1
|
Devuyst O, Ahn C, Barten TR, Brosnahan G, Cadnapaphornchai MA, Chapman AB, Cornec-Le Gall E, Drenth JP, Gansevoort RT, Harris PC, Harris T, Horie S, Liebau MC, Liew M, Mallett AJ, Mei C, Mekahli D, Odland D, Ong AC, Onuchic LF, P-C Pei Y, Perrone RD, Rangan GK, Rayner B, Torra R, Mustafa R, Torres VE. KDIGO 2025 Clinical Practice Guideline for the Evaluation, Management, and Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Kidney Int 2025; 107:S1-S239. [PMID: 39848759 DOI: 10.1016/j.kint.2024.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 01/25/2025]
|
2
|
St Pierre K, Cashmore BA, Bolignano D, Zoccali C, Ruospo M, Craig JC, Strippoli GF, Mallett AJ, Green SC, Tunnicliffe DJ. Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst Rev 2024; 10:CD010294. [PMID: 39356039 PMCID: PMC11445802 DOI: 10.1002/14651858.cd010294.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the leading inherited cause of kidney disease. Clinical management has historically focused on symptom control and reducing associated complications. Improved understanding of the molecular and cellular mechanisms involved in kidney cyst growth and disease progression has resulted in new pharmaceutical agents targeting disease pathogenesis and preventing disease progression. However, the role of disease-modifying agents for all people with ADPKD is unclear. This is an update of a review first published in 2015. OBJECTIVES We aimed to evaluate the benefits and harms of interventions to prevent the progression of ADPKD and the safety based on patient-important endpoints, defined by the Standardised Outcomes in NephroloGy-Polycystic Kidney Disease (SONG-PKD) core outcome set, and general and specific adverse effects. SEARCH METHODS We searched the Cochrane Kidney and Transplants Register of Studies up to 13 August 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing any interventions for preventing the progression of ADPKD with other interventions, placebo, or standard care were considered for inclusion. DATA COLLECTION AND ANALYSIS Two authors independently assessed study risks of bias and extracted data. Summary estimates of effects were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) or standardised mean difference (SMD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS We included 57 studies (8016 participants) that investigated 18 pharmacological interventions (vasopressin 2 receptor (V2R) antagonists, antihypertensive therapy, mammalian target of rapamycin (mTOR) inhibitors, somatostatin analogues, antiplatelet agents, eicosapentaenoic acids, statins, kinase inhibitors, diuretics, anti-diabetic agents, water intake, dietary intervention, and supplements) in this review. Compared to placebo, the V2R antagonist tolvaptan probably preserves eGFR (3 studies, 2758 participants: MD 1.26 mL/min/1.73 m2, 95% CI 0.73 to 1.78; I2 = 0%) and probably slows total kidney volume (TKV) growth in adults (1 study, 1307 participants: MD -2.70 mL/cm, 95% CI -3.24 to -2.16) (moderate certainty evidence). However, there was insufficient evidence to determine tolvaptan's impact on kidney failure and death. There may be no difference in serious adverse events; however, treatment probably increases nocturia, fatigue and liver enzymes, may increase dry mouth and thirst, and may decrease hypertension and urinary and upper respiratory tract infections. Data on the impact of other therapeutic interventions were largely inconclusive. Compared to placebo, somatostatin analogues probably decrease TKV (6 studies, 500 participants: SMD -0.33, 95% CI -0.51 to -0.16; I2 = 11%), probably have little or no effect on eGFR (4 studies, 180 participants: MD 4.11 mL/min/1.73 m3, 95% CI -3.19 to 11.41; I2 = 0%) (moderate certainty evidence), and may have little or no effect on kidney failure (2 studies, 405 participants: RR 0.64, 95% CI 0.16 to 2.49; I2 = 39%; low certainty evidence). Serious adverse events may increase (2 studies, 405 participants: RR 1.81, 95% CI 1.01 to 3.25; low certainty evidence). Somatostatin analogues probably increase alopecia, diarrhoea or abnormal faeces, dizziness and fatigue but may have little or no effect on anaemia or infection. The effect on death is unclear. Targeted low blood pressure probably results in a smaller per cent annual increase in TKV (1 study, 558 participants: MD -1.00, 95% CI -1.67 to -0.33; moderate certainty evidence) compared to standard blood pressure targets, had uncertain effects on death, but probably do not impact other outcomes such as change in eGFR or adverse events. Kidney failure was not reported. Data comparing antihypertensive agents, mTOR inhibitors, eicosapentaenoic acids, statins, vitamin D compounds, metformin, trichlormethiazide, spironolactone, bosutinib, curcumin, niacinamide, prescribed water intake and antiplatelet agents were sparse and inconclusive. An additional 23 ongoing studies were also identified, including larger phase III RCTs, which will be assessed in a future update of this review. AUTHORS' CONCLUSIONS Although many interventions have been investigated in patients with ADPKD, at present, there is little evidence that they improve patient outcomes. Tolvaptan is the only therapeutic intervention that has demonstrated the ability to slow disease progression, as assessed by eGFR and TKV change. However, it has not demonstrated benefits for death or kidney failure. In order to confirm the role of other therapeutic interventions in ADPKD management, large RCTs focused on patient-centred outcomes are needed. The search identified 23 ongoing studies, which may provide more insight into the role of specific interventions.
Collapse
Affiliation(s)
- Kitty St Pierre
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Pharmacy Department, Gold Coast University Hospital, Gold Coast, Australia
| | - Brydee A Cashmore
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Carmine Zoccali
- Institute of Clinical Physiology, CNR - Italian National Council of Research, Reggio Calabria, Italy
| | - Marinella Ruospo
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Giovanni Fm Strippoli
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Andrew J Mallett
- Department of Renal Medicine, Townsville Hospital and Health Service, Townsville, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Suetonia C Green
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - David J Tunnicliffe
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
3
|
Frenette C, Mendiratta-Lala M, Salgia R, Wong RJ, Sauer BG, Pillai A. ACG Clinical Guideline: Focal Liver Lesions. Am J Gastroenterol 2024; 119:1235-1271. [PMID: 38958301 DOI: 10.14309/ajg.0000000000002857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
Focal liver lesions (FLLs) have become an increasingly common finding on abdominal imaging, especially asymptomatic and incidental liver lesions. Gastroenterologists and hepatologists often see these patients in consultation and make recommendations for management of multiple types of liver lesions, including hepatocellular adenoma, focal nodular hyperplasia, hemangioma, and hepatic cystic lesions including polycystic liver disease. Malignancy is important to consider in the differential diagnosis of FLLs, and healthcare providers must be familiar with the diagnosis and management of FLLs. This American College of Gastroenterology practice guideline uses the best evidence available to make diagnosis and management recommendations for the most common FLLs.
Collapse
Affiliation(s)
| | | | - Reena Salgia
- Department of Gastroenterology/Hepatology, Henry Ford Health, Detroit, Michigan, USA
| | - Robert J Wong
- Division of Gastroenterology and Hepatology, Veterans Affairs Palo Alto Health Care System and Stanford University School of Medicine, Palo Alto, California, USA
| | - Bryan G Sauer
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia, USA
| | - Anjana Pillai
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Yen PW, Chen YA, Wang W, Mao FS, Chao CT, Chiang CK, Lin SH, Tarng DC, Chiu YW, Wu MJ, Chen YC, Kao JTW, Wu MS, Lin CL, Huang JW, Hung KY. The screening, diagnosis, and management of patients with autosomal dominant polycystic kidney disease: A national consensus statement from Taiwan. Nephrology (Carlton) 2024; 29:245-258. [PMID: 38462235 DOI: 10.1111/nep.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of end-stage kidney disease (ESKD) worldwide. Guidelines for the diagnosis and management of ADPKD in Taiwan remains unavailable. In this consensus statement, we summarize updated information on clinical features of international and domestic patients with ADPKD, followed by suggestions for optimal diagnosis and care in Taiwan. Specifically, counselling for at-risk minors and reproductive issues can be important, including ethical dilemmas surrounding prenatal diagnosis and pre-implantation genetic diagnosis. Studies reveal that ADPKD typically remains asymptomatic until the fourth decade of life, with symptoms resulting from cystic expansion with visceral compression, or rupture. The diagnosis can be made based on a detailed family history, followed by imaging studies (ultrasound, computed tomography, or magnetic resonance imaging). Genetic testing is reserved for atypical cases mostly. Common tools for prognosis prediction include total kidney volume, Mayo classification and PROPKD/genetic score. Screening and management of complications such as hypertension, proteinuria, urological infections, intracranial aneurysms, are also crucial for improving outcome. We suggest that the optimal management strategies of patients with ADPKD include general medical care, dietary recommendations and ADPKD-specific treatments. Key points include rigorous blood pressure control, dietary sodium restriction and Tolvaptan use, whereas the evidence for somatostatin analogues and mammalian target of rapamycin (mTOR) inhibitors remains limited. In summary, we outline an individualized care plan emphasizing careful monitoring of disease progression and highlight the need for shared decision-making among these patients.
Collapse
Affiliation(s)
- Pao-Wen Yen
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yung-An Chen
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wei Wang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Fang-Sheng Mao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chia-Ter Chao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan City, Taiwan
| | - Chih-Kang Chiang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Juliana Tze-Wah Kao
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, Fu-Jen Catholic University Hospital, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Liang Lin
- Division of Nephrology, Department of Internal Medicine, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi County, Taiwan
| | - Jenq-Wen Huang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Hung
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| |
Collapse
|
5
|
Pala R, Barui AK, Mohieldin AM, Zhou J, Nauli SM. Folate conjugated nanomedicines for selective inhibition of mTOR signaling in polycystic kidneys at clinically relevant doses. Biomaterials 2023; 302:122329. [PMID: 37722182 PMCID: PMC10836200 DOI: 10.1016/j.biomaterials.2023.122329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Although rapamycin is a very effective drug for rodents with polycystic kidney disease (PKD), it is not encouraging in the clinical trials due to the suboptimal dosages compelled by the off-target side effects. We here report the generation, characterization, specificity, functionality, pharmacokinetic, pharmacodynamic and toxicology profiles of novel polycystic kidney-specific-targeting nanoparticles (NPs). We formulated folate-conjugated PLGA-PEG NPs, which can be loaded with multiple drugs, including rapamycin (an mTOR inhibitor) and antioxidant 4-hydroxy-TEMPO (a nephroprotective agent). The NPs increased the efficacy, potency and tolerability of rapamycin resulting in an increased survival rate and improved kidney function by decreasing side effects and reducing biodistribution to other organs in PKD mice. The daily administration of rapamycin-alone (1 mg/kg/day) could now be achieved with a weekly injection of NPs containing rapamycin (379 μg/kg/week). This polycystic kidney-targeting nanotechnology, for the first time, integrated advances in the use of 1) nanoparticles as a delivery cargo, 2) folate for targeting, 3) near-infrared Cy5-fluorophore for in vitro and in vivo live imaging, 4) rapamycin as a pharmacological therapy, and 5) TEMPO as a combinational therapy. The slow sustained-release of rapamycin by polycystic kidney-targeting NPs demonstrates a new era of nanomedicine in treatment for chronic kidney diseases at clinically relevant doses.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA; Marlin Biopharma, Irvine, CA, 92620, USA.
| | - Ayan K Barui
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA
| | - Ashraf M Mohieldin
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA
| | - Jing Zhou
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA; Marlin Biopharma, Irvine, CA, 92620, USA.
| |
Collapse
|
6
|
Bugazia S, Hogan MC. Extrarenal Manifestations: Polycystic Liver Disease and Its Complications. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:440-453. [PMID: 37943238 DOI: 10.1053/j.akdh.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The liver is the commonest site of involvement outside of the kidney in autosomal dominant polycystic kidney disease. Most individuals with polycystic liver disease are asymptomatic and require no therapeutic interventions, but a small number of affected individuals who experience symptomatic polycystic liver disease develop medical complications as a result of massive enlargement of cyst number and size and hepatic parenchyma and its subsequent associated complications. This can lead to deterioration in overall health and quality of life, increasing morbidity and mortality. In this review, we will touch upon disease pathogenesis, prevalence, and complications and discuss recent advances in surgical and medical management.
