I. Nitroxyl Radical as a Theranostic Contrast Agent in Magnetic Resonance Redox Imaging. Antioxid Redox Signal 2022; 36:95-121. [PMID: 34148403 PMCID: PMC8792502 DOI: 10.1089/ars.2021.0110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance:In vivo assessment of paramagnetic and diamagnetic conversions of nitroxyl radicals based on cyclic redox mechanism can be an index of tissue redox status. The redox mechanism of nitroxyl radicals, which enables their use as a normal tissue-selective radioprotector, is seen as being attractive on planning radiation therapy. Recent Advances:In vivo redox imaging using nitroxyl radicals as redox-sensitive contrast agents has been developed to assess tissue redox status. Chemical and biological behaviors depending on chemical structures of nitroxyl radical compounds have been understood in detail. Polymer types of nitroxyl radical contrast agents and/or nitroxyl radical-labeled drugs were designed for approaching theranostics. Critical Issues: Nitroxyl radicals as magnetic resonance imaging (MRI) contrast agents have several advantages compared with those used in electron paramagnetic resonance (EPR) imaging, while support by EPR spectroscopy is important to understand information from MRI. Redox-sensitive paramagnetic contrast agents having a medicinal benefit, that is, nitroxyl-labeled drug, have been developed and proposed. Future Directions: A development of suitable nitroxyl contrast agent for translational theranostic applications with high reaction specificity and low normal tissue toxicity is under progress. Nitroxyl radicals as redox-sensitive magnetic resonance contrast agents can be a useful tool to detect an abnormal tissue redox status such as disordered oxidative stress. Antioxid. Redox Signal. 36, 95-121.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Group, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Zhivko Zhelev
- Medical Faculty, Trakia University, Stara Zagora, Bulgaria.,Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rumiana Bakalova
- Functional and Molecular Imaging Goup, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ichio Aoki
- Functional and Molecular Imaging Goup, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| |
Collapse
|
8
|
Meng Z, Li Z, Zhang E, Zhang L, Liu Q, Wu Y. Sevelamer Attenuates Bioprosthetic Heart Valve Calcification. Front Cardiovasc Med 2021; 8:740038. [PMID: 34660741 PMCID: PMC8514018 DOI: 10.3389/fcvm.2021.740038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/30/2021] [Indexed: 12/04/2022] Open
Abstract
Objective: Sevelamer hydrochloride is a phosphate binder used to treat hyperphosphatemia in chronic kidney disease (CKD) patients that can reduce valvular and vascular calcification. The aim of this study was to examine the effects of sevelamer treatment on calcification in bioprosthetic heart valves (BHVs). Methods: Wister rats were randomly divided into three groups according to sevelamer intake and implantation (sham–sham operation; implant–implantation and normal diet, implant+S implantation, and sevelamer diet). Two kinds of BHVs—bovine pericardium treated with glutaraldehyde (GLUT) or non-GLUT techniques—were implanted in rat dorsal subcutis at 4 weeks. After implantation, sevelamer was administered to the implant+S group. The animals were executed at days 0 (immediately after implantation), 7, 14, 28, and 56. Calcium levels were determined by atomic absorption spectroscopy and von Kossa staining. Serum biochemistry analysis, Western blotting, real-time quantitative polymerase chain reaction, alkaline phosphatase activity measurement, histopathologic analysis, immunohistochemistry, and enzyme-linked immunosorbent assay were conducted to identify the anti-calcification mechanism of sevelamer. Results: Non-GLUT crosslinking attenuates BHV calcification. Serum phosphate and calcium remained unreactive to sevelamer after a 14-day treatment. However, the mean calcium level in the implant+S group was significantly decreased after 56 days. In addition, the PTH level, inflammatory cell infiltration, system and local inflammation, and expression of Bmp2, Runx2, Alp, IL-1β, IL-6, and TNF-α were significantly reduced in the implant+S group. Conclusion: Sevelamer treatment significantly attenuated the calcification of BHVs and had anti-inflammation effects that were independent from serum calcium and phosphate regulation. Thus, sevelamer treatment might be helpful to improve the longevity of BHVs.
Collapse
Affiliation(s)
- Zhen Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Erli Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qingrong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongjian Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Sharma S, Gupta A. Adynamic bone disease: Revisited. Nefrologia 2021; 42:S0211-6995(21)00025-4. [PMID: 33707096 DOI: 10.1016/j.nefro.2020.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022] Open
Abstract
The bone and mineral disorders form an integral part of the management of a chronic kidney disease (CKD) patient. Amongst various types of bone pathologies in chronic kidney disease-mineral bone disorder (CKD-MBD), the prevalence of adynamic bone disease (ABD) is increasing. The present review discusses the updated pathophysiology, risk factors, and management of this disorder.
Collapse
Affiliation(s)
- Sonia Sharma
- Pediatric Nephrology, Max Superspeciality Hospital, Shalimar Bagh, New Delhi, India
| | - Ankur Gupta
- Department of Medicine, Whakatane Hospital, Whakatane, New Zealand.
| |
Collapse
|
10
|
Huang M, Zheng L, Xu H, Tang D, Lin L, Zhang J, Li C, Wang W, Yuan Q, Tao L, Ye Z. Oxidative stress contributes to vascular calcification in patients with chronic kidney disease. J Mol Cell Cardiol 2019; 138:256-268. [PMID: 31866376 DOI: 10.1016/j.yjmcc.2019.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023]
Abstract
Vascular calcification (VC) is a major cause of mortality in patients with chronic kidney disease (CKD). While elevations in serum phosphorus contribute to VC, we provide evidence here for a major role of oxidative stress (OS) in VC pathogenesis without an apparent increase in serum phosphorus in early CKD. In a rat model for stage 5 CKD (CKD5), we observed 1) robust increases of VC and OS, 2) significant reductions of smooth muscle 22 alpha (SM22α) and calponin, and 3) upregulations in Runt-related transcription factor 2 (RUNX2) and collagen I in vascular smooth muscle cells (VSMCs). Inhibition of OS using MnTMPyP dramatically reduced these events without normalization of hyperphosphatemia. In CKD5 patients with VC (n = 11) but not in those without VC (n = 13), OS was significantly elevated. While the serum levels of calcium and phosphate were not altered in the animal model for early stage CKD (ECKD), OS, VC, SM22α, calponin, RUNX2, collagen I and NADPH oxidase 1 (NOX1) in VSMCs were all significantly changed. More importantly, serum (5%) derived from patients with ECKD (n = 30) or CKD5 (n = 30) induced SM22α and calponin downregulation, and RUNX2, collagen I, NOX1 upregulation along with a robust elevation of OS and calcium deposition in primary rat VSMCs. These alterations were all reduced by MnTMPyP, ML171 (a NOX1 inhibitor), and U0126 (an inhibitor of Erk signaling). Collectively, we provide a comprehensive set of evidence supporting an important role of OS in promoting VC development in CKD patients (particularly in those with ECKD); this was at least in part through induction of osteoblastic transition in VSMCs which may involve the Erk singling. Our research thus suggests that reductions in OS may prevent VC in CKD patients.
Collapse
Affiliation(s)
- Mei Huang
- Division of Nephrology, Xiangya Hospital of the Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li Zheng
- Division of Nephrology, Xiangya Hospital of the Central South University, Changsha, Hunan 410008, China; Division of Nephrology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan 410013, China
| | - Hui Xu
- Division of Nephrology, Xiangya Hospital of the Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Damu Tang
- Department of Medicine, McMaster University, Hamilton, ON, Canada; The Hamilton Center for Kidney Research, Hamilton, ON, Canada; Urologic Cancer Center for Research and Innovation (UCCRI), Hamilton, ON, Canada
| | - Lizhen Lin
- Division of Nephrology, Xiangya Hospital of the Central South University, Changsha, Hunan 410008, China
| | - Jin Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Cuifang Li
- Division of Nephrology, Xiangya Hospital of the Central South University, Changsha, Hunan 410008, China
| | - Wei Wang
- Division of Nephrology, Xiangya Hospital of the Central South University, Changsha, Hunan 410008, China
| | - Qiongjing Yuan
- Division of Nephrology, Xiangya Hospital of the Central South University, Changsha, Hunan 410008, China
| | - Lijian Tao
- Division of Nephrology, Xiangya Hospital of the Central South University, Changsha, Hunan 410008, China; State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan 410008, China
| | - Zunlong Ye
- Division of Nephrology, Xiangya Hospital of the Central South University, Changsha, Hunan 410008, China; 1717 class, Chang Jun High School of Changsha, Changsha, Hunan 410002, China
| |
Collapse
|
11
|
Abstract
The causes of the increased cardiovascular risk associated with kidney diseases partly reside in the chronic kidney disease-mineral bone disorder (CKD-MBD) syndrome. Three cardiovascular risk factors [hyperphosphatemia, vascular calcification, and elevated fibroblast growth factor 23 (FGF23)] levels have been discovered within the CKD-MBD over the last decades. In addition, sclerostin is recently presented as a new bone and vascular disease biomarker. This 22-kDa glycoprotein, secreted mainly by osteocytes, is a soluble inhibitor of the canonical Wnt pathway that has a pivotal role in bone biology and turnover. CKD patients are reported with higher levels of sclerostin, and levels decrease during dialysis. Sclerostin is associated with vascular calcification and CV risk in CKD, although data are still controversial. The question whether serum sclerostin has protective or deleterious role in CKD-MBD pathophysiology, and therefore in cardiovascular risk and overall mortality, is still open and needs to be answered. The standardization of assays and the establishment of a clear cut-off values when sclerostin starts to switch from physiological to pathophysiological role have to be another important step. Further research is needed also to define its relationship with other CKD-MBD biomarkers for future diagnostic and therapeutic strategies.
