1
|
Kang E, Park BH, Lee H, Kang HG, Kim JH, Kim YN, Jung Y, Rim H, Shin HS. A comprehensive review of Alport syndrome: definition, pathophysiology, clinical manifestations, and diagnostic considerations. Kidney Res Clin Pract 2024:j.krcp.24.065. [PMID: 39384344 DOI: 10.23876/j.krcp.24.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 10/11/2024] Open
Abstract
Alport syndrome, a rare genetic disorder affecting around 1 in 50,000 individuals, primarily presents as microscopic hematuria and chronic kidney disease (CKD) with associated extrarenal complications. The Alport syndrome results from mutations in COL4A3, COL4A4, and COL4A5 genes, disrupting the formation of the α3-α4-α5 chain in the collagen IV network. The etiology involves X chromosome-related, autosomal dominant, autosomal recessive, and digenic inheritance patterns. The disease primarily manifests as kidney involvement, featuring persistent hematuria, proteinuria, and a progressive decline in renal function. Hearing loss, ocular abnormalities, and extrarenal manifestations further contribute to its complexity. Genotype-phenotype correlations are relatively evident, with distinct presentations in X-linked, autosomal recessive, and autosomal dominant cases. Diagnosis relies on urinalysis, histologic examination, and genetic testing with advancements in next-generation sequencing aiding identification. Although no specific treatment exists, early diagnosis improves outcomes, emphasizing the importance of genetic testing for prognosis and familial screening. The purpose of this review is to advance knowledge and enhance understanding of Alport syndrome.
Collapse
Affiliation(s)
- Eunjeong Kang
- Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung Hwa Park
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ye Na Kim
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yeonsoon Jung
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hark Rim
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Ho Sik Shin
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
2
|
Mokhtar WA, Elsaid AM, Elrefaey AM, Saleh MM, Youssef MM. Association of PLCE1 (rs7922612) and COL4A3 (rs375290088) Genetic Variants with the Risk of Nephrotic Syndrome in Egyptian Pediatric Patients. Biochem Genet 2024:10.1007/s10528-024-10883-6. [PMID: 39028381 DOI: 10.1007/s10528-024-10883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Nephrotic syndrome is one of the most prevalent pediatric kidney illnesses seen in pediatric nephrology clinics. Steroid resistance in children with nephrotic syndrome is a primary cause of renal failure and is characterized by nephrotic range proteinuria that does not respond to conventional steroid therapy. The current work was intended to investigate the possible role of the Phospholipase C epsilon 1 (rs7922612) and collagen4 alpha 3 (rs375290088) single nucleotide polymorphisms as risk factors for developing nephrotic syndrome among Egyptian children. The study was conducted on 100 children with nephrotic syndrome and 100 age- and sex-matched healthy individuals. Geno typing was performed by two methods of polymerase chain reaction for the analysis of PLCE1 (rs7922612) and COL4A3 (rs375290088) variants. We observed a higher percentage of the heterozygous and homozygous variant genotypes of PLCE1 (rs7922612) SNP in NS patients in comparison with the controls (P < 0.001 for both). The frequencies of the PLCE1 (rs7922612) variant showed a statistically significant elevated risk of NS using several genetic models, including the dominant (OR = 9.12), recessive (OR = 2.31), and allelic (OR = 1.62) models (P < 0.001 for each). In addition, the PLCE1 (rs7922612) genotypes and alleles frequencies did not differ significantly between SRNS compared to SSNS cases. Furthermore, there was no significant difference regarding COL4A3 (rs375290088) polymorphism, neither between the NS and control groups nor between SDNS and SRNS. PLCE1 (rs7922612) is considered an independent risk factor for nephrotic syndrome in Egyptian pediatrics.COL4A3 (rs375290088) polymorphism is not correlated to Egyptian NS patients.
Collapse
Affiliation(s)
- Wafaa A Mokhtar
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Mansoura, Mansoura, Egypt.
| | - Afaf M Elsaid
- Consultant of Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Ahmed M Elrefaey
- Department of Paediatrics, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Marwan Mahmood Saleh
- Department of Medical Physics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
| | - Magdy M Youssef
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
3
|
Caparali EB, De Gregorio V, Barua M. Genetic Causes of Nephrotic Syndrome and Focal and Segmental Glomerulosclerosis. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:309-316. [PMID: 39084756 DOI: 10.1053/j.akdh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024]
Abstract
The field of nephrology has a long-standing interest in deciphering the genetic basis of nephrotic syndrome (NS), motivated by the mechanistic insights it provides in chronic kidney disease. The initial era of genetic studies solidified NS and the focal segmental glomerulosclerosis lesion as podocyte disorders. The likelihood of identifying a single gene (called monogenic) cause is higher if certain factors are present such as positive family history. Obtaining a monogenic diagnosis enables reproductive counseling and screening of family members. Now, with a new era of genomic studies facilitated by technological advances and the emergence of large genetically characterized cohorts, more insights are apparent. This includes the phenotypic breadth associated with disease genes, as evidenced in Alport syndrome and congenital NS of the Finnish type. Moreover, the underlying genetic architecture is more complex than previously appreciated, as shown by genome-wide association studies, suggesting that variants in multiple genes collectively influence risk. Achieving molecularly informed diagnoses also holds substantial potential for personalizing medicine, including the development of targeted therapeutics. Illustrative examples include coenzyme Q10 for ADCK4-associated NS and inaxaplin, a small molecule that inhibits apolipoprotein L1 channel activity, though larger studies are required to confirm benefit.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa De Gregorio
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Moumita Barua
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Mitrotti A, Giliberti M, Di Leo V, di Bari I, Pontrelli P, Gesualdo L. Hidden genetics behind glomerular scars: an opportunity to understand the heterogeneity of focal segmental glomerulosclerosis? Pediatr Nephrol 2024; 39:1685-1707. [PMID: 37728640 PMCID: PMC11026212 DOI: 10.1007/s00467-023-06046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a complex disease which describes different kinds of kidney defects, not exclusively linked with podocyte defects. Since nephrin mutation was first described in association with early-onset nephrotic syndrome (NS), many advancements have been made in understanding genetic patterns associated with FSGS. New genetic causes of FSGS have been discovered, displaying unexpected genotypes, and recognizing possible site of damage. Many recent large-scale sequencing analyses on patients affected by idiopathic chronic kidney disease (CKD), kidney failure (KF) of unknown origin, or classified as FSGS, have revealed collagen alpha IV genes, as one of the most frequent sites of pathogenic mutations. Also, recent interest in complex and systemic lysosomal storage diseases, such as Fabry disease, has highlighted GLA mutations as possible causes of FSGS. Tubulointerstitial disease, recently classified by KDIGO based on genetic subtypes, when associated with UMOD variants, may phenotypically gain FSGS features, as well as ciliopathy genes or others, otherwise leading to completely different phenotypes, but found carrying pathogenic variants with associated FSGS phenotype. Thus, glomerulosclerosis may conceal different heterogeneous conditions. When a kidney biopsy is performed, the principal objective is to provide an accurate diagnosis. The broad spectrum of phenotypic expression and genetic complexity is demonstrating that a combined path of management needs to be applied. Genetic investigation should not be reserved only to selected cases, but rather part of medical management, integrating with clinical and renal pathology records. FSGS heterogeneity should be interpreted as an interesting opportunity to discover new pathways of CKD, requiring prompt genotype-phenotype correlation. In this review, we aim to highlight how FSGS represents a peculiar kidney condition, demanding multidisciplinary management, and in which genetic analysis may solve some otherwise unrevealed idiopathic cases. Unfortunately there is not a uniform correlation between specific mutations and FSGS morphological classes, as the same variants may be identified in familial cases or sporadic FSGS/NS or manifest a variable spectrum of the same disease. These non-specific features make diagnosis challenging. The complexity of FSGS genotypes requires new directions. Old morphological classification does not provide much information about the responsible cause of disease and misdiagnoses may expose patients to immunosuppressive therapy side effects, mistaken genetic counseling, and misguided kidney transplant programs.
Collapse
Affiliation(s)
- Adele Mitrotti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy.
| | - Marica Giliberti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Di Leo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Ighli di Bari
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Puapatanakul P, Isaranuwatchai S, Chanakul A, Surintrspanont J, Iampenkhae K, Kanjanabuch T, Suphapeetiporn K, Charu V, Suleiman HY, Praditpornsilpa K, Miner JH. Quantitative assessment of glomerular basement membrane collagen IV α chains in paraffin sections from patients with focal segmental glomerulosclerosis and Alport gene variants. Kidney Int 2024; 105:1049-1057. [PMID: 38401706 PMCID: PMC11032260 DOI: 10.1016/j.kint.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
Focal segmental glomerulosclerosis (FSGS) lesions have been linked to variants in COL4A3/A4/A5 genes, which are also mutated in Alport syndrome. Although it could be useful for diagnosis, quantitative evaluation of glomerular basement membrane (GBM) type IV collagen (colIV) networks is not widely used to assess these patients. To do so, we developed immunofluorescence imaging for collagen α5(IV) and α1/2(IV) on kidney paraffin sections with Airyscan confocal microscopy that clearly distinguishes GBM collagen α3α4α5(IV) and α1α1α2(IV) as two distinct layers, allowing quantitative assessment of both colIV networks. The ratios of collagen α5(IV):α1/2(IV) mean fluorescence intensities (α5:α1/2 intensity ratios) and thicknesses (α5:α1/2 thickness ratios) were calculated to represent the levels of collagen α3α4α5(IV) relative to α1α1α2(IV). The α5:α1/2 intensity and thickness ratios were comparable across all 11 control samples, while both ratios were significantly and markedly decreased in all patients with pathogenic or likely pathogenic Alport COL4A variants, supporting validity of this approach. Thus, with further validation of this technique, quantitative measurement of GBM colIV subtype abundance by immunofluorescence, may potentially serve to identify the subgroup of patients with FSGS lesions likely to harbor pathogenic COL4A variants who could benefit from genetic testing.
Collapse
Affiliation(s)
- Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suramath Isaranuwatchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Division of Nephrology, Department of Internal Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Ankanee Chanakul
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jerasit Surintrspanont
- Department of Pathology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Special Task Force for Activating Research, Department of Pathology, Chulalongkorn University, Bangkok, Thailand
| | - Kroonpong Iampenkhae
- Department of Pathology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Division of Medical Genetics and Metabolism, Center of Excellence for Medical Genomics, Department of Pediatrics, Medical Genomic Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vivek Charu
- Department of Pathology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Hani Y Suleiman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
6
|
Puapatanakul P, Miner JH. Alport syndrome and Alport kidney diseases - elucidating the disease spectrum. Curr Opin Nephrol Hypertens 2024; 33:283-290. [PMID: 38477333 PMCID: PMC10990029 DOI: 10.1097/mnh.0000000000000983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
PURPOSE OF REVIEW With the latest classification, variants in three collagen IV genes, COL4A3 , COL4A4 , and COL4A5 , represent the most prevalent genetic kidney disease in humans, exhibiting diverse, complex, and inconsistent clinical manifestations. This review breaks down the disease spectrum and genotype-phenotype correlations of kidney diseases linked to genetic variants in these genes and distinguishes "classic" Alport syndrome (AS) from the less severe nonsyndromic genetically related nephropathies that we suggest be called "Alport kidney diseases". RECENT FINDINGS Several research studies have focused on the genotype-phenotype correlation under the latest classification scheme of AS. The historic diagnoses of "benign familial hematuria" and "thin basement membrane nephropathy" linked to heterozygous variants in COL4A3 or COL4A4 are suggested to be obsolete, but instead classified as autosomal AS by recent expert consensus due to a significant risk of disease progression. SUMMARY The concept of Alport kidney disease extends beyond classic AS. Patients carrying pathogenic variants in any one of the COL4A3/A4/A5 genes can have variable phenotypes ranging from completely normal/clinically unrecognizable, hematuria without or with proteinuria, or progression to chronic kidney disease and kidney failure, depending on sex, genotype, and interplays of other genetic as well as environmental factors.
Collapse
Affiliation(s)
- Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Riedhammer KM, Simmendinger H, Tasic V, Putnik J, Abazi-Emini N, Stajic N, Berutti R, Weidenbusch M, Patzer L, Lungu A, Milosevski-Lomic G, Günthner R, Braunisch MC, Ćomić J, Hoefele J. Is there a dominant-negative effect in individuals with heterozygous disease-causing variants in COL4A3/COL4A4? Clin Genet 2024; 105:406-414. [PMID: 38214412 DOI: 10.1111/cge.14471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Alport syndrome (AS) shows a broad phenotypic spectrum ranging from isolated microscopic hematuria (MH) to end-stage kidney disease (ESKD). Monoallelic disease-causing variants in COL4A3/COL4A4 have been associated with autosomal dominant AS (ADAS) and biallelic variants with autosomal recessive AS (ARAS). The aim of this study was to analyze clinical and genetic data regarding a possible genotype-phenotype correlation in individuals with disease-causing variants in COL4A3/COL4A4. Eighty-nine individuals carrying at least one COL4A3/COL4A4 variant classified as (likely) pathogenic according to the American College of Medical Genetics guidelines and current amendments were recruited. Clinical data concerning the prevalence and age of first reported manifestation of MH, proteinuria, ESKD, and extrarenal manifestations were collected. Individuals with monoallelic non-truncating variants reported a significantly higher prevalence and earlier diagnosis of MH and proteinuria than individuals with monoallelic truncating variants. Individuals with biallelic variants were more severely affected than those with monoallelic variants. Those with biallelic truncating variants were more severely affected than those with compound heterozygous non-truncating/truncating variants or individuals with biallelic non-truncating variants. In this study an association of heterozygous non-truncating COL4A3/COL4A4 variants with a more severe phenotype in comparison to truncating variants could be shown indicating a potential dominant-negative effect as an explanation for this observation. The results for individuals with ARAS support the, still scarce, data in the literature.