Collapse
Affiliation(s)
- Seif Bugazia
- Division of Nephrology & Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Marie C Hogan
- Division of Nephrology & Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
7
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
8
|
Kosuta I, Ostojic A, Vujaklija Brajkovic A, Babel J, Simunov B, Sremac M, Mrzljak A. Shifting perspectives in liver diseases after kidney transplantation. World J Hepatol 2023; 15:883-896. [PMID: 37547033 PMCID: PMC10401415 DOI: 10.4254/wjh.v15.i7.883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Liver diseases after kidney transplantation range from mild biochemical abnormalities to severe hepatitis or cirrhosis. The causes are diverse and mainly associated with hepatotropic viruses, drug toxicity and metabolic disorders. Over the past decade, the aetiology of liver disease in kidney recipients has changed significantly. These relates to the use of direct-acting antiviral agents against hepatitis C virus, the increasing availability of vaccination against hepatitis B and a better understanding of drug-induced hepatotoxicity. In addition, the emergence of the severe acute respiratory syndrome coronavirus 2 pandemic has brought new challenges to kidney recipients. This review aims to provide healthcare professionals with a comprehensive understanding of recent advances in the management of liver complications in kidney recipients and to enable them to make informed decisions regarding the risks and impact of liver disease in this population.
Collapse
Affiliation(s)
- Iva Kosuta
- Department of Intensive Care Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Ana Ostojic
- Department of Gastroenterology and Hepatology, Liver Transplant Center, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Ana Vujaklija Brajkovic
- Department of Intensive Care Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Jaksa Babel
- Department of Intensive Care Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Bojana Simunov
- Department of Nephrology, University Hospital Merkur, Zagreb 10000, Croatia
| | - Maja Sremac
- Department of Gastroenterology and Hepatology, Liver Transplant Center, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Anna Mrzljak
- Department of Gastroenterology and Hepatology, Liver Transplant Center, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
9
|
Devlin L, Dhondurao Sudhindar P, Sayer JA. Renal ciliopathies: promising drug targets and prospects for clinical trials. Expert Opin Ther Targets 2023; 27:325-346. [PMID: 37243567 DOI: 10.1080/14728222.2023.2218616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Renal ciliopathies represent a collection of genetic disorders characterized by deficiencies in the biogenesis, maintenance, or functioning of the ciliary complex. These disorders, which encompass autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and nephronophthisis (NPHP), typically result in cystic kidney disease, renal fibrosis, and a gradual deterioration of kidney function, culminating in kidney failure. AREAS COVERED Here we review the advances in basic science and clinical research into renal ciliopathies which have yielded promising small compounds and drug targets, within both preclinical studies and clinical trials. EXPERT OPINION Tolvaptan is currently the sole approved treatment option available for ADPKD patients, while no approved treatment alternatives exist for ARPKD or NPHP patients. Clinical trials are presently underway to evaluate additional medications in ADPKD and ARPKD patients. Based on preclinical models, other potential therapeutic targets for ADPKD, ARPKD, and NPHP look promising. These include molecules targeting fluid transport, cellular metabolism, ciliary signaling and cell-cycle regulation. There is a real and urgent clinical need for translational research to bring novel treatments to clinical use for all forms of renal ciliopathies to reduce kidney disease progression and prevent kidney failure.
Collapse
Affiliation(s)
- Laura Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Praveen Dhondurao Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| |
Collapse
|
10
|
Yeo JH, Roh DH. The mTOR inhibitor rapamycin suppresses trigeminal neuropathic pain and p-MKK4/p-p38 mitogen-activated protein kinase-mediated microglial activation in the trigeminal nucleus caudalis of mice with infraorbital nerve injury. Front Mol Neurosci 2023; 16:1172366. [PMID: 37122619 PMCID: PMC10140572 DOI: 10.3389/fnmol.2023.1172366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Neuropathic pain caused by trigeminal nerve injury is a typical refractory orofacial chronic pain accompanied by the development of hyperalgesia and allodynia. We previously demonstrated that the mammalian target of rapamycin (mTOR) inhibitor rapamycin suppressed orofacial formalin injection-induced nociception; however, the underlying mechanism is unclear, and it is unknown whether it can reduce trigeminal neuropathic pain. In mice, left infraorbital nerve and partial nerve ligation (ION-pNL) was performed using a silk suture (8-0). Fourteen days after surgery, neuropathic pain behavior was examined on a whisker pad and rapamycin (0.1, 0.3, and 1.0 mg/kg) was administered intraperitoneally. Mechanical and cold sensitivities in the orofacial region were quantified using von Frey filaments and acetone solution, respectively. Changes in mTOR and related proteins, such as p-MKK3/6, p-MKK4, p-JNK, p-ERK, p-p38 MAPK, GFAP, and Iba-1, in the trigeminal nucleus caudalis (TNC) or the trigeminal ganglia (TG) tissues were examined via western blot analysis or immunohistochemistry. Mice demonstrated significant mechanical and cold allodynia 2 weeks following ION-pNL injury, both of which were significantly reduced 1 h after the administration of high-dose rapamycin (1.0 mg/kg). In the TG tissue, ION-pNL surgery or rapamycin treatment did not change p-mTOR and p-4EBP1, but rapamycin reduced the increase of p-S6 and S6 induced by ION-pNL. In the TNC tissue, neither ION-pNL surgery nor rapamycin treatment altered p-mTOR, p-S6, and p-4EBP1 expressions, whereas rapamycin significantly decreased the ION-pNL-induced increase in Iba-1 expression. In addition, rapamycin suppressed the increase in p-p38 MAPK and p-MKK4 expressions but not p-MKK3/6 expression. Moreover, p-p38 MAPK-positive cells were colocalized with increased Iba-1 in the TNC. Our findings indicate that rapamycin treatment reduces both mechanical and cold orofacial allodynia in mice with trigeminal neuropathic pain, which is closely associated with the modulation of p-MKK4/p-p38 MAPK-mediated microglial activation in the TNC.
Collapse
|
11
|
Ellis JL, Evason KJ, Zhang C, Fourman MN, Liu J, Ninov N, Delous M, Vanhollebeke B, Fiddes I, Otis JP, Houvras Y, Farber SA, Xu X, Lin X, Stainier DYR, Yin C. A missense mutation in the proprotein convertase gene furinb causes hepatic cystogenesis during liver development in zebrafish. Hepatol Commun 2022; 6:3083-3097. [PMID: 36017776 PMCID: PMC9592797 DOI: 10.1002/hep4.2038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis.
Collapse
Affiliation(s)
- Jillian L. Ellis
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kimberley J. Evason
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Huntsman Cancer Institute and Department of PathologyUniversity of UtahSalt Lake CityUtahUSA
| | - Changwen Zhang
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Makenzie N. Fourman
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jiandong Liu
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- McAllister Heart InstituteDepartment of Pathology and Laboratory MedicineSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Nikolay Ninov
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Center for Regenerative Therapies TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU DresdenGerman Center for Diabetes ResearchDresdenGermany
| | - Marion Delous
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Equipe GENDEVCentre de Recherche en Neurosciences de LyonInserm U1028CNRS UMR5292Universite Lyon 1Universite St EtienneLyonFrance
| | - Benoit Vanhollebeke
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Laboratory of Neurovascular SignalingDepartment of Molecular BiologyULB Neuroscience InstituteUniversite Libre de BruxellesGosseliesBelgium
| | - Ian Fiddes
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Jessica P. Otis
- Department of EmbryologyCarnegie Institution for ScienceBaltimoreMarylandUSA
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Molecular and Cellular Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Yariv Houvras
- Weill Cornell Medical College and New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Steven A. Farber
- Department of EmbryologyCarnegie Institution for ScienceBaltimoreMarylandUSA
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular BiologyDepartment of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| | - Xueying Lin
- Department of Biochemistry and Molecular BiologyDepartment of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| | - Didier Y. R. Stainier
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Division of Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
12
|
Treatment of Polycystic Liver Disease: Impact on Patient-reported Symptom Severity and Health-related Quality of Life. J Clin Gastroenterol 2022; 56:731-739. [PMID: 35997709 PMCID: PMC9432811 DOI: 10.1097/mcg.0000000000001749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Polycystic liver disease (PLD) is a genetic disorder in which patients suffer from progressive development of multiple (>10) hepatic cysts. Most patients remain asymptomatic during the course of their disease. However, a minority of PLD patients suffer from symptoms caused by hepatomegaly leading to serious limitations in daily life. Untreated symptomatic PLD patients score significantly worse on health-related quality of life (HRQoL) compared to age and gender-matched populations. Currently, liver transplantation is the only curative treatment for PLD. The main goal of other available therapies is to strive for symptomatic relief and improvement of HRQoL by suppressing disease progression. In this review, we summarize the effect of PLD treatment on patient-reported outcome measures with a distinction between HRQoL and symptom severity. At present there is heterogeneity in application of questionnaires and no questionnaire is available that measures both HRQoL and PLD symptom severity. Therefore, we recommend the combination of a validated PLD-specific symptom severity questionnaire and a general HRQoL questionnaire to evaluate treatment success as a minimal core set. However, the specific choice of questionnaires depends on treatment choice and/or research question. These questionnaires may serve as a biomarker of treatment response, failure, and adverse events.
Collapse
|
13
|
Norcia LF, Watanabe EM, Hamamoto Filho PT, Hasimoto CN, Pelafsky L, de Oliveira WK, Sassaki LY. Polycystic Liver Disease: Pathophysiology, Diagnosis and Treatment. Hepat Med 2022; 14:135-161. [PMID: 36200122 PMCID: PMC9528914 DOI: 10.2147/hmer.s377530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic liver disease (PLD) is a clinical condition characterized by the presence of more than 10 cysts in the liver. It is a rare disease Of genetic etiology that presents as an isolated disease or assoc\iated with polycystic kidney disease. Ductal plate malformation, ciliary dysfunction, and changes in cell signaling are the main factors involved in its pathogenesis. Most patients with PLD are asymptomatic, but in 2–5% of cases the disease has disabling symptoms and a significant reduction in quality of life. The diagnosis is based on family history of hepatic and/or renal polycystic disease, clinical manifestations, patient age, and polycystic liver phenotype shown on imaging examinations. PLD treatment has evolved considerably in the last decades. Somatostatin analogues hold promise in controlling disease progression, but liver transplantation remains a unique curative treatment modality.
Collapse
Affiliation(s)
- Luiz Fernando Norcia
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
- Correspondence: Luiz Fernando Norcia, Department of Surgery, São Paulo State University (UNESP), Medical School, 783 Pedro Delmanto Street, Botucatu, São Paulo, 18610-303, Brazil, Tel +55 19982840542, Email
| | - Erika Mayumi Watanabe
- Department of Radiology, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Pedro Tadao Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Claudia Nishida Hasimoto
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Leonardo Pelafsky
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Walmar Kerche de Oliveira
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| |
Collapse
|
14
|
Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nat Rev Gastroenterol Hepatol 2022; 19:585-604. [PMID: 35562534 DOI: 10.1038/s41575-022-00617-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.
