1
|
Wolf MTF, Bonsib SM, Larsen CP, Hildebrandt F. Nephronophthisis: a pathological and genetic perspective. Pediatr Nephrol 2024; 39:1977-2000. [PMID: 37930417 DOI: 10.1007/s00467-023-06174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 11/07/2023]
Abstract
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most frequent genetic causes for kidney failure (KF) in children and adolescents. Over 20 genes cause NPHP and over 90 genes contribute to renal ciliopathies often involving multiple organs. About 15-20% of NPHP patients have additional extrarenal symptoms affecting other organs than the kidneys. The involvement of additional organ systems in syndromic forms of NPHP is explained by shared expression of most NPHP gene products in centrosomes and primary cilia, a sensory organelle present in most mammalian cells. This finding resulted in the classification of NPHP as a ciliopathy. If extrarenal symptoms are present in addition to NPHP, these disorders are defined as NPHP-related ciliopathies (NPHP-RC) and can involve the retina (e.g., with Senior-Løken syndrome), CNS (central nervous system) (e.g., with Joubert syndrome), liver (e.g., Boichis and Arima syndromes), or bone (e.g., Mainzer-Saldino and Sensenbrenner syndromes). This review focuses on the pathological findings and the recent genetic advances in NPHP and NPHP-RC. Different mechanisms and signaling pathways are involved in NPHP ranging from planar cell polarity, sonic hedgehog signaling (Shh), DNA damage response pathway, Hippo, mTOR, and cAMP signaling. A number of therapeutic interventions appear to be promising, ranging from vasopressin receptor 2 antagonists such as tolvaptan, cyclin-dependent kinase inhibitors such as roscovitine, Hh agonists such as purmorphamine, and mTOR inhibitors such as rapamycin.
Collapse
Affiliation(s)
- Matthias T F Wolf
- Division of Pediatric Nephrology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Division of Pediatric Nephrology, C.S. Mott Children's Hospital, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | | | | | | |
Collapse
|
2
|
Teixeira SK, Pontes R, Zuleta LFG, Wang J, Xu D, Hildebrand S, Russell J, Zhan X, Choi M, Tang M, Li X, Ludwig S, Beutler B, Krieger JE. Genetic determinants of blood pressure and heart rate identified through ENU-induced mutagenesis with automated meiotic mapping. SCIENCE ADVANCES 2024; 10:eadj9797. [PMID: 38427739 PMCID: PMC10906923 DOI: 10.1126/sciadv.adj9797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
We used N-ethyl-N-nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics. Unexpectedly, only 18 of the 87 SBP genes were previously known, while 26 of the 144 genes linked to HR were previously identified. Furthermore, we confirmed the influence of two genes on SBP regulation and three genes on HR control through reverse genetics. This underscores the importance of our research in uncovering genes associated with these critical cardiovascular risk factors and illustrate the effectiveness of germline mutagenesis for defining key determinants of polygenic phenotypes that must be studied in an intact organism.
Collapse
Affiliation(s)
- Samantha K. Teixeira
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Pontes
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Fernando G. Zuleta
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose E. Krieger
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Claus LR, Chen C, Stallworth J, Turner JL, Slaats GG, Hawks AL, Mabillard H, Senum SR, Srikanth S, Flanagan-Steet H, Louie RJ, Silver J, Lerner-Ellis J, Morel C, Mighton C, Sleutels F, van Slegtenhorst M, van Ham T, Brooks AS, Dorresteijn EM, Barakat TS, Dahan K, Demoulin N, Goffin EJ, Olinger E, Larsen M, Hertz JM, Lilien MR, Obeidová L, Seeman T, Stone HK, Kerecuk L, Gurgu M, Yousef Yengej FA, Ammerlaan CME, Rookmaaker MB, Hanna C, Rogers RC, Duran K, Peters E, Sayer JA, van Haaften G, Harris PC, Ling K, Mason JM, van Eerde AM, Steet R. Certain heterozygous variants in the kinase domain of the serine/threonine kinase NEK8 can cause an autosomal dominant form of polycystic kidney disease. Kidney Int 2023; 104:995-1007. [PMID: 37598857 PMCID: PMC10592035 DOI: 10.1016/j.kint.2023.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.
Collapse
Affiliation(s)
- Laura R Claus
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Joshua L Turner
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Gisela G Slaats
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexandra L Hawks
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Holly Mabillard
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sujata Srikanth
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | - Raymond J Louie
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Josh Silver
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Lerner-Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Chantal Morel
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Mighton
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Frank Sleutels
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tjakko van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eiske M Dorresteijn
- Department of Pediatric Nephrology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karin Dahan
- Institute Pathology and Genetic, Center of Human Genetics, Charleroi, Belgium
| | - Nathalie Demoulin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eric Jean Goffin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eric Olinger
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Martin Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marc R Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Lena Obeidová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Pediatrics, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Hillarey K Stone
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Larissa Kerecuk
- Birmingham Women's and Children's National Health Services (NHS) Foundation Trust, National Institute for Health Care and Research (NIHR) Clinical Research Network (CRN) West Midlands, Birmingham, UK
| | - Mihai Gurgu
- Fundeni Clinical Institute, Bucharest, Romania
| | - Fjodor A Yousef Yengej
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands; Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, Utrecht, the Netherlands
| | - Carola M E Ammerlaan
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands; Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, Utrecht, the Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Christian Hanna
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - R Curtis Rogers
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Karen Duran
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edith Peters
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John A Sayer
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK; National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Newcastle, UK
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.
| | - Jennifer M Mason
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA.
| | - Albertien M van Eerde
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Richard Steet
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA.
| |
Collapse
|
4
|
Murillo-Pineda M, Coto-Cid JM, Romero M, Zorrilla JG, Chinchilla N, Medina-Calzada Z, Varela RM, Juárez-Soto Á, Macías FA, Reales E. Effects of Sesquiterpene Lactones on Primary Cilia Formation (Ciliogenesis). Toxins (Basel) 2023; 15:632. [PMID: 37999495 PMCID: PMC10675014 DOI: 10.3390/toxins15110632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Sesquiterpene lactones (SLs), plant-derived metabolites with broad spectra of biological effects, including anti-tumor and anti-inflammatory, hold promise for drug development. Primary cilia, organelles extending from cell surfaces, are crucial for sensing and transducing extracellular signals essential for cell differentiation and proliferation. Their life cycle is linked to the cell cycle, as cilia assemble in non-dividing cells of G0/G1 phases and disassemble before entering mitosis. Abnormalities in both primary cilia (non-motile cilia) and motile cilia structure or function are associated with developmental disorders (ciliopathies), heart disease, and cancer. However, the impact of SLs on primary cilia remains unknown. This study evaluated the effects of selected SLs (grosheimin, costunolide, and three cyclocostunolides) on primary cilia biogenesis and stability in human retinal pigment epithelial (RPE) cells. Confocal fluorescence microscopy was employed to analyze the effects on primary cilia formation (ciliogenesis), primary cilia length, and stability. The effects on cell proliferation were evaluated by flow cytometry. All SLs disrupted primary cilia formation in the early stages of ciliogenesis, irrespective of starvation conditions or cytochalasin-D treatment, with no effect on cilia length or cell cycle progression. Interestingly, grosheimin stabilized and promoted primary cilia formation under cilia homeostasis and elongation treatment conditions. Thus, SLs have potential as novel drugs for ciliopathies and tumor treatment.
Collapse
Affiliation(s)
- Marina Murillo-Pineda
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Department of Urology, University Hospital of Jerez de la Frontera, 11407 Jerez, Spain; (M.M.-P.); (M.R.); (Z.M.-C.); (Á.J.-S.)
| | - Juan M. Coto-Cid
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, Campus de Excelencia Internacional (ceiA3), 11510 Puerto Real, Spain; (J.M.C.-C.); (J.G.Z.); (N.C.); (R.M.V.)
- Department of Organic Chemistry, University of Seville, 41012 Seville, Spain
| | - María Romero
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Department of Urology, University Hospital of Jerez de la Frontera, 11407 Jerez, Spain; (M.M.-P.); (M.R.); (Z.M.-C.); (Á.J.-S.)
| | - Jesús G. Zorrilla
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, Campus de Excelencia Internacional (ceiA3), 11510 Puerto Real, Spain; (J.M.C.-C.); (J.G.Z.); (N.C.); (R.M.V.)
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Nuria Chinchilla
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, Campus de Excelencia Internacional (ceiA3), 11510 Puerto Real, Spain; (J.M.C.-C.); (J.G.Z.); (N.C.); (R.M.V.)
| | - Zahara Medina-Calzada
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Department of Urology, University Hospital of Jerez de la Frontera, 11407 Jerez, Spain; (M.M.-P.); (M.R.); (Z.M.-C.); (Á.J.-S.)
| | - Rosa M. Varela
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, Campus de Excelencia Internacional (ceiA3), 11510 Puerto Real, Spain; (J.M.C.-C.); (J.G.Z.); (N.C.); (R.M.V.)
| | - Álvaro Juárez-Soto
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Department of Urology, University Hospital of Jerez de la Frontera, 11407 Jerez, Spain; (M.M.-P.); (M.R.); (Z.M.-C.); (Á.J.-S.)
| | - Francisco A. Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, Campus de Excelencia Internacional (ceiA3), 11510 Puerto Real, Spain; (J.M.C.-C.); (J.G.Z.); (N.C.); (R.M.V.)
| | - Elena Reales
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Department of Urology, University Hospital of Jerez de la Frontera, 11407 Jerez, Spain; (M.M.-P.); (M.R.); (Z.M.-C.); (Á.J.-S.)
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, Campus de Excelencia Internacional (ceiA3), 11510 Puerto Real, Spain; (J.M.C.-C.); (J.G.Z.); (N.C.); (R.M.V.)
| |
Collapse
|
5
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
6
|
Jun JH, Lee EJ, Park M, Ko JY, Park JH. Reduced expression of TAZ inhibits primary cilium formation in renal glomeruli. Exp Mol Med 2022; 54:169-179. [PMID: 35177808 PMCID: PMC8894487 DOI: 10.1038/s12276-022-00730-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Renal primary cilia are antenna-like organelles that maintain cellular homeostasis via multiple receptors clustered along their membranes. Recent studies have revealed that YAP/TAZ, key paralogous effectors of the Hippo pathway, are involved in ciliogenesis; however, their independent roles need to be further investigated. Here, we analyzed the renal phenotypes of kidney-specific TAZ knockout mice and observed ciliary defects only in glomeruli where mild cysts were formed. This finding prompted us to verify the role of TAZ specifically in renal tubule ciliary regulation. Therefore, we investigated the effects of TAZ silencing and compared them to those of YAP knockdown using three different types of renal tubular cells. We found that the absence of TAZ prevented proper cilia formation in glomerular cells, whereas it had a negligible effect in collecting duct and proximal tubule cells. IFT and NPHP protein levels were altered because of TAZ deficiency, accompanied by ciliary defects in glomerular cells, and ciliary recovery was identified by regulating some NPHP proteins. Although our study focused on TAZ, ciliogenesis, and other ciliary genes, the results suggest the very distinct roles of YAP and TAZ in kidneys, specifically in terms of ciliary regulation. The roles of two regulatory proteins in the kidneys have been further clarified and provide insights into cilia defects and cyst formation. Cilia are organelles that act as ‘antennae’ for cell signaling in many tissues. Recent studies have highlighted two proteins involved in kidney cilia formation, YAP and TAZ, but little is known about their roles. Jong Hoon Park and co-workers at Sookmyung Women’s University in Seoul, South Korea, examined the role of TAZ in the regulation of kidney tubule cilia in mice. They explored the effects of silencing TAZ or YAP expression in different types of kidney tubule cells. TAZ deficiency but not YAP deficiency prevented correct cilia formation in the glomeruli, blood vessels that filter waste in the kidneys, and the resulting defects led to mild cyst generation.