Collapse
Affiliation(s)
- Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Hannes Simmendinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Velibor Tasic
- Medical Faculty of Skopje, University Children's Hospital, Macedonia
| | - Jovana Putnik
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Department of Nephrology, University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Nora Abazi-Emini
- Medical Faculty of Skopje, University Children's Hospital, Macedonia
| | - Natasa Stajic
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Department of Nephrology, University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Riccardo Berutti
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Marc Weidenbusch
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University, Munich, Germany
| | - Ludwig Patzer
- Department of Pediatric Nephrology, Children's Hospital St. Elisabeth and St. Barbara, Halle/Saale, Germany
| | - Adrian Lungu
- Pediatric Nephrology Department, Fundeni Clinical Institute, Bucharest, Romania
| | - Gordana Milosevski-Lomic
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Department of Nephrology, University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Roman Günthner
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Matthias C Braunisch
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Jasmina Ćomić
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| |
Collapse
|
8
|
Tato AM, Carrera N, García-Murias M, Shabaka A, Ávila A, Mora Mora MT, Rabasco C, Soto K, de la Prada Alvarez FJ, Fernández-Lorente L, Rodríguez-Moreno A, Huerta A, Mon C, García-Carro C, González Cabrera F, Navarro JAM, Romera A, Gutiérrez E, Villacorta J, de Lorenzo A, Avilés B, Garca-González MA, Fernández-Juárez G. Genetic testing in focal segmental glomerulosclerosis: in whom and when? Clin Kidney J 2023; 16:2011-2022. [PMID: 37915894 PMCID: PMC10616495 DOI: 10.1093/ckj/sfad193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Indexed: 11/03/2023] Open
Abstract
Background Genetic causes are increasingly recognized in patients with focal segmental glomerulosclerosis (FSGS), but it remains unclear which patients should undergo genetic study. Our objective was to determine the frequency and distribution of genetic variants in steroid-resistant nephrotic syndrome FSGS (SRNS-FSGS) and in FSGS of undetermined cause (FSGS-UC). Methods We performed targeted exome sequencing of 84 genes associated with glomerulopathy in patients with adult-onset SRNS-FSGS or FSGS-UC after ruling out secondary causes. Results Seventy-six patients met the study criteria; 24 presented with SRNS-FSGS and 52 with FSGS-UC. We detected FSGS-related disease-causing variants in 27/76 patients (35.5%). There were no differences between genetic and non-genetic causes in age, proteinuria, glomerular filtration rate, serum albumin, body mass index, hypertension, diabetes or family history. Hematuria was more prevalent among patients with genetic causes. We found 19 pathogenic variants in COL4A3-5 genes in 16 (29.3%) patients. NPHS2 mutations were identified in 6 (16.2%) patients. The remaining cases had variants affecting INF2, OCRL, ACTN4 genes or APOL1 high-risk alleles. FSGS-related genetic variants were more common in SRNS-FSGS than in FSGS-UC (41.7% vs 32.7%). Four SRNS-FSGS patients presented with NPHS2 disease-causing variants. COL4A variants were the most prevalent finding in FSGS-UC patients, with 12 patients carrying disease-causing variants in these genes. Conclusions FSGS-related variants were detected in a substantial number of patients with SRNS-FSGS or FSGS-UC, regardless of age of onset of disease or the patient's family history. In our experience, genetic testing should be performed in routine clinical practice for the diagnosis of this group of patients.
Collapse
Affiliation(s)
- Ana María Tato
- Department of Nephrology, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Noa Carrera
- Laboratorio de Nefroloxía (No. 11), Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Instituto de investigación sanitaria de Santiago de Compostela – IDIS, Santiago de Compostela, Spain
| | - Maria García-Murias
- Laboratorio de Nefroloxía (No. 11), Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Instituto de investigación sanitaria de Santiago de Compostela – IDIS, Santiago de Compostela, Spain
| | - Amir Shabaka
- Department of Nephrology, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Ana Ávila
- Department of Nephrology, Hospital Universitario Doctor Peset, Valencia, Spain
| | | | - Cristina Rabasco
- Department of Nephrology, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Karina Soto
- Department of Nephrology, Hospital Fernando Fonseca, Lisbon, Portugal
| | | | | | | | - Ana Huerta
- Department of Nephrology, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Carmen Mon
- Department of Nephrology, Hospital Universitario Severo Ochoa, Leganés, Spain
| | | | - Fayna González Cabrera
- Department of Nephrology, Hospital Universitario de Gran Canaria Doctor Negrín, Gran Canaria, Spain
| | | | - Ana Romera
- Department of Nephrology, Hospital de Ciudad Real, Ciudad Real, Spain
| | - Eduardo Gutiérrez
- Department of Nephrology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Javier Villacorta
- Department of Nephrology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Beatriz Avilés
- Department of Nephrology, Hospital Costa del Sol, Marbella, Spain
| | - Miguel Angel Garca-González
- Laboratorio de Nefroloxía (No. 11), Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Instituto de investigación sanitaria de Santiago de Compostela – IDIS, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gema Fernández-Juárez
- Department of Nephrology, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación de la Paz (IdIPAZ), Madrid, Spain
| |
Collapse
|
9
|
Solanki KV, Hu Y, Moore BS, Abedi V, Avula V, Mirshahi T, Strande NT, Bucaloiu ID, Chang AR. The Phenotypic Spectrum of COL4A3 Heterozygotes. Kidney Int Rep 2023; 8:2088-2099. [PMID: 37849993 PMCID: PMC10577321 DOI: 10.1016/j.ekir.2023.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction The penetrance and phenotypic spectrum of autosomal dominant Alport Syndrome (ADAS), affecting 1 in 106, remains understudied. Methods Using data from 174,418 participants in the Geisinger MyCode/DiscovEHR study, an unselected health system-based cohort with whole exome sequencing, we identified 403 participants who were heterozygous for likely pathogenic COL4A3 variants. Phenotypic data was evaluated using International Classification of Diseases (ICD) codes, laboratory data, and chart review. To evaluate the phenotypic spectrum of genetically-determined ADAS, we matched COL4A3 heterozygotes 1:5 to nonheterozygotes using propensity scores by demographics, hypertension, diabetes, and nephrolithiasis. Results COL4A3 heterozygotes were at significantly increased risks of hematuria, decreased estimated glomerular filtration rate (eGFR), albuminuria, and kidney failure (P < 0.05 for all comparisons) but not bilateral sensorineural hearing loss (P = 0.9). Phenotypic severity was more severe for collagenous domain glycine missense variants than protein truncating variants (PTVs). For example, patients with Gly695Arg (n = 161) had markedly increased risk of dipstick hematuria (odds ratio [OR] 9.50; 95% confidence interval [CI]: 6.32, 14.28) and kidney failure (OR 7.02; 95% CI: 3.48, 14.16) whereas those with PTVs (n = 119) had moderately increased risks of dipstick hematuria (OR 1.64; 95% CI: 1.03, 2.59) and kidney failure (OR 3.44; 95% CI: 1.28, 9.22). Less than a third of patients had albuminuria screening completed, and fewer than 1 of 3 were taking inhibitors of the renin-angiotensin-aldosterone system. Conclusion This study demonstrates a wide spectrum of phenotypic severity in ADAS due to COL4A3 with phenotypic variability by genotype. Future studies are needed to evaluate the impact of earlier diagnosis, appropriate evaluation, and treatment of ADAS.
Collapse
Affiliation(s)
- Kaushal V Solanki
- Center for Kidney Health Research, Geisinger, Danville, Pennsylvania, USA
| | - Yirui Hu
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania, USA
| | - Bryn S Moore
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
| | - Vida Abedi
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Road, Tarrytown, New York, USA
| | - Venkatesh Avula
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
| | - Tooraj Mirshahi
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
| | - Natasha T Strande
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
- Autism and Developmental Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Ion D Bucaloiu
- Department of Nephrology, Geisinger, Danville, Pennsylvania, USA
| | - Alexander R Chang
- Center for Kidney Health Research, Geisinger, Danville, Pennsylvania, USA
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania, USA
| |
Collapse
|
10
|
Deltas C, Papagregoriou G, Louka SF, Malatras A, Flinter F, Gale DP, Gear S, Gross O, Hoefele J, Lennon R, Miner JH, Renieri A, Savige J, Turner AN. Genetic Modifiers of Mendelian Monogenic Collagen IV Nephropathies in Humans and Mice. Genes (Basel) 2023; 14:1686. [PMID: 37761826 PMCID: PMC10530214 DOI: 10.3390/genes14091686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Familial hematuria is a clinical sign of a genetically heterogeneous group of conditions, accompanied by broad inter- and intrafamilial variable expressivity. The most frequent condition is caused by pathogenic (or likely pathogenic) variants in the collagen-IV genes, COL4A3/A4/A5. Pathogenic variants in COL4A5 are responsible for the severe X-linked glomerulopathy, Alport syndrome (AS), while homozygous or compound heterozygous variants in the COL4A3 or the COL4A4 gene cause autosomal recessive AS. AS usually leads to progressive kidney failure before the age of 40-years when left untreated. People who inherit heterozygous COL4A3/A4 variants are at-risk of a slowly progressive form of the disease, starting with microscopic hematuria in early childhood, developing Alport spectrum nephropathy. Sometimes, they are diagnosed with benign familial hematuria, and sometimes with autosomal dominant AS. At diagnosis, they often show thin basement membrane nephropathy, reflecting the uniform thin glomerular basement membrane lesion, inherited as an autosomal dominant condition. On a long follow-up, most patients will retain normal or mildly affected kidney function, while a substantial proportion will develop chronic kidney disease (CKD), even kidney failure at an average age of 55-years. A question that remains unanswered is how to distinguish those patients with AS or with heterozygous COL4A3/A4 variants who will manifest a more aggressive kidney function decline, requiring prompt medical intervention. The hypothesis that a subgroup of patients coinherit additional genetic modifiers that exacerbate their clinical course has been investigated by several researchers. Here, we review all publications that describe the potential role of candidate genetic modifiers in patients and include a summary of studies in AS mouse models.
Collapse
Affiliation(s)
- Constantinos Deltas
- School of Medicine, University of Cyprus, Nicosia 2109, Cyprus
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Gregory Papagregoriou
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Stavroula F. Louka
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Apostolos Malatras
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Frances Flinter
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | | | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum Rechts der Isar, School of Medicine & Health, Technical University Munich, 81675 Munich, Germany
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9WU, UK
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC 3052, Australia
| | - A. Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
11
|
Williams AE, Esezobor CI, Lane BM, Gbadegesin RA. Hiding in plain sight: genetics of childhood steroid-resistant nephrotic syndrome in Sub-Saharan Africa. Pediatr Nephrol 2023; 38:2003-2012. [PMID: 36459247 PMCID: PMC10416081 DOI: 10.1007/s00467-022-05831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is the most severe form of childhood nephrotic syndrome with an increased risk of progression to chronic kidney disease stage 5. Research endeavors to date have identified more than 80 genes that are associated with SRNS. Most of these genes regulate the structure and function of the podocyte, the visceral epithelial cells of the glomerulus. Although individuals of African ancestry have the highest prevalence of SRNS, especially those from Sub-Saharan Africa (SSA), with rates as high as 30-40% of all cases of nephrotic syndrome, studies focusing on the characterization and understanding of the genetic basis of SRNS in the region are negligible compared with Europe and North America. Therefore, it remains unclear if some of the variants in SRNS genes that are deemed pathogenic for SRNS are truly disease causing, and if the leading causes of monogenic nephrotic syndrome in other populations are the same for children in SSA with SRNS. Other implications of this lack of genetic data for SRNS in the region include the exclusion of children from the region from clinical trials aimed at identifying potential novel therapeutic agents for this severe form of nephrotic syndrome. This review underlines a need for concerted efforts to advance the genetic basis of SRNS in children in SSA. Such endeavors will complement global efforts at understanding the genetic basis of nephrotic syndrome.
Collapse
Affiliation(s)
- Anna Elizabeth Williams
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher I Esezobor
- Department of Pediatrics, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Brandon M Lane
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Rasheed A Gbadegesin
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
Sandholm N, Dahlström EH, Groop PH. Genetic and epigenetic background of diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1163001. [PMID: 37324271 PMCID: PMC10262849 DOI: 10.3389/fendo.2023.1163001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic kidney disease (DKD) is a severe diabetic complication that affects up to half of the individuals with diabetes. Elevated blood glucose levels are a key underlying cause of DKD, but DKD is a complex multifactorial disease, which takes years to develop. Family studies have shown that inherited factors also contribute to the risk of the disease. During the last decade, genome-wide association studies (GWASs) have emerged as a powerful tool to identify genetic risk factors for DKD. In recent years, the GWASs have acquired larger number of participants, leading to increased statistical power to detect more genetic risk factors. In addition, whole-exome and whole-genome sequencing studies are emerging, aiming to identify rare genetic risk factors for DKD, as well as epigenome-wide association studies, investigating DNA methylation in relation to DKD. This article aims to review the identified genetic and epigenetic risk factors for DKD.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emma H. Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Solanki KV, Hu Y, Moore BS, Abedi V, Avula V, Mirshahi T, Strande NT, Bucaloiu ID, Chang AR. The Phenotypic Spectrum of COL4A3 Heterozygotes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.11.23288298. [PMID: 37163122 PMCID: PMC10168410 DOI: 10.1101/2023.04.11.23288298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Most data on Alport Syndrome (AS) due to COL4A3 are limited to families with autosomal recessive AS or severe manifestations such as focal segmental glomerulosclerosis (FSGS). Using data from 174,418 participants in the Geisinger MyCode/DiscovEHR study, an unselected health system-based cohort with whole exome sequencing, we identified 403 participants (0.2%) who were heterozygous for likely pathogenic COL4A3 variants. Phenotypic data was evaluated using International Classification of Diseases (ICD) codes, laboratory data, and chart review. To evaluate the phenotypic spectrum of genetically-determined autosomal dominant AS, we matched COL4A3 heterozygotes 1:5 to non-heterozygotes using propensity scores by demographics, hypertension, diabetes, and nephrolithiasis. COL4A3 heterozygotes were at significantly increased risks of hematuria, decreased estimated glomerular filtration rate (eGFR), albuminuria, and end-stage kidney disease (ESKD) (p<0.05 for all comparisons) but not bilateral sensorineural hearing loss (p=0.9). Phenotypic severity tended to be more severe among patients with glycine missense variants located within the collagenous domain. For example, patients with Gly695Arg (n=161) had markedly increased risk of dipstick hematuria (OR 9.47, 95% CI: 6.30, 14.22) and ESKD diagnosis (OR 7.01, 95% CI: 3.48, 14.12) whereas those with PTVs (n=119) had moderately increased risks of dipstick hematuria (OR 1.63, 95% CI: 1.03, 2.58) and ESKD diagnosis (OR 3.43, 95% CI: 1.28, 9.19). Less than a third of patients had albuminuria screening completed, and fewer than 1/3 were taking inhibitors of the renin-angiotensin-aldosterone system (RAASi). Future studies are needed to evaluate the impact of earlier diagnosis, appropriate evaluation, and treatment of ADAS.