Collapse
|
15
|
Yoo JJ, Jo HI, Jung EA, Lee JS, Kim SG, Kim YS, Kim BK. Evidence of nonsurgical treatment for polycystic liver disease. Ther Adv Chronic Dis 2022; 13:20406223221112563. [PMID: 35898920 PMCID: PMC9310217 DOI: 10.1177/20406223221112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Polycystic liver disease (PCLD) is the most common extrarenal manifestation
of polycystic kidney disease. There is an urgent need to assess the efficacy
and safety of nonsurgical modalities to relieve symptoms and decrease the
severity of PCLD. Herein, we aimed to evaluate the efficacy of the
nonsurgical treatment of PCLD and the quality of life of affected
patients. Methods: PubMed, Ovid, MEDLINE, EMBASE, and the Cochrane Library were searched for
studies on the nonsurgical modalities, either medications or radiological
intervention to manage PCLD. Treatment efficacy, adverse events (AEs), and
patient quality of life were evaluated. Results: In total, 27 studies involving 1037 patients were selected. After nonsurgical
treatment, liver volume decreased by 259 ml/m [mean change (Δ) of 6.22%] and
the effect was higher in the radiological intervention group [−1617 ml/m
(−15.49%)] than in the medication group [−151 ml/m (−3.78%)]. The AEs and
serious AEs rates after overall nonsurgical treatment were 0.50 [95%
confidence interval (CI): 0.33–0.67] and 0.04 (95% CI: 0.01–0.07),
respectively. The results of the SF-36 questionnaire showed that PCLD
treatment improved physical function [physical component summary score of
4.18 (95% CI: 1.54–6.83)] but did not significantly improve mental function
[mental component summary score of 0.91 (95% CI: −1.20 to 3.03)]. Conclusion: Nonsurgical treatment was effective and safe for PCLD, but did not improve
the quality of life in terms of mental health. Radiological intervention
directly reduces hepatic cysts, and thus they should be considered for
immediate symptom relief in patients with severe symptoms, whereas
medication might be considered for maintenance treatment. Registration number: PROSPERO (International Prospective Register of Systematic Reviews)
CRD42021279597
Collapse
Affiliation(s)
- Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon, Republic of Korea
| | - Hye In Jo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon, Republic of Korea
| | - Eun-Ae Jung
- Medical Library, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Jae Seung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon, Republic of Korea
| | - Young Seok Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon, Republic of Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Yu Z, Shen X, Hu C, Zeng J, Wang A, Chen J. Molecular Mechanisms of Isolated Polycystic Liver Diseases. Front Genet 2022; 13:846877. [PMID: 35571028 PMCID: PMC9104337 DOI: 10.3389/fgene.2022.846877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic liver disease (PLD) is a rare autosomal dominant disorder including two genetically and clinically distinct forms: autosomal dominant polycystic kidney disease (ADPKD) and isolated polycystic liver disease (PCLD). The main manifestation of ADPKD is kidney cysts, while PCLD has predominantly liver presentations with mild or absent kidney cysts. Over the past decade, PRKCSH, SEC63, ALG8, and LRP5 have been candidate genes of PCLD. Recently, more candidate genes such as GANAB, SEC61B, and ALR9 were also reported in PCLD patients. This review focused on all candidate genes of PCLD, including the newly established novel candidate genes. In addition, we also discussed some other genes which might also contribute to the disease.
Collapse
Affiliation(s)
- Ziqi Yu
- Munich Medical Research School, LMU Munich, Munich, Germany
| | - Xiang Shen
- Munich Medical Research School, LMU Munich, Munich, Germany
| | - Chong Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Jun Zeng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Aiyao Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| |
Collapse
|
17
|
Masyuk TV, Masyuk AI, LaRusso NF. Polycystic Liver Disease: Advances in Understanding and Treatment. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:251-269. [PMID: 34724412 DOI: 10.1146/annurev-pathol-042320-121247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polycystic liver disease (PLD) is a group of genetic disorders characterized by progressive development of cholangiocyte-derived fluid-filled hepatic cysts. PLD is the most common manifestation of autosomal dominant and autosomal recessive polycystic kidney diseases and rarely occurs as autosomal dominant PLD. The mechanisms of PLD are a sequence of the primary (mutations in PLD-causative genes), secondary (initiation of cyst formation), and tertiary (progression of hepatic cystogenesis) interconnected molecular and cellular events in cholangiocytes. Nonsurgical, surgical, and limited pharmacological treatment options are currently available for clinical management of PLD. Substantial evidence suggests that pharmacological targeting of the signaling pathways and intracellular processes involved in the progression of hepatic cystogenesis is beneficial for PLD. Many of these targets have been evaluated in preclinical and clinical trials. In this review, we discuss the genetic, molecular, and cellular mechanisms of PLD and clinical and preclinical treatment strategies. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| |
Collapse
|
18
|
Akuzawa D, Uchida Y, Ishimura T, Kakita H, Endo T, Matsuzaki N, Terajima H, Tsukamoto T. Polycystic liver disease with lethal abdominal wall rupture: a case report. J Med Case Rep 2021; 15:421. [PMID: 34340688 PMCID: PMC8330095 DOI: 10.1186/s13256-021-02964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/16/2021] [Indexed: 01/21/2023] Open
Abstract
Background Polycystic liver disease is a clinical feature of autosomal dominant polycystic kidney disease, and it can sometimes cause health damage more serious than polycystic kidney. Dialysis therapy can be used for renal failure, but liver transplantation is the only method available for liver failure. Thus, giant and multiple hepatic cysts may affect mortality. However, liver transplantation is not indicated in many cases because of the preserved liver function. Case presentation A 54-year-old Japanese woman with polycystic liver disease was transferred back to our hospital for abdominal pain caused by liver cyst infection with abdominal wall herniation. She had been diagnosed with polycystic liver disease associated with sporadic autosomal dominant polycystic kidney disease 25 years earlier. Although she had several surgical interventions to reduce her liver volume, including right hepatic lobectomy and fenestration for liver cysts in another hospital, she needed further repair of the recurrent incisional herniation with patch graft surgery using fascia lata to cover the herniation site. However, new herniation sites reemerged in the fragile abdominal wall area around the patch, and therefore, she reduced the recurrent abdominal wall herniation by herself. Recurrent intestinal obstructions were luckily released by fasting with decompression treatment via nasogastric tube insertion, but multiple skin ulcers around the enlarged hernia sac gradually developed, and ascites was extremely difficult to control with any medication. At final admission, her abdominal wall was even more prominent, causing shortness of breath, and it spontaneously ruptured many times, which was accompanied by discharge of around 5 liters of ascites each time. She died from sepsis caused by drug-resistant Enterococcus. Conclusions We report a case of autosomal dominant polycystic kidney disease with ruptured abdominal wall resulting from a hepatic cyst enlargement despite multiple laparotomy operations. Throughout the entire disease course, her liver volume increased rapidly, and her quality of life was severely impaired, but she could not undergo liver transplantation after readmission to our hospital. We will discuss the therapeutic strategy for this patient, including the timing and indication for liver transplantation.
Collapse
Affiliation(s)
- Daichi Akuzawa
- Department of Pediatrics, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan.,Department of Nephrology and Dialysis, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, kita-ku, Osaka, 530-8480, Japan
| | - Yoichiro Uchida
- Department of Gastroenterological Surgery and Oncology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan.,Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Ishimura
- Department of Nephrology and Dialysis, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, kita-ku, Osaka, 530-8480, Japan.,Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroko Kakita
- Department of Nephrology and Dialysis, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, kita-ku, Osaka, 530-8480, Japan
| | - Tomomi Endo
- Department of Nephrology and Dialysis, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, kita-ku, Osaka, 530-8480, Japan
| | - Naomi Matsuzaki
- Department of Pathology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan.,Department of Pathology, Tenri Hospital, Nara, Japan
| | - Hiroaki Terajima
- Department of Gastroenterological Surgery and Oncology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Tatsuo Tsukamoto
- Department of Nephrology and Dialysis, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, kita-ku, Osaka, 530-8480, Japan.
| |
Collapse
|
19
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
20
|
Mariotti V, Fiorotto R, Cadamuro M, Fabris L, Strazzabosco M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep 2021; 3:100251. [PMID: 34151244 PMCID: PMC8189933 DOI: 10.1016/j.jhepr.2021.100251] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
The family of vascular endothelial growth factors (VEGFs) includes 5 members (VEGF-A to -D, and placenta growth factor), which regulate several critical biological processes. VEGF-A exerts a variety of biological effects through high-affinity binding to tyrosine kinase receptors (VEGFR-1, -2 and -3), co-receptors and accessory proteins. In addition to its fundamental function in angiogenesis and endothelial cell biology, VEGF/VEGFR signalling also plays a role in other cell types including epithelial cells. This review provides an overview of VEGF signalling in biliary epithelial cell biology in both normal and pathologic conditions. VEGF/VEGFR-2 signalling stimulates bile duct proliferation in an autocrine and paracrine fashion. VEGF/VEGFR-1/VEGFR-2 and angiopoietins are involved at different stages of biliary development. In certain conditions, cholangiocytes maintain the ability to secrete VEGF-A, and to express a functional VEGFR-2 receptor. For example, in polycystic liver disease, VEGF secreted by cystic cells stimulates cyst growth and vascular remodelling through a PKA/RAS/ERK/HIF1α-dependent mechanism, unveiling a new level of complexity in VEFG/VEGFR-2 regulation in epithelial cells. VEGF/VEGFR-2 signalling is also reactivated during the liver repair process. In this context, pro-angiogenic factors mediate the interactions between epithelial, mesenchymal and inflammatory cells. This process takes place during the wound healing response, however, in chronic biliary diseases, it may lead to pathological neo-angiogenesis, a condition strictly linked with fibrosis progression, the development of cirrhosis and related complications, and cholangiocarcinoma. Novel observations indicate that in cholangiocarcinoma, VEGF is a determinant of lymphangiogenesis and of the immune response to the tumour. Better insights into the role of VEGF signalling in biliary pathophysiology might help in the search for effective therapeutic strategies.
Collapse
Key Words
- ADPKD, adult dominant polycystic kidney disease
- Anti-Angiogenic therapy
- BA, biliary atresia
- BDL, bile duct ligation
- CCA, cholangiocarcinoma
- CCl4, carbon tetrachloride
- CLDs, chronic liver diseases
- Cholangiocytes
- Cholangiopathies
- DP, ductal plate
- DPM, ductal plate malformation
- DRCs, ductular reactive cells
- Development
- HIF-1α, hypoxia-inducible factor type 1α
- HSCs, hepatic stellate cells
- IHBD, intrahepatic bile ducts
- IL-, interleukin-
- LECs, lymphatic endothelial cells
- LSECs, liver sinusoidal endothelial cells
- Liver repair
- MMPs, matrix metalloproteinases
- PBP, peribiliary plexus
- PC, polycystin
- PDGF, platelet-derived growth factor
- PIGF, placental growth factor
- PLD, polycystic liver diseases
- Polycystic liver diseases
- SASP, senescence-associated secretory phenotype
- TGF, transforming growth factor
- VEGF, vascular endothelial growth factors
- VEGF-A
- VEGF/VEGFR-2 signalling
- VEGFR-1/2, vascular endothelial growth factor receptor 1/2
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Valeria Mariotti
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| | - Romina Fiorotto
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| | - Massimiliano Cadamuro
- Department of Molecular Medicine, University of Padua, School of Medicine, Padua, Italy
| | - Luca Fabris
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA.,Department of Molecular Medicine, University of Padua, School of Medicine, Padua, Italy
| | - Mario Strazzabosco
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
Barten TRM, Bernts LHP, Drenth JPH, Gevers TJG. New insights into targeting hepatic cystogenesis in autosomal dominant polycystic liver and kidney disease. Expert Opin Ther Targets 2020; 24:589-599. [DOI: 10.1080/14728222.2020.1751818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thijs R. M. Barten
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Lucas H. P. Bernts
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Tom J. G. Gevers
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| |
Collapse
|
22
|
Zhang ZY, Wang ZM, Huang Y. Polycystic liver disease: Classification, diagnosis, treatment process, and clinical management. World J Hepatol 2020; 12:72-83. [PMID: 32231761 PMCID: PMC7097502 DOI: 10.4254/wjh.v12.i3.72] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/06/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Polycystic liver disease (PLD) is a rare hereditary disease that independently exists in isolated PLD, or as an accompanying symptom of autosomal dominant polycystic kidney disease and autosomal recessive polycystic kidney disease with complicated mechanisms. PLD currently lacks a unified diagnostic standard. The diagnosis of PLD is usually made when the number of hepatic cysts is more than 20. Gigot classification and Schnelldorfer classification are now commonly used to define severity in PLD. Most PLD patients have no clinical symptoms, and minority with severe complications need treatments. Somatostatin analogues, mammalian target of rapamycin inhibitor, ursodeoxycholic acid and vasopressin-2 receptor antagonist are the potentially effective medical therapies, while cyst aspiration and sclerosis, transcatheter arterial embolization, fenestration, hepatic resection and liver transplantation are the options of invasion therapies. However, the effectiveness of these therapies except liver transplantation are still uncertain. Furthermore, there is no unified strategy to treat PLD between medical centers at present. In order to better understand recent study progresses on PLD for clinical practice and obtain potential directions for future researches, this review mainly focuses on the recent progress in PLD classification, clinical manifestation, diagnosis and treatment. For information, we also provided medical treatment processes of PLD in our medical center.