Collapse
Affiliation(s)
- Jae Hee Jun
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ji Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Minah Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
7
|
Gupta S, Ozimek-Kulik JE, Phillips JK. Nephronophthisis-Pathobiology and Molecular Pathogenesis of a Rare Kidney Genetic Disease. Genes (Basel) 2021; 12:genes12111762. [PMID: 34828368 PMCID: PMC8623546 DOI: 10.3390/genes12111762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
The exponential rise in our understanding of the aetiology and pathophysiology of genetic cystic kidney diseases can be attributed to the identification of cystogenic genes over the last three decades. The foundation of this was laid by positional cloning strategies which gradually shifted towards next-generation sequencing (NGS) based screenings. This shift has enabled the discovery of novel cystogenic genes at an accelerated pace unlike ever before and, most notably, the past decade has seen the largest increase in identification of the genes which cause nephronophthisis (NPHP). NPHP is a monogenic autosomal recessive cystic kidney disease caused by mutations in a diverse clade of over 26 identified genes and is the most common genetic cause of renal failure in children. NPHP gene types present with some common pathophysiological features alongside a diverse range of extra-renal phenotypes associated with specific syndromic presentations. This review provides a timely update on our knowledge of this disease, including epidemiology, pathophysiology, anatomical and molecular features. We delve into the diversity of the NPHP causing genes and discuss known molecular mechanisms and biochemical pathways that may have possible points of intersection with polycystic kidney disease (the most studied renal cystic pathology). We delineate the pathologies arising from extra-renal complications and co-morbidities and their impact on quality of life. Finally, we discuss the current diagnostic and therapeutic modalities available for disease management, outlining possible avenues of research to improve the prognosis for NPHP patients.
Collapse
Affiliation(s)
- Shabarni Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- Correspondence:
| | - Justyna E. Ozimek-Kulik
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia
- Department of Paediatric Nephrology, Sydney Children’s Hospital Network, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Jacqueline Kathleen Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
| |
Collapse
|
8
|
Hruba E, Kavkova M, Dalecka L, Macholan M, Zikmund T, Varecha M, Bosakova M, Kaiser J, Krejci P, Hovorakova M, Buchtova M. Loss of Sprouty Produces a Ciliopathic Skeletal Phenotype in Mice Through Upregulation of Hedgehog Signaling. J Bone Miner Res 2021; 36:2258-2274. [PMID: 34423857 DOI: 10.1002/jbmr.4427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/23/2023]
Abstract
The Sprouty family is a highly conserved group of intracellular modulators of receptor tyrosine kinase (RTK)-signaling pathways, which have been recently linked to primary cilia. Disruptions in the structure and function of primary cilia cause inherited disorders called ciliopathies. We aimed to evaluate Sprouty2 and Sprouty4 gene-dependent alterations of ciliary structure and to focus on the determination of its association with Hedgehog signaling defects in chondrocytes. Analysis of the transgenic mice phenotype with Sprouty2 and Sprouty4 deficiency revealed several defects, including improper endochondral bone formation and digit patterning, or craniofacial and dental abnormalities. Moreover, reduced bone thickness and trabecular bone mass, skull deformities, or chondroma-like lesions were revealed. All these pathologies might be attributed to ciliopathies. Elongation of the ciliary axonemes in embryonic and postnatal growth plate chondrocytes was observed in Sprouty2-/- and Sprouty2+/- /Sprouty4-/- mutants compared with corresponding littermate controls. Also, cilia-dependent Hedgehog signaling was upregulated in Sprouty2/4 mutant animals. Ptch1 and Ihh expression were upregulated in the autopodium and the proximal tibia of Sprouty2-/- /Sprouty4-/- mutants. Increased levels of the GLI3 repressor (GLI3R) form were detected in Sprouty2/4 mutant primary fibroblast embryonic cell cultures and tissues. These findings demonstrate that mouse lines deficient in Sprouty proteins manifest phenotypic features resembling ciliopathic phenotypes in multiple aspects and may serve as valuable models to study the association between overactivation of RTK and dysfunction of primary cilia during skeletogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Linda Dalecka
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miloš Macholan
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michaela Bosakova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Krejci
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
10
|
Park K, Li C, Tsiropoulou S, Gonçalves J, Kondratev C, Pelletier L, Blacque OE, Leroux MR. CDKL kinase regulates the length of the ciliary proximal segment. Curr Biol 2021; 31:2359-2373.e7. [PMID: 33857430 DOI: 10.1016/j.cub.2021.03.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/25/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Cilia are organelles found throughout most unicellular eukaryotes and different metazoan cell types. To accomplish their essential roles in cell motility, fluid flow, and signaling, cilia are divided into subcompartments with variable structures, compositions, and functions. How these specific subcompartments are built remains almost completely unexplored. Here, we show that C. elegans CDKL-1, related to the human CDKL kinase family (CDKL1/CDKL2/CDKL3/CDKL4/CDKL5), specifically controls the length of the proximal segment, a ciliary subdomain conserved in evolution from Tetrahymena motile cilia to C. elegans chemosensory, mammalian olfactory, and photoreceptor non-motile cilia. CDKL-1 associates with intraflagellar transport (IFT), influences the distribution of the IFT anterograde motors heterotrimeric kinesin-II and homodimeric OSM-3-kinesin/KIF17 in the proximal segment, and shifts the boundary between the proximal and distal segments (PS/DS boundary). CDKL-1 appears to function independently from several factors that influence cilium length, namely the kinases DYF-5 (mammalian CILK1/MAK) and NEKL-1 (NEK9), as well as the depolymerizing kinesins KLP-13 (KIF19) and KLP-7 (KIF2). However, a different kinase, DYF-18 (CCRK), is needed for the correct localization and function of CDKL-1 and similarly influences the length of the proximal segment. Loss of CDKL-1, which affects proximal segment length without impairing overall ciliary microtubule structural integrity, also impairs cilium-dependent processes, namely cGMP-signaling-dependent body length control and CO2 avoidance. Collectively, our findings suggest that cilium length is regulated by various pathways and that the IFT-associated kinase CDKL-1 is essential for the construction of a specific ciliary compartment and contributes to development and sensory physiology.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Christine Kondratev
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
11
|
Primary cilia and the DNA damage response: linking a cellular antenna and nuclear signals. Biochem Soc Trans 2021; 49:829-841. [PMID: 33843966 DOI: 10.1042/bst20200751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
The maintenance of genome stability involves integrated biochemical activities that detect DNA damage or incomplete replication, delay the cell cycle, and direct DNA repair activities on the affected chromatin. These processes, collectively termed the DNA damage response (DDR), are crucial for cell survival and to avoid disease, particularly cancer. Recent work has highlighted links between the DDR and the primary cilium, an antenna-like, microtubule-based signalling structure that extends from a centriole docked at the cell surface. Ciliary dysfunction gives rise to a range of complex human developmental disorders termed the ciliopathies. Mutations in ciliopathy genes have been shown to impact on several functions that relate to centrosome integrity, DNA damage signalling, responses to problems in DNA replication and the control of gene expression. This review covers recent findings that link cilia and the DDR and explores the various roles played by key genes in these two contexts. It outlines how proteins encoded by ciliary genes impact checkpoint signalling, DNA replication and repair, gene expression and chromatin remodelling. It discusses how these diverse activities may integrate nuclear responses with those that affect a structure of the cell periphery. Additional directions for exploration of the interplay between these pathways are highlighted, with a focus on new ciliary gene candidates that alter genome stability.
Collapse
|
12
|
Pavan ICB, Peres de Oliveira A, Dias PRF, Basei FL, Issayama LK, Ferezin CDC, Silva FR, Rodrigues de Oliveira AL, Alves dos Reis Moura L, Martins MB, Simabuco FM, Kobarg J. On Broken Ne(c)ks and Broken DNA: The Role of Human NEKs in the DNA Damage Response. Cells 2021; 10:507. [PMID: 33673578 PMCID: PMC7997185 DOI: 10.3390/cells10030507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
NIMA-related kinases, or NEKs, are a family of Ser/Thr protein kinases involved in cell cycle and mitosis, centrosome disjunction, primary cilia functions, and DNA damage responses among other biological functional contexts in vertebrate cells. In human cells, there are 11 members, termed NEK1 to 11, and the research has mainly focused on exploring the more predominant roles of NEKs in mitosis regulation and cell cycle. A possible important role of NEKs in DNA damage response (DDR) first emerged for NEK1, but recent studies for most NEKs showed participation in DDR. A detailed analysis of the protein interactions, phosphorylation events, and studies of functional aspects of NEKs from the literature led us to propose a more general role of NEKs in DDR. In this review, we express that NEK1 is an activator of ataxia telangiectasia and Rad3-related (ATR), and its activation results in cell cycle arrest, guaranteeing DNA repair while activating specific repair pathways such as homology repair (HR) and DNA double-strand break (DSB) repair. For NEK2, 6, 8, 9, and 11, we found a role downstream of ATR and ataxia telangiectasia mutated (ATM) that results in cell cycle arrest, but details of possible activated repair pathways are still being investigated. NEK4 shows a connection to the regulation of the nonhomologous end-joining (NHEJ) repair of DNA DSBs, through recruitment of DNA-PK to DNA damage foci. NEK5 interacts with topoisomerase IIβ, and its knockdown results in the accumulation of damaged DNA. NEK7 has a regulatory role in the detection of oxidative damage to telomeric DNA. Finally, NEK10 has recently been shown to phosphorylate p53 at Y327, promoting cell cycle arrest after exposure to DNA damaging agents. In summary, this review highlights important discoveries of the ever-growing involvement of NEK kinases in the DDR pathways. A better understanding of these roles may open new diagnostic possibilities or pharmaceutical interventions regarding the chemo-sensitizing inhibition of NEKs in various forms of cancer and other diseases.