Collapse
|
12
|
Kakani E, Elyamny M, Ayach T, El‐Husseini A. Pathogenesis and management of vascular calcification in CKD and dialysis patients. Semin Dial 2019; 32:553-561. [DOI: 10.1111/sdi.12840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elijah Kakani
- Division of Hospital Medicine University of Kentucky Lexington KY USA
| | - Mohamed Elyamny
- Division of Nephrology, Bone and Mineral Metabolism University of Kentucky Lexington KY USA
| | - Taha Ayach
- Division of Nephrology, Bone and Mineral Metabolism University of Kentucky Lexington KY USA
| | - Amr El‐Husseini
- Division of Nephrology, Bone and Mineral Metabolism University of Kentucky Lexington KY USA
| |
Collapse
|
13
|
Keri KC, Veitla V, Samji NS. Ischemic Colitis in Association with Sevelamer Crystals. Indian J Nephrol 2019; 29:191-193. [PMID: 31142966 PMCID: PMC6521773 DOI: 10.4103/ijn.ijn_80_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Sevelamer is an important drug used to lower serum phosphate levels in advanced kidney disease and in patients on dialysis. This drug is generally well tolerated but some patients report mild gastrointestinal distress as a side effect. Although regulatory agencies, such as Food and Drug Administration, list bowel ischemia and necrosis as potential and rare side effects, there are few case reports describing these adverse effects. We present a 35-year-old HIV patient with end-stage renal disease on hemodialysis who developed colonic hemorrhage and perforation. Imaging showed ischemic gangrene of bowel wall. Histopathology was consistent with transmural ischemic necrosis with deposition of fibrin thrombi and sevelamer crystals.
Collapse
Affiliation(s)
- K C Keri
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - V Veitla
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - N S Samji
- Department of Internal Medicine, Primary Care, Bellin Health, Marinette, WI, USA
| |
Collapse
|
14
|
Kefale B, Tadesse Y, Alebachew M, Engidawork E. Management Practice, and Adherence and Its Contributing Factors among Patients with Chronic Kidney Disease at Tikur Anbessa Specialized Hospital: A Hospital Based Cross-Sectional Study. Int J Nephrol 2018; 2018:2903139. [PMID: 30805215 PMCID: PMC6362475 DOI: 10.1155/2018/2903139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/18/2018] [Accepted: 05/30/2018] [Indexed: 01/10/2023] Open
Abstract
The objective of this study was to assess the management practice, medication adherence, and factors affecting medication adherence in CKD patients at Tikur Anbessa Specialized Hospital (TASH). Methods. A cross-sectional study was conducted at the nephrology clinic of TASH. A total of 256 CKD (stages 1 and 2=50, stage 3=88, stage 4=55, and stage 5=63) patients were recruited through systematic random sampling. Data were collected from medical records and interviewing patients. The rate of adherence was determined using 8-item Morisky medication adherence scale. The data were analyzed using SPSS version 20.0 statistical software. Univariate and multivariate binary logistic regression were used to investigate the potential predictors of medication nonadherence. Results. About 57.3% of diabetes mellitus with hypertension were treated with combination of insulin and ACEI based regimens. Other cardiovascular comorbidities were predominantly treated with Acetyl Salicylic Acid in combination with β-blocker. Only 61.3% (stages 1 and 2=70%, stage 3=73.9%, stage 4=54.5%, and stage 5=43%) of the study population were adherent to their treatment regimens. Forgetfulness (79.8%) was the major reason for medication nonadherence. Patients who had an average and high monthly income were 4.14 (AOR=4.14, 95% CI: 1.45-11.84, p=0.008) and 6.17 times (AOR=6.17, 95% CI: 1.02-37.46, p=0.048) more likely to adhere as compared to those who had very low income. Patients who were prescribed with ≥5 drugs were 0.46 times (AOR= 0.54, 95% CI: 0.27-1.10, p=0.049) less likely to adhere compared to their counterpart. Patients who were students, drivers, or teachers working in private school were about 7.46 times (AOR=7.46, 95% CI: 1.49-37.26, p=0.014) more likely to adhere compared with patients who were farmers. Conclusion. Insulin and ACEIs based regimens were the most frequently used regimens in the treatment of diabetes mellitus and hypertension comorbidities. Very low income, increased number of prescribed medications, and being a farmer were the predictors of medication nonadherence.
Collapse
Affiliation(s)
- Belayneh Kefale
- Department of Pharmacy, College of Medicine and Health Science, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Yewondwossen Tadesse
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Minyahil Alebachew
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Kefale B, Tadesse Y, Alebachew M, Engidawork E. Management practice, and adherence and its contributing factors among patients with chronic kidney disease at Tikur Anbessa Specialized Hospital: A hospital-based cross-sectional study. PLoS One 2018; 13:e0200415. [PMID: 30044830 PMCID: PMC6059431 DOI: 10.1371/journal.pone.0200415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) has a complicated interrelationship with other diseases and major risk factor for cardiovascular disease. Therapeutic management for CKD patients is complicated due to co-morbidities and dominant risk factors of CKD. Non-adherence to treatment is an increasing problem for patients with CKD and it has not been extensively studied in patients with CKD. Hence, the present study was carried out to assess the management practice, medication adherence and factors affecting medication adherence in CKD patients at Tikur Anbessa Specialized Hospital (TASH). METHODS A hospital-based cross-sectional study was conducted at the nephrology clinic of TASH. A total of 256 patients were recruited through systematic random sampling. Data were collected from medical records and interviewing patients. The degree of adherence was determined using eight-item Morisky Medication Adherence Scale. The data were entered into Epi Info 7.2.2.2 and analyzed using SPSS version 20.0 statistical software. Descriptive statistics such as frequency, percent, mean and standard deviation were used to summarize patients' baseline characteristics. Univariable and multivariable binary logistic regression were used to investigate the potential predictors of medication non-adherence. RESULTS About 55% patients with hypertension only were treated with non-angiotensin converting enzyme inhibition based regimens; 57.3% of diabetes mellitus with hypertension treated with combination of insulin and ACEI based regimens. About three-fourth of patients with anemia and osteodystrophy complications were treated with iron preparations and calcium based phosphate binder. Only 61.3% of the study population were adherent to their treatment regimens. Forgetfulness (79.8%) was the major reason for medication non-adherence. Patients who had an average and high monthly income were 4.14 (AOR = 4.14, 95% CI: 1.45-11.84, p = 0.008) and 6.17 times (AOR = 6.17, 95% CI: 1.02-37.46, p = 0.048) more likely to adhere as compared to those who had very low income. Patients who were prescribed with ≥5 drugs were 0.46 times (AOR = 0.54, 95% CI: 0.27-1.10, p = 0.049) less likely to adhere compared to their counterpart. Patients who were students, drivers, teachers working in private school were about 7.46 times (AOR = 7.46, 95% CI: 1.49-37.26, p = 0.014) more likely to adhere compared with patients who were farmers. CONCLUSION Insulin and ACEIs based regimens were the most frequently used regimens in the treatment of diabetes mellitus and hypertension co-morbidities. Very low income, increased number of prescribed medications and being a farmer were the predictors of medication non-adherence.
Collapse
Affiliation(s)
- Belayneh Kefale
- Department of Pharmacy, College of Medicine and Health Science, Ambo University, Ambo, Ethiopia
| | - Yewondwossen Tadesse
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Minyahil Alebachew
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
16
|
Stabley JN, Towler DA. Arterial Calcification in Diabetes Mellitus: Preclinical Models and Translational Implications. Arterioscler Thromb Vasc Biol 2017; 37:205-217. [PMID: 28062508 PMCID: PMC5480317 DOI: 10.1161/atvbaha.116.306258] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus increasingly afflicts our aging and dysmetabolic population. Type 2 diabetes mellitus and the antecedent metabolic syndrome represent the vast majority of the disease burden-increasingly prevalent in children and older adults. However, type 1 diabetes mellitus is also advancing in preadolescent children. As such, a crushing wave of cardiometabolic disease burden now faces our society. Arteriosclerotic calcification is increased in metabolic syndrome, type 2 diabetes mellitus, and type 1 diabetes mellitus-impairing conduit vessel compliance and function, thereby increasing the risk for dementia, stroke, heart attack, limb ischemia, renal insufficiency, and lower extremity amputation. Preclinical models of these dysmetabolic settings have provided insights into the pathobiology of arterial calcification. Osteochondrogenic morphogens in the BMP-Wnt signaling relay and transcriptional regulatory programs driven by Msx and Runx gene families are entrained to innate immune responses-responses activated by the dysmetabolic state-to direct arterial matrix deposition and mineralization. Recent studies implicate the endothelial-mesenchymal transition in contributing to the phenotypic drift of mineralizing vascular progenitors. In this brief overview, we discuss preclinical disease models that provide mechanistic insights-and point to challenges and opportunities to translate these insights into new therapeutic strategies for our patients afflicted with diabetes mellitus and its arteriosclerotic complications.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Arteries/metabolism
- Arteries/pathology
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diet, High-Fat
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Humans
- Hyperlipidemias/complications
- Hyperlipidemias/genetics
- Male
- Phenotype
- Plaque, Atherosclerotic
- Rats
- Signal Transduction
- Translational Research, Biomedical
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- John N Stabley
- From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Dwight A Towler
- From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
17
|
Lomashvili KA, Manning KE, Weitzmann MN, Nelea V, McKee MD, O'Neill WC. Persistence of Vascular Calcification after Reversal of Uremia. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:332-338. [PMID: 27939134 DOI: 10.1016/j.ajpath.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 11/26/2022]
Abstract
The extent to which vascular calcification is reversible and the possible mechanisms are unclear. To address this, calcified aortas from uremic mice were transplanted orthotopically into normal mice, and the calcium content, histology, and minerals of the allografts were compared with the nontransplanted donor aorta. Calcium content decreased immediately after transplantation but remained constant thereafter, with 68% ± 12% remaining after 34 weeks. X-ray diffraction showed the presence of apatite in both donor aortas and allografts. Osteoclasts were absent in the allografts and there was no expression of the macrophage marker CD11b, the osteoclast marker tartrate-resistant acid phosphatase, or carbonic anhydrase II. The initial loss of calcium was less in heavily calcified aortas and was associated with an increase in the Ca/P ratio from 1.49 to 1.63, consistent with a loss of nonapatitic calcium. The results indicate that vascular calcification persists after reversal of uremia, because of a lack of active resorption of apatite. This failure to resorb established calcifications may contribute to the severity of vascular calcification and suggests that therapy should be aimed at prevention.