Collapse
Affiliation(s)
- Ze-Yu Zhang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Zhi-Ming Wang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Yun Huang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
23
|
Hahn D, Hodson EM, Hamiwka LA, Lee VWS, Chapman JR, Craig JC, Webster AC. Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst Rev 2019; 12:CD004290. [PMID: 31840244 PMCID: PMC6953317 DOI: 10.1002/14651858.cd004290.pub3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Kidney transplantation is the therapy of choice for many patients with end-stage kidney disease (ESKD) with an improvement in survival rates and satisfactory short term graft survival. However, there has been little improvement in long-term survival. The place of target of rapamycin inhibitors (TOR-I) (sirolimus, everolimus), which have different modes of action from other commonly used immunosuppressive agents, in kidney transplantation remains uncertain. This is an update of a review first published in 2006. OBJECTIVES To evaluate the short and long-term benefits and harms of TOR-I (sirolimus and everolimus) when used in primary immunosuppressive regimens for kidney transplant recipients. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 20 September 2019 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register were identified through searches of CENTRAL, MEDLINE and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) and quasi-RCTs in which drug regimens, containing TOR-I commenced within seven days of transplant, were compared to alternative drug regimens, were included without age restriction, dosage or language of report. DATA COLLECTION AND ANALYSIS Three authors independently assessed study eligibility, risk of bias, and extracted data. Results were reported as risk ratios (RR) with 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) with 95% CI for continuous outcomes. Statistical analyses were performed using the random-effects model. The certainty of the evidence was assessed using GRADE MAIN RESULTS: Seventy studies (17,462 randomised participants) were included; eight studies included two comparisons to provide 78 comparisons. Outcomes were reported at six months to three years post transplant. Risk of bias was judged to be low for sequence generation in 25 studies, for allocation concealment in 23 studies, performance bias in four studies, detection bias in 65 studies, attrition bias in 45 studies, selective reporting bias in 48 studies, and for other potential bias in three studies. Risk of bias was judged to be at high risk of bias for sequence generation in two studies, allocation concealment in two studies, performance bias in 61 studies, detection bias in one study, attrition bias in four studies, for selective reporting bias in 11 studies and for other potential risk of bias in 46 studies. Compared with CNI and antimetabolite, TOR-I with antimetabolite probably makes little or no difference to death (RR 1.31, 95% CI 0.87 to 1.98; 19 studies) or malignancies (RR 0.86, 95% CI 0.50 to 1.48; 10 studies); probably increases graft loss censored for death (RR 1.32, 95% CI 0.96 to 1.81; 15 studies), biopsy-proven acute rejection (RR 1.60, 95% CI 1.25 to 2.04; 15 studies), need to change treatment (RR 2.42, 95% CI 1.88 to 3.11; 14 studies) and wound complications (RR 2.56, 95% CI 1.94 to 3.36; 12 studies) (moderate certainty evidence); but reduces CMV infection (RR 0.43, 95% CI 0.29 to 0.63; 13 studies) (high certainty evidence). Compared with antimetabolites and CNI, TOR-I with CNI probably makes little or no difference to death (RR 1.06, 95% CI 0.84 to 1.33; 31 studies), graft loss censored for death (RR 1.09, 95% CI 0.82 to 1.45; 26 studies), biopsy-proven acute rejection (RR 0.95, 95% CI 0.81 to 1.12; 24 studies); and malignancies (RR 0.83, 95% CI 0.64 to 1.07; 17 studies); probably increases the need to change treatment (RR 1.56, 95% CI 1.28 to 1.90; 25 studies), and wound complications (RR 1.56, 95% CI 1.28 to 1.91; 17 studies); but probably reduces CMV infection (RR 0.44, 95% CI 0.34 to 0.58; 25 studies) (moderate certainty evidence). Lower dose TOR-I and standard dose CNI compared with higher dose TOR-I and reduced dose CNI probably makes little or no difference to death (RR 1.07, 95% CI 0.64 to 1.78; 9 studies), graft loss censored for death (RR 1.09, 95% CI 0.54 to 2.20; 8 studies), biopsy-proven acute rejection (RR 0.87, 95% CI 0.67 to 1.13; 8 studies), and CMV infection (RR 1.42, 95% CI 0.78 to 2.60; 5 studies) (moderate certainty evidence); and may make little or no difference to wound complications (RR 0.95, 95% CI 0.53 to 1.71; 3 studies), malignancies (RR 1.04, 95% CI 0.36 to 3.04; 7 studies), and the need to change treatments (RR 1.18, 95% CI 0.58 to 2.42; 5 studies) (low certainty evidence). Lower dose of TOR-I compared with higher doses probably makes little or no difference to death (RR 0.84, 95% CI 0.67 to 1.06; 13 studies), graft loss censored for death (RR 0.92, 95% CI 0.71 to 1.19; 12 studies), biopsy-proven acute rejection (RR 1.26, 95% CI 1.10 to 1.43; 11 studies), CMV infection (RR 0.87, 95% CI 0.63 to 1.21; 9 studies), wound complications (RR 0.92, 95% CI 0.66 to 1.29; 7 studies), and malignancy (RR 0.84, 95% CI 0.54 to 1.32; 10 studies) (moderate certainty evidence); and may make little or no difference to the need to change treatments (RR 0.91, 95% CI 0.78 to 1.05; 10 studies) (low certainty evidence). It is uncertain whether sirolimus and everolimus differ in their effects on kidney function and lipid levels because the certainty of the evidence is very low based on a single small study with only three months of follow-up. AUTHORS' CONCLUSIONS In studies with follow-up to three years, TOR-I with an antimetabolite increases the risk of graft loss and acute rejection compared with CNI and an antimetabolite. TOR-I with CNI potentially offers an alternative to an antimetabolite with CNI as rates of graft loss and acute rejection are similar between interventions and TOR-I regimens are associated with a reduced risk of CMV infections. Wound complications and the need to change immunosuppressive medications are higher with TOR-I regimens. While further new studies are not required, longer-term follow-up data from participants in existing methodologically robust RCTs are needed to determine how useful immunosuppressive regimens, which include TOR-I, are in maintaining kidney transplant function and survival beyond three years.
Collapse
Affiliation(s)
- Deirdre Hahn
- The Children's Hospital at WestmeadDepartment of NephrologyLocked Bag 4001WestmeadNSWAustralia2145
| | - Elisabeth M Hodson
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchLocked Bag 4001WestmeadNSWAustralia2145
| | - Lorraine A Hamiwka
- University of Calgary/Alberta Children's HospitalDepartment of Medicine/Pediatrics2888 Shaganappi Trail NW Children's HospitalCalgaryAlbertaCanadaT3B 6A8
| | - Vincent WS Lee
- Westmead & Blacktown HospitalsDepartment of Renal MedicineDarcy RdWestmeadNSWAustralia2145
- The University of Sydney at WestmeadCentre for Transplant and Renal Research, Westmead Millennium InstituteWestmeadAustralia
| | - Jeremy R Chapman
- Westmead Millennium Institute, The University of Sydney at WestmeadCentre for Transplant and Renal ResearchDarcy RdWestmeadNSWAustralia2145
| | - Jonathan C Craig
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchLocked Bag 4001WestmeadNSWAustralia2145
- Flinders UniversityCollege of Medicine and Public HealthAdelaideSAAustralia5001
| | - Angela C Webster
- The University of Sydney at WestmeadCentre for Transplant and Renal Research, Westmead Millennium InstituteWestmeadAustralia
- The University of SydneySydney School of Public HealthEdward Ford Building A27SydneyNSWAustralia2006
| | | |
Collapse
|
24
|
Margaria JP, Campa CC, De Santis MC, Hirsch E, Franco I. The PI3K/Akt/mTOR pathway in polycystic kidney disease: A complex interaction with polycystins and primary cilium. Cell Signal 2019; 66:109468. [PMID: 31715259 DOI: 10.1016/j.cellsig.2019.109468] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Over-activation of the PI3K/Akt/mTOR network is a well-known pathogenic event that leads to hyper-proliferation. Pharmacological targeting of this pathway has been developed for the treatment of multiple diseases, including cancer. In polycystic kidney disease (PKD), the mTOR cascade promotes cyst growth by boosting proliferation, size and metabolism of kidney tubule epithelial cells. Therefore, mTOR inhibition has been tested in pre-clinical and clinical studies, but only the former showed positive results. This review reports recent discoveries describing the activity and molecular mechanisms of mTOR activation in tubule epithelial cells and cyst formation and discusses the evidence of an upstream regulation of mTOR by the PI3K/Akt axis. In particular, the complex interconnections of the PI3K/Akt/mTOR network with the principal signaling routes involved in the suppression of cyst formation are dissected. These interactions include the antagonism and the reciprocal negative regulation between mTOR complex 1 and the proteins whose deletion causes Autosomal Dominant PKD, the polycystins. In addition, the emerging role of phopshoinositides, membrane components modulated by PI3K, will be presented in the context of primary cilium signaling, cell polarization and protection from cyst formation. Overall, studies demonstrate that the activity of various members of the PI3K/Akt/mTOR network goes beyond the classical transduction of mitogenic signals and can impact several aspects of kidney tubule homeostasis and morphogenesis. These properties might be useful to guide the establishment of more effective treatment protocols to be tested in clinical trials.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Carlo Cosimo Campa
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Maria Chiara De Santis
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Irene Franco
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, 14157 Huddinge, Sweden.
| |
Collapse
|
25
|
Kou P, Wei S, Xiong F. Recent Advances of mTOR Inhibitors Use in Autosomal Dominant Polycystic Kidney Disease: Is the Road Still Open? Curr Med Chem 2019; 26:2962-2973. [PMID: 29600752 DOI: 10.2174/0929867325666180330094434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/15/2017] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most common monogenic kidney disease, is caused by mutations in the PKD1, PKD2 or, in a very limited number of families, GANAB genes. Although cellular and molecular mechanisms of this disease have been understood in the past 20 years, specific therapy approaches remain very little. Both experimental and clinical studies show that the mammalian or mechanistic target of rapamycin (mTOR) pathway plays an important role during cyst formation and enlargement in ADPKD. Studies in rodent models of ADPKD showed that mTOR inhibitors had a significant and long-lasting decrease in kidney volume and amelioration in kidney function. In the past over ten years, researchers have been devoting continuously to test mTOR inhibitors efficacy and safety in both preclinical studies and clinical trials in patients with ADPKD. In this review, we will discuss the mTOR pathway thoroughly, mainly focusing on current advances in understanding its role in ADPKD, especially the recent progress of mTOR inhibitors use in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Pei Kou
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
26
|
Lin CH, Chao CT, Wu MY, Lo WC, Lin TC, Wu MS. Use of mammalian target of rapamycin inhibitors in patient with autosomal dominant polycystic kidney disease: an updated meta-analysis. Int Urol Nephrol 2019; 51:2015-2025. [PMID: 31578673 DOI: 10.1007/s11255-019-02292-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Mammalian target of rapamycin (mTOR) inhibitors were previously considered a potential therapy for autosomal dominant polycystic kidney disease (ADPKD), but prior studies remained controversial about their efficacy. We performed an updated meta-analysis regarding the therapeutic and adverse effects of mTOR inhibitors in patients with ADPKD. METHODS We systematically searched Cochrane Library, PubMed, EMBASE, and Medline for randomized controlled trials (RCTs) comparing mTOR inhibitors to placebo in ADPKD patients up to August 2019. We calculated weighted mean differences (WMDs) for total kidney volume (TKV), estimated glomerular filtration rates (eGFRs), and weighted odds ratios (ORs) for treatment-related complications between the treatment and the placebo groups, using the random effects model. RESULTS We retrieved a total of 9 RCTs enrolling 784 ADPKD patients receiving rapamycin, sirolimus, or everolimus between 2009 and 2016. The WMDs of TKV and eGFR from baseline to the last measurement were - 31.54 mL (95% confidence interval [CI] - 76.79 to 13.71 mL) and 2.81 mL/min/1.73 m2 (95% CI - 1.85 to 7.46 mL/min/1.73 m2), respectively. Patients receiving mTOR inhibitors had a significantly increased risk of any adverse effects (OR 5.92, 95% CI 3.53-9.94), with the most common ones being aphthous stomatitis (OR 15.45, 95% CI 9.68-24.66) and peripheral edema (OR 3.49, 95% CI 1.31-9.27) compared to placebo users. CONCLUSIONS mTOR inhibitors did not significantly influence renal progression in patients with ADPKD, but were associated with a higher risk of complications. Whether mTOR inhibitors can be an add-on option or second-line agents remain undetermined.