Collapse
Affiliation(s)
- Isadora Carolina Betim Pavan
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Andressa Peres de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Pedro Rafael Firmino Dias
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Fernanda Luisa Basei
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Luidy Kazuo Issayama
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Camila de Castro Ferezin
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | - Fernando Riback Silva
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Ana Luisa Rodrigues de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Lívia Alves dos Reis Moura
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Mariana Bonjiorno Martins
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | | | - Jörg Kobarg
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| |
Collapse
|
13
|
Zhang JQJ, Saravanabavan S, Chandra AN, Munt A, Wong ATY, Harris PC, Harris DCH, McKenzie P, Wang Y, Rangan GK. Up-Regulation of DNA Damage Response Signaling in Autosomal Dominant Polycystic Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:902-920. [PMID: 33549515 DOI: 10.1016/j.ajpath.2021.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022]
Abstract
DNA damage and alterations in DNA damage response (DDR) signaling could be one of the molecular mechanisms mediating focal kidney cyst formation in autosomal dominant polycystic kidney disease (ADPKD). The aim of this study was to test the hypothesis that markers of DNA damage and DDR signaling are increased in human and experimental ADPKD. In the human ADPKD transcriptome, the number of up-regulated DDR-related genes was increased by 16.6-fold compared with that in normal kidney, and by 2.5-fold in cystic compared with that in minimally cystic tissue (P < 0.0001). In end-stage human ADPKD tissue, γ-H2A histone family member X (H2AX), phosphorylated ataxia telangiectasia and radiation-sensitive mutant 3 (Rad3)-related (pATR), and phosphorylated ataxia telangiectasia mutated (pATM) localized to cystic kidney epithelial cells. In vitro, pATR and pATM were also constitutively increased in human ADPKD tubular cells (WT 9-7 and 9-12) compared with control (HK-2). In addition, extrinsic oxidative DNA damage by hydrogen peroxide augmented γ-H2AX and cell survival in human ADPKD cells, and exacerbated cyst growth in the three-dimensional Madin-Darby canine kidney cyst model. In contrast, DDR-related gene expression was only transiently increased on postnatal day 0 in Pkd1RC/RC mice, and not altered at later time points up to 12 months of age. In conclusion, DDR signaling is dysregulated in human ADPKD and during the early phases of murine ADPKD. The constitutive expression of the DDR pathway in ADPKD may promote survival of PKD1-mutated cells and contribute to kidney cyst growth.
Collapse
Affiliation(s)
- Jennifer Q J Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Ashley N Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Annette T Y Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Peter C Harris
- Mayo Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, Minnesota
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Paul McKenzie
- Department of Tissue Pathology, NSW Health Pathology, Royal Prince Alfred Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Molinari E, Srivastava S, Dewhurst RM, Sayer JA. Use of patient derived urine renal epithelial cells to confirm pathogenicity of PKHD1 alleles. BMC Nephrol 2020; 21:435. [PMID: 33059616 PMCID: PMC7559414 DOI: 10.1186/s12882-020-02094-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background PKHD1 is the main genetic cause of autosomal recessive polycystic kidney disease (ARPKD), a hereditary hepato-renal fibrocystic disorder which is the most important cause of end-stage renal disease during early childhood. ARPKD can also present in adulthood with milder phenotypes. In this study, we describe a 24-year-old woman with atypical polycystic kidney, no family history of renal disease and no obvious extra-renal manifestations who was referred for genetic investigation. Methods We used a combination of next generation sequencing, Sanger sequencing and RNA and microscopy studies performed on urine-derived renal epithelial cells (URECs) to provide a genetic diagnosis of ARPKD. Results A next generation sequencing panel of cystic ciliopathy genes allowed the identification of two heterozygous sequence changes in PKHD1 (c.6900C > T; p.(Asn2300=) and c.7964A > C; p.(His2655Pro)). The pathogenicity of the synonymous PKHD1 variant is not clear and requires RNA studies, which cannot be carried out efficiently on RNA extracted from proband blood, due to the low expression levels of PKHD1 in lymphocytes. Using URECs as a source of kidney-specific RNA, we show that PKHD1 is alternatively spliced around exon 43, both in control and proband URECs. The variant p.(Asn2300=) shifts the expression ratio in favour of a shorter, out-of-frame transcript. To further study the phenotypic consequence of these variants, we investigated the ciliary phenotype of patient URECs, which were abnormally elongated and presented multiple blebs along the axoneme. Conclusions We confirm the power of URECs as a tool for functional studies on candidate variants in inherited renal disease, especially when the expression of the gene of interest is restricted to the kidney and we describe, for the first time, ciliary abnormalities in ARPKD patient cells.
Collapse
Affiliation(s)
- Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Shalabh Srivastava
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rebecca M Dewhurst
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK. .,Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK. .,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK.
| |
Collapse
|
15
|
Kulkarni S, Abro B, Duque Lasio ML, Stoll J, Grange DK, He M. Clinical and Pathological Features of a Newborn With Compound Heterozygous ANKS6 Variants. Pediatr Dev Pathol 2020; 23:235-239. [PMID: 31635528 DOI: 10.1177/1093526619881541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report a term female infant born to nonconsanguineous parents who presented with renal failure at birth, hypothyroidism, cholestasis, and progressive cardiac dysfunction. Multigene next-generation sequencing panels for cholestasis, cardiomyopathy, and cystic renal disease did not reveal a unifying diagnosis. Whole exome sequencing revealed compound heterozygous pathogenic variants in ANKS6 (Ankyrin Repeat and Sterile Alpha Motif Domain Containing 6), which encodes a protein that interacts with other proteins of the Inv compartment of cilium (NEK8, NPHP2/INVS, and NPHP3). ANKS6 has been shown to be important for early renal development and cardiac looping in animal models. Autopsy revealed cystic renal dysplasia and cardiomyocyte hypertrophy, disarray, and focal necrosis. Liver histology revealed cholestasis and centrilobular necrosis, which was likely a result of progressive cardiac failure. This is the first report of compound heterozygous variants in ANKS6 leading to a nephronopthisis-related ciliopathy-like phenotype. We conclude that pathogenic variants in ANKS6 may present early in life with severe renal and cardiac failure, similar to subjects with variants in genes encoding other proteins in the Inv compartment of the cilium.
Collapse
Affiliation(s)
- Sakil Kulkarni
- Division of Pediatric Gastroenterology Hepatology and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Brooj Abro
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Maria Laura Duque Lasio
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Janis Stoll
- Division of Pediatric Gastroenterology Hepatology and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
16
|
Zhang JQJ, Burgess J, Stepanova D, Saravanabavan S, Wong ATY, Kaldis P, Rangan GK. Role of cyclin-dependent kinase 2 in the progression of mouse juvenile cystic kidney disease. J Transl Med 2020; 100:696-711. [PMID: 31915367 DOI: 10.1038/s41374-019-0360-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022] Open
Abstract
A hallmark of polycystic kidney diseases (PKDs) is aberrant proliferation, which leads to the formation and growth of renal cysts. Proliferation is mediated by cyclin-dependent kinases (Cdks), and the administration of roscovitine (a pan-Cdk inhibitor) attenuates renal cystic disease in juvenile cystic kidney (jck) mice. Cdk2 is a key regulator of cell proliferation, but its specific role in PKD remains unknown. The aim of this study was to test the hypothesis that Cdk2 deficiency reduces renal cyst growth in PKD. Three studies were undertaken: (i) a time course (days 28, 56, and 84) of cyclin and Cdk activity was examined in jck mice and compared with wild-type mice; (ii) the progression was compared in jck mice with or without Cdk2 ablation from birth; and (iii) the effect of sirolimus (an antiproliferative agent) on Cdk2 activity in jck mice was investigated. Renal disease in jck mice was characterized by diffuse tubular cyst growth, interstitial inflammation and fibrosis, and renal impairment, peaking on day 84. Renal cell proliferation peaked during earlier stages of disease (days 28-56), whereas the expression of Cdk2-cyclin partners (A and E) and Cdk1 and 2 activity, was maximal in the later stages of disease (days 56-84). Cdk2 ablation did not attenuate renal disease progression and was associated with persistent Cdk1 activity. In contrast, the postnatal treatment of jck mice with sirolimus reduced both Cdk2 and Cdk1 activity and reduced renal cyst growth. In conclusion, (i) the kinetics of Cdk2 and Cdk2-cyclin partners did not correlate with proliferation in jck mice; and (ii) the absence of Cdk2 did not alter renal cyst growth, most likely due to compensation by Cdk1. Taken together, these data suggest that Cdk2 is dispensable for the proliferation of cystic epithelial cells and progression of PKD.
Collapse
Affiliation(s)
- Jennifer Qin Jing Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, PO Box 412, Westmead, NSW, 2145, Australia. .,Department of Renal Medicine, Westmead Hospital, Westmead, NSW, 2145, Australia.
| | - Jane Burgess
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, PO Box 412, Westmead, NSW, 2145, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Daria Stepanova
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, PO Box 412, Westmead, NSW, 2145, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, PO Box 412, Westmead, NSW, 2145, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Annette T Y Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, PO Box 412, Westmead, NSW, 2145, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science Technology and Research), Singapore, 138673, Republic of Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, 117597, Republic of Singapore
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, PO Box 412, Westmead, NSW, 2145, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, NSW, 2145, Australia
| |
Collapse
|
17
|
Ciliary Genes in Renal Cystic Diseases. Cells 2020; 9:cells9040907. [PMID: 32276433 PMCID: PMC7226761 DOI: 10.3390/cells9040907] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 12/28/2022] Open
Abstract
Cilia are microtubule-based organelles, protruding from the apical cell surface and anchoring to the cytoskeleton. Primary (nonmotile) cilia of the kidney act as mechanosensors of nephron cells, responding to fluid movements by triggering signal transduction. The impaired functioning of primary cilia leads to formation of cysts which in turn contribute to development of diverse renal diseases, including kidney ciliopathies and renal cancer. Here, we review current knowledge on the role of ciliary genes in kidney ciliopathies and renal cell carcinoma (RCC). Special focus is given on the impact of mutations and altered expression of ciliary genes (e.g., encoding polycystins, nephrocystins, Bardet-Biedl syndrome (BBS) proteins, ALS1, Oral-facial-digital syndrome 1 (OFD1) and others) in polycystic kidney disease and nephronophthisis, as well as rare genetic disorders, including syndromes of Joubert, Meckel-Gruber, Bardet-Biedl, Senior-Loken, Alström, Orofaciodigital syndrome type I and cranioectodermal dysplasia. We also show that RCC and classic kidney ciliopathies share commonly disturbed genes affecting cilia function, including VHL (von Hippel-Lindau tumor suppressor), PKD1 (polycystin 1, transient receptor potential channel interacting) and PKD2 (polycystin 2, transient receptor potential cation channel). Finally, we discuss the significance of ciliary genes as diagnostic and prognostic markers, as well as therapeutic targets in ciliopathies and cancer.