Collapse
Affiliation(s)
| | - Yirui Hu
- Department of Population Health Sciences, Geisinger, Danville, PA
| | - Bryn S Moore
- Department of Genomic Health, Geisinger, Danville, PA
| | - Vida Abedi
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | | | | | - Natasha T Strande
- Department of Genomic Health, Geisinger, Danville, PA
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA
| | | | - Alexander R Chang
- Center for Kidney Health Research, Geisinger, Danville, PA
- Department of Population Health Sciences, Geisinger, Danville, PA
- Regeneron Genetics Center, Sawmill Road, Tarrytown, NY
| |
Collapse
|
14
|
Gregorio VD, Caparali B, Shojaei A, Ricardo S, Barua M. Alport Syndrome: Clinical Spectrum and Therapeutic Advances. Kidney Med 2023; 5:100631. [PMID: 37122389 PMCID: PMC10131117 DOI: 10.1016/j.xkme.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Alport syndrome is a hereditary disorder characterized by kidney disease, ocular abnormalities, and sensorineural hearing loss. Work in understanding the cause of Alport syndrome and the molecular composition of the glomerular basement membrane ultimately led to the identification of COL4A3, COL4A4 (both on chromosome 2q36), and COL4A5 (chromosome Xq22), encoding the α3, α4, and α5 chains of type IV collagen, as the responsible genes. Subsequent studies suggested that autosomal recessive Alport syndrome and males with X-linked Alport syndrome have more severe disease, whereas autosomal dominant Alport syndrome and females with X-linked Alport syndrome have more variability. Variant type is also influential-protein-truncating variants in autosomal recessive Alport syndrome or males with X-linked Alport syndrome often present with severe symptoms, characterized by kidney failure, extrarenal manifestations, and lack of the α3-α4-α5(IV) network. By contrast, mild-moderate forms from missense variants display α3-α4-α5(IV) in the glomerular basement membrane and are associated with protracted kidney involvement without extrarenal manifestations. Regardless of type, therapeutic intervention for kidney involvement is focused on early initiation of angiotensin-converting enzyme inhibitors. There are several therapies under investigation including sodium/glucose cotransporter 2 inhibitors, aminoglycoside analogs, endothelin type A antagonists, lipid-modifying drugs, and hydroxychloroquine, although targeting the underlying defect through gene therapy remains in preclinical stages.
Collapse
|
15
|
Wang D, Trevillian P, May S, Diakumis P, Wang Y, Colville D, Bahlo M, Greferath U, Fletcher E, Young B, Mack HG, Savige J. KCTD1 and Scalp-Ear-Nipple ('Finlay-Marks') syndrome may be associated with myopia and Thin basement membrane nephropathy through an effect on the collagen IV α3 and α4 chains. Ophthalmic Genet 2023; 44:19-27. [PMID: 36579937 DOI: 10.1080/13816810.2022.2144900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Scalp-Ear-Nipple syndrome is caused by pathogenic KCTD1 variants and characterised by a scalp defect, prominent ears, and rudimentary breasts. We describe here further clinical associations in the eye and kidney. METHODS Fifteen affected members from two unrelated families with p.(Ala30Glu) or p.(Pro31Leu) in KCTD1 were examined for ocular and renal abnormalities. The relevant proteins were studied in the eye and kidney, and the mutation consequences determined from mouse knockout models. RESULTS Five males and 10 females with a median age of 40 years (range 1-70) with pathogenic variants p.(Ala30Glu) (n = 12) or p.(Pro31Leu) (n = 3) in KCTD1 were studied. Of the 6 who underwent detailed ophthalmic examination, 5 (83%) had low myopic astigmatism, the mean spherical equivalent of 10 eyes was 2.38D, and one (17%) had hypermetropic astigmatism. One female had a divergent strabismus.Five individuals had renal cysts (5/15, 33%), with renal biopsy in one demonstrating a thinned glomerular basement membrane identical to that seen in Thin basement membrane nephropathy (AD Alport syndrome).In the eye, KCTD1 and its downstream targets, TFAP2, and the collagen IV α3 and α4 chains localised to the cornea and near the retinal amacrine cells. In the kidney, all these proteins except TFAP2 were expressed in the podocytes and distal tubules. TFAP2B and COL4A4 knockout mice also had kidney cysts, and COL4A3 and COL4A4 knockout mice had myopia. CONCLUSION Individuals with a pathogenic KCTD1 variant may have low myopic astigmatism and represent a further rare genetic cause for a thinned glomerular basement membrane.
Collapse
Affiliation(s)
- Dongmao Wang
- Department of Medicine (Northern Health and Melbourne Health), University of Melbourne, Melbourne, Australia
| | - Paul Trevillian
- Department of Nephrology, John Hunter Hospital, Newcastle, Australia
| | - Stephen May
- Renal Unit, Tamworth Hospital, Tamworth, Australia
| | - Peter Diakumis
- Department of Bioinformatics, Walter and Eliza Hall Institute, Parkville, Australia
| | - Yanyan Wang
- Department of Medicine (Northern Health and Melbourne Health), University of Melbourne, Melbourne, Australia
| | - Deb Colville
- Department of Medicine (Northern Health and Melbourne Health), University of Melbourne, Melbourne, Australia
| | - Melanie Bahlo
- Department of Bioinformatics, Walter and Eliza Hall Institute, Parkville, Australia
| | - Una Greferath
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Erica Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Barbara Young
- Department of Pathology John Hunter Hospital, Newcastle, Australia
| | - Heather G Mack
- Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne, Australia
| | - Judy Savige
- Department of Medicine (Northern Health and Melbourne Health), University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Gao Y, Yuan L, Yuan J, Yang Y, Wang J, Chen Y, Zhang H, Ai Y, Deng H. Identification of COL4A4 variants in Chinese patients with familial hematuria. Front Genet 2023; 13:1064491. [PMID: 36699462 PMCID: PMC9868811 DOI: 10.3389/fgene.2022.1064491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Benign familial hematuria and Alport syndrome are common causes of familial hematuria among children and young adults, which are attributable to variants in the collagen type IV alpha chain genes, COL4A3, COL4A4, or COL4A5. The study was conducted to identify the underlying genetic causes in patients with familial hematuria. Methods: Two unrelated Han-Chinese pedigrees with familial hematuria were recruited for this study. Whole exome sequencing was combined with in silico analysis to identify potential genetic variants, followed by variant confirmation by Sanger sequencing. Reverse transcription, PCR, and Sanger sequencing were performed to evaluate the effect of the detected splicing variant on mRNA splicing. Results: A novel heterozygous splicing c.595-1G>A variant and a known heterozygous c.1715G>C variant in the collagen type IV alpha 4 chain gene (COL4A4) were identified and confirmed in patients of pedigree 1 and pedigree 2, respectively. Complementary DNA analysis indicated this splicing variant could abolish the canonical splice acceptor site and cause a single nucleotide deletion of exon 10, which was predicted to produce a truncated protein. Conclusions: The two COL4A4 variants, c.595-1G>A variant and c.1715G>C (p.Gly572Ala) variant, were identified as the genetic etiologies of two families with familial hematuria, respectively. Our study broadened the variant spectrum of the COL4A4 gene and explained the possible pathogenesis, which will benefit clinical management and genetic counseling.
Collapse
Affiliation(s)
- Yanan Gao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Disease Genome Research Center, Central South University, Changsha, China
| | - Jinzhong Yuan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Chen
- National Health Committee Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yinze Ai
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Disease Genome Research Center, Central South University, Changsha, China,*Correspondence: Hao Deng,
| |
Collapse
|
17
|
Thin basement membrane lesion is not only a collagen IV nephropathy: do not underestimate "decorative" additions to collagens. Kidney Int 2022; 102:1203-1205. [PMID: 36041560 DOI: 10.1016/j.kint.2022.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 01/12/2023]
|
18
|
Novel and Founder Pathogenic Variants in X-Linked Alport Syndrome Families in Greece. Genes (Basel) 2022; 13:genes13122203. [PMID: 36553470 PMCID: PMC9778032 DOI: 10.3390/genes13122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Alport syndrome (AS) is the most frequent monogenic inherited glomerulopathy and is also genetically and clinically heterogeneous. It is caused by semi-dominant pathogenic variants in the X-linked COL4A5 (NM_000495.5) gene or recessive variants in the COL4A3/COL4A4 (NM_000091.4/NM_000092.4) genes. The disease manifests in early childhood with persistent microhematuria and can progress to proteinuria and kidney failure in adolescence or early adulthood if left untreated. On biopsy, pathognomonic features include alternate thinning, thickening and lamellation of the glomerular basement membrane (GBM), in the presence of podocyte foot process effacement. Although previous studies indicate a prevalence of AS of about 1/50,000, a recent publication reported a predicted rate of pathogenic COL4A5 variants of 1/2320. We herewith present 98 patients (40 M/58 F) from 26 Greek families. We are selectively presenting the families segregating the X-linked form of AS with pathogenic variants in the COL4A5 gene. We found 21 different pathogenic variants, 12 novel: eight glycine and one proline substitutions in the collagenous domain, one cysteine substitution in the NC1 domain, two premature termination of translation codons, three splicing variants, one 5-bp insertion/frameshift variant, one indel-frameshift variant and four gross deletions. Notably, patients in six families we describe here and three families we reported previously, carried the COL4A5-p.G624D substitution, a founder defect encountered all over Europe which is hypomorphic with mostly milder symptomatology. Importantly, on several occasions, the correct genetic diagnosis reclassified patients as patients with AS, leading to termination of previous immunosuppressive/cyclosporine A therapy and a switch to angiotensin converting enzyme inhibitors (ACEi). With the understanding that all 98 patients span a wide range of ages from infancy to late adulthood, 15 patients (11 M/4 F) reached kidney failure and 11 (10 M/1 F) received a transplant. The prospects of avoiding lengthy diagnostic investigations and erroneous medications, and the advantage of delaying kidney failure with very early administration of renin-angiotensin-aldosterone system (RAAS) blockade, highlights the importance of timely documentation of AS by genetic diagnosis.
Collapse
|
19
|
Hirabayashi Y, Katayama K, Mori M, Matsuo H, Fujimoto M, Joh K, Murata T, Ito M, Dohi K. Mutation Analysis of Thin Basement Membrane Nephropathy. Genes (Basel) 2022; 13:genes13101779. [PMID: 36292665 PMCID: PMC9602179 DOI: 10.3390/genes13101779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022] Open
Abstract
Thin basement membrane nephropathy (TBMN) is characterized by the observation of microhematuria and a thin glomerular basement membrane on kidney biopsy specimens. Its main cause is heterozygous mutations of COL4A3 or COL4A4, which also cause late-onset focal segmental glomerulosclerosis (FSGS) or autosomal dominant Alport syndrome (ADAS). Thirteen TBMN cases were analyzed using Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), and exome sequencing. Ten heterozygous variants were detected in COL4A3 or COL4A4 in nine patients via Sanger sequencing, three of which were novel variants. The diagnostic rate of “likely pathogenic” or “pathogenic” under the American College of Medical Genetics and Genomics guidelines was 53.8% (7 out of 13 patients). There were eight single nucleotide variants, seven of which were glycine substitutions in the collagenous domain, one of which was a splice-site single nucleotide variant, and two of which were deletion variants. One patient had digenic variants in COL4A3 and COL4A4. While MLPA analyses showed negative results, exome sequencing identified three heterozygous variants in causative genes of FSGS in four patients with no apparent variants on Sanger sequencing. Since patients with heterozygous mutations of COL4A3 or COL4A4 showed a wide spectrum of disease from TBMN to ADAS, careful follow-up will be necessary for these patients.