Collapse
Affiliation(s)
- Chun-Hung Lin
- Department of Orthopedics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Ter Chao
- Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, National Taiwan University College of Medicine, Taipei, Taiwan. .,Graduate Institute of Toxicology, National Taiwan University College of Medicine, No. 1, Section 1 Jen-Ai Rd., Taipei, 10051, Taiwan.
| | - Mei-Yi Wu
- Department of Nephrology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Primary Care Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Cheng Lo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tsu-Chen Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mai-Szu Wu
- Department of Nephrology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
27
|
Ding F, Tang H, Zhao H, Feng X, Yang Y, Chen GH, Chen WJ, Xu C. Long-term results of liver transplantation for polycystic liver disease: Single-center experience in China. Exp Ther Med 2019; 17:4183-4189. [PMID: 31007749 DOI: 10.3892/etm.2019.7449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/15/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore the indications for and safety of orthotopic liver transplantation for polycystic liver disease (PLD). Orthotopic liver transplantation in 11 patients with PLD between May 2004 and September 2013 was retrospectively analyzed. Patient epidemiological, clinical and follow-up data were collected. The survival rate was calculated using the Kaplan-Meier method. Over the 10-year period, 11 patients received orthotopic liver transplantation (n=9) and combined liver-kidney transplantation (n=2) for PLD. The recipients' median age was 56 years [(interquartile range (IQR), 52-57 years], and 7 of the patients (63.6%) were classified as having Gigot type II PLD and 4 (36.4%) as having Gigot type III. A total of 8 (72.7%) patients had a severely decreased quality of life (Eastern Cooperative Oncology Group performance status score, ≥3). Only 3 cases (27.3%) were of Class C stage. The mean hospitalization duration was 45.4±15.3 days and the mean length of stay at the intensive care unit was 4.1±1.9 days. The peri-operative mortality was 18.2% and the morbidity was 54.5%. The median follow-up period was 111 months (IQR, 33-132 months). A total of 2 patients died of severe complications after combined liver-kidney transplantation. Furthermore, 1 patient died of ischemia cholangitis during the follow-up period. The actuarial 1-, 5- and 10-year survival rate during the follow-up period was 81.8, 81.8 and 65.5%, respectively. The mean physical component summary score was 87.1±6.9 and the mean mental component summary score was 81.5±6.4. In conclusion, liver transplantation is the only curative procedure for PLD, and the present study indicated that it is relatively and safe and leads to good long-term prognosis and high quality of life. Based on our experience and results, liver transplantation is a primary option for cases of PLD with progressive or advanced symptomatic disease where previous other forms of therapy to palliate symptoms have been insufficient.
Collapse
Affiliation(s)
- Fan Ding
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Tang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Zhao
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao Feng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Gui-Hua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wen-Jie Chen
- Department of Biological Treatment Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Chi Xu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
28
|
Therapeutic Use of mTOR Inhibitors in Renal Diseases: Advances, Drawbacks, and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3693625. [PMID: 30510618 PMCID: PMC6231362 DOI: 10.1155/2018/3693625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has a key role in the regulation of a variety of biological processes pivotal for cellular life, aging, and death. Impaired activity of mTOR complexes (mTORC1/mTORC2), particularly mTORC1 overactivation, has been implicated in a plethora of age-related disorders, including human renal diseases. Since the discovery of rapamycin (or sirolimus), more than four decades ago, advances in our understanding of how mTOR participates in renal physiological and pathological mechanisms have grown exponentially, due to both preclinical studies in animal models with genetic modification of some mTOR components as well as due to evidence coming from the clinical experience. The main clinical indication of rapamycin is as immunosuppressive therapy for the prevention of allograft rejection, namely, in renal transplantation. However, considering the central participation of mTOR in the pathogenesis of other renal disorders, the use of rapamycin and its analogs meanwhile developed (rapalogues) everolimus and temsirolimus has been viewed as a promising pharmacological strategy. This article critically reviews the use of mTOR inhibitors in renal diseases. Firstly, we briefly overview the mTOR components and signaling as well as the pharmacological armamentarium targeting the mTOR pathway currently available or in the research and development stages. Thereafter, we revisit the mTOR pathway in renal physiology to conclude with the advances, drawbacks, and challenges regarding the use of mTOR inhibitors, in a translational perspective, in four classes of renal diseases: kidney transplantation, polycystic kidney diseases, renal carcinomas, and diabetic nephropathy.
Collapse
|
29
|
Effect of Sirolimus on Native Total Kidney Volume After Transplantation in Patients with Autosomal Dominant Polycystic Kidney Disease: A Randomized Controlled Pilot Study. Transplant Proc 2018; 50:1243-1248. [PMID: 29880342 DOI: 10.1016/j.transproceed.2018.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/06/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) pathway has been shown to be central to cyst formation and growth in patients with autosomal dominant polycystic kidney disease (ADPKD). Drugs that suppress mTOR signaling are frequently used as antiproliferative agents for maintenance immunosuppression in patients who have undergone kidney transplantation. The aim of this study was to determine the effect of sirolimus, an mTOR inhibitor, on cyst volume regression in patients with ADPKD who have undergone renal transplantation. METHODS In this single-center, prospective, open-label, parallel-group, randomized trial, 23 adult patients with ADPKD who successfully underwent renal transplantation from 2008 to 2012 were subsequently randomized (on a 1:1 basis) to a maintenance immunosuppression regimen with either sirolimus (sirolimus, tacrolimus, prednisone) or mycophenolate (mycophenolate, tacrolimus, prednisone). Total kidney volumes were measured by means of high-resolution magnetic resonance imaging within 2 weeks after transplantation and at 1 year. The primary end point was change in total kidney volume at 1 year. RESULTS Sixteen patients completed the 1-year study (8 patients in each group). There was a decrease in kidney volume in both the sirolimus group (percentage change from baseline, 20.5%; P < .001) and mycophenolate group (percentage change from baseline, 17%; P = .048), but there was no significant difference in percentage change of total kidney volume between the groups (P = .665). CONCLUSIONS In ADPKD patients at 1 year after kidney transplantation, there was a similar decrease in polycystic kidney volume in patients receiving an immunosuppression regimen containing sirolimus compared with patients receiving mycophenolate.
Collapse
|
30
|
Walters HE, Cox LS. mTORC Inhibitors as Broad-Spectrum Therapeutics for Age-Related Diseases. Int J Mol Sci 2018; 19:E2325. [PMID: 30096787 PMCID: PMC6121351 DOI: 10.3390/ijms19082325] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Chronological age represents the greatest risk factor for many life-threatening diseases, including neurodegeneration, cancer, and cardiovascular disease; ageing also increases susceptibility to infectious disease. Current efforts to tackle individual diseases may have little impact on the overall healthspan of older individuals, who would still be vulnerable to other age-related pathologies. However, recent progress in ageing research has highlighted the accumulation of senescent cells with chronological age as a probable underlying cause of pathological ageing. Cellular senescence is an essentially irreversible proliferation arrest mechanism that has important roles in development, wound healing, and preventing cancer, but it may limit tissue function and cause widespread inflammation with age. The serine/threonine kinase mTOR (mechanistic target of rapamycin) is a regulatory nexus that is heavily implicated in both ageing and senescence. Excitingly, a growing body of research has highlighted rapamycin and other mTOR inhibitors as promising treatments for a broad spectrum of age-related pathologies, including neurodegeneration, cancer, immunosenescence, osteoporosis, rheumatoid arthritis, age-related blindness, diabetic nephropathy, muscular dystrophy, and cardiovascular disease. In this review, we assess the use of mTOR inhibitors to treat age-related pathologies, discuss possible molecular mechanisms of action where evidence is available, and consider strategies to minimize undesirable side effects. We also emphasize the urgent need for reliable, non-invasive biomarkers of senescence and biological ageing to better monitor the efficacy of any healthy ageing therapy.
Collapse
Affiliation(s)
- Hannah E Walters
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
31
|
Isolated Polycystic Liver Disease: An Unusual Cause of Recurrent Variceal Bleed. Case Rep Gastrointest Med 2018; 2018:2902709. [PMID: 29971171 PMCID: PMC6008945 DOI: 10.1155/2018/2902709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/23/2018] [Accepted: 05/08/2018] [Indexed: 01/26/2023] Open
Abstract
Isolated polycystic liver disease is a rare disorder. Majority of the patients with isolated polycystic liver disease are asymptomatic with incidental detection of liver cysts on imaging studies done for other purposes. Minority of patients develop symptoms which are mostly secondary to enlarging cysts size and hepatomegaly. Rarely, these patients develop portal hypertension and can present with its clinical manifestations and consequences in the form acute variceal bleeding or recurrent ascites. We present a rare case of 67-year-old female patient with significant history of polycystic liver disease who presented to the hospital with recurrent hematemesis and melena. She underwent esophagogastroduodenoscopy which showed multiple large esophageal varices requiring banding.
Collapse
|
32
|
Masyuk TV, Masyuk AI, LaRusso NF. Therapeutic Targets in Polycystic Liver Disease. Curr Drug Targets 2018; 18:950-957. [PMID: 25915482 DOI: 10.2174/1389450116666150427161743] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 02/06/2023]
Abstract
Polycystic liver diseases (PLD) are a group of genetic disorders initiated by mutations in several PLD-related genes and characterized by the presence of multiple cholangiocyte-derived hepatic cysts that progressively replace liver tissue. PLD co-exists with Autosomal Dominant Polycystic Kidney Disease (ADPKD) and Autosomal Recessive PKD as well as occurs alone (i.e., Autosomal Dominant Polycystic Liver Disease [ADPLD]). PLD associated with ADPKD and ARPKD belong to a group of disorders known as cholangiociliopathies since many disease-causative and disease-related proteins are expressed in primary cilia of cholangiocytes. Aberrant expression of these proteins in primary cilia affects their structures and functions promoting cystogenesis. Current medical therapies for PLD include symptomatic management and surgical interventions. To date, the only available drug treatment for PLD patients that halt disease progression and improve quality of life are somatostatin analogs. However, the modest clinical benefits, need for long-term maintenance therapy, and the high cost of treatment justify the necessity for more effective treatment options. Substantial evidence suggests that experimental manipulations with components of the signaling pathways that influence cyst development (e.g., cAMP, intracellular calcium, receptor tyrosine kinase, transient receptor potential cation channel subfamily V member 4 (TRPV4) channel, mechanistic target of rapamycin (mTOR), histone deacetylase (HDAC6), Cdc25A phosphatase, miRNAs and metalloproteinases) attenuate growth of hepatic cysts. Many of these targets have been evaluated in pre-clinical trials suggesting their value as potential new therapies. This review outlines the current clinical and preclinical treatment strategies for PLD.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW Rochester, Minnesota, MN 55905, United States
| |
Collapse
|
33
|
Liver Transplant for Unusually Large Polycystic Liver Disease: Challenges and Pitfalls. Case Rep Transplant 2018; 2018:4863187. [PMID: 29487756 PMCID: PMC5816892 DOI: 10.1155/2018/4863187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/04/2018] [Indexed: 01/24/2023] Open
Abstract
Patients with polycystic liver disease are described in the literature as both recipient and donor for liver transplant. Due to well-preserved liver function, it is often difficult for these patients to receive an organ. Livers of these patients are often large and heavier than a normal organ. We describe two cases who had exceedingly large livers, weighing 14 and 19 kg. To the best of our knowledge and search, these are some of the heaviest explanted livers, and one of the patients incidentally received a liver from a donor with ADPKD. The aim of this report is to discuss the challenges and pitfalls of evaluating and listing, technical aspect of the transplant, possibility of transplanting a liver from a donor with a genetic cystic disease to a cystic disease recipient, and the related literature with some highlights on the facts from UNOS/OPTN data.
Collapse
|
34
|
Temmerman F, Chen F, Libbrecht L, Vander Elst I, Windmolders P, Feng Y, Ni Y, De Smedt H, Nevens F, van Pelt J. Everolimus halts hepatic cystogenesis in a rodent model of polycystic-liver-disease. World J Gastroenterol 2017; 23:5499-5507. [PMID: 28852309 PMCID: PMC5558113 DOI: 10.3748/wjg.v23.i30.5499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To develop a MRI-based method for accurate determination of liver volume (LV) and to explore the effect of long-term everolimus (EVR) treatment on LV in PCK rats with hepatomegaly.