Collapse
|
18
|
Peña-Oyarzun D, Batista-Gonzalez A, Kretschmar C, Burgos P, Lavandero S, Morselli E, Criollo A. New emerging roles of Polycystin-2 in the regulation of autophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:165-186. [PMID: 32475472 DOI: 10.1016/bs.ircmb.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystin-2 (PC2) is a calcium channel that can be found in the endoplasmic reticulum, the plasmatic membrane, and the primary cilium. The structure of PC2 is characterized by a highly ordered C-terminal tail with an EF-motif (calcium-binding domain) and a canonical coiled-coil domain (CCD; interaction domain), and its activity is regulated by interacting partners and post-translational modifications. Calcium mobilization into the cytosol by PC2 has been mainly associated with cell growth and differentiation, and therefore mutations or dysfunction of PC2 lead to renal and cardiac consequences. Interestingly, PC2-related pathologies are usually treated with rapamycin, an autophagy stimulator. Autophagy is an intracellular degradation process where recycling material is sequestered into autophagosomes and then hydrolyzed by fusion with a lysosome. Interestingly, several studies have provided evidence that PC2 may be required for autophagy, suggesting that PC2 maintains a physiologic catabolic state.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzun
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ana Batista-Gonzalez
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paulina Burgos
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eugenia Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
19
|
Massa F, Tammaro R, Prado MA, Cesana M, Lee BH, Finley D, Franco B, Morleo M. The deubiquitinating enzyme Usp14 controls ciliogenesis and Hedgehog signaling. Hum Mol Genet 2020; 28:764-777. [PMID: 30388222 DOI: 10.1093/hmg/ddy380] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022] Open
Abstract
Primary cilia are hair-like organelles that play crucial roles in vertebrate development, organogenesis and when dysfunctional result in pleiotropic human genetic disorders called ciliopathies, characterized by overlapping phenotypes, such as renal and hepatic cysts, skeletal defects, retinal degeneration and central nervous system malformations. Primary cilia act as communication hubs to transfer extracellular signals into intracellular responses and are essential for Hedgehog (Hh) signal transduction in mammals. Despite the renewed interest in this ancient organelle of growing biomedical importance, the molecular mechanisms that trigger cilia formation, extension and ciliary signal transduction are still not fully understood. Here we provide, for the first time, evidence that the deubiquitinase ubiquitin-specific protease-14 (Usp14), a major regulator of the ubiquitin proteasome system (UPS), controls ciliogenesis, cilia elongation and Hh signal transduction. Moreover, we show that pharmacological inhibition of Usp14 positively affects Hh signal transduction in a model of autosomal dominant polycystic kidney disease. These findings provide new insight into the spectrum of action of UPS in cilia biology and may provide novel opportunities for therapeutic intervention in human conditions associated with ciliary dysfunction.
Collapse
Affiliation(s)
- Filomena Massa
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Byung-Hoon Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy.,Medical Genetics, Department of Translational Medicine, University of Naples Federico II, Via Sergio Pansini 5, Naples, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy.,Medical Genetics, Department of Translational Medicine, University of Naples Federico II, Via Sergio Pansini 5, Naples, Italy
| |
Collapse
|
20
|
Bennett HW, Gustavsson AK, Bayas CA, Petrov PN, Mooney N, Moerner WE, Jackson PK. Novel fibrillar structure in the inversin compartment of primary cilia revealed by 3D single-molecule superresolution microscopy. Mol Biol Cell 2020; 31:619-639. [PMID: 31895004 PMCID: PMC7202064 DOI: 10.1091/mbc.e19-09-0499] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary cilia in many cell types contain a periaxonemal subcompartment called the inversin compartment. Four proteins have been found to assemble within the inversin compartment: INVS, ANKS6, NEK8, and NPHP3. The function of the inversin compartment is unknown, but it appears to be critical for normal development, including left–right asymmetry and renal tissue homeostasis. Here we combine superresolution imaging of human RPE1 cells, a classic model for studying primary cilia in vitro, with a genetic dissection of the protein–protein binding relationships that organize compartment assembly to develop a new structural model. We observe that INVS is the core structural determinant of a compartment composed of novel fibril-like substructures, which we identify here by three-dimensional single-molecule superresolution imaging. We find that NEK8 and ANKS6 depend on INVS for localization to these fibrillar assemblies and that ANKS6-NEK8 density within the compartment is regulated by NEK8. Together, NEK8 and ANKS6 are required downstream of INVS to localize and concentrate NPHP3 within the compartment. In the absence of these upstream components, NPHP3 is redistributed within cilia. These results provide a more detailed structure for the inversin compartment and introduce a new example of a membraneless compartment organized by protein–protein interactions.
Collapse
Affiliation(s)
- Henrietta W Bennett
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Anna-Karin Gustavsson
- Department of Chemistry, Stanford University, Stanford, CA 94305.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm SE 17177, Sweden
| | - Camille A Bayas
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Petar N Petrov
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Nancie Mooney
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
21
|
Rothé B, Gagnieux C, Leal-Esteban LC, Constam DB. Role of the RNA-binding protein Bicaudal-C1 and interacting factors in cystic kidney diseases. Cell Signal 2019; 68:109499. [PMID: 31838063 DOI: 10.1016/j.cellsig.2019.109499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/03/2023]
Abstract
Polycystic kidneys frequently associate with mutations in individual components of cilia, basal bodies or centriolar satellites that perturb complex protein networks. In this review, we focus on the RNA-binding protein Bicaudal-C1 (BICC1) which was found mutated in renal cystic dysplasia, and on its interactions with the ankyrin repeat and sterile α motif (SAM)-containing proteins ANKS3 and ANKS6 and associated kinases and their partially overlapping ciliopathy phenotypes. After reviewing BICC1 homologs in model organisms and their functions in mRNA and cell metabolism during development and in renal tubules, we discuss recent insights from cell-based assays and from structure analysis of the SAM domains, and how SAM domain oligomerization might influence multivalent higher order complexes that are implicated in ciliary signal transduction.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland
| | - Céline Gagnieux
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland
| | - Lucia Carolina Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland; Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
22
|
The role of DNA damage as a therapeutic target in autosomal dominant polycystic kidney disease. Expert Rev Mol Med 2019; 21:e6. [PMID: 31767049 DOI: 10.1017/erm.2019.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is caused by heterozygous germ-line mutations in either PKD1 (85%) or PKD2 (15%). It is characterised by the formation of numerous fluid-filled renal cysts and leads to adult-onset kidney failure in ~50% of patients by 60 years. Kidney cysts in ADPKD are focal and sporadic, arising from the clonal proliferation of collecting-duct principal cells, but in only 1-2% of nephrons for reasons that are not clear. Previous studies have demonstrated that further postnatal reductions in PKD1 (or PKD2) dose are required for kidney cyst formation, but the exact triggering factors are not clear. A growing body of evidence suggests that DNA damage, and activation of the DNA damage response pathway, are altered in ciliopathies. The aims of this review are to: (i) analyse the evidence linking DNA damage and renal cyst formation in ADPKD; (ii) evaluate the advantages and disadvantages of biomarkers to assess DNA damage in ADPKD and finally, (iii) evaluate the potential effects of current clinical treatments on modifying DNA damage in ADPKD. These studies will address the significance of DNA damage and may lead to a new therapeutic approach in ADPKD.
Collapse
|
23
|
Abstract
Primary cilia are singular, sensory organelles that extend from the plasma membrane of most quiescent mammalian cells. These slender, microtubule-based organelles receive and transduce extracellular cues and regulate signaling pathways. Primary cilia are critical to the development and function of many tissue types, and mutation of ciliary genes causes multi-system disorders, termed ciliopathies. Notably, renal cystic disease is one of the most common clinical features of ciliopathies, highlighting a central role for primary cilia in the kidney. Additionally, acute kidney injury and chronic kidney disease are associated with altered primary cilia lengths on renal epithelial cells, suggesting ciliary dynamics and renal physiology are linked. Here we describe methods to examine primary cilia in kidney tissue and in cultured renal cells. We include immunofluorescence and scanning electron microscopy to determine ciliary localization of proteins and cilia structure. Further, we detail cellular assays to measure cilia assembly and disassembly, which regulate cilia length.
Collapse
|
24
|
Barny I, Perrault I, Michel C, Goudin N, Defoort-Dhellemmes S, Ghazi I, Kaplan J, Rozet JM, Gerard X. AON-Mediated Exon Skipping to Bypass Protein Truncation in Retinal Dystrophies Due to the Recurrent CEP290 c.4723A > T Mutation. Fact or Fiction? Genes (Basel) 2019; 10:E368. [PMID: 31091803 PMCID: PMC6562928 DOI: 10.3390/genes10050368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023] Open
Abstract
Mutations in CEP290 encoding a centrosomal protein important to cilia formation cause a spectrum of diseases, from isolated retinal dystrophies to multivisceral and sometimes embryo-lethal ciliopathies. In recent years, endogenous and/or selective non-canonical exon skipping of mutant exons have been documented in attenuated retinal disease cases. This observation led us to consider targeted exon skipping to bypass protein truncation resulting from a recurrent mutation in exon 36 (c.4723A > T, p.Lys1575*) causing isolated retinal ciliopathy. Here, we report two unrelated individuals (P1 and P2), carrying the mutation in homozygosity but affected with early-onset severe retinal dystrophy and congenital blindness, respectively. Studying skin-derived fibroblasts, we observed basal skipping and nonsense associated-altered splicing of exon 36, producing low (P1) and very low (P2) levels of CEP290 products. Consistent with a more severe disease, fibroblasts from P2 exhibited reduced ciliation compared to P1 cells displaying normally abundant cilia; both lines presented however significantly elongated cilia, suggesting altered axonemal trafficking. Antisense oligonucleotides (AONs)-mediated skipping of exon 36 increased the abundance of the premature termination codon (PTC)-free mRNA and protein, reduced axonemal length and improved cilia formation in P2 but not in P1 expressing higher levels of skipped mRNA, questioning AON-mediated exon skipping to treat patients carrying the recurrent c.4723A > T mutation.
Collapse
Affiliation(s)
- Iris Barny
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Christel Michel
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Nicolas Goudin
- Cell Imaging Core Facility of the Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Sabine Defoort-Dhellemmes
- Service D'exploration de la Vision et Neuro-Ophtalmologie, Pôle D'imagerie et Explorations Fonctionnelles, CHRU de Lille, 59037 Lille, France.
| | - Imad Ghazi
- Department of Ophthalmology, IHU Necker-Enfants Malades, 75015 Paris, France.