Collapse
Affiliation(s)
- Koba A Lomashvili
- Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Kelly E Manning
- Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - M Neale Weitzmann
- Division of Endocrinology and Metabolism, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia
| | - Valentin Nelea
- Faculty of Dentistry, McGill University, Montréal, Québec, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montréal, Québec, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - W Charles O'Neill
- Renal Division, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
18
|
Borba DL, Hipólito UV, Pereira YCL. Early diagnosis of atherosclerosis with panoramic radiographs: a review. J Vasc Bras 2016; 15:302-307. [PMID: 29930608 PMCID: PMC5829729 DOI: 10.1590/1677-5449.002316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Carotid artery disease has been linked with cerebral vascular accident, also known as stroke, cerebral hemorrhage, or cerebral ischemia. It is caused by narrowing or obstruction of arteries in the neck (the carotid arteries) that are responsible for transporting blood from the aorta to the brain. Panoramic radiographs are used in dentistry to show both dental arches as a supplement to the clinical dental examination. The objective of this study is to highlight the importance of panoramic radiographs for diagnosis of arterial disease, by means of a bibliographic review. The PubMed database was searched using the keywords “atherosclerosis” and “panoramic”, with the filters “last 5 years” and “humans”. Twenty articles were identified, six of which were chosen for this study because they were open access. The review concluded that panoramic radiographs enable early diagnosis of carotid artery calcification, resulting in earlier interventions, and offer an accessible cost.
Collapse
Affiliation(s)
- Daiane Landim Borba
- Faculdade de Ciências do Tocantins - FACIT, Curso de Odontologia, Araguaína, TO, Brazil
| | | | | |
Collapse
|
19
|
Jokihaara J, Pörsti IH, Sievänen H, Kööbi P, Kannus P, Niemelä O, Turner RT, Iwaniec UT, Järvinen TLN. Phosphate Binding with Sevelamer Preserves Mechanical Competence of Bone Despite Acidosis in Advanced Experimental Renal Insufficiency. PLoS One 2016; 11:e0163022. [PMID: 27658028 PMCID: PMC5033583 DOI: 10.1371/journal.pone.0163022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction Phosphate binding with sevelamer can ameliorate detrimental histomorphometric changes of bone in chronic renal insufficiency (CRI). Here we explored the effects of sevelamer-HCl treatment on bone strength and structure in experimental CRI. Methods Forty-eight 8-week-old rats were assigned to surgical 5/6 nephrectomy (CRI) or renal decapsulation (Sham). After 14 weeks of disease progression, the rats were allocated to untreated and sevelamer-treated (3% in chow) groups for 9 weeks. Then the animals were sacrificed, plasma samples collected, and femora excised for structural analysis (biomechanical testing, quantitative computed tomography). Results Sevelamer-HCl significantly reduced blood pH, and final creatinine clearance in the CRI groups ranged 30%-50% of that in the Sham group. Final plasma phosphate increased 2.4- to 2.9-fold, and parathyroid hormone 13- to 21-fold in CRI rats, with no difference between sevelamer-treated and untreated animals. In the femoral midshaft, CRI reduced cortical bone mineral density (-3%) and breaking load (-15%) (p<0.05 for all versus Sham), while sevelamer increased bone mineral density (+2%) and prevented the deleterious changes in bone. In the femoral neck, CRI reduced bone mineral density (-11%) and breaking load (-10%), while sevelamer prevented the decrease in bone mineral density (+6%) so that breaking load did not differ from controls. Conclusions In this model of stage 3–4 CRI, sevelamer-HCl treatment ameliorated the decreases in femoral midshaft and neck mineral density, and restored bone strength despite prevailing acidosis. Therefore, treatment with sevelamer can efficiently preserve mechanical competence of bone in CRI.
Collapse
Affiliation(s)
- Jarkko Jokihaara
- Department of Hand and Microsurgery, Tampere University Hospital, Tampere, Finland
- Center for Hip Health and Mobility, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| | | | | | - Peeter Kööbi
- Medical School, University of Tampere, Tampere, Finland
| | - Pekka Kannus
- Bone Research Group, UKK-Institute, Tampere, Finland
| | - Onni Niemelä
- Medical School, University of Tampere, Tampere, Finland
- Department of Laboratory Medicine, Seinäjoki Central Hospital Laboratory, Seinäjoki, Finland
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Teppo L. N. Järvinen
- Center for Hip Health and Mobility, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Sugatani T, Agapova OA, Fang Y, Berman AG, Wallace JM, Malluche HH, Faugere MC, Smith W, Sung V, Hruska KA. Ligand trap of the activin receptor type IIA inhibits osteoclast stimulation of bone remodeling in diabetic mice with chronic kidney disease. Kidney Int 2016; 91:86-95. [PMID: 27666759 DOI: 10.1016/j.kint.2016.07.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
Dysregulation of skeletal remodeling is a component of renal osteodystrophy. Previously, we showed that activin receptor signaling is differentially affected in various tissues in chronic kidney disease (CKD). We tested whether a ligand trap for the activin receptor type 2A (RAP-011) is an effective treatment of the osteodystrophy of the CKD-mineral bone disorder. With a 70% reduction in the glomerular filtration rate, CKD was induced at 14 weeks of age in the ldlr-/- high fat-fed mouse model of atherosclerotic vascular calcification and diabetes. Twenty mice with CKD, hyperphosphatemia, hyperparathyroidism, and elevated activin A were treated with RAP-011, wherease 19 mice were given vehicle twice weekly from week 22 until the mice were killed at 28 weeks of age. The animals were then evaluated by skeletal histomorphometry, micro-computed tomography, mechanical strength testing, and ex vivo bone cell culture. Results in the CKD groups were compared with those of the 16 sham-operated ldlr-/- high fat-fed mice. Sham-operated mice had low-turnover osteodystrophy and skeletal frailty. CKD stimulated bone remodeling with significant increases in osteoclast and osteoblast numbers and bone resorption. Compared with mice with CKD and sham-operated mice, RAP-011 treatment eliminated the CKD-induced increase in these histomorphometric parameters and increased trabecular bone fraction. RAP-011 significantly increased cortical bone area and thickness. Activin A-enhanced osteoclastogenesis was mediated through p-Smad2 association with c-fos and activation of nuclear factor of activated T cells c1 (NFATc1). Thus, an ActRIIA ligand trap reversed CKD-stimulated bone remodeling, likely through inhibition of activin-A induced osteoclastogenesis.
Collapse
Affiliation(s)
- Toshifumi Sugatani
- Department of Pediatrics and Medicine, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Olga A Agapova
- Department of Pediatrics and Medicine, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Yifu Fang
- Department of Pediatrics and Medicine, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Alycia G Berman
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Hartmut H Malluche
- Division of Nephrology, Bone and Mineral Metabolism, Department of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Marie-Claude Faugere
- Division of Nephrology, Bone and Mineral Metabolism, Department of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - William Smith
- Early Clinical Development, Celgene Corp., Basking Ridge, New Jersey, USA
| | - Victoria Sung
- Translational Medicine, Celgene Corp., San Francisco, California, USA
| | - Keith A Hruska
- Department of Pediatrics and Medicine, Renal Division, Washington University, St. Louis, Missouri, USA.
| |
Collapse
|
21
|
Abstract
Calcium is an important ion in cell signaling, hormone regulation, and bone health. Its regulation is complex and intimately connected to that of phosphate homeostasis. Both ions are maintained at appropriate levels to maintain the extracellular to intracellular gradients, allow for mineralization of bone, and to prevent extra skeletal and urinary calcification. The homeostasis involves the target organs intestine, parathyroid glands, kidney, and bone. Multiple hormones converge to regulate the extracellular calcium level: parathyroid hormone, vitamin D (principally 25(OH)D or 1,25(OH)2D), fibroblast growth factor 23, and α-klotho. Fine regulation of calcium homeostasis occurs in the thick ascending limb and collecting tubule segments via actions of the calcium sensing receptor and several channels/transporters. The kidney participates in homeostatic loops with bone, intestine, and parathyroid glands. Initially in the course of progressive kidney disease, the homeostatic response maintains serum levels of calcium and phosphorus in the desired range, and maintains neutral balance. However, once the kidneys are no longer able to appropriately respond to hormones and excrete calcium and phosphate, positive balance ensues leading to adverse cardiac and skeletal abnormalities. © 2016 American Physiological Society. Compr Physiol 6:1781-1800, 2016.
Collapse
Affiliation(s)
- Sharon M Moe
- Division of Nephrology, Indiana University School of Medicine, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana.,Section of Nephrology, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| |
Collapse
|
22
|
Yamaguchi T, Ohyama S, Furukawa H, Sato N, Ohnishi I, Kasashima S, Kawashima A, Kayahara M. Sigmoid colon diverticula perforation associated with sevelamer hydrochloride administration: A case report. Ann Med Surg (Lond) 2016; 10:57-60. [PMID: 27547398 PMCID: PMC4983137 DOI: 10.1016/j.amsu.2016.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/24/2016] [Accepted: 07/24/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction Sevelamer is an anion exchange resin used to treat hyperphosphatemia. A common adverse effect of sevelamer is constipation. According to a review of the available literature, colon perforation associated with this resin agent was less common. Presentation of case A 66-year-old man complaining of lower abdominal pain was transferred to our hospital. The patient had been undergoing hemodialysis for chronic renal failure due to rapidly progressive glomerulonephritis, and had been receiving sevelamer hydrochloride 4.5 g/day for 8years as treatment for hyperphosphatemia. Abdominal computed tomography revealed ascites, free air in the abdominal cavity, multiple diverticula of the sigmoid colon, as well as increased fat tissue surrounding the sigmoid colon. We diagnosed colonic perforation and performed emergency surgery, which revealed a 5 × 5 mm perforation in the sigmoid colon surrounded with soft stool. Histopathologically, sevelamer crystals were detected at the perforation site. Discussion We theorize that physical stimulation by sevelamer crystals contributed to colon perforation at the already vulnerable diverticulum site. Conclusion When sevelamer is administered to patients with hemodialysis, the risk of intestinal perforation should be considered. Sevelamer may contribute to colonic perforation in hemodialysis patients. Our patient underwent resection of a perforated portion of sigmoid colon. Histopathologically, sevelamer crystals were detected at the site of perforation.