Collapse
Affiliation(s)
- Yosuke Hirabayashi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Correspondence: ; Tel.: +81-59-231-5403; Fax: +81-59-231-5569
| | - Mutsuki Mori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hiroshi Matsuo
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Kidney Center, Suzuka Kaisei Hospital, Suzuka 513-8505, Japan
| | - Mika Fujimoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Internal Medicine, Takeuchi Hospital, Tsu 514-0057, Japan
| | - Kensuke Joh
- Department of Pathology, The Jikei University School of Medicine, Tokyo 105-0003, Japan
| | - Tomohiro Murata
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
20
|
Ćomić J, Riedhammer KM, Günthner R, Schaaf CW, Richthammer P, Simmendinger H, Kieffer D, Berutti R, Tasic V, Abazi-Emini N, Nushi-Stavileci V, Putnik J, Stajic N, Lungu A, Gross O, Renders L, Heemann U, Braunisch MC, Meitinger T, Hoefele J. The multifaceted phenotypic and genotypic spectrum of type-IV-collagen-related nephropathy—A human genetics department experience. Front Med (Lausanne) 2022; 9:957733. [PMID: 36117978 PMCID: PMC9470833 DOI: 10.3389/fmed.2022.957733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Disease-causing variants in COL4A3-5 are associated with type-IV-collagen-related nephropathy, a genetically and phenotypically multifaceted disorder comprising Alport syndrome (AS) and thin basement membrane nephropathy (TBMN) and autosomal, X-linked and a proposed digenic inheritance. Initial symptoms of individuals with AS are microscopic hematuria followed by proteinuria leading to kidney failure (90% on dialysis < age 40 years). In contrast, individuals with TBMN, an outdated histology-derived term, present with microscopic hematuria, only some of them develop kidney failure (>50 years of age). An early diagnosis of type-IV-collagen-related nephropathy is essential for optimized therapy and slowing of the disease. Sixty index cases, in whom exome sequencing had been performed and with disease-causing variant(s) in COL4A3-5, were evaluated concerning their clinical tentative diagnosis and their genotype. Of 60 reevaluated individuals with type-IV-collagen-related nephropathy, 72% had AS, 23% TBMN and 5% focal segmental glomerulosclerosis (FSGS) as clinical tentative diagnosis. The FSGS cases had to be re-classified as having type-IV-collagen-related nephropathy. Twelve percent of cases had AS as clinical tentative diagnosis and a monoallelic disease-causing variant in COL4A3/4 but could not be classified as autosomal dominant AS because of limited or conflicting clinical data. This study illustrates the complex clinical and genetic picture of individuals with a type IV-collagen-related nephropathy indicating the need of a refined nomenclature and the more interdisciplinary teamwork of clinicians and geneticists as the key to optimized patient care.
Collapse
Affiliation(s)
- Jasmina Ćomić
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Korbinian M. Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Roman Günthner
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian W. Schaaf
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Patrick Richthammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Hannes Simmendinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Donald Kieffer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Velibor Tasic
- University Children's Hospital, Medical Faculty of Skopje, Skopje, North Macedonia
| | - Nora Abazi-Emini
- University Children's Hospital, Medical Faculty of Skopje, Skopje, North Macedonia
| | | | - Jovana Putnik
- Institute for Mother and Child Health Care of Serbia “Dr. Vukan Čupić”, Department of Nephrology, University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Nataša Stajic
- Institute for Mother and Child Health Care of Serbia “Dr. Vukan Čupić”, Department of Nephrology, University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Adrian Lungu
- University Children's Hospital, Medical Faculty of Skopje, Skopje, North Macedonia
| | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Matthias C. Braunisch
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- *Correspondence: Julia Hoefele
| |
Collapse
|
21
|
Adeva-Andany MM, Carneiro-Freire N. Biochemical composition of the glomerular extracellular matrix in patients with diabetic kidney disease. World J Diabetes 2022; 13:498-520. [PMID: 36051430 PMCID: PMC9329837 DOI: 10.4239/wjd.v13.i7.498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/19/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
In the glomeruli, mesangial cells produce mesangial matrix while podocytes wrap glomerular capillaries with cellular extensions named foot processes and tether the glomerular basement membrane (GBM). The turnover of the mature GBM and the ability of adult podocytes to repair injured GBM are unclear. The actin cytoskeleton is a major cytoplasmic component of podocyte foot processes and links the cell to the GBM. Predominant components of the normal glomerular extracellular matrix (ECM) include glycosaminoglycans, proteoglycans, laminins, fibronectin-1, and several types of collagen. In patients with diabetes, multiorgan composition of extracellular tissues is anomalous, including the kidney, so that the constitution and arrangement of glomerular ECM is profoundly altered. In patients with diabetic kidney disease (DKD), the global quantity of glomerular ECM is increased. The level of sulfated proteoglycans is reduced while hyaluronic acid is augmented, compared to control subjects. The concentration of mesangial fibronectin-1 varies depending on the stage of DKD. Mesangial type III collagen is abundant in patients with DKD, unlike normal kidneys. The amount of type V and type VI collagens is higher in DKD and increases with the progression of the disease. The GBM contains lower amount of type IV collagen in DKD compared to normal tissue. Further, genetic variants in the α3 chain of type IV collagen may modulate susceptibility to DKD and end-stage kidney disease. Human cellular models of glomerular cells, analyses of human glomerular proteome, and improved microscopy procedures have been developed to investigate the molecular composition and organization of the human glomerular ECM.
Collapse
|
22
|
Xiao H, Hildebrandt F. Whole exome sequencing identifies monogenic forms of nephritis in a previously unsolved cohort of children with steroid-resistant nephrotic syndrome and hematuria. Pediatr Nephrol 2022; 37:1567-1574. [PMID: 34762194 PMCID: PMC10043783 DOI: 10.1007/s00467-021-05312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alport syndrome (AS), atypical hemolytic-uremic syndrome (aHUS), and fibronectin-glomerulopathy (FG) are rare forms of glomerular diseases that manifest in a combination of proteinuria, hematuria, and hypertension, referred to as nephritic syndrome. Due to phenotypic overlays, steroid-resistant nephrotic syndrome (SRNS) and nephritic syndrome have been difficult to discern diagnostically. SRNS is more common than nephritic syndrome and is the second leading cause of childhood-onset CKD. Fourteen monogenic causes of AS, aHUS, and FG and 60 monogenic causes of SRNS have been identified. As whole exome sequencing (WES) allows for unequivocal molecular genetic diagnostics, we hypothesize to be able to identify causative mutations in genes known to cause nephritic syndrome in patient cohorts with a clinical diagnosis of SRNS. METHODS We identified patients with hematuria and steroid-resistant proteinuria in an international patient cohort that we had submitted to WES and who were unsolved for known monogenic causes of SRNS. These 70 patients from 65 individual families were subsequently analyzed for causative mutations in 14 AS, aHUS, or FG causing genes. WES data were compared to a control cohort of 76 patients from 75 families that were diagnosed with nephronophthisis-related ciliopathies (NPHP-RC) and to a control cohort of 83 individuals from 75 families with SRNS, but without hematuria. RESULTS We detected likely pathogenic genetic variants in 3 of 65 families (4.6%) in 2 of the 14 genes analyzed. CONCLUSIONS We confirmed that in cohorts of childhood-onset SRNS, patients with nephritic syndrome can be discerned by WES. The findings highlight the importance of clinical genetic testing for therapeutic and preventative measures in patients with proteinuria. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Hongbo Xiao
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Ye Q, Lan B, Liu H, Persson PB, Lai EY, Mao J. A critical role of the podocyte cytoskeleton in the pathogenesis of glomerular proteinuria and autoimmune podocytopathies. Acta Physiol (Oxf) 2022; 235:e13850. [PMID: 35716094 DOI: 10.1111/apha.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2023]
Abstract
Selective glomerular filtration relies on the membrane separating the glomerular arterioles from the Bowman space. As a major component of the glomerular filtration barrier, podocytes form foot processes by the actin cytoskeleton, which dynamically adjusts in response to environmental changes to maintain filtration barrier integrity. The slit diaphragms bridge the filtration slits between neighboring foot processes and act as signaling hubs interacting with the actin cytoskeleton. Focal adhesions relay signals to regulate actin dynamics while allowing podocyte adherence to the basement membrane. Mutations in actin regulatory and signaling proteins may disrupt the actin cytoskeleton, resulting in foot process retraction, effacement, and proteinuria. Large-scale gene expression profiling platforms, transgenic animal models, and other in vivo gene delivery methods now enhance our understanding of the interactions among podocyte focal adhesions, slit diaphragms, and actin dynamics. In addition, our team found that at least 66% of idiopathic nephrotic syndrome (INS) children have podocyte autoantibodies, which was defined as a new disease subgroup-, autoimmune podocytopathies. This review outlines the pathophysiological mechanisms of podocyte cytoskeleton protein interactions in proteinuria and glomerular podocytopathy.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Bing Lan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Huihui Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Translational Physiology, Berlin, Germany
| | - En Yin Lai
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Translational Physiology, Berlin, Germany.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
24
|
Savige J. Heterozygous pathogenic COL4A3 or COL4A4 variants (AD Alport syndrome) is common, and not typically associated with end-stage kidney failure, hearing loss or ocular abnormalities. Kidney Int Rep 2022; 7:1933-1938. [PMID: 36090501 PMCID: PMC9458992 DOI: 10.1016/j.ekir.2022.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
The term “autosomal dominant (AD) Alport syndrome” is often used to describe the condition associated with heterozygous pathogenic COL4A3 or COL4A4 variants and has largely replaced “thin basement membrane nephropathy (TBMN).” AD Alport syndrome implies that affected individuals develop end-stage kidney failure (ESKF) as well as the typical Alport hearing loss and ocular abnormalities, but these features have been considered rare with TBMN. Recent studies suggest that ESKF occurs in 14% to 30% of those with heterozygous pathogenic COL4A3 or COL4A4 variants but confirm that the hearing loss and ocular defects occur uncommonly if at all. Uncertainty over the risk of ESKF has persisted. However all the cited studies of heterozygous pathogenic COL4A3 or COL4A4 variants and kidney failure are from hospital-based patients and thus biased toward more severe disease. Multiple unselected cohorts with ESKF have found heterozygous pathogenic variants in COL4A3 and COL4A4 occur about as often as COL4A5 variants, which suggests that AD Alport syndrome causes ESKF as often as X-linked (XL) disease. In the normal population, heterozygous pathogenic COL4A3 and COL4A4 variants are present 20 times more often than COL4A5 variants. Therefore, AD Alport syndrome is complicated by ESKF 20 times less often than XL disease and occurs in fewer than 3% of those with pathogenic COL4A3 or COL4A4 variants by the age of 60. Nevertheless, individuals with heterozygous pathogenic COL4A3 or COL4A4 variants referred to a hospital are still more likely to develop impaired kidney function than those who remain at home undiagnosed.
Collapse
|
25
|
Daga S, Ding J, Deltas C, Savige J, Lipska-Ziętkiewicz BS, Hoefele J, Flinter F, Gale DP, Aksenova M, Kai H, Perin L, Barua M, Torra R, Miner JH, Massella L, Ljubanović DG, Lennon R, Weinstock AB, Knebelmann B, Cerkauskaite A, Gear S, Gross O, Turner AN, Baldassarri M, Pinto AM, Renieri A. The 2019 and 2021 International Workshops on Alport Syndrome. Eur J Hum Genet 2022; 30:507-516. [PMID: 35260866 PMCID: PMC8904161 DOI: 10.1038/s41431-022-01075-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Sergio Daga
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Jie Ding
- Peking University First Hospital, Beijing, China
| | - Constantinos Deltas
- Biobank.cy Center of Excellence in Biobanking and Biomedical Research and University of Cyprus Medical School, Nicosia, Cyprus
| | - Judy Savige
- Department of Medicine, Melbourne and Northern Health, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Beata S Lipska-Ziętkiewicz
- Rare Diseases Centre, Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdansk, Poland
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Frances Flinter
- Department of Clinical Genetics, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
- Rare Renal Disease Registry, UK Renal Registry, Bristol, UK
| | - Marina Aksenova
- Y. Veltischev Research and Clinical Institute for Pediatrics at the Pirogov Russian National Research Medical University, Taldomskaya Street, 2, Moscow, 125412, Russia
| | - Hirofumi Kai
- Department of Molecular Medicine, Kumamoto University, Kumamoto, Japan
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Moumita Barua
- Toronto General Hospital, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada
| | - Roser Torra
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, IIB-Sant Pau, Medicine Department, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jeff H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura Massella
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Danica Galešić Ljubanović
- University of Zagreb School of Medicine, Department of Pathology and Department of Nephropathology and Electron Microscopy Dubrava University Hospital, Zagreb, Croatia
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Bertrand Knebelmann
- Nephrology Department, Reference Center for Inherited Kidney Diseases (MARHEA), APHP, Necker Hospital, Paris University, Paris, France
| | - Agne Cerkauskaite
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | - Oliver Gross
- Department of Nephrology and Rheumatology, University Medicine Goettingen, Gottingen, Germany
| | - A Neil Turner
- Centre for Inflammation, University of Edinburgh, Edinburgh, UK
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy.
| |
Collapse
|
26
|
Gagliano Taliun SA, Sulem P, Sveinbjornsson G, Gudbjartsson DF, Stefansson K, Paterson AD, Barua M. GWAS of Hematuria. Clin J Am Soc Nephrol 2022; 17:672-683. [PMID: 35474271 PMCID: PMC9269584 DOI: 10.2215/cjn.13711021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/21/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Glomerular hematuria has varied causes but can have a genetic basis, including Alport syndrome and IgA nephropathy. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We used summary statistics to identify genetic variants associated with hematuria in White British UK Biobank participants. Individuals with glomerular hematuria were enriched by excluding participants with genitourinary conditions. A strongly associated locus on chromosome 2 (COL4A4-COL4A3) was identified. The region was reimputed using the Trans-Omics for Precision Medicine Program followed by sequential rounds of regional conditional analysis, conditioning on previous genetic signals. Similarly, we applied conditional analysis to identify independent variants in the MHC region on chromosome 6 using imputed HLA haplotypes. RESULTS In total, 16,866 hematuria cases and 391,420 controls were included. Cases had higher urinary albumin-creatinine compared with controls (women: 13.01 mg/g [8.05-21.33] versus 12.12 mg/g [7.61-19.29]; P<0.001; men: 8.85 mg/g [5.66-16.19] versus 7.52 mg/g [5.04-12.39]; P<0.001) and lower eGFR (women: 88±14 versus 90±13 ml/min per 1.72 m2; P<0.001; men: 87±15 versus 90±13 ml/min per 1.72 m2; P<0.001), supporting enrichment of glomerular hematuria. Variants at six loci (PDPN, COL4A4-COL4A3, HLA-B, SORL1, PLLP, and TGFB1) met genome-wide significance (P<5E-8). At chromosome 2, COL4A4 p.Ser969X (rs35138315; minor allele frequency=0.00035; P<7.95E-35; odds ratio, 87.3; 95% confidence interval, 47.9 to 159.0) had the most significant association, and two variants in the locus remained associated with hematuria after conditioning for this variant: COL4A3 p.Gly695Arg (rs200287952; minor allele frequency=0.00021; P<2.16E-7; odds ratio, 45.5; 95% confidence interval, 11.8 to 168.0) and a common COL4A4 intron 25 variant (not previously reported; rs58261427; minor allele frequency=0.214; P<2.00E-9; odds ratio, 1.09; 95% confidence interval, 1.06 to 1.12). Of the HLA haplotypes, HLA-B (*0801; minor allele frequency=0.14; P<4.41E-24; odds ratio, 0.84; 95% confidence interval, 0.82 to 0.88) displayed the most statistically significant association. For remaining loci, we identified three novel associations, which were replicated in the deCODE dataset for dipstick hematuria (nearest genes: PDPN, SORL1, and PLLP). CONCLUSIONS Our study identifies six loci associated with hematuria, including independent variants in COL4A4-COL4A3 and HLA-B. Additionally, three novel loci are reported, including an association with an intronic variant in PDPN expressed in the podocyte. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_04_26_CJN13711021.mp3.