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Xavier Gerard
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Hôpital Ophtalmique Jules Gonin, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland.
| |
Collapse
|
25
|
Lenhard SC, McAlexander A, Virtue A, Fieles W, Skedzielewski T, Rambo M, Trinh H, Cheng SH, Hong H, Isidro-Llobet A, Nadin A, Geske R, Klein JL, Lee D, Jucker BM, Hu E. In Vivo Imaging of Small Molecular Weight Peptides for Targeted Renal Drug Delivery: A Study in Normal and Polycystic Kidney Diseased Mice. J Pharmacol Exp Ther 2019; 370:786-795. [PMID: 30936291 DOI: 10.1124/jpet.119.257022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Stephen C Lenhard
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Allen McAlexander
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Anthony Virtue
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - William Fieles
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Tina Skedzielewski
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Mary Rambo
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Han Trinh
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Shih-Hsun Cheng
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Hyundae Hong
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Albert Isidro-Llobet
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Alan Nadin
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Robert Geske
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Jean-Louis Klein
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Dennis Lee
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Beat M Jucker
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| | - Erding Hu
- Bioimaging (S.C.L., T.S., M.R., S.-H.C., H.H., B.M.J.), Renal Discovery Group, Future Pipeline Discovery (A.V, E.H.), Experimental Cell and Tissue Biology, Target and Pathway Validation (W.F., H.T., R.G., J.-L.K.), Drug Delivery (A.M., D.L.), and Drug Design and Selection (A.I.-L., A.N.), GlaxoSmithKline plc, Collegeville, Pennsylvania
| |
Collapse
|
26
|
Shim JW, Territo PR, Simpson S, Watson JC, Jiang L, Riley AA, McCarthy B, Persohn S, Fulkerson D, Blazer-Yost BL. Hydrocephalus in a rat model of Meckel Gruber syndrome with a TMEM67 mutation. Sci Rep 2019; 9:1069. [PMID: 30705305 PMCID: PMC6355840 DOI: 10.1038/s41598-018-37620-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
Transmembrane protein 67 (TMEM67) is mutated in Meckel Gruber Syndrome type 3 (MKS3) resulting in a pleiotropic phenotype with hydrocephalus and renal cystic disease in both humans and rodent models. The precise pathogenic mechanisms remain undetermined. Herein it is reported for the first time that a point mutation of TMEM67 leads to a gene dose-dependent hydrocephalic phenotype in the Wistar polycystic kidney (Wpk) rat. Animals with TMEM67 heterozygous mutations manifest slowly progressing hydrocephalus, observed during the postnatal period and continuing into adulthood. These animals have no overt renal phenotype. The TMEM67 homozygous mutant rats have severe ventriculomegaly as well as severe polycystic kidney disease and die during the neonatal period. Protein localization in choroid plexus epithelial cells indicates that aquaporin 1 and claudin-1 both remain normally polarized in all genotypes. The choroid plexus epithelial cells may have selectively enhanced permeability as evidenced by increased Na+, K+ and Cl− in the cerebrospinal fluid of the severely hydrocephalic animals. Collectively, these results suggest that TMEM67 is required for the regulation of choroid plexus epithelial cell fluid and electrolyte homeostasis. The Wpk rat model, orthologous to human MKS3, provides a unique platform to study the development of both severe and mild hydrocephalus.
Collapse
Affiliation(s)
- Joon W Shim
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.,Biomedical Engineering Program, Weisberg Division of Engineering, College of Information Technology and Engineering, Marshall University, Huntington, WV, 25755, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Stefanie Simpson
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - John C Watson
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Lei Jiang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amanda A Riley
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brian McCarthy
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Scott Persohn
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Daniel Fulkerson
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bonnie L Blazer-Yost
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
27
|
Ding XF, Chen J, Zhou J, Chen G, Wu YL. Never-in-mitosis A-related kinase 8, a novel target of von-Hippel-Lindau tumor suppressor protein, promotes gastric cancer cell proliferation. Oncol Lett 2018; 16:5900-5906. [PMID: 30333866 PMCID: PMC6176424 DOI: 10.3892/ol.2018.9328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Previous research has revealed that the von-Hippel-Lindau tumor suppressor protein (pVHL) may downregulate never-in-mitosis A-related kinase 8 (NEK8) via hypoxia-inducible factor-α (HIF-α). The HIF-independent functions of pVHL also serve an important role in its tumor-suppressor action. In the present study, the association between pVHL and NEK8 was demonstrated in the human gastric cancer cell line, SGC-7901, indicating a direct interaction of pVHL with NEK8. Subsequently, it was reported that MG-132, a specific proteasome inhibitor, may attenuate pVHL overexpression-induced reductions in NEK8 protein expression levels. In addition, the present study revealed that pVHL may stimulate the rapid degradation of NEK8 protein and promote its ubiquitination. The association between the expression profile of NEK8 and the survival status of patients with gastric cancer was analyzed from an online database. Kaplan-Meier survival plots indicated that higher expression levels of NEK8 may lead to poor survival, as suggested by the transcriptomic data of 1,065 patients with gastric cancer. It was found that NEK8-knockdown mediated by RNA interference inhibited SGC-7901 and SNU-1 proliferation, colony formation and migration in vitro, and tumor growth in vivo. Collectively, the present study proposed that NEK8 may be a novel target of pVHL as a ubiquitin E3 ligase, and may serve a role as a potential oncoprotein in human gastric cancer.
Collapse
Affiliation(s)
- Xiao-Fei Ding
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China.,Laboratory for Biological Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Jie Chen
- Laboratory for Biological Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Jun Zhou
- Laboratory for Biological Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China.,Institute of Tumor, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Guang Chen
- Institute of Tumor, Taizhou University, Taizhou, Zhejiang 318000, P.R. China.,Department of Pharmacology, School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Ying-Liang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
28
|
Srivastava S, Ramsbottom SA, Molinari E, Alkanderi S, Filby A, White K, Henry C, Saunier S, Miles CG, Sayer JA. A human patient-derived cellular model of Joubert syndrome reveals ciliary defects which can be rescued with targeted therapies. Hum Mol Genet 2018; 26:4657-4667. [PMID: 28973549 PMCID: PMC5886250 DOI: 10.1093/hmg/ddx347] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Joubert syndrome (JBTS) is the archetypal ciliopathy caused by mutation of genes encoding ciliary proteins leading to multi-system phenotypes, including a cerebello-retinal-renal syndrome. JBTS is genetically heterogeneous, however mutations in CEP290 are a common underlying cause. The renal manifestation of JBTS is a juvenile-onset cystic kidney disease, known as nephronophthisis, typically progressing to end-stage renal failure within the first two decades of life, thus providing a potential window for therapeutic intervention. In order to increase understanding of JBTS and its associated kidney disease and to explore potential treatments, we conducted a comprehensive analysis of primary renal epithelial cells directly isolated from patient urine (human urine-derived renal epithelial cells, hURECs). We demonstrate that hURECs from a JBTS patient with renal disease have elongated and disorganized primary cilia and that this ciliary phenotype is specifically associated with an absence of CEP290 protein. Treatment with the Sonic hedgehog (Shh) pathway agonist purmorphamine or cyclin-dependent kinase inhibition (using roscovitine and siRNA directed towards cyclin-dependent kinase 5) ameliorated the cilia phenotype. In addition, purmorphamine treatment was shown to reduce cyclin-dependent kinase 5 in patient cells, suggesting a convergence of these signalling pathways. To our knowledge, this is the most extensive analysis of primary renal epithelial cells from JBTS patients to date. It demonstrates the feasibility and power of this approach to directly assess the consequences of patient-specific mutations in a physiologically relevant context and a previously unrecognized convergence of Shh agonism and cyclin-dependent kinase inhibition as potential therapeutic targets.
Collapse
Affiliation(s)
- Shalabh Srivastava
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.,Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Simon A Ramsbottom
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Elisa Molinari
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Sumaya Alkanderi
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Andrew Filby
- Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, UK
| | - Kathryn White
- EM Research Services, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Charline Henry
- EM Research Services, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Sophie Saunier
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France.,Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Colin G Miles
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - John A Sayer
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.,Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|
29
|
Bozal-Basterra L, Martín-Ruíz I, Pirone L, Liang Y, Sigurðsson JO, Gonzalez-Santamarta M, Giordano I, Gabicagogeascoa E, de Luca A, Rodríguez JA, Wilkie AO, Kohlhase J, Eastwood D, Yale C, Olsen JV, Rauchman M, Anderson KV, Sutherland JD, Barrio R. Truncated SALL1 Impedes Primary Cilia Function in Townes-Brocks Syndrome. Am J Hum Genet 2018; 102:249-265. [PMID: 29395072 PMCID: PMC5985538 DOI: 10.1016/j.ajhg.2017.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
Townes-Brocks syndrome (TBS) is characterized by a spectrum of malformations in the digits, ears, and kidneys. These anomalies overlap those seen in a growing number of ciliopathies, which are genetic syndromes linked to defects in the formation or function of the primary cilia. TBS is caused by mutations in the gene encoding the transcriptional repressor SALL1 and is associated with the presence of a truncated protein that localizes to the cytoplasm. Here, we provide evidence that SALL1 mutations might cause TBS by means beyond its transcriptional capacity. By using proximity proteomics, we show that truncated SALL1 interacts with factors related to cilia function, including the negative regulators of ciliogenesis CCP110 and CEP97. This most likely contributes to more frequent cilia formation in TBS-derived fibroblasts, as well as in a CRISPR/Cas9-generated model cell line and in TBS-modeled mouse embryonic fibroblasts, than in wild-type controls. Furthermore, TBS-like cells show changes in cilia length and disassembly rates in combination with aberrant SHH signaling transduction. These findings support the hypothesis that aberrations in primary cilia and SHH signaling are contributing factors in TBS phenotypes, representing a paradigm shift in understanding TBS etiology. These results open possibilities for the treatment of TBS.
Collapse
|
30
|
Canning P, Park K, Gonçalves J, Li C, Howard CJ, Sharpe TD, Holt LJ, Pelletier L, Bullock AN, Leroux MR. CDKL Family Kinases Have Evolved Distinct Structural Features and Ciliary Function. Cell Rep 2018; 22:885-894. [PMID: 29420175 PMCID: PMC5846859 DOI: 10.1016/j.celrep.2017.12.083] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 11/07/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
Various kinases, including a cyclin-dependent kinase (CDK) family member, regulate the growth and functions of primary cilia, which perform essential roles in signaling and development. Neurological disorders linked to CDK-Like (CDKL) proteins suggest that these underexplored kinases may have similar functions. Here, we present the crystal structures of human CDKL1, CDKL2, CDKL3, and CDKL5, revealing their evolutionary divergence from CDK and mitogen-activated protein kinases (MAPKs), including an unusual ?J helix important for CDKL2 and CDKL3 activity. C. elegans CDKL-1, most closely related to CDKL1-4 and localized to neuronal cilia transition zones, modulates cilium length; this depends on its kinase activity and ?J helix-containing C terminus. Human CDKL5, linked to Rett syndrome, also localizes to cilia, and it impairs ciliogenesis when overexpressed. CDKL5 patient mutations modeled in CDKL-1 cause localization and/or cilium length defects. Together, our studies establish a disease model system suggesting cilium length defects as a pathomechanism for neurological disorders, including epilepsy.