Collapse
Affiliation(s)
- Takahisa Yamaguchi
- National Hospital Organization, Department of Surgery, Kanazawa Medical Center, 1-1 Shimo-Ishibiki, Kanazawa, Ishikawa 920-8650, Japan
- Corresponding author.
| | - Shigekazu Ohyama
- National Hospital Organization, Department of Surgery, Kanazawa Medical Center, 1-1 Shimo-Ishibiki, Kanazawa, Ishikawa 920-8650, Japan
| | - Hiroyuki Furukawa
- National Hospital Organization, Department of Surgery, Kanazawa Medical Center, 1-1 Shimo-Ishibiki, Kanazawa, Ishikawa 920-8650, Japan
| | - Nariatsu Sato
- National Hospital Organization, Department of Surgery, Kanazawa Medical Center, 1-1 Shimo-Ishibiki, Kanazawa, Ishikawa 920-8650, Japan
| | - Ichiro Ohnishi
- National Hospital Organization, Department of Surgery, Kanazawa Medical Center, 1-1 Shimo-Ishibiki, Kanazawa, Ishikawa 920-8650, Japan
| | - Satomi Kasashima
- National Hospital Organization, Department of Pathology, Kanazawa Medical Center, 1-1 Shimo-Ishibiki, Kanazawa, Ishikawa 920-8650, Japan
| | - Atsuhiro Kawashima
- National Hospital Organization, Department of Pathology, Kanazawa Medical Center, 1-1 Shimo-Ishibiki, Kanazawa, Ishikawa 920-8650, Japan
| | - Masato Kayahara
- National Hospital Organization, Department of Surgery, Kanazawa Medical Center, 1-1 Shimo-Ishibiki, Kanazawa, Ishikawa 920-8650, Japan
| |
Collapse
|
23
|
Liu Y, Almeida M, Weinstein RS, O'Brien CA, Manolagas SC, Jilka RL. Skeletal inflammation and attenuation of Wnt signaling, Wnt ligand expression, and bone formation in atherosclerotic ApoE-null mice. Am J Physiol Endocrinol Metab 2016; 310:E762-73. [PMID: 26956187 PMCID: PMC6415649 DOI: 10.1152/ajpendo.00501.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
ApoE-null (ApoE-KO) mice fed a high-fat diet (HFD) develop atherosclerosis, due in part to activation of vascular inflammation by oxidized low-density lipoprotein. Since bone loss also occurs in these mice, we used them to investigate the impact of oxidized lipids on bone homeostasis and to search for underlying pathogenic pathways. Four-month-old female ApoE-KO mice fed a HFD for three months exhibited increased levels of oxidized lipids in bone, as well as decreased femoral and vertebral trabecular and cortical bone mass, compared with ApoE-KO mice on normal diet. Despite HFD-induced increase in expression of Alox15, a lipoxygenase that oxidizes LDL and promotes atherogenesis, global deletion of this gene failed to ameliorate the skeletal impact of HFD. Osteoblast number and function were dramatically reduced in trabecular and cortical bone of HFD-fed mice, whereas osteoclast number was modestly reduced only in trabecular bone, indicating that an imbalance in favor of osteoclasts was responsible for HFD-induced bone loss. These changes were associated with decreased osteoblast progenitors and increased monocyte/macrophages in the bone marrow as well as increased expression of IL-1β, IL-6, and TNF. HFD also attenuated Wnt signaling as evidenced by reduced expression of Wnt target genes, and it decreased expression of pro-osteoblastogenic Wnt ligands. These results suggest that oxidized lipids decrease bone mass by increasing anti-osteoblastogenic inflammatory cytokines and decreasing pro-osteoblastogenic Wnt ligands.
Collapse
Affiliation(s)
- Yu Liu
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Maria Almeida
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Robert S Weinstein
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Charles A O'Brien
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stavros C Manolagas
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Robert L Jilka
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
24
|
Agapova OA, Fang Y, Sugatani T, Seifert ME, Hruska KA. Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease. Kidney Int 2016; 89:1231-43. [PMID: 27165838 DOI: 10.1016/j.kint.2016.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 01/01/2023]
Abstract
The causes of cardiovascular mortality associated with chronic kidney disease (CKD) are partly attributed to the CKD-mineral bone disorder (CKD-MBD). The causes of the early CKD-MBD are not well known. Our discovery of Wnt (portmanteau of wingless and int) inhibitors, especially Dickkopf 1, produced during renal repair as participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical. In the search for such factors, we studied the effects of activin receptor type IIA (ActRIIA) signaling by using a ligand trap for the receptor, RAP-011 (a soluble extracellular domain of ActRIIA fused to a murine IgG-Fc fragment). In a mouse model of CKD that stimulated atherosclerotic calcification, RAP-011 significantly increased aortic ActRIIA signaling assessed by the levels of phosphorylated Smad2/3. Furthermore, RAP-011 treatment significantly reversed CKD-induced vascular smooth muscle dedifferentiation as assessed by smooth muscle 22α levels, osteoblastic transition, and neointimal plaque calcification. In the diseased kidneys, RAP-011 significantly stimulated αklotho levels and it inhibited ActRIIA signaling and decreased renal fibrosis and proteinuria. RAP-011 treatment significantly decreased both renal and circulating Dickkopf 1 levels, showing that Wnt activation was downstream of ActRIIA. Thus, ActRIIA signaling in CKD contributes to the CKD-MBD and renal fibrosis. ActRIIA signaling may be a potential therapeutic target in CKD.
Collapse
Affiliation(s)
- Olga A Agapova
- Department of Pediatrics, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Yifu Fang
- Department of Pediatrics, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Toshifumi Sugatani
- Department of Pediatrics, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Michael E Seifert
- Department of Pediatrics, Renal Division, Washington University, St. Louis, Missouri, USA; Renal Division, Southern Illinois University, Springfield, Illinois, USA
| | - Keith A Hruska
- Department of Pediatrics, Renal Division, Washington University, St. Louis, Missouri, USA; Department of Cell Biology, Washington University, St. Louis, Missouri, USA; Department of Medicine, Washington University, St. Louis, Missouri, USA.
| |
Collapse
|
25
|
Oksztulska-Kolanek E, Znorko B, Michałowska M, Pawlak K. The Biomechanical Testing for the Assessment of Bone Quality in an Experimental Model of Chronic Kidney Disease. Nephron Clin Pract 2015; 132:51-8. [DOI: 10.1159/000442714] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022] Open
|
26
|
de Oliveira RB, Louvet L, Riser BL, Barreto FC, Benchitrit J, Rezg R, Poirot S, Jorgetti V, Drüeke TB, Massy ZA. Peritoneal delivery of sodium pyrophosphate blocks the progression of pre-existing vascular calcification in uremic apolipoprotein-E knockout mice. Calcif Tissue Int 2015; 97:179-92. [PMID: 26087714 DOI: 10.1007/s00223-015-0020-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Chronic kidney disease (CKD) is generally associated with disturbances of mineral and bone metabolism. They contribute to the development of vascular calcification (VC), a strong, independent predictor of cardiovascular risk. Pyrophosphate (PPi), an endogenous inhibitor of hydroxyapatite formation, has been shown to slow the progression of VC in uremic animals. Since in patients with CKD treatment is usually initiated for already existing calcifications, we aimed to compare the efficacy of PPi therapy with that of the phosphate binder sevelamer, using a uremic apolipoprotein-E knockout mouse model with advanced VCs. After CKD creation or sham surgery, 12-week-old female mice were randomized to one sham group and four CKD groups (n = 18-19/group). Treatment was initiated 8 weeks after left nephrectomy allowing prior VC development. Uremic groups received either intraperitoneal PPi (high dose, 1.65 mg/kg or low dose, 0.33 mg/kg per day), oral sevelamer (3 % in diet), or placebo treatment for 8 weeks. Both intima and media calcifications worsened with time in placebo-treated CKD mice, based on both quantitative image analysis and biochemical measurements. Progression of calcification between 8 and 16 weeks was entirely halted by PPi treatment, as it was by sevelamer treatment. PPi did not induce consistent bone histomorphometry changes. Finally, the beneficial vascular action of PPi probably involved mechanisms different from that of sevelamer. Further studies are needed to gain more precise insight into underlying mechanisms and to see whether PPi administration may also be useful in patients with CKD and VC.
Collapse
Affiliation(s)
- Rodrigo B de Oliveira
- INSERM Unit 1088, UFR de Médecine et de Pharmacie, University of Picardie Jules Verne (UPJV), 1 rue des Louvels, 80037, Amiens, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bover J, Ureña P, Brandenburg V, Goldsmith D, Ruiz C, DaSilva I, Bosch RJ. Adynamic bone disease: from bone to vessels in chronic kidney disease. Semin Nephrol 2015; 34:626-40. [PMID: 25498381 DOI: 10.1016/j.semnephrol.2014.09.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adynamic bone disease (ABD) is a well-recognized clinical entity in the complex chronic kidney disease (CKD)-mineral and bone disorder. Although the combination of low intact parathyroid hormone (PTH) and low bone alkaline phosphatase levels may be suggestive of ABD, the gold standard for precise diagnosis is histomorphometric analysis of tetracycline double-labeled bone biopsies. ABD essentially is characterized by low bone turnover, low bone volume, normal mineralization, and markedly decreased cellularity with minimal or no fibrosis. ABD is increasing in prevalence relative to other forms of renal osteodystrophy, and is becoming the most frequent type of bone lesion in some series. ABD develops in situations with reduced osteoanabolic stimulation caused by oversuppression of PTH, multifactorial skeletal resistance to PTH actions in uremia, and/or dysregulation of Wnt signaling. All may contribute not only to bone disease but also to the early vascular calcification processes observed in CKD. Various risk factors have been linked to ABD, including calcium loading, ageing, diabetes, hypogonadism, parathyroidectomy, peritoneal dialysis, and antiresorptive therapies, among others. The relationship between low PTH level, ABD, increased risk fracture, and vascular calcifications may at least partially explain the association of ABD with increased mortality rates. To achieve optimal bone and cardiovascular health, attention should be focused not only on classic control of secondary hyperparathyroidism but also on prevention of ABD, especially in the steadily growing proportions of diabetic, white, and elderly patients. Overcoming the insufficient osteoanabolic stimulation in ABD is the ultimate treatment goal.