Collapse
Affiliation(s)
- Sarah A. Gagliano Taliun
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada,Research Centre, Montréal Heart Institute, Montreal, Quebec, Canada
| | | | | | | | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Andrew D. Paterson
- Division of Epidemiology, Dalla Lana School of Public Health, Toronto, Ontario, Canada,Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Ontario, Canada,Genetics and Genome Biology, Research Institute at The Hospital for Sick Children, Toronto, Ontario, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Moumita Barua
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada,Division of Nephrology, University Health Network, Toronto, Ontario, Canada,Department of Medicine, University of Toronto, Toronto, Ontario, Canada,Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Sato M, Manabe S, Itabashi M, Horita S, Hirose O, Kawashima M, Nishida M, Kataoka H, Taneda S, Mochizuki T, Nitta K. Slowly Progressive Male Alport Syndrome Evaluated by Serial Biopsy: Importance of Type IV Collagen Staining. Intern Med 2022; 61:1205-1209. [PMID: 34645753 PMCID: PMC9107991 DOI: 10.2169/internalmedicine.7372-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022] Open
Abstract
A slowly progressive middle-aged man initially diagnosed with thin basement membrane nephropathy based on extensive thinning of the glomerular basement membrane (GBM) was subsequently diagnosed with Alport syndrome (AS) by a serial renal biopsy eight years later. The ultrastructural analysis of the second biopsy indicated thickening and wrinkling with mild reticulation in the GBM, consistent with AS. However, a retrospective analysis of the first biopsy revealed mild attenuation of type IV collagen α5 chain staining, suggesting a potential diagnosis of AS, despite the lack of ultrastructural features of AS. We herein report the clinical usefulness of type IV collagen staining in the early diagnosis of AS.
Collapse
Affiliation(s)
- Masayo Sato
- Department of Nephrology, Tokyo Women's Medical University, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women's Medical University, Japan
| | - Mitsuyo Itabashi
- Department of Nephrology, Tokyo Women's Medical University, Japan
| | - Shigeru Horita
- Department of Clinical Laboratory Medicine, Tokyo Women's Medical University Hospital, Japan
| | - Orie Hirose
- Department of Pathology, Tokyo Women's Medical University, Japan
| | - Moe Kawashima
- Department of Nephrology, Tokyo Women's Medical University, Japan
| | - Miki Nishida
- Department of Nephrology, Tokyo Women's Medical University, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women's Medical University, Japan
- Clinical Research Division for Polycystic Kidney Disease, Department of Medicine, Kidney Center, Tokyo Women's Medical University, Japan
| | - Sekiko Taneda
- Department of Pathology, Tokyo Women's Medical University, Japan
| | - Toshio Mochizuki
- Department of Nephrology, Tokyo Women's Medical University, Japan
- Clinical Research Division for Polycystic Kidney Disease, Department of Medicine, Kidney Center, Tokyo Women's Medical University, Japan
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women's Medical University, Japan
| |
Collapse
|
28
|
Cerkauskaite A, Savige J, Janonyte K, Jeremiciute I, Miglinas M, Kazenaite E, Laurinavicius A, Strupaite-Sileikiene R, Vainutiene V, Burnyte B, Jankauskiene A, Rolfs A, Bauer P, Schröder S, Cerkauskiene R. Identification of 27 Novel Variants in Genes COL4A3, COL4A4, and COL4A5 in Lithuanian Families With Alport Syndrome. Front Med (Lausanne) 2022; 9:859521. [PMID: 35419377 PMCID: PMC8995700 DOI: 10.3389/fmed.2022.859521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Alport syndrome (AS) is an inherited disorder characterized by hematuria, proteinuria, and kidney function impairment, and frequently associated with extrarenal manifestations. Pathogenic variants in COL4A5 usually cause X-linked Alport syndrome (XLAS), whereas those in the COL4A3 or COL4A4 genes are associated with autosomal dominant (AD) or recessive (AR) inheritance. To date, more than 3000 different disease-causing variants in COL4A5, COL4A3, and COL4A4 have been identified. The aim of this study was to evaluate the clinical and genetic spectrum of individuals with novel, pathogenic or likely pathogenic variants in the COL4A3-A5 genes in a previously unstudied cohort. Methods In this study molecular analysis by next generation sequencing (NGS) was performed on individuals from a Lithuanian cohort, with suspected AS. The presence of AS was assessed by reviewing clinical evidence of hematuria, proteinuria, chronic kidney disease (CKD), kidney failure (KF), a family history of AS or persistent hematuria, and specific histological lesions in the kidney biopsy such as thinning or lamellation of the glomerular basement membrane (GBM). Clinical, genetic, laboratory, and pathology data were reviewed. The novelty of the COL4A3-A5 variants was confirmed in the genetic variant databases (Centogene, Franklin, ClinVar, Varsome, InterVar). Only undescribed variants were included in this study. Results Molecular testing of 171 suspected individuals led to the detection of 99 individuals with 44 disease causing variants including 27, previously undescribed changes, with the frequency of 9/27 (33,3%) in genes COL4A5, COL4A3 and COL4A4 equally. Three individuals were determined as having digenic AS causing variants: one in COL4A3 and COL4A4, two in COL4A4 and COL4A5. The most prevalent alterations in genes COL4A3-5 were missense variants (n = 19), while splice site, frameshift, unknown variant and stop codon changes were detected more in genes COL4A4 and COL4A5 and accounted for 3, 3, 1 and 1 of all novel variants, respectively. Conclusion Genotype-phenotype correlation analysis suggested that some variants demonstrated intra-familial phenotypic variability. These novel variants represented more than half of all the variants found in a cohort of 171 individuals from 109 unrelated families who underwent testing. Our study expands the knowledge of the genetic and phenotypic spectrum for AS.
Collapse
Affiliation(s)
- Agne Cerkauskaite
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Marius Miglinas
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Edita Kazenaite
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Vija Vainutiene
- Centre of Ear, Nose and Throat Diseases, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Birute Burnyte
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Augustina Jankauskiene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Arndt Rolfs
- Albrecht Kossel Institute for Neuroregeneration, University of Rostock, Rostock, Germany
| | | | | | - Rimante Cerkauskiene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
29
|
Oda Y, Sawa N, Nozu K, Ubara Y. Refractory focal segmental glomerulosclerosis caused by Alport syndrome detected by genetic testing after three decades. BMJ Case Rep 2022; 15:e247393. [PMID: 35288428 PMCID: PMC8921854 DOI: 10.1136/bcr-2021-247393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 01/13/2023] Open
Abstract
A woman in her 50s with a three-decade history of biopsy-proven focal segmental glomerulosclerosis and a family history of end-stage kidney disease presented with worsening proteinuria and declining kidney function after three decades of immunosuppressive therapy. While a repeat kidney biopsy did not reveal findings diagnostic of Alport syndrome, genetic testing demonstrated a heterozygous mutation in COL4A5, which confirmed the diagnosis of X-linked Alport syndrome. The heterozygous in-frame deletion mutation may explain her intact hearing and relatively mild symptoms. Genetic testing enables diagnosis of Alport syndrome of various phenotypes, some of which cannot be diagnosed conventionally with clinical course and kidney biopsy. Genetic disorders including collagen IV nephropathy should be considered as a differential diagnosis in patients with focal segmental glomerulosclerosis, especially when a patient has early-onset proteinuria, a family history of kidney disease, syndromic features or proteinuria refractory to glucocorticoid treatment.
Collapse
Affiliation(s)
- Yasuhiro Oda
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Naoki Sawa
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| |
Collapse
|
30
|
Lu L, Yap Y, Nguyen DQ, Chan Y, Ng J, Zhang Y, Chan C, Than M, Liu ID, Asim S, Moorani K, Naeem B, Ijaz I, Nguyen TMT, Lee M, Eng C, Huque SS, Ng Y, Ganesan I, Chao S, Chong S, Tan P, Loh A, Davila S, Kumar V, Ling JZ, Moorakonda RB, Tan KM, Ng AY, Poon K, Schaefer F, Lipska‐Zietkiewicz B, Yap H, Ng K. Multicenter Study on the Genetics of Glomerular Diseases among Southeast and South Asians: The
DRAGoN
Study. Clin Genet 2022; 101:541-551. [DOI: 10.1111/cge.14116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Liangjian Lu
- Khoo Teck Puat‐National University Children's Medical Institute National University Health System Singapore
| | | | | | | | - Jun‐Li Ng
- Khoo Teck Puat‐National University Children's Medical Institute National University Health System Singapore
- Paediatrics National University of Singapore Singapore
| | - Yao‐Chun Zhang
- Khoo Teck Puat‐National University Children's Medical Institute National University Health System Singapore
- Paediatrics National University of Singapore Singapore
| | - Chang‐Yien Chan
- Khoo Teck Puat‐National University Children's Medical Institute National University Health System Singapore
- Paediatrics National University of Singapore Singapore
| | - Mya Than
- Khoo Teck Puat‐National University Children's Medical Institute National University Health System Singapore
- Paediatrics National University of Singapore Singapore
| | - Isaac Desheng Liu
- Khoo Teck Puat‐National University Children's Medical Institute National University Health System Singapore
| | - Sadaf Asim
- Paediatric Nephrology National Institute of Child Health Pakistan
| | | | - Bilquis Naeem
- Paediatric Nephrology National Institute of Child Health Pakistan
| | | | | | | | | | - Syed Saimul Huque
- Paediatric Nephrology Bangabandhu Sheikh Mujib Medical University Bangladesh
| | | | | | | | | | - Puay‐Hoon Tan
- Anatomical Pathology Singapore General Hospital Singapore
| | - Alwin Loh
- Anatomical Pathology Singapore General Hospital Singapore
| | - Sonia Davila
- Institute of Precision Medicine Duke‐NUS Singapore
| | | | | | | | | | - Alvin Yu‐Jin Ng
- Molecular Diagnosis Centre National University Hospital Singapore
| | - Kok‐Siong Poon
- Molecular Diagnosis Centre National University Hospital Singapore
| | - Franz Schaefer
- Paediatrics Nephrology Center for Paediatrics and Adolescent Medicine Germany
| | | | - Hui‐Kim Yap
- Khoo Teck Puat‐National University Children's Medical Institute National University Health System Singapore
- Paediatrics National University of Singapore Singapore
| | - Kar‐Hui Ng
- Khoo Teck Puat‐National University Children's Medical Institute National University Health System Singapore
- Paediatrics National University of Singapore Singapore
| | | |
Collapse
|
31
|
A Novel Homozygous Mutation in the COL4A4 Gene (Gly1436del) Causing Alport Syndrome Exposed by Pregnancy: A Case Report and Review of the Literature. Case Rep Nephrol 2022; 2022:5243137. [PMID: 35028164 PMCID: PMC8752291 DOI: 10.1155/2022/5243137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Background Alport syndrome results from a hereditary defect of collagen IV synthesis. This causes progressive glomerular disease, ocular abnormalities, and inner ear impairment. Case Presentation. Herein, we present a case of Alport syndrome in a 28-year-old woman caused by a novel mutation (Gly1436del) in the COL4A4 gene that was not unveiled until her first pregnancy. Within the 29th pregnancy week, our patient presented with massive proteinuria and nephrotic syndrome. Light microscopic examination of a kidney biopsy showed typical histological features of segmental sclerosis, and electron microscopy revealed extensive podocyte alterations as well as thickness of glomerular basement membranes with splitting of the lamina densa. One and a half years after childbirth, renal function deteriorated to a preterminal stage, whereas nephrotic syndrome subsided quickly after delivery. Conclusion This case report highlights the awareness of atypical AS courses and emphasizes the importance of genetic testing in such cases.