Collapse
Affiliation(s)
- Peter Canning
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Kwangjin Park
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Conor J Howard
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Timothy D Sharpe
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Liam J Holt
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
31
|
Korobeynikov V, Deneka AY, Golemis EA. Mechanisms for nonmitotic activation of Aurora-A at cilia. Biochem Soc Trans 2017; 45:37-49. [PMID: 28202658 PMCID: PMC5860652 DOI: 10.1042/bst20160142] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Overexpression of the Aurora kinase A (AURKA) is oncogenic in many tumors. Many studies of AURKA have focused on activities of this kinase in mitosis, and elucidated the mechanisms by which AURKA activity is induced at the G2/M boundary through interactions with proteins such as TPX2 and NEDD9. These studies have informed the development of small molecule inhibitors of AURKA, of which a number are currently under preclinical and clinical assessment. While the first activities defined for AURKA were its control of centrosomal maturation and organization of the mitotic spindle, an increasing number of studies over the past decade have recognized a separate biological function of AURKA, in controlling disassembly of the primary cilium, a small organelle protruding from the cell surface that serves as a signaling platform. Importantly, these activities require activation of AURKA in early G1, and the mechanisms of activation are much less well defined than those in mitosis. A better understanding of the control of AURKA activity and the role of AURKA at cilia are both important in optimizing the efficacy and interpreting potential downstream consequences of AURKA inhibitors in the clinic. We here provide a current overview of proteins and mechanisms that have been defined as activating AURKA in G1, based on the study of ciliary disassembly.
Collapse
Affiliation(s)
- Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, U.S.A
| | - Alexander Y Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A
- Kazan Federal University, Kazan 420000, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A.
| |
Collapse
|
32
|
Hian CK, Lee CL, Thomas W. Renin-Angiotensin-Aldosterone System Antagonism and Polycystic Kidney Disease Progression. Nephron Clin Pract 2016; 134:59-63. [PMID: 27476173 DOI: 10.1159/000448296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/06/2016] [Indexed: 11/19/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disease characterised by the formation of multiple renal cysts that adversely affect renal function. ADPKD shows significant progression with age when complications due to hypertension are most significant. The activation of the renin-angiotensin-aldosterone system (RAAS) occurs in progressive kidney disease leading to hypertension. The RAAS system may also contribute to ADPKD progression by stimulating signalling pathways in the renal cyst cells to promote growth and deregulate epithelial transport. This mini review focuses on the contribution of the RAAS system to renal cyst enlargement and the potential for antagonists of the RAAS system to suppress cyst enlargement as well as control ADPKD-associated hypertension.
Collapse
Affiliation(s)
- Chuan Kai Hian
- Perdana University - Royal College of Surgeons in Ireland School of Medicine, Serdang, Malaysia
| | | | | |
Collapse
|
33
|
Husson H, Moreno S, Smith LA, Smith MM, Russo RJ, Pitstick R, Sergeev M, Ledbetter SR, Bukanov NO, Lane M, Zhang K, Billot K, Carlson G, Shah J, Meijer L, Beier DR, Ibraghimov-Beskrovnaya O. Reduction of ciliary length through pharmacologic or genetic inhibition of CDK5 attenuates polycystic kidney disease in a model of nephronophthisis. Hum Mol Genet 2016; 25:2245-2255. [PMID: 27053712 PMCID: PMC5081056 DOI: 10.1093/hmg/ddw093] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
Polycystic kidney diseases (PKDs) comprise a subgroup of ciliopathies characterized by the formation of fluid-filled kidney cysts and progression to end-stage renal disease. A mechanistic understanding of cystogenesis is crucial for the development of viable therapeutic options. Here, we identify CDK5, a kinase active in post mitotic cells, as a new and important mediator of PKD progression. We show that long-lasting attenuation of PKD in the juvenile cystic kidneys (jck) mouse model of nephronophthisis by pharmacological inhibition of CDK5 using either R-roscovitine or S-CR8 is accompanied by sustained shortening of cilia and a more normal epithelial phenotype, suggesting this treatment results in a reprogramming of cellular differentiation. Also, a knock down of Cdk5 in jck cells using small interfering RNA results in significant shortening of ciliary length, similar to what we observed with R-roscovitine. Finally, conditional inactivation of Cdk5 in the jck mice significantly attenuates cystic disease progression and is associated with shortening of ciliary length as well as restoration of cellular differentiation. Our results suggest that CDK5 may regulate ciliary length by affecting tubulin dynamics via its substrate collapsin response mediator protein 2. Taken together, our data support therapeutic approaches aimed at restoration of ciliogenesis and cellular differentiation as a promising strategy for the treatment of renal cystic diseases.
Collapse
Affiliation(s)
- Hervé Husson
- Department of Rare Diseases, Sanofi-Genzyme R&D Center, 49 New York Avenue, Framingham, MA 01701, USA
| | - Sarah Moreno
- Department of Rare Diseases, Sanofi-Genzyme R&D Center, 49 New York Avenue, Framingham, MA 01701, USA
| | - Laurie A Smith
- Department of Rare Diseases, Sanofi-Genzyme R&D Center, 49 New York Avenue, Framingham, MA 01701, USA
| | - Mandy M Smith
- Department of Rare Diseases, Sanofi-Genzyme R&D Center, 49 New York Avenue, Framingham, MA 01701, USA
| | - Ryan J Russo
- Department of Rare Diseases, Sanofi-Genzyme R&D Center, 49 New York Avenue, Framingham, MA 01701, USA
| | - Rose Pitstick
- McLaughlin Research Institute, 1520 23rd Street South, Great Falls, Montana 59405, USA
| | - Mikhail Sergeev
- Harvard Institutes of Medicine, 4 Blackfan Circle HIM568, Boston, MA 02115, USA
| | - Steven R Ledbetter
- Department of Rare Diseases, Sanofi-Genzyme R&D Center, 49 New York Avenue, Framingham, MA 01701, USA
| | - Nikolay O Bukanov
- Department of Rare Diseases, Sanofi-Genzyme R&D Center, 49 New York Avenue, Framingham, MA 01701, USA
| | - Monica Lane
- Department of Biological Mass Spectrometry & Biomarker Research, Sanofi-Genzyme R&D Center, 1 Mountain Road, Framingham, MA 01701, USA
| | - Kate Zhang
- Department of Biological Mass Spectrometry & Biomarker Research, Sanofi-Genzyme R&D Center, 1 Mountain Road, Framingham, MA 01701, USA
| | - Katy Billot
- ManRos Therapeutics, Hotel de Recherche-Centre de Perharidy, 29680 Roscoff, France
| | - George Carlson
- McLaughlin Research Institute, 1520 23rd Street South, Great Falls, Montana 59405, USA
| | - Jagesh Shah
- Harvard Institutes of Medicine, 4 Blackfan Circle HIM568, Boston, MA 02115, USA
| | - Laurent Meijer
- ManRos Therapeutics, Hotel de Recherche-Centre de Perharidy, 29680 Roscoff, France
| | - David R Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA
| | | |
Collapse
|
34
|
Meng D, Pan J. A NIMA-related kinase, CNK4, regulates ciliary stability and length. Mol Biol Cell 2016; 27:838-47. [PMID: 26764095 PMCID: PMC4803309 DOI: 10.1091/mbc.e15-10-0707] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 02/02/2023] Open
Abstract
NIMA-related kinases (Nrks or Neks) have emerged as key regulators of ciliogenesis. In human, mutations in Nek1 and Nek8 cause cilia-related disorders. The ciliary functions of Nrks are mostly revealed by genetic studies; however, the underlying mechanisms are not well understood. Here we show that a Chlamydomonas Nrk, CNK4, regulates ciliary stability and length. CNK4 is localized to the basal body region and the flagella. The cnk4-null mutant exhibited long flagella, with formation of flagellar bulges. The flagella gradually became curled at the bulge formation site, leading to flagellar loss. Electron microscopy shows that the curled flagella involved curling and degeneration of axonemal microtubules. cnk4 mutation resulted in flagellar increases of IFT trains, as well as its accumulation at the flagellar bulges. IFT speeds were not affected, however, IFT trains frequently stalled, leading to reduced IFT frequencies. These data are consistent with a model in which CNK4 regulates microtubule dynamics and IFT to control flagellar stability and length.
Collapse
Affiliation(s)
- Dan Meng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Validation of Effective Therapeutic Targets for ADPKD Using Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 933:71-84. [DOI: 10.1007/978-981-10-2041-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Ciliary subcompartments and cysto-proteins. Anat Sci Int 2015; 92:207-214. [DOI: 10.1007/s12565-015-0302-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 11/26/2022]
|
37
|
Cantero MDR, Velázquez IF, Streets AJ, Ong ACM, Cantiello HF. The cAMP Signaling Pathway and Direct Protein Kinase A Phosphorylation Regulate Polycystin-2 (TRPP2) Channel Function. J Biol Chem 2015; 290:23888-96. [PMID: 26269590 DOI: 10.1074/jbc.m115.661082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 11/06/2022] Open
Abstract
Polycystin-2 (PC2) is a TRP-type, Ca(2+)-permeable non-selective cation channel that plays an important role in Ca(2+) signaling in renal and non-renal cells. The effect(s) of the cAMP pathway and kinase mediated phosphorylation of PC2 seem to be relevant to PC2 trafficking and its interaction with polycystin-1. However, the role of PC2 phosphorylation in channel function is still poorly defined. Here we reconstituted apical membranes of term human syncytiotrophoblast (hST), containing endogenous PC2 (PC2hst), and in vitro translated channel protein (PC2iv). Addition of the catalytic subunit of PKA increased by 566% the spontaneous PC2hst channel activity in the presence of ATP. Interestingly, 8-Br-cAMP also stimulated spontaneous PC2hst channel activity in the absence of the exogenous kinase. Either stimulation was inhibited by addition of alkaline phosphatase, which in turn, was reversed by the phosphatase inhibitor vanadate. Neither maneuver modified the single channel conductance but instead increased channel mean open time. PKA directly phosphorylated PC2, which increased the mean open time but not the single channel conductance of the channel. PKA phosphorylation did not modify either R742X truncated or S829A-mutant PC2iv channel function. The data indicate that the cAMP pathway regulates PC2-mediated cation transport in the hST. The relevant PKA site for PC2 channel regulation centers on a single residue serine 829, in the carboxyl terminus.