Collapse
Affiliation(s)
- Jordi Bover
- Fundació Puigvert, Department of Nephrology, IIB Sant Pau, RedinRen, Barcelona, Catalonia, Spain.
| | - Pablo Ureña
- Department of Nephrology and Dialysis, Clinique du Landy, Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Vincent Brandenburg
- Department of Cardiology and Intensive Care Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Aachen, Germany
| | - David Goldsmith
- King's Health Partners Academic Health Sciences Centre (AHSC), London, United Kingdom
| | - César Ruiz
- Fundació Puigvert, Department of Nephrology, IIB Sant Pau, RedinRen, Barcelona, Catalonia, Spain
| | - Iara DaSilva
- Fundació Puigvert, Department of Nephrology, IIB Sant Pau, RedinRen, Barcelona, Catalonia, Spain
| | - Ricardo J Bosch
- Fundació Puigvert, Department of Nephrology, IIB Sant Pau, RedinRen, Barcelona, Catalonia, Spain
| |
Collapse
|
28
|
Abstract
Sevelamer carbonate (Renvela(®)), a buffered form of sevelamer hydrochloride (Renagel(®)), is an orally administered non-absorbed phosphate-binding anion exchange resin used in the treatment of hyperphosphataemia in chronic kidney disease (CKD). In the EU, sevelamer carbonate is approved in adult CKD patients who require dialysis and in those who do not require dialysis with serum phosphate levels ≥ 1.78 mmol/L, whereas in the USA sevelamer carbonate is approved in adult CKD patients who require dialysis. Sevelamer carbonate and sevelamer hydrochloride achieved similar reductions in serum phosphate levels in randomized comparative trials in patients with CKD receiving haemodialysis; sevelamer carbonate also reduced serum phosphate levels in noncomparative studies in CKD patients not requiring dialysis. The most common adverse events with sevelamer carbonate are gastrointestinal in nature. Sevelamer has pleiotropic effects, such as improving the serum lipid profile and attenuating endothelial and cardiovascular risk factors in CKD. All formulations of sevelamer have markedly higher acquisition costs than calcium-based phosphate binders. Cost-effectiveness analyses focusing specifically on sevelamer carbonate have not been conducted, and those based on clinical trial data with sevelamer hydrochloride have provided both favourable and unfavourable results compared with calcium-based phosphate binders, reflecting heterogeneity between modelled analyses in terms of data sources, assumptions, comparators, geographical regions, type of costs included and other factors. Although well-designed studies evaluating the impact of phosphate binders on hard clinical endpoints appear to be warranted, sevelamer carbonate may be particularly useful for the treatment of patients at risk of metabolic acidosis (offering advantages over sevelamer hydrochloride in this regard) and for individuals requiring treatment with a phosphate binding agent that does not contain aluminium or calcium.
Collapse
|
29
|
Rastogi A. Sevelamer revisited: pleiotropic effects on endothelial and cardiovascular risk factors in chronic kidney disease and end-stage renal disease. Ther Adv Cardiovasc Dis 2014; 7:322-42. [PMID: 24327730 PMCID: PMC3917706 DOI: 10.1177/1753944713513061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction underlies multiple cardiovascular consequences of chronic kidney disease (CKD) and antecedent diabetes or hypertension. Endothelial insults in CKD or end-stage renal disease (ESRD) patients include uremic toxins, serum uric acid, hyperphosphatemia, reactive oxygen species, and advanced glycation endproducts (AGEs). Sevelamer carbonate, a calcium-free intestinally nonabsorbed polymer, is approved for hyperphosphatemic dialysis patients in the US and hyperphosphatemic stage 3-5 CKD patients in many other countries. Sevelamer has been observed investigationally to reduce absorption of AGEs, bacterial toxins, and bile acids, suggesting that it may reduce inflammatory, oxidative, and atherogenic stimuli in addition to its on-label action of lowering serum phosphate. Some studies also suggest that noncalcium binders may contribute less to vascular calcification than calcium-based binders. Exploratory sevelamer carbonate use in patients with stages 2-4 diabetic CKD significantly reduced HbA1c, AGEs, fibroblast growth factor (FGF)-23, and total and low-density lipoprotein (LDL) cholesterol versus calcium carbonate; inflammatory markers decreased and defenses against AGEs increased. Sevelamer has also been observed to reduce circulating FGF-23, potentially reducing risk of left ventricular hypertrophy. Sevelamer but not calcium-based binders in exploratory studies increases flow-mediated vasodilation, a marker of improved endothelial function, in patients with CKD. In contrast, lanthanum carbonate and calcium carbonate effects on FMV did not differ in hemodialysis recipients. The recent independent-CKD randomized trial compared sevelamer versus calcium carbonate in predialysis CKD patients (investigational in the US, on-label in European participants); sevelamer reduced 36-month mortality and the composite endpoint of mortality or dialysis inception. Similarly, independent-HD in incident dialysis patients showed improved survival with 24 months of sevelamer versus calcium-based binders. This review discusses recent exploratory evidence for pleiotropic effects of sevelamer on endothelial function in CKD or ESRD. Endothelial effects of sevelamer may contribute mechanistically to the improved survival observed in some studies of CKD and ESRD patients.
Collapse
Affiliation(s)
- Anjay Rastogi
- Division of Nephrology, Department of Medicine, 10630 Santa Monica Boulevard, Los Angeles, CA 90025, USA
| |
Collapse
|
30
|
Massy ZA, Maizel J. [Pleiotropic effects of sevelamer: a model of intestinal tract chelating agent]. Nephrol Ther 2014; 10:441-50. [PMID: 25070605 DOI: 10.1016/j.nephro.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/29/2014] [Accepted: 04/15/2014] [Indexed: 12/25/2022]
Abstract
The number of patients with chronic kidney disease (CKD) with its associated complications has increased dramatically worldwide in recent years. Therefore, many experimental and clinical studies have examined over the last decade the mechanisms involved, in order to explain the sharp increase in cardiovascular mortality. Hyperphosphatemia is a major problem in these patients especially at advanced stages of CKD, and it is associated with cardiovascular and mineral complications in these patients. Sevelamer is a phosphate binder that allows a better control of hyperphosphatemia, like other phosphate binder agents, but it has additional pleiotropic effects such as correcting certain abnormalities of lipid metabolism and clearance of several uremic toxins. These effects of sevelamer, restricted to the intestinal lumen, underline the importance of intestinal pathway in CKD and open the way to new therapeutic strategies for the management of the CKD and its complications.
Collapse
Affiliation(s)
- Ziad A Massy
- Inserm U-1088, UFR de médecine et de pharmacie, université de Picardie-Jules-Verne, 1, rue des Louvels, 80037 Amiens cedex, France; Service de néphrologie, université Paris Île-de-France ouest (UVSQ), hôpital Ambroise-Paré, 9, avenue Charles-de-Gaulle, 92104 Boulogne-Billancourt cedex, France.
| | - Julien Maizel
- Inserm U-1088, UFR de médecine et de pharmacie, université de Picardie-Jules-Verne, 1, rue des Louvels, 80037 Amiens cedex, France; Unité de réanimation médicale, service de néphrologie, CHU d'Amiens, place Victor-Pauchet, 80054 Amiens cedex, France
| |
Collapse
|
31
|
Fang Y, Ginsberg C, Seifert M, Agapova O, Sugatani T, Register TC, Freedman BI, Monier-Faugere MC, Malluche H, Hruska KA. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol 2014; 25:1760-73. [PMID: 24578135 DOI: 10.1681/asn.2013080818] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In chronic kidney disease, vascular calcification, renal osteodystrophy, and phosphate contribute substantially to cardiovascular risk and are components of CKD-mineral and bone disorder (CKD-MBD). The cause of this syndrome is unknown. Additionally, no therapy addresses cardiovascular risk in CKD. In its inception, CKD-MBD is characterized by osteodystrophy, vascular calcification, and stimulation of osteocyte secretion. We tested the hypothesis that increased production of circulating factors by diseased kidneys causes the CKD-MBD in diabetic mice subjected to renal injury to induce stage 2 CKD (CKD-2 mice). Compared with non-CKD diabetic controls, CKD-2 mice showed increased renal production of Wnt inhibitor family members and higher levels of circulating Dickkopf-1 (Dkk1), sclerostin, and secreted klotho. Neutralization of Dkk1 in CKD-2 mice by administration of a monoclonal antibody after renal injury stimulated bone formation rates, corrected the osteodystrophy, and prevented CKD-stimulated vascular calcification. Mechanistically, neutralization of Dkk1 suppressed aortic expression of the osteoblastic transcription factor Runx2, increased expression of vascular smooth muscle protein 22-α, and restored aortic expression of klotho. Neutralization of Dkk1 did not affect the elevated plasma levels of osteocytic fibroblast growth factor 23 but decreased the elevated levels of sclerostin. Phosphate binder therapy restored plasma fibroblast growth factor 23 levels but had no effect on vascular calcification or osteodystrophy. The combination of the Dkk1 antibody and phosphate binder therapy completely treated the CKD-MBD. These results show that circulating Wnt inhibitors are involved in the pathogenesis of CKD-MBD and that the combination of Dkk1 neutralization and phosphate binding may have therapeutic potential for this disorder.
Collapse
Affiliation(s)
- Yifu Fang
- Departments of Pediatrics/Nephrology and
| | | | - Michael Seifert
- Departments of Pediatrics/Nephrology and Department of Pediatric Nephrology, Southern Illinois School of Medicine, Springfield, Illinois
| | | | | | | | - Barry I Freedman
- Internal Medicine/Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | | | - Hartmut Malluche
- Department of Medicine/Nephrology, University of Kentucky, Lexington, Kentucky
| | - Keith A Hruska
- Departments of Pediatrics/Nephrology and Medicine, Washington University, St. Louis, Missouri;
| |
Collapse
|
32
|
Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H, Hruska KA. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int 2014; 85:142-50. [PMID: 23884339 PMCID: PMC3836911 DOI: 10.1038/ki.2013.271] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/09/2013] [Accepted: 05/16/2013] [Indexed: 01/15/2023]
Abstract
The chronic kidney disease-mineral and bone disorder (CKD-MBD) syndrome is an extremely important complication of kidney diseases. Here we tested whether CKD-MBD causes vascular calcification in early kidney failure by developing a mouse model of early CKD in a background of atherosclerosis-stimulated arterial calcification. CKD equivalent in glomerular filtration reduction to human CKD stage 2 stimulated early vascular calcification and inhibited the tissue expression of α-klotho (klotho) in the aorta. In addition, osteoblast transition in the aorta was stimulated by early CKD as shown by the expression of the critical transcription factor Runx2. The ligand associated with the klotho-fibroblast growth factor receptor complex, FGF23, was found to be expressed in the vascular media of sham-operated mice. Its expression was decreased in early CKD. Increased circulating levels of the osteocyte-secreted proteins, FGF23, and sclerostin may have been related to increased circulating klotho levels. Finally, we observed low-turnover bone disease with a reduction in bone formation rates more than bone resorption. Thus, the CKD-MBD, characterized by cardiovascular risk factors, vascular calcification, increased circulating klotho, FGF23 and sclerostin levels, and low-turnover renal osteodystrophy, was established in early CKD. Early CKD caused a reduction of vascular klotho, stimulated vascular osteoblastic transition, increased osteocytic secreted proteins, and inhibited skeletal modeling producing the CKD-MBD.