METHODS Thirty-one female PCK rats (model for polycystic-liver-disease: PCLD) were randomized into 3 groups and treatment was started at 16 wk, at the moment of extensive hepatomegaly (comparable to what is done in the human disease). Animals received: controls (n = 14), lanreotide (LAN: 3 mg/kg per 2 wk) (n = 10) or everolimus (EVR: 1 mg/kg per day) (n = 7). LV was measured at week 16, 24, 28. At week 28, all rats were sacrificed and liver tissue was harvested. Fibrosis was evaluated using quantitative image analysis. In addition, gene (quantitative RT-PCR) and protein expression (by Western blot) of the PI3K/AkT/mTOR signaling pathway was investigated.
RESULTS LV determination by MRI correlated excellent with the ex vivo measurements (r = 0.99, P < 0.001). The relative changes in LV at the end of treatment were: (controls) +31.8%; (LAN) +5.1% and (EVR) +8.8%, indicating a significantly halt of LV progression compared with controls (respectively, P = 0.01 and P = 0.04). Furthermore, EVR significantly reduced the amount of liver fibrosis (P = 0.004) thus might also prevent the development of portal hypertension. There was no difference in phosphorylation of Akt (Threonine 308) between LAN-treated PCK rats control PCK rats, whereas S6 was significantly more phosphorylated in the LAN group. Phosphorylation of Akt was not different between controls and EVR treated rats, however, for S6 there was significantly less phosphorylation in the EVR treated rats. Thus, both drugs interact with the PI3K/AkT/mTOR signaling cascade but acting at different molecular levels.
CONCLUSION Everolimus halts cyst growth comparable to lanreotide and reduces the development of fibrosis. mTOR-inhibition should be further explored in PCLD patients especially those that need immunosuppression.
Collapse
|
35
|
Karpe KM, Talaulikar GS, Walters GD. Calcineurin inhibitor withdrawal or tapering for kidney transplant recipients. Cochrane Database Syst Rev 2017; 7:CD006750. [PMID: 28730648 PMCID: PMC6483545 DOI: 10.1002/14651858.cd006750.pub2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Calcineurin inhibitors (CNI) can reduce acute transplant rejection and immediate graft loss but are associated with significant adverse effects such as hypertension and nephrotoxicity which may contribute to chronic rejection. CNI toxicity has led to numerous studies investigating CNI withdrawal and tapering strategies. Despite this, uncertainty remains about minimisation or withdrawal of CNI. OBJECTIVES This review aimed to look at the benefits and harms of CNI tapering or withdrawal in terms of graft function and loss, incidence of acute rejection episodes, treatment-related side effects (hypertension, hyperlipidaemia) and death. SEARCH METHODS We searched the Cochrane Kidney and Transplant Specialised Register to 11 October 2016 through contact with the Information Specialist using search terms relevant to this review. Studies contained in the Specialised Register are identified through search strategies specifically designed for CENTRAL, MEDLINE, and EMBASE; handsearching conference proceedings; and searching the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) where drug regimens containing CNI were compared to alternative drug regimens (CNI withdrawal, tapering or low dose) in the post-transplant period were included, without age or dosage restriction. DATA COLLECTION AND ANALYSIS Two authors independently assessed studies for eligibility, risk of bias, and extracted data. Results were expressed as risk ratio (RR) or mean difference (MD) with 95% confidence intervals (CI). MAIN RESULTS We included 83 studies that involved 16,156 participants. Most were open-label studies; less than 30% of studies reported randomisation method and allocation concealment. Studies were analysed as intent-to-treat in 60% and all pre-specified outcomes were reported in 54 studies. The attrition and reporting bias were unclear in the remainder of the studies as factors used to judge bias were reported inconsistently. We also noted that 50% (47 studies) of studies were funded by the pharmaceutical industry.We classified studies into four groups: CNI withdrawal or avoidance with or without substitution with mammalian target of rapamycin inhibitors (mTOR-I); and low dose CNI with or without mTOR-I. The withdrawal groups were further stratified as avoidance and withdrawal subgroups for major outcomes.CNI withdrawal may lead to rejection (RR 2.54, 95% CI 1.56 to 4.12; moderate certainty evidence), may make little or no difference to death (RR 1.09, 95% CI 0.96 to 1.24; moderate certainty), and probably slightly reduces graft loss (RR 0.85, 95% CI 0.74 to 0.98; low quality evidence). Hypertension was probably reduced in the CNI withdrawal group (RR 0.82, 95% CI 0.71 to 0.95; low certainty), while CNI withdrawal may make little or no difference to malignancy (RR 1.10, 95% CI 0.93 to 1.30; low certainty), and probably makes little or no difference to cytomegalovirus (CMV) (RR 0.87, 95% CI 0.52 to 1.45; low certainty)CNI avoidance may result in increased acute rejection (RR 2.16, 95% CI 0.85 to 5.49; low certainty) but little or no difference in graft loss (RR 0.96, 95% CI 0.79 to 1.16; low certainty). Late CNI withdrawal increased acute rejection (RR 3.21, 95% CI 1.59 to 6.48; moderate certainty) but probably reduced graft loss (RR 0.84, 95% CI 0.72 to 0.97, low certainty).Results were similar when CNI avoidance or withdrawal was combined with the introduction of mTOR-I; acute rejection was probably increased (RR 1.43; 95% CI 1.15 to 1.78; moderate certainty) and there was probably little or no difference in death (RR 0.96; 95% CI 0.69 to 1.36, moderate certainty). mTOR-I substitution may make little or no difference to graft loss (RR 0.94, 95% CI 0.75 to 1.19; low certainty), probably makes little of no difference to hypertension (RR 0.86, 95% CI 0.64 to 1.15; moderate), and probably reduced the risk of cytomegalovirus (CMV) (RR 0.60, 95% CI 0.44 to 0.82; moderate certainty) and malignancy (RR 0.69, 95% CI 0.47 to 1.00; low certainty). Lymphoceles were increased with mTOR-I substitution (RR 1.45, 95% CI 0.95 to 2.21; low certainty).Low dose CNI combined with mTOR-I probably increased glomerular filtration rate (GFR) (MD 6.24 mL/min, 95% CI 3.28 to 9.119; moderate certainty), reduced graft loss (RR 0.75, 95% CI 0.55 to 1.02; moderate certainty), and made little or no difference to acute rejection (RR 1.13 ; 95% CI 0.91 to 1.40; moderate certainty). Hypertension was decreased (RR 0.98, 95% CI 0.80 to 1.20; low certainty) as was CMV (RR 0.41, 95% CI 0.16 to 1.06; low certainty). Low dose CNI plus mTOR-I makes probably makes little of no difference to malignancy (RR 1.22, 95% CI 0.42 to 3.53; low certainty) and may make little of no difference to death (RR 1.16, 95% CI 0.71 to 1.90; moderate certainty). AUTHORS' CONCLUSIONS CNI avoidance increased acute rejection and CNI withdrawal increases acute rejection but reduced graft loss at least over the short-term. Low dose CNI with induction regimens reduced acute rejection and graft loss with no major adverse events, also in the short-term. The use of mTOR-I reduced CMV infections but increased the risk of acute rejection. These conclusions must be tempered by the lack of long-term data in most of the studies, particularly with regards to chronic antibody-mediated rejection, and the suboptimal methodological quality of the included studies.
Collapse
Affiliation(s)
- Krishna M Karpe
- Canberra HospitalRenal ServicesYamba DriveGarranACTAustralia2605
- Australian National University Medical SchoolActonACTAustralia2601
| | - Girish S Talaulikar
- Canberra HospitalRenal ServicesYamba DriveGarranACTAustralia2605
- Australian National University Medical SchoolActonACTAustralia2601
| | - Giles D Walters
- Canberra HospitalRenal ServicesYamba DriveGarranACTAustralia2605
- Australian National University Medical SchoolActonACTAustralia2601
| | | |
Collapse
|
36
|
Mizuno H, Hoshino J, Suwabe T, Sumida K, Sekine A, Oshima Y, Oguro M, Kunizawa K, Kawada M, Hiramatsu R, Hayami N, Hasegawa E, Yamanouchi M, Sawa N, Takaichi K, Ubara Y. Tolvaptan for the Treatment of Enlarged Polycystic Liver Disease. Case Rep Nephrol Dial 2017; 7:108-111. [PMID: 29034246 PMCID: PMC5624279 DOI: 10.1159/000477664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/21/2017] [Indexed: 12/25/2022] Open
Abstract
A 44-year-old Japanese woman with autosomal dominant polycystic kidney disease was admitted to our hospital for evaluation of abdominal distension. Her eGFR was 53.7 mL/min/1.73 m2. Total kidney volume was 2,614 mL. Tolvaptan (60 mg/day) was started to treat renal involvement. The patient's abdominal fullness began to improve and liver volume, indicating advanced polycystic liver disease (PLD), decreased from 9,750 mL to 8,345 mL after 17 months of tolvaptan treatment, though there was no significant change in kidney volume. This case indicates that tolvaptan may be a therapeutic option for hepatomegaly in patients with symptomatic PLD.
Collapse
Affiliation(s)
- Hiroki Mizuno
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Junichi Hoshino
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Tatsuya Suwabe
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Keiichi Sumida
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Akinari Sekine
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Yoichi Oshima
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Masahiko Oguro
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Kyohei Kunizawa
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Masahiro Kawada
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | | | - Noriko Hayami
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Eiko Hasegawa
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | | | - Naoki Sawa
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Kenmei Takaichi
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Kawasaki, Japan
| |
Collapse
|
37
|
|
38
|
Wong MY, McCaughan GW, Strasser SI. An update on the pathophysiology and management of polycystic liver disease. Expert Rev Gastroenterol Hepatol 2017; 11:569-581. [PMID: 28317394 DOI: 10.1080/17474124.2017.1309280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polycystic liver disease (PLD) is characterized by the presence of multiple cholangiocyte-derived hepatic cysts that progressively replace liver tissue. They are classified as an inherited ciliopathy /cholangiopathy as pathology exists at the level of the primary cilia of cholangiocytes. Aberrant expression of the proteins in primary cilia can impair their structures and functions, thereby promoting cystogenesis. Areas covered: This review begins by looking at the epidemiology of PLD and its natural history. It then describes the pathophysiology and corresponding potential treatment strategies for PLD. Expert commentary: Traditionally, therapies for symptomatic PLD have been limited to symptomatic management and surgical interventions. Such techniques are not completely effective, do not alter the natural history of the disease, and are linked with high rate of re-accumulation of cysts. As a result, there has been a push for drugs targeted at abnormal cellular signaling cascades to address deregulated proliferation, cell dedifferentiation, apoptosis and fluid secretion. Currently, the only available drug treatments that halt disease progression and improve quality of life in PLD patients are somatostatin analogues. Numerous preclinical studies suggest that targeting components of the signaling pathways that influence cyst development can ameliorate growth of hepatic cysts.
Collapse
Affiliation(s)
- May Yw Wong
- a AW Morrow Gastroenterology and Liver Centre , Royal Prince Alfred Hospital and University of Sydney , Sydney , Australia
| | - Geoffrey W McCaughan
- a AW Morrow Gastroenterology and Liver Centre , Royal Prince Alfred Hospital and University of Sydney , Sydney , Australia
| | - Simone I Strasser
- a AW Morrow Gastroenterology and Liver Centre , Royal Prince Alfred Hospital and University of Sydney , Sydney , Australia
| |
Collapse
|
39
|
Yamamoto J, Nishio S, Hattanda F, Nakazawa D, Kimura T, Sata M, Makita M, Ishikawa Y, Atsumi T. Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease. Kidney Int 2017; 92:377-387. [PMID: 28341273 DOI: 10.1016/j.kint.2017.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 02/06/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney and liver cysts. The mammalian target of rapamycin (mTOR) cascade is one of the important pathways regulating cyst growth in ADPKD. Branched-chain amino acids (BCAAs), including leucine, play a crucial role to activate mTOR pathway. Therefore, we administered BCAA dissolved in the drinking water to Pkd1flox/flox:Mx1-Cre (cystic) mice from four to 22 weeks of age after polyinosinic-polycytidylic acid-induced conditional Pkd1 knockout at two weeks of age. The BCAA group showed significantly greater kidney/body weight ratio and higher cystic index in both the kidney and liver compared to the placebo-treated mice. We found that the L-type amino acid transporter 1 that facilitates BCAA entry into cells is strongly expressed in cells lining the cysts. We also found increased cyst-lining cell proliferation and upregulation of mTOR and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways in the BCAA group. In vitro, we cultured renal epithelial cell lines from Pkd1 null mice with or without leucine. Leucine was found to stimulate cell proliferation, as well as activate mTOR and MAPK/ERK pathways in these cells. Thus, BCAA accelerated disease progression by mTOR and MAPK/ERK pathways. Hence, BCAA may be harmful to patients with ADPKD.