Collapse
Affiliation(s)
- María del Rocío Cantero
- From the Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, C1122AAH Buenos Aires, Argentina and
| | - Irina F Velázquez
- From the Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, C1122AAH Buenos Aires, Argentina and
| | - Andrew J Streets
- Kidney Genetics Group, Academic Nephrology Unit, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield S10 2RX, United Kingdom
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield S10 2RX, United Kingdom
| | - Horacio F Cantiello
- From the Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, C1122AAH Buenos Aires, Argentina and
| |
Collapse
|
38
|
Abstract
It is 20 years since the identification of PKD1, the major gene mutated in autosomal dominant polycystic kidney disease (ADPKD), followed closely by the cloning of PKD2. These major breakthroughs have led in turn to a period of intense investigation into the function of the two proteins encoded, polycystin-1 and polycystin-2, and how defects in either protein lead to cyst formation and nonrenal phenotypes. In this review, we summarize the major findings in this area and present a current model of how the polycystin proteins function in health and disease.
Collapse
|
39
|
Karam A, Tebbe L, Weber C, Messaddeq N, Morlé L, Kessler P, Wolfrum U, Trottier Y. A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington's disease mice. Neurobiol Dis 2015; 80:15-28. [PMID: 25989602 DOI: 10.1016/j.nbd.2015.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the toxic expansion of polyglutamine in the Huntingtin (HTT) protein. The pathomechanism is complex and not fully understood. Increasing evidence indicates that the loss of normal protein function also contributes to the pathogenesis, pointing out the importance of understanding the physiological roles of HTT. We provide evidence for a novel function of HTT in the cilium. HTT localizes in diverse types of cilia--including 9 + 0 non-motile sensory cilia of neurons and 9 + 2 motile multicilia of trachea and ependymal cells--which exert various functions during tissue development and homeostasis. In the photoreceptor cilium, HTT is present in all subciliary compartments from the base of the cilium and adjacent centriole to the tip of the axoneme. In HD mice, photoreceptor cilia are abnormally elongated, have hyperacetylated alpha-tubulin and show mislocalization of the intraflagellar transport proteins IFT57 and IFT88. As a consequence, intraflagellar transport function is perturbed and leads to aberrant accumulation of outer segment proteins in the photoreceptor cell bodies and disruption of outer segment integrity, all of which precede overt cell death. Strikingly, endogenous mouse HTT is strongly reduced in cilia and accumulates in photoreceptor cell bodies, suggesting that HTT loss function contributes to structural and functional defects of photoreceptor cilia in HD mouse. Our results indicate that cilia pathology participates in HD physiopathology and may represent a therapeutic target.
Collapse
Affiliation(s)
- Alice Karam
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Lars Tebbe
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Chantal Weber
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Nadia Messaddeq
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laurette Morlé
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, 69622, France
| | - Pascal Kessler
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany; Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Yvon Trottier
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
40
|
Antignac C, Calvet JP, Germino GG, Grantham JJ, Guay-Woodford LM, Harris PC, Hildebrandt F, Peters DJM, Somlo S, Torres VE, Walz G, Zhou J, Yu ASL. The Future of Polycystic Kidney Disease Research--As Seen By the 12 Kaplan Awardees. J Am Soc Nephrol 2015; 26:2081-95. [PMID: 25952256 DOI: 10.1681/asn.2014121192] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polycystic kidney disease (PKD) is one of the most common life-threatening genetic diseases. Jared J. Grantham, M.D., has done more than any other individual to promote PKD research around the world. However, despite decades of investigation there is still no approved therapy for PKD in the United States. In May 2014, the University of Kansas Medical Center hosted a symposium in Kansas City honoring the occasion of Dr. Grantham's retirement and invited all the awardees of the Lillian Jean Kaplan International Prize for Advancement in the Understanding of Polycystic Kidney Disease to participate in a forward-thinking and interactive forum focused on future directions and innovations in PKD research. This article summarizes the contributions of the 12 Kaplan awardees and their vision for the future of PKD research.
Collapse
Affiliation(s)
- Corinne Antignac
- National Institute of Health and Medical Research, Laboratory of Inherited Kidney Diseases, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and The Department of Genetics, Necker Hospital, Paris, France
| | - James P Calvet
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas;
| | - Gregory G Germino
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jared J Grantham
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Lisa M Guay-Woodford
- Center for Translational Science, Children's National Health System, Washington, DC
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Friedhelm Hildebrandt
- Howard Hughes Medical Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Somlo
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gerd Walz
- Renal Division, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany; and
| | - Jing Zhou
- Harvard Center for Polycystic Kidney Disease Research, Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan S L Yu
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas;
| |
Collapse
|
41
|
Czarnecki PG, Gabriel GC, Manning DK, Sergeev M, Lemke K, Klena NT, Liu X, Chen Y, Li Y, San Agustin JT, Garnaas MK, Francis RJ, Tobita K, Goessling W, Pazour GJ, Lo CW, Beier DR, Shah JV. ANKS6 is the critical activator of NEK8 kinase in embryonic situs determination and organ patterning. Nat Commun 2015; 6:6023. [PMID: 25599650 PMCID: PMC4361001 DOI: 10.1038/ncomms7023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/02/2014] [Indexed: 11/09/2022] Open
Abstract
The ciliary kinase NEK8 plays a critical role in situs determination and cystic kidney disease, yet its exact function remains unknown. In this study, we identify ANKS6 as a target and activator of NEK8. ANKS6 requires NEK8 for localizing to the ciliary inversin compartment (IC) and activates NEK8 by binding to its kinase domain. Here we demonstrate the functional importance of this interaction through the analysis of two novel mouse mutations, Anks6(Streaker) and Nek8(Roc). Both display heterotaxy, cardiopulmonary malformations and cystic kidneys, a syndrome also characteristic of mutations in Invs and Nphp3, the other known components of the IC. The Anks6(Strkr) mutation decreases ANKS6 interaction with NEK8, precluding NEK8 activation. The Nek8(Roc) mutation inactivates NEK8 kinase function while preserving ANKS6 localization to the IC. Together, these data reveal the crucial role of NEK8 kinase activation within the IC, promoting proper left-right patterning, cardiopulmonary development and renal morphogenesis.
Collapse
Affiliation(s)
- Peter G Czarnecki
- 1] Department of Systems Biology, Harvard Medical School, 4 Blackfan Circle, HIM 568, Boston, Massachussetts 02115, USA [2] Renal Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA [3] Renal Division, Beth Israel Deaconess Medical Center, Boston, Massachussetts 02215, USA
| | - George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Danielle K Manning
- Genetics Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA
| | - Mikhail Sergeev
- 1] Department of Systems Biology, Harvard Medical School, 4 Blackfan Circle, HIM 568, Boston, Massachussetts 02115, USA [2] Renal Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA
| | - Kristi Lemke
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Nikolai T Klena
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Yu Chen
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - You Li
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Jovenal T San Agustin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachussetts 01655, USA
| | - Maija K Garnaas
- Genetics Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA
| | - Richard J Francis
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Kimimasa Tobita
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachussetts 01655, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - David R Beier
- 1] Genetics Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA [2] Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington 98101, USA
| | - Jagesh V Shah
- 1] Department of Systems Biology, Harvard Medical School, 4 Blackfan Circle, HIM 568, Boston, Massachussetts 02115, USA [2] Renal Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA
| |
Collapse
|
42
|
Ding XF, Zhou J, Hu QY, Liu SC, Chen G. The tumor suppressor pVHL down-regulates never-in-mitosis A-related kinase 8 via hypoxia-inducible factors to maintain cilia in human renal cancer cells. J Biol Chem 2014; 290:1389-94. [PMID: 25451921 DOI: 10.1074/jbc.m114.589226] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
NEK8 (never in mitosis gene A (NIMA)-related kinase 8) is involved in cytoskeleton, cilia, and DNA damage response/repair. Abnormal expression and/or dysfunction of NEK8 are related to cancer development and progression. However, the mechanisms that regulate NEK8 are not well declared. We demonstrated here that pVHL may be involved in regulating NEK8. We found that CAK-I cells with wild-type vhl expressed a lower level of NEK8 than the cells loss of vhl, such as 786-O, 769-P, and A-498 cells. Moreover, pVHL overexpression down-regulated the NEK8 protein in 786-O cells, whereas pVHL knockdown up-regulated NEK8 in CAK-I cells. In addition, we found that the positive hypoxia response elements (HREs) are located in the promoter of the nek8 sequence and hypoxia could induce nek8 expression in different cell types. Consistent with this, down-regulation of hypoxia-inducible factors α (HIF-1α or HIF-2α) by isoform-specific siRNA reduced the ability of hypoxia inducing nek8 expression. In vivo, NEK8 and HIF-1α expression were increased in kidneys of rats subjected to an experimental hypoxia model of ischemia and reperfusion. Furthermore, NEK8 siRNA transfection significantly blocked pVHL-knockdown-induced cilia disassembling, through impairing the pVHL-knockdown-up-regulated NEK8 expression. These results support that nek8 may be a novel hypoxia-inducible gene. In conclusion, our findings show that nek8 may be a new HIF target gene and pVHL can down-regulate NEK8 via HIFs to maintain the primary cilia structure in human renal cancer cells.
Collapse
Affiliation(s)
| | - Jun Zhou
- From the School of Medicine, the Institute of Tumor, and
| | | | - Shuang-Chun Liu
- the Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000 China
| | - Guang Chen
- From the School of Medicine, the Institute of Tumor, and the School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000 and
| |
Collapse
|
43
|
Broekhuis JR, Verhey KJ, Jansen G. Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells. PLoS One 2014; 9:e108470. [PMID: 25243405 PMCID: PMC4171540 DOI: 10.1371/journal.pone.0108470] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/25/2014] [Indexed: 01/11/2023] Open
Abstract
Primary cilia are important sensory organelles. They exist in a wide variety of lengths, which could reflect different cell-specific functions. How cilium length is regulated is unclear, but it probably involves intraflagellar transport (IFT), which transports protein complexes along the ciliary axoneme. Studies in various organisms have identified the small, conserved family of ros-cross hybridizing kinases (RCK) as regulators of cilium length. Here we show that Intestinal Cell Kinase (ICK) and MAPK/MAK/MRK overlapping kinase (MOK), two members of this family, localize to cilia of mouse renal epithelial (IMCD-3) cells and negatively regulate cilium length. To analyze the effects of ICK and MOK on the IFT machinery, we set up live imaging of five fluorescently tagged IFT proteins: KIF3B, a subunit of kinesin-II, the main anterograde IFT motor, complex A protein IFT43, complex B protein IFT20, BBSome protein BBS8 and homodimeric kinesin KIF17, whose function in mammalian cilia is unclear. Interestingly, all five proteins moved at ∼0.45 µm/s in anterograde and retrograde direction, suggesting they are all transported by the same machinery. Moreover, GFP tagged ICK and MOK moved at similar velocities as the IFT proteins, suggesting they are part of, or transported by the IFT machinery. Indeed, loss- or gain-of-function of ICK affected IFT speeds: knockdown increased anterograde velocities, whereas overexpression reduced retrograde speed. In contrast, MOK knockdown or overexpression did not affect IFT speeds. Finally, we found that the effects of ICK or MOK knockdown on cilium length and IFT are suppressed by rapamycin treatment, suggesting that these effects require the mTORC1 pathway. Our results confirm the importance of RCK kinases as regulators of cilium length and IFT. However, whereas some of our results suggest a direct correlation between cilium length and IFT speed, other results indicate that cilium length can be modulated independent of IFT speed.