Collapse
Affiliation(s)
- Yifu Fang
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, St Louis, Missouri, USA
| | - Charles Ginsberg
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, St Louis, Missouri, USA
| | - Toshifumi Sugatani
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, St Louis, Missouri, USA
| | | | - Hartmut Malluche
- Division of Nephrology, Department of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Keith A Hruska
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, St Louis, Missouri, USA
| |
Collapse
|
33
|
Shobeiri N, Adams MA, Holden RM. Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol 2014; 77:39-54. [PMID: 23506202 PMCID: PMC3895346 DOI: 10.1111/bcp.12117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/21/2013] [Indexed: 12/24/2022] Open
Abstract
Phosphate handling in the body is complex and involves hormones produced by the bone, the parathyroid gland and the kidneys. Phosphate is mostly found in hydroxyapatite. however recent evidence suggests that phosphate is also a signalling molecule associated with bone formation. Phosphate balance requires careful regulation of gut and kidney phosphate transporters, SLC34 transporter family, but phosphate signalling in osteoblasts and vascular smooth muscle cells is likely mediated by the SLC20 transporter family (PiT1 and PiT2). If not properly regulated, phosphate imblanace could lead to mineral disorders as well as vascular calcification. In chronic kidney disease-mineral bone disorder, hyperphosphataemia has been consistently associated with extra-osseous calcification and cardiovascular disease. This review focuses on the physiological mechanisms involved in phosphate balance and cell signalling (i.e. osteoblasts and vascular smooth muscle cells) as well as pathological consequences of hyperphosphataemia. Finally, conventional as well as new and experimental therapeutics in the treatment of hyperphosphataemia are explored.
Collapse
Affiliation(s)
- Navid Shobeiri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
34
|
High serum phosphorus and FGF 23 levels are associated with progression of coronary calcifications. Pediatr Nephrol 2014; 29:103-9. [PMID: 23921492 DOI: 10.1007/s00467-013-2575-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Coronary calcifications (CC) portend increased mortality in adults receiving hemodialysis (HD), however the risk factors associated with CC progression are not well known in pediatric patients. Our previous cross-sectional studies demonstrated high CC prevalence (31 %) in pediatric patients, which were significantly associated with high serum phosphorus (P), fibroblast growth factor 23 (FGF) levels, dialysis vintage, and low cholesterol. The current study was undertaken to determine and elucidate CC progression in pediatric HD patients. METHODS A 1-year prospective longitudinal study of 16 pediatric patients (ten male; mean age, 16.9 ± 3 years; range, 10.1-20.4 years) receiving chronic HD was conducted. RESULTS CC were observed in five of 16 (31.3 %) patients on baseline computed tomogram (CT) scan; 14/16 patients underwent 1-year CT. All patients with initial CC who completed CT at 1 year (3/5) progressed; one patient had new CC and none of the patients had resolved CC. Mean Agatston score increased from 23.4 ± 18.06 HU (baseline) to 169 ± 298.9 HU. Patients with CC progression had higher mean serum P (8.6 ± 1.8 mg/dl vs. 6.3 ± 1.1 mg/dl, p = 0.015) and FGF 23 levels (3,994 ± 860.5 pg/ml vs. 2,327 ± 1,206.4 pg/ml, p = 0.028). Serum P and FGF 23 levels were positively correlated with final Agatston scores (R = 0.65, p = 0.01 for serum P and R = 0.54, p = 0.045 for FGF 23) and change in Agatston scores (R = 0.65, p = 0.01 for serum P and R = 0.52, p = 0.048 for FGF 23). CONCLUSIONS Our study shows that CC is progressive in pediatric patients receiving HD and that increased serum P and FGF 23 levels are associated with this progression.
Collapse
|
35
|
Liu S, Song W, Boulanger JH, Tang W, Sabbagh Y, Kelley B, Gotschall R, Ryan S, Phillips L, Malley K, Cao X, Xia TH, Zhen G, Cao X, Ling H, Dechow PC, Bellido TM, Ledbetter SR, Schiavi SC. Role of TGF-β in a mouse model of high turnover renal osteodystrophy. J Bone Miner Res 2014; 29:1141-57. [PMID: 24166835 PMCID: PMC4076799 DOI: 10.1002/jbmr.2120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 09/24/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystrophy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-β's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro-computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high-turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β-catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggest that elevated TGF-β may contribute to the pathogenesis of high-turnover disease partially through inhibition of β-catenin signaling.
Collapse
Affiliation(s)
- Shiguang Liu
- Genzyme, Sanofi-Genzyme R&D Center, Framingham, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cao X, Li H, Tao H, Wu N, Yu L, Zhang D, Lu X, Zhu J, Lu Z, Zhu Q. Metformin inhibits vascular calcification in female rat aortic smooth muscle cells via the AMPK-eNOS-NO pathway. Endocrinology 2013; 154:3680-9. [PMID: 24025223 DOI: 10.1210/en.2013-1002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metformin exhibits diverse protective effects against diabetic complications, such as bone loss. Here, we investigated the effect of metformin on vascular calcification, another type 2 diabetes complication. In female rat aortic smooth muscle cells (RASMCs), we observed that metformin significantly alleviated β-glycerophosphate-induced Ca deposition and alkaline phosphatase activity, corresponding with reduced expression of some specific genes in osteoblast-like cells, including Runx2 and bone morphogenetic protein-2, and positive effects on α-actin expression, a specific marker of smooth muscle cells. Mechanistic analysis showed that phosphorylation levels of both AMP-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS) were increased with NO overproduction. After inhibition of either AMPK or eNOS with the pharmacologic inhibitors, compound C or Nω-Nitro-L-arginine methyl ester, NO production was lowered and metformin-meditated vascular protection against β-glycerophosphate-induced Ca deposition was removed. Our results support that metformin prevents vascular calcification via AMPK-eNOS-NO pathway.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/antagonists & inhibitors
- AMP-Activated Protein Kinases/chemistry
- AMP-Activated Protein Kinases/metabolism
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Cell Transdifferentiation/drug effects
- Cells, Cultured
- Diabetic Angiopathies/chemically induced
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/prevention & control
- Enzyme Activation/drug effects
- Enzyme Inhibitors/adverse effects
- Female
- Glycerophosphates/adverse effects
- Glycerophosphates/antagonists & inhibitors
- Hypoglycemic Agents/antagonists & inhibitors
- Hypoglycemic Agents/pharmacology
- Metformin/antagonists & inhibitors
- Metformin/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/antagonists & inhibitors
- Nitric Oxide Synthase Type III/chemistry
- Nitric Oxide Synthase Type III/metabolism
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/adverse effects
- Protein Processing, Post-Translational/drug effects
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Vascular Calcification/chemically induced
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
Collapse
Affiliation(s)
- Xiaorui Cao
- PhD, State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi'an, China, ; or Qingshen Zhu, MD, PhD, Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China, E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Seifert ME, de las Fuentes L, Rothstein M, Dietzen DJ, Bierhals AJ, Cheng SC, Ross W, Windus D, Dávila-Román VG, Hruska KA. Effects of phosphate binder therapy on vascular stiffness in early-stage chronic kidney disease. Am J Nephrol 2013; 38:158-67. [PMID: 23941761 PMCID: PMC3874122 DOI: 10.1159/000353569] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS Cardiovascular disease (CVD) is increased in chronic kidney disease (CKD), and contributed to by the CKD-mineral bone disorder (CKD-MBD). CKD-MBD begins in early CKD and its vascular manifestations begin with vascular stiffness proceeding to increased carotid artery intima-media thickness (cIMT) and vascular calcification (VC). Phosphorus is associated with this progression and is considered a CVD risk factor in CKD. We hypothesized that modifying phosphorus balance with lanthanum carbonate (LaCO3) in early CKD would not produce hypophosphatemia and may affect vascular manifestations of CKD-MBD. METHODS We randomized 38 subjects with normophosphatemic stage 3 CKD to a fixed dose of LaCO3 or matching placebo without adjusting dietary phosphorus in a 12-month randomized, double-blind, pilot and feasibility study. The primary outcome was the change in serum phosphorus. Secondary outcomes were changes in measures of phosphate homeostasis and vascular stiffness assessed by carotid-femoral pulse wave velocity (PWV), cIMT and VC over 12 months. RESULTS There were no statistically significant differences between LaCO3 and placebo with respect to the change in serum phosphorus, urinary phosphorus, tubular reabsorption of phosphorus, PWV, cIMT, or VC. Biomarkers of the early CKD-MBD such as plasma fibroblast growth factor-23, Dickkopf-related protein 1 (DKK1), and sclerostin were increased 2- to 3-fold at baseline, but were not affected by LaCO3. CONCLUSION Twelve months of LaCO3 had no effect on serum phosphorus and did not alter phosphate homeostasis, PWV, cIMT, VC, or biomarkers of CKD-MBD.