Collapse
|
32
|
Savige J, Lipska-Zietkiewicz BS, Watson E, Hertz JM, Deltas C, Mari F, Hilbert P, Plevova P, Byers P, Cerkauskaite A, Gregory M, Cerkauskiene R, Ljubanovic DG, Becherucci F, Errichiello C, Massella L, Aiello V, Lennon R, Hopkinson L, Koziell A, Lungu A, Rothe HM, Hoefele J, Zacchia M, Martic TN, Gupta A, van Eerde A, Gear S, Landini S, Palazzo V, al-Rabadi L, Claes K, Corveleyn A, Van Hoof E, van Geel M, Williams M, Ashton E, Belge H, Ars E, Bierzynska A, Gangemi C, Renieri A, Storey H, Flinter F. Guidelines for Genetic Testing and Management of Alport Syndrome. Clin J Am Soc Nephrol 2022; 17:143-154. [PMID: 34930753 PMCID: PMC8763160 DOI: 10.2215/cjn.04230321] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic testing for pathogenic COL4A3-5 variants is usually undertaken to investigate the cause of persistent hematuria, especially with a family history of hematuria or kidney function impairment. Alport syndrome experts now advocate genetic testing for persistent hematuria, even when a heterozygous pathogenic COL4A3 or COL4A4 is suspected, and cascade testing of their first-degree family members because of their risk of impaired kidney function. The experts recommend too that COL4A3 or COL4A4 heterozygotes do not act as kidney donors. Testing for variants in the COL4A3-COL4A5 genes should also be performed for persistent proteinuria and steroid-resistant nephrotic syndrome due to suspected inherited FSGS and for familial IgA glomerulonephritis and kidney failure of unknown cause.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Victoria, Australia
| | | | - Elizabeth Watson
- South West Genetic Laboratory Hub, North Bristol Trust, Bristol, United Kingdom
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research, University of Cyprus Medical School, Nicosia, Cyprus
| | - Francesca Mari
- Department of Medical Biotechnology, Medical Genetics, University of Siena, Siena, Italy
| | - Pascale Hilbert
- Departement de Biologie Moleculaire, Institute de Pathologie et de Genetique, Gosselies, Belgium
| | - Pavlina Plevova
- Department of Medical Genetics, University Hospital of Ostrava, Ostrava, Czech Republic
- Department of Biomedical Sciences, University Hospital of Ostrava, Ostrava, Czech Republic
| | - Peter Byers
- Department of Pathology, University of Washington, Seattle, Washington
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington
| | - Agne Cerkauskaite
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Martin Gregory
- Division of Nephrology, Department of Medicine, University of Utah Health, Salt Lake City, Utah
| | - Rimante Cerkauskiene
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Danica Galesic Ljubanovic
- Department of Pathology, University of Zagreb, School of Medicine, Dubrava University Hospital, Zagreb, Croatia
| | | | | | - Laura Massella
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital, Rome, Italy
| | - Valeria Aiello
- Department of Experimental Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Louise Hopkinson
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ania Koziell
- School of Immunology and Microbial Sciences, Faculty of Life Sciences, King's College London, London, United Kingdom
| | - Adrian Lungu
- Pediatric Nephrology Department, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Julia Hoefele
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | | | | | - Asheeta Gupta
- Birmingham Children’s Hospital, Birmingham, United Kingdom
| | | | | | - Samuela Landini
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Laith al-Rabadi
- Health Sciences Centre, University of Utah, Salt Lake City, Utah
| | - Kathleen Claes
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, University Hospitals and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Evelien Van Hoof
- Center for Human Genetics, University Hospitals and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Micheel van Geel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maggie Williams
- Bristol Genetics Laboratory Pathology Sciences, Southmead Hospital, Southmead, United Kingdom
| | - Emma Ashton
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, United Kingdom
| | - Hendica Belge
- Institut de Pathologie et de Génétique, Center for Human Genetics, Gosselies, Belgium
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundacio Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autonoma de Barcelona, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Agnieszka Bierzynska
- Bristol Renal Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Concetta Gangemi
- Division of Nephrology and Dialysis, University Hospital of Verona, Verona, Italy
| | - Alessandra Renieri
- Department of Medical Biotechnology, Medical Genetics, University of Siena, Siena, Italy
| | - Helen Storey
- Molecular Genetics, Viapath Laboratories, Guy’s Hospital, London, United Kingdom
| | - Frances Flinter
- Department of Clinical Genetics, Guy’s and St. Thomas’ National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
33
|
Tantisattamo E, Reddy UG, Ichii H, Ferrey AJ, Dafoe DC, Ioannou N, Xie J, Pitman TR, Hendricks E, Eguchi N, Kalantar-Zadeh K. Is It Time to Utilize Genetic Testing for Living Kidney Donor Evaluation? Nephron Clin Pract 2021; 146:220-226. [PMID: 34883493 DOI: 10.1159/000520150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
Living donor kidney transplantation is an effective strategy to mitigate the challenges of solid organ shortage. However, being a living kidney donor is not without risk, as donors may encounter short- and long-term complications including the risk of developing chronic kidney disease, end-stage kidney disease, hypertension, and possible pregnancy-related complications. Although the evaluation of potential living donors is a thorough and meticulous process with the intention of decreasing the chance of complications, particularly in donors who have lifetime risk projection, risk factors for kidney disease including genetic predispositions may be missed because they are not routinely investigated. This type of testing may not be offered to patients due to variability and decreased penetrance of symptoms and lack of availability of appropriate genetic testing and genetic specialists. We report a case of a middle-aged woman with a history of gestational diabetes and preeclampsia who underwent an uneventful living kidney donation. She developed postdonation nonnephrotic range proteinuria and microscopic hematuria. Given the risk of biopsy with a solitary kidney, genetic testing was performed and revealed autosomal dominant Alport syndrome. Our case underscores the utility of genetic testing. Hopefully, future research will examine the incorporation of predonation genetic testing into living kidney donor evaluation.
Collapse
Affiliation(s)
- Ekamol Tantisattamo
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA.,Nephrology Section, Department of Medicine, Tibor Rubin Veterans Affairs Medical Center, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA.,Multi-Organ Transplant Center, Section of Nephrology, Department of Internal Medicine, William Beaumont Hospital, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | - Uttam G Reddy
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA.,Nephrology Section, Department of Medicine, Tibor Rubin Veterans Affairs Medical Center, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
| | - Hirohito Ichii
- Division of Kidney and Pancreas Transplantation, Department of Surgery, University of California Irvine School of Medicine, Orange, California, USA
| | - Antoney J Ferrey
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA.,Nephrology Section, Department of Medicine, Tibor Rubin Veterans Affairs Medical Center, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
| | - Donald C Dafoe
- Division of Kidney and Pancreas Transplantation, Department of Surgery, University of California Irvine School of Medicine, Orange, California, USA
| | - Nick Ioannou
- Transplant and Renal Genetics, Natera Inc, San Carlos, California, USA
| | - Jing Xie
- Transplant and Renal Genetics, Natera Inc, San Carlos, California, USA
| | - Tessa R Pitman
- Transplant and Renal Genetics, Natera Inc, San Carlos, California, USA
| | - Emily Hendricks
- Transplant and Renal Genetics, Natera Inc, San Carlos, California, USA
| | - Natsuki Eguchi
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA.,Division of Kidney and Pancreas Transplantation, Department of Surgery, University of California Irvine School of Medicine, Orange, California, USA
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA.,Nephrology Section, Department of Medicine, Tibor Rubin Veterans Affairs Medical Center, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA.,Lundquist Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
34
|
Gibson J, Fieldhouse R, Chan MM, Sadeghi-Alavijeh O, Burnett L, Izzi V, Persikov AV, Gale DP, Storey H, Savige J. Prevalence Estimates of Predicted Pathogenic COL4A3-COL4A5 Variants in a Population Sequencing Database and Their Implications for Alport Syndrome. J Am Soc Nephrol 2021; 32:2273-2290. [PMID: 34400539 PMCID: PMC8729840 DOI: 10.1681/asn.2020071065] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The reported prevalence of Alport syndrome varies from one in 5000 to one in 53,000 individuals. This study estimated the frequencies of predicted pathogenic COL4A3-COL4A5 variants in sequencing databases of populations without known kidney disease. METHODS Predicted pathogenic variants were identified using filtering steps based on the ACMG/AMP criteria, which considered collagen IV α3-α5 position 1 Gly to be critical domains. The population frequencies of predicted pathogenic COL4A3-COL4A5 variants were then determined per mean number of sequenced alleles. Population frequencies for compound heterozygous and digenic combinations were calculated from the results for heterozygous variants. RESULTS COL4A3-COL4A5 variants resulting in position 1 Gly substitutions were confirmed to be associated with hematuria (for each, P<0.001). Predicted pathogenic COL4A5 variants were found in at least one in 2320 individuals. p.(Gly624Asp) represented nearly half (16 of 33, 48%) of the variants in Europeans. Most COL4A5 variants (54 of 59, 92%) had a biochemical feature that potentially mitigated the clinical effect. The predicted pathogenic heterozygous COL4A3 and COL4A4 variants affected one in 106 of the population, consistent with the finding of thin basement membrane nephropathy in normal donor kidney biopsy specimens. Predicted pathogenic compound heterozygous variants occurred in one in 88,866 individuals, and digenic variants in at least one in 44,793. CONCLUSIONS The population frequencies for Alport syndrome are suggested by the frequencies of predicted pathogenic COL4A3-COL4A5 variants, but must be adjusted for the disease penetrance of individual variants and for the likelihood of already diagnosed disease and non-Gly substitutions. Disease penetrance may depend on other genetic and environmental factors.
Collapse
Affiliation(s)
- Joel Gibson
- The University of Melbourne Department of Medicine, Melbourne Health and Northern Health, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Rachel Fieldhouse
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Melanie M.Y. Chan
- Department of Renal Medicine, University College London, London, United Kingdom,Genomics England, Queen Mary University of London, London, United Kingdom
| | - Omid Sadeghi-Alavijeh
- Department of Renal Medicine, University College London, London, United Kingdom,Genomics England, Queen Mary University of London, London, United Kingdom
| | - Leslie Burnett
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Valerio Izzi
- Center for Cell-Matrix Research and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anton V. Persikov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London, United Kingdom,Genomics England, Queen Mary University of London, London, United Kingdom
| | - Helen Storey
- Molecular Genetics, Viapath Laboratories, Guy’s Hospital, London, United Kingdom
| | - Judy Savige
- The University of Melbourne Department of Medicine, Melbourne Health and Northern Health, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
35
|
Savige J, Harraka P. Pathogenic Variants in the Genes Affected in Alport Syndrome (COL4A3-COL4A5) and Their Association With Other Kidney Conditions: A Review. Am J Kidney Dis 2021; 78:857-864. [PMID: 34245817 DOI: 10.1053/j.ajkd.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/23/2021] [Indexed: 01/15/2023]
Abstract
Massively Parallel Sequencing identifies pathogenic variants in the genes affected in Alport syndrome (COL4A3 - COL4A5) in up to 30 % of individuals with focal and segmental glomerulosclerosis (FSGS), 10 % of those with kidney failure of unknown cause and 20 % with familial IgA glomerulonephritis. FSGS associated with COL4A3 - COL4A5 variants is usually present by kidney failure onset and may develop because the abnormal glomerular membranes result in podocyte loss and secondary hyperfiltration. The association of COL4A3 - COL4A5 variants with kidney failure or IgA glomerulonephritis may be coincidental and not pathogenic. However, since some of these variants occur more often than they should by chance, some may be pathogenic. COL4A3 - COL4A5 variants are sometimes also found in cystic kidney diseases after autosomal dominant polycystic kidney disease (ADPKD) has been excluded. COL4A3 - COL4A5 variants should be suspected in individuals with FSGS, kidney failure of unknown cause, or familial IgA glomerulonephritis, especially where there is persistent haematuria, and a family history of haematuria or kidney failure.
Collapse
Affiliation(s)
- Judy Savige
- The University of Melbourne Department of Medicine, Melbourne Health and Northern Health, Royal Melbourne Hospital, Parkville VIC 3050 AUSTRALIA.
| | - Philip Harraka
- The University of Melbourne Department of Medicine, Melbourne Health and Northern Health, Royal Melbourne Hospital, Parkville VIC 3050 AUSTRALIA
| |
Collapse
|
36
|
Quinlan C, Rheault MN. Genetic Basis of Type IV Collagen Disorders of the Kidney. Clin J Am Soc Nephrol 2021; 16:1101-1109. [PMID: 33849932 PMCID: PMC8425620 DOI: 10.2215/cjn.19171220] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The glomerular basement membrane is a vital component of the filtration barrier of the kidney and is primarily composed of a highly structured matrix of type IV collagen. Specific isoforms of type IV collagen, the α3(IV), α4(IV), and α5(IV) isoforms, assemble into trimers that are required for normal glomerular basement membrane function. Disruption or alteration in these isoforms leads to breakdown of the glomerular basement membrane structure and function and can lead to progressive CKD known as Alport syndrome. However, there is wide variability in phenotype among patients with mutations affecting type IV collagen that depends on a complex interplay of sex, genotype, and X-chromosome inactivation. This article reviews the genetic basis of collagen disorders of the kidney as well as potential treatments for these conditions, including direct alteration of the DNA, RNA therapies, and manipulation of collagen proteins.
Collapse
Affiliation(s)
- Catherine Quinlan
- Department of Nephrology, Royal Children’s Hospital, Melbourne, Victoria, Australia,Department of Kidney Regeneration, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle N. Rheault
- Division of Pediatric Nephrology, Department of Pediatrics, University of Minnesota Masonic Children’s Hospital, Minneapolis, Minnesota
| |
Collapse
|
37
|
Next-generation sequencing in patients with familial FSGS: first report of collagen gene mutations in Tunisian patients. J Hum Genet 2021; 66:795-803. [PMID: 33654185 DOI: 10.1038/s10038-021-00912-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 02/16/2021] [Indexed: 11/08/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes, including inherited genetic defects, with significant proteinuria being the predominant clinical finding at presentation. FSGS is considered as a podocyte disease due to the fact that in the majority of patients with FSGS, the lesion results from defects in the podocyte structure. However, FSGS does not result exclusively from podocyte-associated genes. In this study, we used a genetic approach based on targeted next-generation sequencing (NGS) of 242 genes to identify the genetic cause of FSGS in seven Tunisian families. The sequencing results revealed the presence of eight distinct mutations including seven newly discovered ones: the c.538G>A (p.V180M) in NPHS2, c.5186G>A (p.R1729Q) in PLCE1 and c.232A>C (p.I78L) in PAX2 and five novel mutations in COL4A3 and COL4A4 genes. Four mutations (c.209G>A (p.G70D), c.725G>A (p.G242E), c.2225G>A (p.G742E), and c. 1681_1698del) were detected in COL4A3 gene and one mutation (c.1424G>A (p.G475D)) was found in COL4A4. In summary, NGS of a targeted gene panel is an ideal approach for the genetic testing of FSGS with multiple possible underlying etiologies. We have demonstrated that not only podocyte genes but also COL4A3/4 mutations should be considered in patients with FSGS.