Collapse
Affiliation(s)
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gert Jansen
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
44
|
Madhivanan K, Aguilar RC. Ciliopathies: the trafficking connection. Traffic 2014; 15:1031-56. [PMID: 25040720 DOI: 10.1111/tra.12195] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/28/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/disassembles in a cell-cycle-dependent manner and is present in almost every cell type. Despite being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers the PC properties of a separate organelle with very specific characteristics and membrane composition. Therefore, vesicle trafficking is the major process by which components are acquired for cilium formation and maintenance. In fact, a system of specific sorting signals controls the right of cargo admission into the cilia. Disruption to the ciliary structure or its function leads to multiorgan diseases known as ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci linked to these conditions. Therefore, it is not surprising that symptom variability (specific manifestations and severity) among and within ciliopathies appears to be an emerging characteristic. Nevertheless, one can speculate that mutations occurring in genes whose products contribute to the overall vesicle trafficking to the PC (i.e. affecting cilia assembly) will lead to more severe symptoms, whereas those involved in the transport of specific cargoes will result in milder phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide a description of the trafficking defects observed in some ciliopathies which can be correlated to the severity of the pathology.
Collapse
|
45
|
Meirelles GV, Perez AM, de Souza EE, Basei FL, Papa PF, Melo Hanchuk TD, Cardoso VB, Kobarg J. “Stop Ne(c)king around”: How interactomics contributes to functionally characterize Nek family kinases. World J Biol Chem 2014; 5:141-160. [PMID: 24921005 PMCID: PMC4050109 DOI: 10.4331/wjbc.v5.i2.141] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/07/2014] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A (NIMA)-related kinases (Neks). The founding member of this family is the sole member NIMA of Aspergillus nidulans, which is crucial for the initiation of mitosis in that organism. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals: (1) centrioles/mitosis; (2) primary ciliary function/ciliopathies; and (3) DNA damage response (DDR). Recent findings, especially on Nek 1 and 8, showed however, that several Neks participate in parallel in at least two of these contexts: primary ciliary function and DDR. In the core section of this in-depth review, we report the current detailed functional knowledge on each of the 11 Neks. In the discussion, we return to the cross-connections among Neks and point out how our and other groups’ functional and interactomics studies revealed that most Neks interact with protein partners associated with two if not all three of the functional contexts. We then raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize the cellular events associated with these three core functions. The new and exciting findings on the Nek family open new perspectives and should allow the Neks to finally claim the attention they deserve in the field of kinases and cell cycle biology.
Collapse
|
46
|
Inoue Y, Sohara E, Kobayashi K, Chiga M, Rai T, Ishibashi K, Horie S, Su X, Zhou J, Sasaki S, Uchida S. Aberrant glycosylation and localization of polycystin-1 cause polycystic kidney in an AQP11 knockout model. J Am Soc Nephrol 2014; 25:2789-99. [PMID: 24854278 DOI: 10.1681/asn.2013060614] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously reported that disruption of the aquaporin-11 (AQP11) gene in mice resulted in cystogenesis in the kidney. In this study, we aimed to clarify the mechanism of cystogenesis in AQP11(-/-) mice. To enable the analyses of AQP11 at the protein level in vivo, AQP11 BAC transgenic mice (Tg(AQP11)) that express 3×HA-tagged AQP11 protein were generated. This AQP11 localized to the endoplasmic reticulum (ER) of proximal tubule cells in Tg(AQP11) mice and rescued renal cystogenesis in AQP11(-/-) mice. Therefore, we hypothesized that the absence of AQP11 in the ER could result in impaired quality control and aberrant trafficking of polycystin-1 (PC-1) and polycystin-2 (PC-2). Compared with kidneys of wild-type mice, AQP11(-/-) kidneys exhibited increased protein expression levels of PC-1 and decreased protein expression levels of PC-2. Moreover, PC-1 isolated from AQP11(-/-) mice displayed an altered electrophoretic mobility caused by impaired N-glycosylation processing, and density gradient centrifugation of kidney homogenate and in vivo protein biotinylation revealed impaired membrane trafficking of PC-1 in these mice. Finally, we showed that the Pkd1(+/-) background increased the severity of cystogenesis in AQP11(-/-) mouse kidneys, indicating that PC-1 is involved in the mechanism of cystogenesis in AQP11(-/-) mice. Additionally, the primary cilia of proximal tubules were elongated in AQP11(-/-) mice. Taken together, these data show that impaired glycosylation processing and aberrant membrane trafficking of PC-1 in AQP11(-/-) mice could be a key mechanism of cystogenesis in AQP11(-/-) mice.
Collapse
Affiliation(s)
- Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan;
| | - Katsuki Kobayashi
- Division of Molecular Genetics, Clinical Research Center, Chiba-East National Hospital, Chiba, Japan
| | - Motoko Chiga
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University School of Medicine, Tokyo, Japan; and
| | - Xuefeng Su
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jing Zhou
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sei Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
47
|
Abstract
The primary cilium compartmentalizes a tiny fraction of the cell surface and volume, yet many proteins are highly enriched in this area and so efficient mechanisms are necessary to concentrate them in the ciliary compartment. Here we review mechanisms that are thought to deliver protein cargo to the base of cilia and are likely to interact with ciliary gating mechanisms. Given the immense variety of ciliary cytosolic and transmembrane proteins, it is almost certain that multiple, albeit frequently interconnected, pathways mediate this process. It is also clear that none of these pathways is fully understood at the present time. Mechanisms that are discussed below facilitate ciliary localization of structural and signaling molecules, which include receptors, G-proteins, ion channels, and enzymes. These mechanisms form a basis for every aspect of cilia function in early embryonic patterning, organ morphogenesis, sensory perception and elsewhere.
Collapse
Affiliation(s)
- Jarema Malicki
- MRC Centre for Developmental and Biomedical Genetics; Department of Biomedical Science; The University of Sheffield; Sheffield, UK
| | | |
Collapse
|
48
|
Retailleau K, Duprat F. Polycystins and partners: proposed role in mechanosensitivity. J Physiol 2014; 592:2453-71. [PMID: 24687583 DOI: 10.1113/jphysiol.2014.271346] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations of the two polycystins, PC1 and PC2, lead to polycystic kidney disease. Polycystins are able to form complexes with numerous families of proteins that have been suggested to participate in mechanical sensing. The proposed role of polycystins and their partners in the kidney primary cilium is to sense urine flow. A role for polycystins in mechanosensing has also been shown in other cell types such as vascular smooth muscle cells and cardiac myocytes. At the plasma membrane, polycystins interact with diverse ion channels of the TRP family and with stretch-activated channels (Piezos, TREKs). The actin cytoskeleton and its interacting proteins, such as filamin A, have been shown to be essential for these interactions. Numerous proteins involved in cell-cell and cell-extracellular matrix junctions interact with PC1 and/or PC2. These multimeric protein complexes are important for cell structure integrity, the transmission of force, as well as for mechanosensing and mechanotransduction. A group of polycystin partners are also involved in subcellular trafficking mechanisms. Finally, PC1 and especially PC2 interact with elements of the endoplasmic reticulum and are essential components of calcium homeostasis. In conclusion, we propose that both PC1 and PC2 act as conductors to tune the overall cellular mechanosensitivity.
Collapse
Affiliation(s)
- Kevin Retailleau
- CNRS Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne, France
| | - Fabrice Duprat
- CNRS Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne, France
| |
Collapse
|
49
|
Mechanism of cystogenesis in nephrotic kidneys: a histopathological study. BMC Nephrol 2014; 15:3. [PMID: 24397250 PMCID: PMC3890514 DOI: 10.1186/1471-2369-15-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nephrotic syndrome (NS) is pathological condition characterized by heavy proteinuria. Our study investigates hypothesis that change in cell proliferation of proximal tubules influences primary cilia structure and function and promotes cystogenesis in congenital nephrotic syndrome of the Finnish type (CNF) and focal segmental glomerulosclerosis (FSGS). METHODS CNF kidneys were analyzed genetically. Proliferation (Ki-67), apoptosis (caspase-3), and primary cilia (α-tubulin) length and structure were analyzed immunohistochemically and ultrastructurally in healthy, CNF and FSGS kidneys. Cyst diameters were measured and correlated with proliferation index. RESULTS Proximal tubules cells of healthy kidneys did not proliferate. In nephrotic kidneys, tubules with apparently normal diameter covered by cuboidal/columnar epithelium (PTNC) contained 81.54% of proliferating cells in CNF and 36.18% in FSGS, while cysts covered with columnar epithelium (CC) contained 37.52% of proliferating cells in CNF and 45.23% in FSGS. The largest cysts, covered with squamous epithelium (CS) had 11.54% of proliferating cells in CNF and 13.76% in FSGS. Increase in cysts diameter correlated with changes in proliferation index, tubular cells shape, primary cilia formation and appearance of apoptotic cells. CONCLUSIONS We present a novel histopathological data on the structure and possible changes in function of tubular cell in NS kidneys during cystogenesis. We suggest existence of common principles of cystogenesis in CNF and FSGS kidneys, including serious disturbances of tubular cells proliferation and apoptosis, and faulty primary cilia signaling leading to deterioration of proteinuria in NS kidneys.
Collapse
|
50
|
Abstract
It has been exciting times since the identification of polycystic kidney disease 1 (PKD1) and PKD2 as the genes mutated in autosomal dominant polycystic kidney disease (ADPKD). Biological roles of the encoded proteins polycystin-1 and TRPP2 have been deduced from phenotypes in ADPKD patients, but recent insights from vertebrate and invertebrate model organisms have significantly expanded our understanding of the physiological functions of these proteins. The identification of additional TRPP (TRPP3 and TRPP5) and polycystin-1-like proteins (PKD1L1, PKD1L2, PKD1L3, and PKDREJ) has added yet another layer of complexity to these fascinating cellular signalling units. TRPP proteins assemble with polycystin-1 family members to form receptor-channel complexes. These protein modules have important biological roles ranging from tubular morphogenesis to determination of left-right asymmetry. The founding members of the polycystin family, TRPP2 and polycystin-1, are a prime example of how studying human disease genes can provide insights into fundamental biological mechanisms using a so-called "reverse translational" approach (from bedside to bench). Here, we discuss the current literature on TRPP ion channels and polycystin-1 family proteins including expression, structure, physical interactions, physiology, and lessons from animal model systems and human disease.
Collapse
Affiliation(s)
- Mariam Semmo
- Renal Division, Department of Medicine, University Medical Centre Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany,
| | | | | |
Collapse
|