Collapse
Affiliation(s)
- Junya Yamamoto
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saori Nishio
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Fumihiko Hattanda
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Daigo Nakazawa
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Michio Sata
- Liver Cancer Research Division, Kurume University, Kurume, Japan
| | - Minoru Makita
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasunobu Ishikawa
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuya Atsumi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
40
|
Li D, Shi X, Zhao L, Liang Z, Xie S, Wang G. Overexpression of Aquaporin 1 on cysts of patients with polycystic liver disease. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2017; 108:71-8. [PMID: 26838488 DOI: 10.17235/reed.2015.3960/2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Polycystic liver disease (PCLD) represents a group of genetic disorders that include autosomal dominant polycystic kidney disease (ADPKD) and isolated polycystic liver disease (iPCLD). There is currently no definitive treatment except for liver transplantation. The aim of this study was to assess the expression level of aquaporin 1 (AQP1) on the PCLD cysts with different sizes and provide the potential therapeutic target. METHODS We collected 3 normal bile ducts, and recruited 8 patients with simple liver cyst disease, 24 patients with ADPKD, and 17 patients with iPCLD. AQP1 expression in different types of cyst walls and in normal bile ducts was detected using real time quantitative PCR, western blot and immunofluorescence staining. We also compared AQP1 expression levels in cysts of different sizes. Besides, ionic concentrations, pH and osmolality of cyst fluid were analyzed. RESULTS The results showed that AQP1 expression in PCLD cysts was significantly higher than that in simple liver cysts and the normal bile ducts. In addition, a comparable increasing trend was found in cysts of smaller sizes to cysts of larger sizes. pH values, the sodium and chloride concentrations were higher in cyst fluid than that in the serum. CONCLUSIONS AQP1 was overexpressed in cystic cholangiocytes. A tendency of increased AQP1 protein expression in correlation with the cyst size was also found. These observations offered a direction into the molecular mechanisms of cyst expansion and maybe provide new treatment strategies to reduce fluid secretion into liver cysts.
Collapse
Affiliation(s)
- Dingyang Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to J, China
| | - Xiaoju Shi
- Department of Hepatobiliary and Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to J, China
| | - Lijing Zhao
- Prostate Diseases Prevention and Treatment Researc, the First Norman Bethune Hospital Affiliated to J, China
| | - Zuowen Liang
- Andrology Laboratory, the First Norman Bethune Hospital Affiliated to J, China
| | - Shuli Xie
- Department of Hepatobiliary and Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to J, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to J, China
| |
Collapse
|
41
|
Mikolajczyk AE, Te HS, Chapman AB. Gastrointestinal Manifestations of Autosomal-Dominant Polycystic Kidney Disease. Clin Gastroenterol Hepatol 2017; 15:17-24. [PMID: 27374006 DOI: 10.1016/j.cgh.2016.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most commonly inherited kidney disease, and the fourth most common cause of end-stage renal disease. ADPKD is a systemic disorder, associated with numerous extrarenal manifestations, including polycystic liver disease, the most common gastrointestinal manifestation, and diverticular disease, inguinal, and ventral hernias, pancreatic cysts, and large bile duct abnormalities. All of these gastrointestinal manifestations play a significant role in disease burden in ADPKD, particularly in the later decades of life. Thus, as ADPKD becomes more recognized, it is important for gastroenterologists to be knowledgeable of this monogenic disorder's effects on the digestive system.
Collapse
Affiliation(s)
- Adam E Mikolajczyk
- Center for Liver Diseases, The University of Chicago Medicine, Chicago, Illinois.
| | - Helen S Te
- Center for Liver Diseases, The University of Chicago Medicine, Chicago, Illinois
| | - Arlene B Chapman
- Section of Nephrology, The University of Chicago Medicine, Chicago, Illinois
| |
Collapse
|
42
|
Kurbegovic A, Trudel M. Acute kidney injury induces hallmarks of polycystic kidney disease. Am J Physiol Renal Physiol 2016; 311:F740-F751. [DOI: 10.1152/ajprenal.00167.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) and autosomal dominant polycystic kidney disease (ADPKD) are considered separate entities that both frequently cause renal failure. Since ADPKD appears to depend on a polycystin-1 (Pc1) or Pc2 dosage mechanism, we investigated whether slow progression of cystogenesis in two Pkd1 transgenic mouse models can be accelerated with moderate ischemia-reperfusion injury (IRI). Transient unilateral left ischemic kidneys in both nontransgenic and transgenic mice reproducibly develop tubular dilatations, cysts, and typical PKD cellular defects within 3 mo post-IRI. Similar onset and severity of IRI induced-cystogenesis independently of genotype revealed that IRI is sufficient to promote renal cyst formation; however, this response was not further amplified by the transgene in Pkd1 mouse models. The IRI nontransgenic and transgenic kidneys showed from 16 days post-IRI strikingly increased and sustained Pkd1/Pc1 (>3-fold) and Pc2 (>8-fold) expression that can individually be cystogenic in mice. In parallel, long-term and important stimulation of hypoxia-inducible factor 1α expression was induced as in polycystic kidney disease. While mammalian target of rapamycin signaling is activated, stimulation of the Wnt pathway, with markedly increased active β-catenin and c-Myc expression in IRI renal epithelium, uncovered a similar regulatory cystogenic response shared by IRI and ADPKD. Our study demonstrates that long-term AKI induces cystogenesis and cross talk with ADPKD Pc1/Pc2 pathogenic signaling.
Collapse
Affiliation(s)
- Almira Kurbegovic
- Molecular Genetics and Development, Institut de Recherches Cliniques de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Trudel
- Molecular Genetics and Development, Institut de Recherches Cliniques de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
43
|
Pisani A, Sabbatini M, Imbriaco M, Riccio E, Rubis N, Prinster A, Perna A, Liuzzi R, Spinelli L, Santangelo M, Remuzzi G, Ruggenenti P. Long-term Effects of Octreotide on Liver Volume in Patients With Polycystic Kidney and Liver Disease. Clin Gastroenterol Hepatol 2016; 14:1022-1030.e4. [PMID: 26844873 DOI: 10.1016/j.cgh.2015.12.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/17/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Short-term studies have shown that somatostatin analogues are effective in patients with polycystic kidney and liver disease. We evaluated the long-term effects of long-acting release octreotide (octreotide LAR), a somatostatin inhibitor, vs placebo in these patients. METHODS We performed a controlled study of adults with polycystic kidney and liver disease (estimated glomerular filtration rate, 40 mL/min/1.73m(2) or more) at a single center in Italy. We analyzed data from 27 patients randomly assigned to groups given octreotide LAR (40 mg, n = 14) or placebo (n = 13) each month for 3 years. The primary outcome was absolute and percentage change in total liver volume (TLV), which was measured by magnetic resonance imaging at baseline, after 3 years of treatment, and then 2 years after treatment ended. RESULTS Baseline characteristics were similar between groups. After 3 years, TLV decreased by 130.2 ± 133.2 mL in patients given octreotide LAR (7.8% ± 7.4%) (P = .003) but increased by 144.3 ± 316.8 mL (6.1% ± 14.1%) in patients given placebo. Change vs baseline differed significantly between groups (P = .004). Two years after treatment ended, TLV had decreased 14.4 ± 138.4 mL (0.8% ± 9.7%) from baseline in patients given octreotide LAR but increased by 224.4 ± 331.7 mL (11.0% ± 14.4%) in patients given placebo. Changes vs baseline still differed significantly between groups (P = .046). Decreases in TLV were similar in each sex; the change in TLV was greatest among subjects with larger baseline TLV. No patient withdrew because of side effects. CONCLUSIONS In a placebo-controlled study of patients with polycystic kidney and liver disease, 3 years of treatment with octreotide LAR significantly reduced liver volume; reductions were maintained for 2 years after treatment ended. Octreotide LAR was well-tolerated. ClinicalTrials.gov number: NCT02119052.
Collapse
Affiliation(s)
- Antonio Pisani
- Nephrology Unit, Department of Public Health, Federico II University, Naples, Italy
| | - Massimo Sabbatini
- Nephrology Unit, Department of Public Health, Federico II University, Naples, Italy
| | | | - Eleonora Riccio
- Nephrology Unit, Department of Public Health, Federico II University, Naples, Italy
| | - Nadia Rubis
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò", Bergamo, Italy
| | - Anna Prinster
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Annalisa Perna
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò", Bergamo, Italy
| | - Raffaele Liuzzi
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Letizia Spinelli
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Michele Santangelo
- Department of Surgical Sciences and Nephrology, Federico II University, Naples, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò", Bergamo, Italy; Nephrology and Dialysis Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| | - Piero Ruggenenti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Centre for Rare Diseases "Aldo e Cele Daccò", Bergamo, Italy; Nephrology and Dialysis Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | | |
Collapse
|
44
|
Yang J, Ryu H, Han M, Kim H, Hwang YH, Chung JW, Yi NJ, Lee KW, Suh KS, Ahn C. Comparison of volume-reductive therapies for massive polycystic liver disease in autosomal dominant polycystic kidney disease. Hepatol Res 2016; 46:183-91. [PMID: 26190457 DOI: 10.1111/hepr.12560] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/24/2022]
Abstract
AIM Polycystic liver disease (PLD) in autosomal dominant polycystic kidney disease (ADPKD) patients can induce massive hepatomegaly-related symptoms. Volume-reductive therapies for symptomatic PLD include transcatheter arterial embolization (TAE), liver resection and liver transplantation; however, consensus has not been reached regarding treatment selection. We compared three volume-reductive therapies for a better understanding of PLD treatment strategies. METHODS We retrospectively analyzed 28 ADPKD patients who underwent TAE, liver resection or liver transplantation for PLD at a single center, and compared their outcomes. RESULTS Of 18 TAE patients, five required repeat TAE, and five required rescue liver transplantation or liver resection because of refractory symptoms or hepatic failure. The treatment failure rate for TAE was high (69.6%). Nine underwent liver resection, and the degree of volume reduction in the liver resection group was greater than that in the TAE group (52.4% vs 7.6%, P < 0.001). One liver resection patient required rescue liver transplantation because of hepatic failure. Seven patients underwent liver transplantations. All liver transplant patients had successfully controlled symptoms or hepatic failure, and had good graft function. Three patients in the TAE group died of infections or hepatic failure, whereas no mortality occurred after surgical therapy. CONCLUSION Liver resection is a good first-line therapy in patients that have severe symptoms, cyst involvement in several segments with some spared segments and preserved liver function. Liver transplantation is a preferred first-line therapy in patients with poor liver function or whole-liver involvement. Liver transplantation is also a good rescue therapy following TAE or liver resection.