Collapse
Affiliation(s)
- Michael E. Seifert
- Division of Pediatric Nephrology, Southern Illinois University, Springfield, IL
- Division of Pediatric Nephrology, Washington University, St. Louis, MO
- Department of Pediatrics, Washington University, St. Louis, MO
| | - Lisa de las Fuentes
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Washington University, St. Louis, MO
- Department of Medicine, Washington University, St. Louis, MO
| | - Marcos Rothstein
- Renal Division, Washington University, St. Louis, MO
- Department of Medicine, Washington University, St. Louis, MO
| | | | - Andrew J. Bierhals
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO
| | - Steven C. Cheng
- Renal Division, Washington University, St. Louis, MO
- Department of Medicine, Washington University, St. Louis, MO
| | - Will Ross
- Renal Division, Washington University, St. Louis, MO
- Department of Medicine, Washington University, St. Louis, MO
| | - David Windus
- Renal Division, Washington University, St. Louis, MO
- Department of Medicine, Washington University, St. Louis, MO
| | - Víctor G. Dávila-Román
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Washington University, St. Louis, MO
- Department of Medicine, Washington University, St. Louis, MO
| | - Keith A. Hruska
- Division of Pediatric Nephrology, Washington University, St. Louis, MO
- Renal Division, Washington University, St. Louis, MO
- Department of Pediatrics, Washington University, St. Louis, MO
- Department of Medicine, Washington University, St. Louis, MO
| |
Collapse
|
38
|
Abstract
Cardiovascular disease is prevalent in chronic kidney disease (CKD) populations. Vascular dysfunction characterized by endothelial-cell damage, inflammation, and impaired angiogenesis is described in CKD, and hyperphosphatemia has been associated with vascular disease in CKD and general populations. We discuss the findings of elegant studies by Di Marco et al., linking hyperphosphatemia to downregulation of annexin II, an important protein implicated in fibrinolysis, cell adhesion, signal transduction, and angiogenesis.
Collapse
|
39
|
De Schutter TM, Behets GJ, Geryl H, Peter ME, Steppan S, Gundlach K, Passlick-Deetjen J, D'Haese PC, Neven E. Effect of a magnesium-based phosphate binder on medial calcification in a rat model of uremia. Kidney Int 2013; 83:1109-17. [PMID: 23486515 PMCID: PMC3674404 DOI: 10.1038/ki.2013.34] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 11/21/2012] [Accepted: 11/30/2012] [Indexed: 12/13/2022]
Abstract
Calcium-based phosphate binders are used to control hyperphosphatemia; however, they promote hypercalcemia and may accelerate aortic calcification. Here we compared the effect of a phosphate binder containing calcium acetate and magnesium carbonate (CaMg) to that of sevelamer carbonate on the development of medial calcification in rats with chronic renal failure induced by an adenine diet for 4 weeks. After 1 week, rats with chronic renal failure were treated with vehicle, 375 or 750 mg/kg CaMg, or 750 mg/kg sevelamer by daily gavage for 5 weeks. Renal function was significantly impaired in all groups. Vehicle-treated rats with chronic renal failure developed severe hyperphosphatemia, but this was controlled in treated groups, particularly by CaMg. Neither CaMg nor sevelamer increased serum calcium ion levels. Induction of chronic renal failure significantly increased serum PTH, dose-dependently prevented by CaMg but not sevelamer. The aortic calcium content was significantly reduced by CaMg but not by sevelamer. The percent calcified area of the aorta was significantly lower than vehicle-treated animals for all three groups. The presence of aortic calcification was associated with increased sox9, bmp-2, and matrix gla protein expression, but this did not differ in the treatment groups. Calcium content in the carotid artery was lower with sevelamer than with CaMg but that in the femoral artery did not differ between groups. Thus, treatment with either CaMg or sevelamer effectively controlled serum phosphate levels in CRF rats and reduced aortic calcification.
Collapse
Affiliation(s)
- Tineke M De Schutter
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Geert J Behets
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Hilde Geryl
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mirjam E Peter
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Sonja Steppan
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | | | | | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ellen Neven
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
40
|
Allen MR, Chen NX, Gattone VH, Chen X, Carr AJ, LeBlanc P, Brown D, Moe SM. Skeletal effects of zoledronic acid in an animal model of chronic kidney disease. Osteoporos Int 2013; 24:1471-81. [PMID: 22907737 PMCID: PMC4063946 DOI: 10.1007/s00198-012-2103-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/10/2012] [Indexed: 01/23/2023]
Abstract
UNLABELLED Bisphosphonates reduce skeletal loss and fracture risk, but their use has been limited in patients with chronic kidney disease. This study shows skeletal benefits of zoledronic acid in an animal model of chronic kidney disease. INTRODUCTION Bisphosphonates are routinely used to reduce fractures but limited data exists concerning their efficacy in non-dialysis chronic kidney disease. The goal of this study was to test the hypothesis that zoledronic acid produces similar skeletal effects in normal animals and those with kidney disease. METHODS At 25 weeks of age, normal rats were treated with a single dose of saline vehicle or 100 μg/kg of zoledronic acid while animals with kidney disease (approximately 30% of normal kidney function) were treated with vehicle, low dose (20 μg/kg), or high dose (100 μg/kg) zoledronic acid, or calcium gluconate (3% in the drinking water). Skeletal properties were assessed 5 weeks later using micro-computed tomography, dynamic histomorphometry, and mechanical testing. RESULTS Animals with kidney disease had significantly higher trabecular bone remodeling compared to normal animals. Zoledronic acid significantly suppressed remodeling in both normal and diseased animals yet the remodeling response to zoledronic acid was no different in normal and animals with kidney disease. Animals with kidney disease had significantly lower cortical bone biomechanical properties; these were partially normalized by treatment. CONCLUSIONS Based on these results, we conclude that zoledronic acid produces similar amounts of remodeling suppression in animals with high turnover kidney disease as it does in normal animals, and has positive effects on select biomechanical properties that are similar in normal animals and those with chronic kidney disease.
Collapse
Affiliation(s)
- M R Allen
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abe M, Okada K, Soma M. Mineral metabolic abnormalities and mortality in dialysis patients. Nutrients 2013; 5:1002-23. [PMID: 23525083 PMCID: PMC3705332 DOI: 10.3390/nu5031002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/19/2013] [Accepted: 03/07/2013] [Indexed: 12/23/2022] Open
Abstract
The survival rate of dialysis patients, as determined by risk factors such as hypertension, nutritional status, and chronic inflammation, is lower than that of the general population. In addition, disorders of bone mineral metabolism are independently related to mortality and morbidity associated with cardiovascular disease and fracture in dialysis patients. Hyperphosphatemia is an important risk factor of, not only secondary hyperparathyroidism, but also cardiovascular disease. On the other hand, the risk of death reportedly increases with an increase in adjusted serum calcium level, while calcium levels below the recommended target are not associated with a worsened outcome. Thus, the significance of target levels of serum calcium in dialysis patients is debatable. The consensus on determining optimal parathyroid function in dialysis patients, however, is yet to be established. Therefore, the contribution of phosphorus and calcium levels to prognosis is perhaps more significant. Elevated fibroblast growth factor 23 levels have also been shown to be associated with cardiovascular events and death. In this review, we examine the associations between mineral metabolic abnormalities including serum phosphorus, calcium, and parathyroid hormone and mortality in dialysis patients.
Collapse
Affiliation(s)
- Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1, Oyaguchi Kami-chou, Itabashi-ku, Tokyo 173-8610, Japan; E-Mail:
| | - Kazuyoshi Okada
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1, Oyaguchi Kami-chou, Itabashi-ku, Tokyo 173-8610, Japan; E-Mail:
| | - Masayoshi Soma
- Division of General Medicine, Department of Internal Medicine, Nihon University School of Medicine, 30-1, Oyaguchi Kami-chou, Itabashi-ku, Tokyo 173-8610, Japan; E-Mail:
| |
Collapse
|
42
|
Pelletier S, Dubourg L, Carlier MC, Hadj-Aissa A, Fouque D. The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol 2013; 8:819-23. [PMID: 23430206 DOI: 10.2215/cjn.07670712] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Sclerostin, a bone antianabolic peptide involved in osteoporosis, is elevated in patients undergoing maintenance dialysis. However, there are no data for patients with early CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Between January and July 2010, serum sclerostin and GFR (calculated by inulin clearance) were measured in 90 patients with CKD. Fasting blood samples were also drawn for determination of calcium, phosphorus, parathyroid hormone, bone alkaline phosphatase, and 25-OH vitamin D. RESULTS Median GFR was 66.5 (interquartile range, 40.0-88.3) ml/min per 1.73 m(2). Median sclerostin level was 53.5 (interquartile range, 37.5-77.2) pmol/L, was higher in patients with a GFR <60 ml/min per 1.73 m(2), and was highest in those with ESRD. Sclerostin levels were significantly more elevated in men than women (P<0.05). An inverse relationship was found between sclerostin and GFR (r=-0.58; P<0.001), and a positive correlation was seen with age (r=0.34; P<0.01) and serum phosphate (r=0.26; P=0.02). In multiple regression analyses, GFR, sex, and serum phosphate were the only variables associated with serum sclerostin (P<0.001). Age lost its relationship with sclerostin level. CONCLUSIONS This is the first study reporting higher serum sclerostin levels starting at CKD stage III. GFR, sex, and serum phosphate were the only measures associated with sclerostin level, suggesting that the effect of age reported in the literature might instead be attributable to the altered renal function in the elderly. Correcting the serum phosphorus level may be associated with lower sclerostin levels.
Collapse
Affiliation(s)
- Solenne Pelletier
- Département de Néphrologie, Hôpital E. Herriot and Université de Lyon, Lyon, France.
| | | | | | | | | |
Collapse
|
43
|
Abraham G, Kher V, Saxena S, Jayakumar M, Chafekar D, Pargaonkar P, Shetty M, Reddy YNV, Reddy YNV. Sevelamer carbonate experience in Indian end stage renal disease patients. Indian J Nephrol 2012; 22:189-92. [PMID: 23087553 PMCID: PMC3459522 DOI: 10.4103/0971-4065.98754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This open label, multicentric, comparative clinical trial was done to compare the efficacy and tolerability of two sevelamer formulations, sevelamer carbonate, and sevelamer hydrochloride, in the treatment of hyperphosphatemia in Indian end stage renal disease (ESRD) patients. A total of 97 ESRD patients on hemodialysis, were enrolled. Patients were randomized to receive either sevelamer carbonate or sevelamer hydrochloride. All patients were evaluated every week for 6 weeks for efficacy and safety variables. Total 88 patients completed the study. After 6 weeks of therapy, there were similar reductions (P<0.0001) in mean serum phosphorus and the CaxP product both the groups. The responder rates for test and reference groups were 75%, 68.18% respectively (P=0.3474). The adverse events reported were nausea, abdominal pain/discomfort, heartburn, constipation, diarrhea, increased prothrombin time, and severe arthritis. No serious adverse events were reported. There was no significant difference between the groups for adverse events and the laboratory parameters. From the results of this multicentric, comparative, randomized clinical study on sevelamer carbonate we can recommend that sevelamer carbonate may be used as a phosphate binder in Indian chronic kidney disease patients.