Collapse
|
38
|
Genotype-phenotype correlations and nephroprotective effects of RAAS inhibition in patients with autosomal recessive Alport syndrome. Pediatr Nephrol 2021; 36:2719-2730. [PMID: 33772369 PMCID: PMC8370956 DOI: 10.1007/s00467-021-05040-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autosomal recessive Alport syndrome (ARAS) is caused by pathogenic variants in both alleles of either COL4A3 or COL4A4 genes. Reports on ARAS are rare due to small patient numbers and there are no reports on renin-angiotensin-aldosterone system (RAAS) inhibition therapy in ARAS. METHODS Retrospective study in 101 patients with ARAS from Chinese Registry Database of Hereditary Kidney Diseases and European Alport Registry. Genotype-phenotype correlations and nephroprotective effects of RAAS inhibition in ARAS were evaluated. RESULTS Median age was 15 years (range 1.5-46 years). Twelve patients progressed to stage 5 chronic kidney disease (CKD5) at median age 20.5 years. Patients without missense variants had both higher prevalence and earlier onset age of hearing loss, nephrotic-range proteinuria, more rapid decline of eGFR, and earlier onset age of CKD5 compared to patients with 1 or 2 missense variants. Most patients (79/101, 78%) currently are treated with RAAS inhibitors; median age at therapy initiation was 10 years and mean duration 6.5 ± 6.0 years. Median age at CKD5 for untreated patients was 24 years. RAAS inhibition therapy delayed CKD5 onset in those with impaired kidney function (T-III) to median age 35 years, but is undefined in treated patients with proteinuria (T-II) due to low number of events. No treated patients with microalbuminuria (T-I) progressed to CKD5. ARAS patients with 1 or 2 missense variants showed better response to treatment than patients with non-missense-variants. CONCLUSIONS Our study provides the first evidence for early use of RAAS inhibition therapy in patients with ARAS. Furthermore, genotype in ARAS correlates with response to therapy in favor of missense variants.
Collapse
|
39
|
Odiatis C, Savva I, Pieri M, Ioannou P, Petrou P, Papagregoriou G, Antoniadou K, Makrides N, Stefanou C, Ljubanović DG, Nikolaou G, Borza DB, Stylianou K, Gross O, Deltas C. A glycine substitution in the collagenous domain of Col4a3 in mice recapitulates late onset Alport syndrome. Matrix Biol Plus 2020; 9:100053. [PMID: 33718859 PMCID: PMC7930875 DOI: 10.1016/j.mbplus.2020.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Alport syndrome (AS) is a severe inherited glomerulopathy caused by mutations in the genes encoding the α-chains of type-IV collagen, the most abundant component of the extracellular glomerular basement membrane (GBM). Currently most AS mouse models are knockout models for one of the collagen-IV genes. In contrast, about half of AS patients have missense mutations, with single aminoacid substitutions of glycine being the most common. The only mouse model for AS with a homozygous knockin missense mutation, Col4a3-p.Gly1332Glu, was partly described before by our group. Here, a detailed in-depth description of the same mouse is presented, along with another compound heterozygous mouse that carries the glycine substitution in trans with a knockout allele. Both mice recapitulate essential features of AS, including shorten lifespan by 30–35%, increased proteinuria, increased serum urea and creatinine, pathognomonic alternate GBM thinning and thickening, and podocyte foot process effacement. Notably, glomeruli and tubuli respond differently to mutant collagen-IV protomers, with reduced expression in tubules but apparently normal in glomeruli. However, equally important is the fact that in the glomeruli the mutant α3-chain as well as the normal α4/α5 chains seem to undergo a cleavage at, or near the point of the mutation, possibly by the metalloproteinase MMP-9, producing a 35 kDa C-terminal fragment. These mouse models represent a good tool for better understanding the spectrum of molecular mechanisms governing collagen-IV nephropathies and could be used for pre-clinical studies aimed at better treatments for AS. Two mouse models were generated that recapitulate essential features of AS patients. Glomeruli and tubuli respond differently to mutant collagen IV protomers. The mutant colIV protomers in glomeruli probably undergo a cleavage process by MMP9. The two AS mouse models represent a good tool for studying collagen-IV nephropathies. These models could be used for pre-clinical studies aimed at better treatments.
Collapse
Key Words
- ARAS, autosomal recessive alport syndrome
- AS, alport syndrome
- Alport syndrome
- BSA, bovine serum albumin
- Collagen-IV
- EM, electron microscopy
- ESRD, end stage renal disease
- GBM, glomerular basement membrane
- Glomerular basement membrane
- Glycine missense mutation
- Kidney disease
- Mouse model
- PAS, periodic acid schiff
- TBM, tubular basement membrane
- TGF-b1, transforming growth factor beta1
- UPR, unfolded protein response
Collapse
Affiliation(s)
- Christoforos Odiatis
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Isavella Savva
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Myrtani Pieri
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Cyprus
| | - Pavlos Ioannou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Petros Petrou
- Department of Biochemistry, The Cyprus Institute of Neurology and Genetics, Cyprus
| | - Gregory Papagregoriou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Kyriaki Antoniadou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Neoklis Makrides
- Department of Developmental Functional Genetics, The Cyprus Institute of Neurology and Genetics, Cyprus
| | - Charalambos Stefanou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | | | - Georgios Nikolaou
- Veterinary diagnostic laboratory, Vet ex Machina LTD, Nicosia, Cyprus
| | - Dorin-Bogdan Borza
- Dept. of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States of America
| | - Kostas Stylianou
- Department of Nephrology, University of Crete Medical School, Greece
| | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| |
Collapse
|
40
|
Matthaiou A, Poulli T, Deltas C. Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: a systematic review. Clin Kidney J 2020; 13:1025-1036. [PMID: 33391746 PMCID: PMC7769542 DOI: 10.1093/ckj/sfz176] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients heterozygous for COL4A3 or COL4A4 mutations show a wide spectrum of disease, extending from familial isolated microscopic haematuria, as a result of thin basement membranes (TBMs), to autosomal dominant Alport syndrome (ADAS) and end-stage renal disease (ESRD). Many patients are mentioned in the literature under the descriptive diagnosis of TBM nephropathy (TBMN), in which case it actually describes a histological finding that represents the carriers of autosomal recessive Alport syndrome (ARAS), a severe glomerulopathy, as most patients reach ESRD at a mean age of 25 years. METHODS We performed a systematic literature review for patients with heterozygous COL4A3/A4 mutations with the aim of recording the spectrum and frequency of pathological features. We searched three databases (PubMed, Embase and Scopus) using the keywords 'Autosomal Dominant Alport Syndrome' OR 'Thin Basement Membrane Disease' OR 'Thin Basement Membrane Nephropathy'. We identified 48 publications reporting on 777 patients from 258 families. RESULTS In total, 29% of the patients developed chronic kidney disease (CKD) and 15.1% reached ESRD at a mean age of 52.8 years. Extrarenal features and typical Alport syndrome (AS) findings had a low prevalence in patients as follows: hearing loss, 16%; ocular lesions, 3%; basement membrane thickening, 18.4%; and podocyte foot process effacement, 6.9%. Data for 76 patients from 54 families emphasize extensive inter- and intrafamilial heterogeneity, with age at onset of ESRD ranging between 21 and 84 years (mean 52.8). CONCLUSIONS The analysis enabled a comparison of the clinical course of patients with typical ARAS or X-linked AS with those with heterozygous COL4A mutations diagnosed with TBMN or ADAS. Despite the consequence of a potential ascertainment bias, an important outcome is that TBM poses a global high risk of developing severe CKD, over a long follow-up, with a variable spectrum of other findings. The results are useful to practicing nephrologists for better evaluation of patients.
Collapse
Affiliation(s)
| | | | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
41
|
Fan LL, Liu L, Luo FM, Du R, Wang CY, Dong Y, Liu JS. A novel heterozygous variant of the COL4A4 gene in a Chinese family with hematuria and proteinuria leads to focal segmental glomerulosclerosis and chronic kidney disease. Mol Genet Genomic Med 2020; 8:e1545. [PMID: 33159707 PMCID: PMC7767549 DOI: 10.1002/mgg3.1545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 01/15/2023] Open
Abstract
Background Focal segmental glomerulosclerosis (FSGS), as the frequent primary glomerular diseases in adults, accounts for symptomless proteinuria or nephrotic syndrome with or without renal insufficiency. As the crucial lesion of chronic kidney disease (CKD), accumulating evidence from recent studies show that mutations in Collagen‐related genes may be responsible for FSGS. The aim of this study was to identify the genetic lesion of a Chinese family with FSGS and CKD. Methods In this study, we recruited a Han‐Chinese family with unexplained high serum creatinine, hematuria, and proteinuria. Further renal biopsy and renal pathology indicated the diagnosis of FSGS in the proband. Whole‐exome sequencing and Sanger sequencing were employed to explore the pathogenic mutation of this family. Results A novel heterozygous mutation (NM_000092 c.2030G>A, p.G677D) of the collagen type IV alpha‐4 gene (COL4A4) was detected. Co‐segregation analysis revealed that the novel mutation was carried by all the five affected individuals and absent in other healthy members as well as in our 200 local control cohorts. Bioinformatics predication indicated that this novel mutation was pathogenic and may disrupt the structure and function of type IV collagen. Simultaneously, this variant is located in an evolutionarily conserved site of COL4A4 protein. Conclusion Here, we identified a novel mutation of COL4A4 in a family with FSGS and CKD. Our study expanded the variants spectrum of the COL4A4 gene and contributed to the genetic counseling and prenatal genetic diagnosis of the family. In addition, we also recommended the new classification of collagen IV nephropathies, which may be a benefit to the diagnosis, target drug treatment, and management of patients with COL4A3/COL4A4 mutations.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Lv Liu
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fang-Mei Luo
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Ran Du
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Chen-Yu Wang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Yi Dong
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Ji-Shi Liu
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
42
|
Boeckhaus J, Hoefele J, Riedhammer KM, Tönshoff B, Ehren R, Pape L, Latta K, Fehrenbach H, Lange-Sperandio B, Kettwig M, Hoyer P, Staude H, Konrad M, John U, Gellermann J, Hoppe B, Galiano M, Gessner M, Pohl M, Bergmann C, Friede T, Gross O. Precise variant interpretation, phenotype ascertainment, and genotype-phenotype correlation of children in the EARLY PRO-TECT Alport trial. Clin Genet 2020; 99:143-156. [PMID: 33040356 DOI: 10.1111/cge.13861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
Early initiation of therapy in patients with Alport syndrome (AS) slows down renal failure by many years. Genotype-phenotype correlations propose that the location and character of the individual's variant correlate with the renal outcome and any extra renal manifestations. In-depth clinical and genetic data of 60/62 children who participated in the EARLY PRO-TECT Alport trial were analyzed. Genetic variants were interpreted according to current guidelines and criteria. Genetically solved patients with X-linked inheritance were then classified according to the severity of their COL4A5 variant into less-severe, intermediate, and severe groups and disease progress was compared. Almost 90% of patients were found to carry (likely) pathogenic variants and classified as genetically solved cases. Patients in the less-severe group demonstrated a borderline significant difference in disease progress compared to those in the severe group (p = 0.05). While having only limited power according to its sample size, an obvious strength is the precise clinical and genetic data of this well ascertained cohort. As in published data differences in clinical progress were shown between patients with COL4A5 less-severe and severe variants. Therefore, clinical and segregational data are important for variant (re)classification. Genetic testing should be mandatory allowing early diagnosis and therapy of AS.
Collapse
Affiliation(s)
- Jan Boeckhaus
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikumrechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikumrechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Department of Nephrology, Klinikumrechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Rasmus Ehren
- Pediatric Nephrology, Children's and Adolescents' Hospital, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Kay Latta
- Clementine Kinderhospital Frankfurt, Frankfurt, Germany
| | | | | | - Matthias Kettwig
- Clinic of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Hoyer
- Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Hagen Staude
- Pediatric Nephrology, University Children's Hospital Rostock, Rostock, Germany
| | - Martin Konrad
- University Children's Hospital Münster, Münster, Germany
| | - Ulrike John
- Division of Pediatric Nephrology, University Children's Hospital, Jena, Germany
| | - Jutta Gellermann
- Pediatric Nephrology, Charité Children's Hospital, Berlin, Germany
| | - Bernd Hoppe
- Division of Pediatric Nephrology, Department of Pediatrics, University of Bonn, Bonn, Germany
| | - Matthias Galiano
- Department of Pediatrics and Adolescent Medicine, University Hospital, Friedrich-Alexander-University Erlangen, Erlangen, Germany
| | - Michaela Gessner
- Pediatric Nephrology, Children's and Adolescents' Hospital, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of General Pediatrics, University of Tuebingen, Tuebingen, Germany
| | - Michael Pohl
- Division of Pediatric Nephrology, University Children's Hospital, Jena, Germany.,Klinik für Kinder- und Jugendmedizin, Klinikum St. Georg, Leipzig, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany.,Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | | |
Collapse
|
43
|
Braunisch MC, Riedhammer KM, Herr PM, Draut S, Günthner R, Wagner M, Weidenbusch M, Lungu A, Alhaddad B, Renders L, Strom TM, Heemann U, Meitinger T, Schmaderer C, Hoefele J. Identification of disease-causing variants by comprehensive genetic testing with exome sequencing in adults with suspicion of hereditary FSGS. Eur J Hum Genet 2020; 29:262-270. [PMID: 32887937 PMCID: PMC7868362 DOI: 10.1038/s41431-020-00719-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022] Open
Abstract
In about 30% of infantile, juvenile, or adolescent patients with steroid-resistant nephrotic syndrome (SRNS), a monogenic cause can be identified. The histological finding in SRNS is often focal segmental glomerulosclerosis (FSGS). Genetic data on adult patients are scarce with low diagnostic yields. Exome sequencing (ES) was performed in patients with adult disease onset and a high likelihood for hereditary FSGS. A high likelihood was defined if at least one of the following criteria was present: absence of a secondary cause, ≤25 years of age at initial manifestation, kidney biopsy with suspicion of a hereditary cause, extrarenal manifestations, and/or positive familial history/reported consanguinity. Patients were excluded if age at disease onset was <18 years. In 7/24 index patients with adult disease onset, a disease-causing variant could be identified by ES leading to a diagnostic yield of 29%. Eight different variants were identified in six known genes associated with monogenic kidney diseases. Six of these variants had been described before as disease-causing. In patients with a disease-causing variant, the median age at disease onset and end-stage renal disease was 26 and 38 years, respectively. The overall median time to a definite genetic diagnosis was 9 years. In 29% of patients with adult disease onset and suspected hereditary FSGS, a monogenic cause could be identified. The long delay up to the definite genetic diagnosis highlights the importance of obtaining an early genetic diagnosis to allow for personalized treatment options including weaning of immunosuppressive treatment, avoidance of repeated renal biopsy, and provision of accurate genetic counseling.
Collapse
Affiliation(s)
- Matthias Christoph Braunisch
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Korbinian Maria Riedhammer
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Pierre-Maurice Herr
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sarah Draut
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roman Günthner
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marc Weidenbusch
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University, Munich, Germany
| | - Adrian Lungu
- Pediatric Nephrology Department, Fundeni Clinical Institute, Bucharest, Romania
| | - Bader Alhaddad
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
44
|
Warady BA, Agarwal R, Bangalore S, Chapman A, Levin A, Stenvinkel P, Toto RD, Chertow GM. Alport Syndrome Classification and Management. Kidney Med 2020; 2:639-649. [PMID: 33094278 PMCID: PMC7568086 DOI: 10.1016/j.xkme.2020.05.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alport syndrome affects up to 60,000 people in the United States. The proposed reclassification of thin basement membrane nephropathy and some cases of focal segmental glomerulosclerosis as Alport syndrome could substantially increase the affected population. The reclassification scheme categorizes Alport syndrome as 3 distinct diseases of type IV collagen α3/4/5 based on a genetic evaluation: X-linked, autosomal, and digenic. This approach has the advantage of identifying patients at risk for progressive loss of kidney function. Furthermore, the shared molecular cause of Alport syndrome and thin basement membrane nephropathy arises from mutations in the COL4A3, COL4A4, and COL4A5 genes, which contribute to downstream pathophysiologic consequences, including chronic kidney inflammation. Recent evidence indicates that chronic inflammation and its regulation through anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2) and proinflammatory nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) transcription factors plays a central role in renal tubular and glomerular cell responses to injury. Crosstalk between the Nrf2 and NF-κB pathways is important in the regulation of inflammation in patients with chronic kidney disease; moreover, there is evidence that an insufficient Nrf2 response to inflammation contributes to disease progression. Given the association between type IV collagen abnormalities and chronic inflammation, there is renewed interest in targeted anti-inflammatory therapies in Alport syndrome and other forms of progressive chronic kidney disease.
Collapse
Affiliation(s)
- Bradley A Warady
- Division of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, MO
| | - Rajiv Agarwal
- Division of Nephrology, Indiana University, Indianapolis, IN
| | | | - Arlene Chapman
- Division of Nephrology, University of Chicago, Chicago, IL
| | - Adeera Levin
- Division of Nephrology, University of British Columbia, Vancouver, BC, Canada
| | | | - Robert D Toto
- Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
45
|
Zhang L, Sun BC, Zhao BG, Ma QS. An overview of the multi-pronged approach in the diagnosis of Alport syndrome for 22 children in Northeast China. BMC Nephrol 2020; 21:294. [PMID: 32703181 PMCID: PMC7379802 DOI: 10.1186/s12882-020-01962-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/17/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Alport syndrome (AS) is a kind of progressive hereditary nephritis induced by mutations of different genes that encode collagen IV. The affected individuals usually develop hematuria during childhood, accompanying with gradual deterioration of renal functions. In this study, the multi-pronged approach was employed to improve the diagnosis of AS. METHODS Twenty-two children were diagnosed and treated at the Department of Pediatric Nephrology of Jilin University First Hospital between January 2017 and January 2020 using the multi-pronged approach. The following information was collected from patients, including age of onset, age at diagnosis, clinical manifestations, family history, renal pathology and genotype. RESULTS All these 22 children were diagnosed with Alport syndrome according to the diagnostic criteria formulated by the Japanese Society of Nephrology (2015), among them, only 13 children met the diagnostic criteria released in 1988. All the 22 patients presented with hematuria, and proteinuria to varying degrees was observed in some patients. Three children suffered from hearing loss, but no child in the cohort had any visual problem or renal failure. Meanwhile, five patients were estimated to be at Stage 2, whereas the remaining 17 cases were at Stage 0. Renal biopsies were performed in 18 patients, including 14 showing glomerular basement membranes (GBM)-specific abnormalities. Moreover, 13 children were detected with mutations of genes encoding collagen IV. CONCLUSIONS The multi-pronged approach helps to improve the diagnosis of AS. Most patients do not have renal failure during childhood, but close assessment and monitoring are necessary. Also, the advancements in treatment are reviewed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pediatric Nephrology, First Hospital, Jilin University, Changchun, 130021 Jilin China
| | - Bai-chao Sun
- Department of Pediatric Nephrology, First Hospital, Jilin University, Changchun, 130021 Jilin China
| | - Bing-gang Zhao
- Department of Pediatric Nephrology, First Hospital, Jilin University, Changchun, 130021 Jilin China
| | - Qing-shan Ma
- Department of Pediatric Nephrology, First Hospital, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
46
|
Park E, Lee C, Kim NKD, Ahn YH, Park YS, Lee JH, Kim SH, Cho MH, Cho H, Yoo KH, Shin JI, Kang HG, Ha IS, Park WY, Cheong HI. Genetic Study in Korean Pediatric Patients with Steroid-Resistant Nephrotic Syndrome or Focal Segmental Glomerulosclerosis. J Clin Med 2020; 9:jcm9062013. [PMID: 32604935 PMCID: PMC7355646 DOI: 10.3390/jcm9062013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is one of the major causes of end-stage renal disease (ESRD) in childhood and is mostly associated with focal segmental glomerulosclerosis (FSGS). More than 50 monogenic causes of SRNS or FSGS have been identified. Recently, the mutation detection rate in pediatric patients with SRNS has been reported to be approximately 30%. In this study, genotype-phenotype correlations in a cohort of 291 Korean pediatric patients with SRNS/FSGS were analyzed. The overall mutation detection rate was 43.6% (127 of 291 patients). WT1 was the most common causative gene (23.6%), followed by COQ6 (8.7%), NPHS1 (8.7%), NUP107 (7.1%), and COQ8B (6.3%). Mutations in COQ6, NUP107, and COQ8B were more frequently detected, and mutations in NPHS2 were less commonly detected in this cohort than in study cohorts from Western countries. The mutation detection rate was higher in patients with congenital onset, those who presented with proteinuria or chronic kidney disease/ESRD, and those who did not receive steroid treatment. Genetic diagnosis in patients with SRNS provides not only definitive diagnosis but also valuable information for decisions on treatment policy and prediction of prognosis. Therefore, further genotype-phenotype correlation studies are required.
Collapse
Affiliation(s)
- Eujin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
| | - Nayoung K. D. Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Young Seo Park
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (J.H.L.)
| | - Joo Hoon Lee
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (J.H.L.)
| | - Seong Heon Kim
- Department of Pediatrics, Pusan National University Children’s Hospital, Yangsan 50612, Korea;
| | - Min Hyun Cho
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu 41944, Korea;
| | - Heeyeon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Kee Hwan Yoo
- Department of Pediatrics, Korea University Guro Hospital, Seoul 02841, Korea;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Division of Pediatric Nephrology, Severance Children’s Hospital, Seoul 03722, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
- Correspondence: ; Tel.: +82-2-2072-2810
| |
Collapse
|
47
|
Demir E, Caliskan Y. Variations of type IV collagen-encoding genes in patients with histological diagnosis of focal segmental glomerulosclerosis. Pediatr Nephrol 2020; 35:927-936. [PMID: 31254113 DOI: 10.1007/s00467-019-04282-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 05/31/2019] [Indexed: 01/07/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS), an important cause of end-stage kidney disease (ESKD), covers a spectrum of clinicopathological syndromes sharing a common glomerular lesion, based on an injury of podocytes caused by diverse insults to glomeruli. Although it is well expressed in many reports that the term FSGS is not useful and applicable to a single disease, particularly in genetic studies, FSGS continues to be used as a single clinical diagnosis. Distinguishing genetic forms of FSGS is important for the treatment and overall prognosis because secondary forms of FSGS, produced by rare pathogenic variations in podocyte genes, are not good candidates for immunosuppressive treatment. Over the past decade, several next generation sequencing (NGS) methods have been used to investigate the patients with steroid resistance nephrotic syndrome (SRNS) or FSGS. Pathogenic variants in COL4A3, COL4A4, or COL4A5 genes have been frequently identified in patients with histologic diagnosis of FSGS. The contribution of these mostly heterozygous genetic variations in FSGS pathogenesis and the clinical course of patients with these variations have not been well characterized. This review emphasizes the importance of appropriate approach in selection and diagnosis of cases and interpretation of the genetic data in these studies and suggests a detailed review of existing clinical variant databases using newly available population genetic data.
Collapse
Affiliation(s)
- Erol Demir
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Yasar Caliskan
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey.
| |
Collapse
|
48
|
How to resolve confusion in the clinical setting for the diagnosis of heterozygous COL4A3 or COL4A4 gene variants? Discussion and suggestions from nephrologists. Clin Exp Nephrol 2020; 24:651-656. [PMID: 32232700 PMCID: PMC7371658 DOI: 10.1007/s10157-020-01880-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Abstract
Both thin basement membrane nephropathy (TBMN) and autosomal dominant Alport syndrome (ADAS) are types of hereditary nephritis resulting from heterozygous mutations in COL4A3 or COL4A4 genes. Although TBMN is characterized by hematuria and thinning of the glomerular basement membrane (GBM) with excellent renal prognosis, some patients develop end-stage renal disease (ESRD) later in life. In contrast, although AS is characterized by progressive nephropathy with lamellation of the GBM, there are some patients diagnosed with ADAS from a family history of ESRD but who only suffer from hematuria with GBM thinning. These findings indicate a limitation in distinction between TBMN and ADAS. Diagnosis of AS is significant because it facilitates careful follow-up and early treatment, whereas diagnosis of TBMN can underestimate the risk of ESRD. However, some experts are against using the term ADAS as the phenotypes of heterozygous variants vary from no urinary abnormality to ESRD, even between family members with the same mutations, indicating that unknown secondary factors may play a large role in the disease severity. These diagnostic difficulties result in significant confusion in clinical settings. Moreover, recent studies revealed that the number of patients with chronic kidney disease caused by these gene mutations is far higher than previously thought. The aim of this article is to review differing opinions regarding the diagnosis of heterozygous COL4A3 or COL4A4 variants, and to highlight the importance for nephrologists to recognize this disease, and the importance of the need to reclassify this disease to minimize the current confusion.
Collapse
|
49
|
Girimaji N, Murugan Sm S, Nada R, Sharma A, Rathi M, Kohli HS, Gupta KL, Ramachandran R. Successful renal transplantation in a family with a novel mutation in COL4A3 gene and autosomal recessive Alport syndrome. Nephrology (Carlton) 2020; 25:497-501. [PMID: 31925849 DOI: 10.1111/nep.13693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/03/2019] [Accepted: 12/30/2019] [Indexed: 11/28/2022]
Abstract
Alport syndrome (AS) is an inherited disorder of basement membranes caused by mutations affecting specific proteins of the type IV collagen family, presenting with nephropathy and extrarenal manifestations such as sensorineural deafness and ocular anomalies. Ten percentage to 15% of the patients with AS have autosomal recessive (ARAS) due to mutation in either COL4A3 or COL4A4 gene. We report a novel mutation in the COL4A3 gene in an Indian family with ARAS. The above-mentioned genetic anomaly was a missense variation in exon 26 of the COL4A3 gene (chr2:228137797G>A; c.1891G>A) that resulted in the amino acid substitution of Arginine for Glycine at codon 631 (p.Gly631Arg) that was present in the heterozygous state in the asymptomatic parents and homozygous state in the male offspring who presented with early-onset end-stage renal disease, lenticonus and hearing loss. The patient (male offspring) underwent successful renal transplantation with his mother as a donor.
Collapse
Affiliation(s)
- Niveditha Girimaji
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Ritambhra Nada
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Sharma
- Department of Renal Transplant Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Rathi
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harbir S Kohli
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishna L Gupta
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Raja Ramachandran
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
50
|
Clinicopathological Implications of Proteinuria after Long-Term Isolated Hematuria due to Thin Basement Membrane Nephropathy and Focal Segmental Glomerulosclerosis. Case Rep Nephrol 2019; 2019:1627392. [PMID: 31976098 PMCID: PMC6959157 DOI: 10.1155/2019/1627392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/02/2019] [Accepted: 10/25/2019] [Indexed: 11/17/2022] Open
Abstract
A 45-year-old obese man presented with persistent hematuria for 21 years. At the age of 37, he developed hypertension and proteinuria which later increased up to 1.6 g/g creatinine. Kidney biopsy revealed thin basement membrane nephropathy (TBMN) and focal segmental glomerulosclerosis (FSGS), which explained his urinary abnormalities. Although a subgroup of TBMN can be complicated by FSGS, his FSGS was associated with obesity because of its histological features. Reduction of body weight and increasing a dose of angiotensin-receptor blocker could transiently reduce the amount of proteinuria. Clinicopathological implications of proteinuria after long-term hematuria by TBMN and FSGS were further discussed.
Collapse
|