Collapse
Affiliation(s)
- G Abraham
- Dialysis Unit, Tamilnad Kidney Research Foundation, Kilpauk, Chennai, India
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Current Concepts and Management Strategies in Chronic Kidney Disease-Mineral and Bone Disorder. South Med J 2012; 105:479-85. [DOI: 10.1097/smj.0b013e318261f7fe] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Six I, Maizel J, Barreto FC, Rangrez AY, Dupont S, Slama M, Tribouilloy C, Choukroun G, Mazière JC, Bode-Boeger S, Kielstein JT, Drüeke TB, Massy ZA. Effects of phosphate on vascular function under normal conditions and influence of the uraemic state. Cardiovasc Res 2012; 96:130-9. [PMID: 22822101 DOI: 10.1093/cvr/cvs240] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS Increased serum phosphorus levels are associated with cardiovascular disease in patients with chronic kidney disease (CKD) and in the general population. High phosphate levels may play a direct role in vascular dysfunction. We investigated here the effects of phosphate loading and of the phosphate binder sevelamer-HCl on vascular function. METHODS AND RESULTS CKD and non-CKD C57/BL6 mice were used to study the effects of CKD, phosphate, and sevelamer-HCl on vascular function and structure. In vitro, phosphate exhibited a direct vasoconstrictor effect on aortic rings. This effect was smaller in vessels from CKD than non-CKD mice and it was abolished by reactive oxygen species inhibitor dimethylthiourea. A high-phosphate diet (1.3%) increased phenylephrine-induced contraction and lowered acetylcholine-induced relaxation of aortic rings ex vivo, both in non-CKD and CKD mice. It also induced endothelial cell detachment. Sevelamer-HCl exposure in vitro normalized the endothelial dysfunction induced by 3.0 mM phosphate and restored endothelial integrity. Sevelamer-HCl treatment of CKD mice under normal diet (0.65% phosphate) improved the endothelial dysfunction, aortic systolic expansion rate, and pulse wave velocity, and it reduced the endothelial expression of adhesion molecules. CONCLUSION Changes in extracellular phosphorus concentrations may directly modulate vascular function and thereby modulate the vascular smooth muscle response to physiological or pathological stimuli in normal and CKD mice. Whether serum phosphorus lowering and/or dietary phosphate restriction can improve arterial function in humans remains to be established.
Collapse
Affiliation(s)
- Isabelle Six
- INSERM, Unit 1088 and Jules Verne University of Picardie, Amiens, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cannata-Andia JB, Roman-Garcia P, Hruska K. The connections between vascular calcification and bone health. Nephrol Dial Transplant 2012; 26:3429-36. [PMID: 22039012 DOI: 10.1093/ndt/gfr591] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification, bone loss and increased fracture risk are age-associated disorders. Several epidemiological studies have suggested a relationship between vascular calcification, impaired bone metabolism and increased mortality. So far, this relationship had been under-estimated as osteoporosis and vascular calcification have been considered non-modifiable disorders of aging. Recent data suggest that this association is not simply an artefact of age, stressing that the co-incidence of vascular calcification with low bone activity and osteoporosis could be biologically linked. During the development of vascular calcification, the transition of vascular smooth muscle cells towards an osteoblast-like phenotype promotes the release of the vesicular structures and mineralization within these structures is promoted by several players, including those related to mineral metabolism, like phosphorus, calcium or parathyroid hormone, which influence either the supersaturation within the structure or the expression of osteogenic factors. However, an intriguing question is whether the presence of vascular calcification impacts bone metabolism, thus demonstrating true crosstalk between these tissues. Evidence is now emerging, suggesting that some inhibitors of the Wnt pathway, such as secreted frizzled Proteins 2 and 4 and Dickkopf related protein-1 (DKK-1), may play a role linking vascular calcification and bone loss. An additional important question to answer, from the patient's perspective, is whether or not progression of vascular calcification can be prevented or restricted and whether altering this progression we can efficiently impact patients' outcomes. Much evidence suggests that the control of the chronic kidney disease-mineral and bone disorder components, particularly serum phosphorus, are the main targets to maintain normal bone turnover and protect against vascular calcification.
Collapse
|
47
|
Yamada S, Taniguchi M, Tokumoto M, Toyonaga J, Fujisaki K, Suehiro T, Noguchi H, Iida M, Tsuruya K, Kitazono T. The antioxidant tempol ameliorates arterial medial calcification in uremic rats: important role of oxidative stress in the pathogenesis of vascular calcification in chronic kidney disease. J Bone Miner Res 2012; 27:474-85. [PMID: 21987400 DOI: 10.1002/jbmr.539] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vascular calcification is closely related to cardiovascular morbidity and mortality. Accumulating data indicate that oxidative stress is associated with dysfunction of various organs, including cardiovascular diseases in chronic kidney disease (CKD). However, it remains undetermined if oxidative stress induced by uremia promotes arterial medial calcification. The present study investigated the role of oxidative stress in the pathogenesis of arterial medial calcification in uremic rats. Rats with uremia induced by adenine-rich diet progressively developed arterial medial calcification, which was accompanied by time-dependent increases in both aortic and systemic oxidative stress. Immunohistochemical and biochemical analyses showed that the arterial medial calcification progressed in a time-dependent manner that is parallel to the osteogenic transdifferentiation of vascular smooth muscle cells. Accumulation of oxidative stress was also identified in the calcified regions. Time-course studies indicated that both oxidative stress and hyperphosphatemia correlated with arterial medial calcification. Tempol, an antioxidant, ameliorated osteogenic transdifferentiation of vascular smooth muscle cells and arterial medial calcification in uremic rats, together with reduction in aortic and systemic oxidative stress levels, without affecting serum biochemical parameters. Our data suggest that oxidative stress induced by uremia can play a role in the pathogenesis of vascular calcification in CKD, and that antioxidants such as tempol are potentially useful in preventing the progression of vascular calcification in CKD.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 2011; 109:697-711. [PMID: 21885837 PMCID: PMC3249146 DOI: 10.1161/circresaha.110.234914] [Citation(s) in RCA: 679] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular calcification contributes to the high risk of cardiovascular mortality in chronic kidney disease (CKD) patients. Dysregulation of calcium (Ca) and phosphate (P) metabolism is common in CKD patients and drives vascular calcification. In this article, we review the physiological regulatory mechanisms for Ca and P homeostasis and the basis for their dysregulation in CKD. In addition, we highlight recent findings indicating that elevated Ca and P have direct effects on vascular smooth muscle cells (VSMCs) that promote vascular calcification, including stimulation of osteogenic/chondrogenic differentiation, vesicle release, apoptosis, loss of inhibitors, and extracellular matrix degradation. These studies suggest a major role for elevated P in promoting osteogenic/chondrogenic differentiation of VSMC, whereas elevated Ca has a predominant role in promoting VSMC apoptosis and vesicle release. Furthermore, the effects of elevated Ca and P are synergistic, providing a major stimulus for vascular calcification in CKD. Unraveling the complex regulatory pathways that mediate the effects of both Ca and P on VSMCs will ultimately provide novel targets and therapies to limit the destructive effects of vascular calcification in CKD patients.
Collapse
|
49
|
Ohi A, Hanabusa E, Ueda O, Segawa H, Horiba N, Kaneko I, Kuwahara S, Mukai T, Sasaki S, Tominaga R, Furutani J, Aranami F, Ohtomo S, Oikawa Y, Kawase Y, Wada NA, Tachibe T, Kakefuda M, Tateishi H, Matsumoto K, Tatsumi S, Kido S, Fukushima N, Jishage KI, Miyamoto KI. Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter Npt2b⁺/⁻ mice. Am J Physiol Renal Physiol 2011; 301:F1105-13. [PMID: 21816756 DOI: 10.1152/ajprenal.00663.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An inorganic phosphate (P(i))-restricted diet is important for patients with chronic kidney disease and patients on hemodialysis. Phosphate binders are essential for preventing hyperphosphatemia and ectopic calcification. The sodium-dependent P(i) (Na/P(i)) transport system is involved in intestinal P(i) absorption and is regulated by several factors. The type II sodium-dependent P(i) transporter Npt2b is expressed in the brush-border membrane in intestinal epithelial cells and transports P(i). In the present study, we analyzed the phenotype of Npt2b(-/-) and hetero(+/-) mice. Npt2b(-/-) mice died in utero soon after implantation, indicating that Npt2b is essential for early embryonic development. At 4 wk of age, Npt2b(+/-) mice showed hypophosphatemia and low urinary P(i) excretion. Plasma fibroblast growth factor 23 levels were significantly decreased and 1,25(OH)(2)D(3) levels were significantly increased in Npt2b(+/-) mice compared with Npt2b(+/+) mice. Npt2b mRNA levels were reduced to 50% that in Npt2b(+/+) mice. In contrast, renal Npt2a and Npt2c transporter protein levels were significantly increased in Npt2b(+/-) mice. At 20 wk of age, Npt2b(+/-) mice showed hypophosphaturia and reduced Na/P(i) cotransport activity in the distal intestine. Npt2b(+/+) mice with adenine-induced renal failure had hyperphosphatemia and high plasma creatinine levels. Npt2b(+/-) mice treated with adenine had significantly reduced plasma P(i) levels compared with Npt2b(+/+) mice. Intestinal Npt2b protein and Na(+)/P(i) transport activity levels were significantly lower in Npt2b(+/-) mice than in the Npt2b(+/+) mice. The findings of the present studies suggest that Npt2b is an important target for the prevention of hyperphosphatemia.
Collapse
Affiliation(s)
- Akiko Ohi
- Department of Molecular Nutrition Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima City, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nikolov IG, Joki N, Nguyen-Khoa T, Guerrera IC, Maizel J, Benchitrit J, Machado dos Reis L, Edelman A, Lacour B, Jorgetti V, Drueke TB, Massy ZA. Lanthanum carbonate, like sevelamer-HCl, retards the progression of vascular calcification and atherosclerosis in uremic apolipoprotein E-deficient mice. Nephrol Dial Transplant 2011; 27:505-13. [DOI: 10.1093/ndt/gfr254] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|