Collapse
Affiliation(s)
- Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Miyeun Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyunsuk Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji General Hospital, Seoul, Korea
| | - Jin Wook Chung
- Department of Radiology, Seoul National University, Seoul, Korea
| | - Nam-Joon Yi
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Curie Ahn
- Transplantation Center, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Khan S, Dennison A, Garcea G. Medical therapy for polycystic liver disease. Ann R Coll Surg Engl 2016; 98:18-23. [PMID: 26688394 PMCID: PMC5234394 DOI: 10.1308/rcsann.2016.0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/16/2022] Open
Abstract
Introduction Somatostatin analogues and rapamycin inhibitors are two classes of drugs available for the management of polycystic liver disease but their overall impact is not clearly established. This article systematically reviews the literature on the medical management of polycystic liver disease. The outcomes assessed include reduction in liver volume and the impact on quality of life. Methods The English language literature published between 1966 and August 2014 was reviewed from a MEDLINE(®), PubMed, Embase™ and Cochrane Library search. Search terms included 'polycystic', 'liver', 'sirolimus', 'everolimus', 'PCLD', 'somatostatin', 'octreotide', 'lanreotide' and 'rapamycin'. Both randomised trials and controlled studies were included. References of the articles retrieved were also searched to identify any further eligible publications. The studies included were appraised using the Jadad score. Results Seven studies were included in the final review. Five studies, of which three were randomised trials, investigated the role of somatostatin analogues and the results showed a mean reduction in liver volume ranging from 2.9% at six months to 4.95 ±6.77% at one year. Only one randomised study examined the influence of rapamycin inhibitors. This trial compared dual therapy with everolimus and octreotide versus octreotide monotherapy. Liver volume reduced by 3.5% and 3.8% in the control and intervention groups respectively but no statistical difference was found between the two groups (p=0.73). Two randomised trials investigating somatostatin analogues assessed quality of life using SF-36(®). Only one subdomain score improved in one of the trials while two subdomain scores improved in the other with somatostatin analogue therapy. Conclusions Somatostatin analogues significantly reduce liver volumes after six months of therapy but have only a modest improvement on quality of life. Rapamycin inhibitors do not confer any additional advantage.
Collapse
Affiliation(s)
- S Khan
- University Hospitals of Leicester NHS Trust , UK
| | - A Dennison
- University Hospitals of Leicester NHS Trust , UK
| | - G Garcea
- University Hospitals of Leicester NHS Trust , UK
| |
Collapse
|
46
|
Bhaskar LVKS, Elumalai R, Periasamy S. Pathways, perspectives and pursuits in polycystic kidney disease. J Nephropharmacol 2015; 5:41-48. [PMID: 28197498 PMCID: PMC5297506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/25/2015] [Indexed: 11/01/2022] Open
Abstract
Polycystic kidney disease (PKD) is characterized by the growth of numerous cysts in the kidneys. When cysts form in the kidneys, they are filled with fluid. PKD cysts can profoundly enlarge the kidneys while replacing much of the normal structure, resulting in reduced kidney function and leading to kidney failure. Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease that occurs in one out of 1000 humans. PKD and its causes are being dissected through studies of human populations and through the use of animal models. Mouse models in particular have made a substantial contribution to our understanding of the gene pathways involved in the pathogenesis and the nature of signaling molecules that act in a tissue-specific manner at critical stages of cyst development. PKD has a number of characteristics that make it uniquely challenging for the development of therapies to slowdown disease progression. This review provides current understanding of the etiopathology, pathways involved and therapeutic targets of PKDs.
Collapse
Affiliation(s)
- L. V. K. S. Bhaskar
- 1Sickle Cell Institute Chhattisgarh, Raipur, India
,Corresponding author: Dr. L.V. K. S. Bhaskar,
| | | | | |
Collapse
|
47
|
Iijima T, Hoshino J, Suwabe T, Sumida K, Mise K, Kawada M, Imafuku A, Hayami N, Hiramatsu R, Hasegawa E, Sawa N, Takaichi K, Ubara Y. Ursodeoxycholic Acid for Treatment of Enlarged Polycystic Liver. Ther Apher Dial 2015; 20:73-8. [DOI: 10.1111/1744-9987.12326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Koki Mise
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
| | | | - Aya Imafuku
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
| | - Noriko Hayami
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
| | | | - Eiko Hasegawa
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
| | - Naoki Sawa
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
| | - Kenmei Takaichi
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
- Okinaka Memorial Institute for Medical Research; Toranomon Hospital; Kajigaya Japan
| | - Yoshifumi Ubara
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
- Okinaka Memorial Institute for Medical Research; Toranomon Hospital; Kajigaya Japan
| |
Collapse
|
48
|
Gordon SC. Polycystic Liver Disease. Gastroenterol Hepatol (N Y) 2015; 11:542-544. [PMID: 27118951 PMCID: PMC4843043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Stuart C. Gordon
- Director of Hepatology Department of Gastroenterology and Hepatology Henry Ford Health System Professor of Medicine Wayne State University School of Medicine Detroit, Michigan
| |
Collapse
|
49
|
Bolignano D, Palmer SC, Ruospo M, Zoccali C, Craig JC, Strippoli GFM. Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst Rev 2015; 2015:CD010294. [PMID: 26171904 PMCID: PMC8406618 DOI: 10.1002/14651858.cd010294.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited disorder causing kidney disease. Current clinical management of ADPKD focuses primarily on symptom control and reducing associated complications, particularly hypertension. In recent years, improved understanding of molecular and cellular mechanisms involved in kidney cyst growth and disease progression has resulted in new pharmaceutical agents to target disease pathogenesis to prevent progressive disease. OBJECTIVES We aimed to evaluate the effects of interventions for preventing ADPKD progression on kidney function, kidney endpoints, kidney structure, patient-centred endpoints (such as cardiovascular events, sudden death, all-cause mortality, hospitalisations, BP control, quality of life, and kidney pain), as well as the general and specific adverse effects related to their use. SEARCH METHODS We searched the Cochrane Renal Group's Specialised Register to 6 June 2015 using relevant search terms. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing any interventions for preventing the progression of ADPKD with other interventions or placebo were considered for inclusion without language restriction. DATA COLLECTION AND ANALYSIS Two authors independently assessed study risks of bias and extracted data. We summarised treatment effects on clinical outcomes, kidney function and structure and adverse events using random effects meta-analysis. We assessed heterogeneity in estimated treatment effects using the Cochran Q test and I(2) statistic. Summary treatment estimates were calculated as a mean difference (MD) or standardised mean difference (SMD) for continuous outcomes and a risk ratio (RR) for dichotomous outcomes together with their 95% confidence intervals. MAIN RESULTS We included 30 studies (2039 participants) that investigated 11 pharmacological interventions (angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARBs), calcium channel blockers, beta blockers, vasopressin receptor 2 (V2R) antagonists, mammalian target of rapamycin (mTOR) inhibitors, somatostatin analogues, antiplatelet agents, eicosapentaenoic acids, statins and vitamin D compounds) in this review.ACEi significantly reduced diastolic blood pressure (9 studies, 278 participants: MD -4.96 mm Hg, 95% CI -8.88 to -1.04), but had uncertain effects on kidney volumes (MD -42.50 mL, 95% CI -115.68 to 30.67), GFR (MD -3.41 mL/min/1.73 m(2), 95% CI -15.83 to 9.01), and SCr (MD -0.02 mg/dL, 95% CI -0.14 to 0.09), in data largely restricted to children. ACEi did not show different effects on GFR (MD -8.19 mL/min/1.73 m(2), 95% CI -29.46 to 13.07) and albuminuria (SMD -0.19, 95% CI -1.77 to 1.39) when compared with beta-blockers, or SCr (MD 0.00 mg/dL, 95% CI -0.09 to 0.10) when compared with ARBs.Data for effects of V2R antagonists on kidney function and volumes compared to placebo were limited to narrative information within a single study while these agents increased thirst (1444 participants: RR 2.70, 95% CI 2.24 to 3.24) and dry mouth (1455 participants: RR 1.33, 95% CI 1.01 to 1.76).Compared with no treatment, mTOR inhibitors had uncertain effects on kidney function (2 studies, 115 participants: MD 4.45 mL/min/1.73 m(2), 95% CI -3.20 to 12.11) and kidney volume (MD -0.08 L, 95% CI -0.75 to 0.59) but in three studies (560 participants) caused angioedema (RR 13.39, 95% CI 2.56 to 70.00), oral ulceration (RR 6.77, 95% CI 4.42 to 10.38), infections (RR 1.14, 95% CI 1.04 to 1.25) and diarrhoea (RR 1.70, 95% CI 1.26 to 2.29).Somatostatin analogues (6 studies, 138 participants) slightly improved SCr (MD -0.43 mg/dL, 95% CI -0.86 to -0.01) and total kidney volume (MD -0.62 L, 95% CI -1.22 to -0.01) but had no definite effects on GFR (MD 9.50 mL/min, 95% CI -4.45 to 23.44) and caused diarrhoea (RR 3.72, 95% CI 1.43 to 9.68).Data for calcium channel blockers, eicosapentaenoic acids, statins, vitamin D compounds and antiplatelet agents were sparse and inconclusive.Random sequence generation was adequate in eight studies, and in almost half of the studies, blinding was not present or not specified. Most studies did not adequately report outcomes, which adversely affected our ability to assess this bias. The overall drop-out rate was over 10% in nine studies, and few were conducted using intention-to-treat analyses. AUTHORS' CONCLUSIONS Although several interventions are available for patients with ADPKD, at present there is little or no evidence that treatment improves patient outcomes in this population and is associated with frequent adverse effects. Additional large randomised studies focused on patient-centred outcomes are needed.
Collapse
Affiliation(s)
- Davide Bolignano
- CNR ‐ Italian National Council of ResearchInstitute of Clinical PhysiologyCNR‐IFC Via Vallone Petrara c/o Ospedali RiunitiReggio CalabriaItaly89100
| | - Suetonia C Palmer
- University of Otago ChristchurchDepartment of Medicine2 Riccarton AvePO Box 4345ChristchurchNew Zealand8140
| | - Marinella Ruospo
- DiaverumMedical Scientific OfficeLundSweden
- Amedeo Avogadro University of Eastern PiedmontDivision of Nephrology and Transplantation, Department of Translational MedicineVia Solaroli 17NovaraItaly28100
| | - Carmine Zoccali
- CNR ‐ Italian National Council of ResearchInstitute of Clinical PhysiologyCNR‐IFC Via Vallone Petrara c/o Ospedali RiunitiReggio CalabriaItaly89100
| | - Jonathan C Craig
- The University of SydneySydney School of Public HealthEdward Ford Building A27SydneyNSWAustralia2006
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchWestmeadNSWAustralia2145
| | - Giovanni FM Strippoli
- DiaverumMedical Scientific OfficeLundSweden
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchWestmeadNSWAustralia2145
- University of BariDepartment of Emergency and Organ TransplantationBariItaly
- Diaverum AcademyBariItaly
| | | |
Collapse
|
50
|
Noël N, Rieu P. [Pathophysiology, epidemiology, clinical presentation, diagnosis and treatment options for autosomal dominant polycystic kidney disease]. Nephrol Ther 2015; 11:213-25. [PMID: 26113401 DOI: 10.1016/j.nephro.2015.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 01/12/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the leading genetic cause of end-stage renal disease (ESRD) worldwide. Its prevalence is evaluated according to studies and population between 1/1000 and 1/4000 live births and it accounts for 6 to 8% of incident ESRD patients in developed countries. ADPKD is characterized by numerous cysts in both kidneys and various extrarenal manifestations that are detailed in this review. Clinico-radiological and genetic diagnosis are also discussed. Mutations in the PKD1 and PKD2 codifying for polycystin-1 (PC-1) and polycystin-2 (PC-2) are responsible for the 85 and 15% of ADPKD cases, respectively. In primary cilia of normal kidney epithelial cells, PC-1 and PC-2 interact forming a complex involved in flow- and cilia-dependant signalling pathways where intracellular calcium and cAMP play a central role. Alteration of these multiple signal transduction pathways leads to cystogenesis accompanied by dysregulated planar cell polarity, excessive cell proliferation and fluid secretion, and pathogenic interactions of epithelial cells with an abnormal extracellular matrix. The mass effect of expanding cyst is responsible for the decline in glomerular filtration rate that occurs late in the course of the disease. For many decades, the treatment for ADPKD aims to lessen the condition's symptoms, limit kidney damage, and prevent complications. Recently, the development of promising specific treatment raises the hope to slow the growth of cysts and delay the disease. Treatment strategies targeting cAMP signalling such as vasopressin receptor antagonists or somatostatin analogs have been tested successfully in clinical trials with relative safety. Newer treatments supported by preclinical trials will become available in the next future. Recognizing early markers of renal progression (clinical, imaging, and genetic markers) to identify high-risk patients and multidrug approaches with synergistic effects may provide new opportunities for the treatment of ADPKD.
Collapse
Affiliation(s)
- Natacha Noël
- Service de néphrologie, centre hospitalier universitaire de Reims, 51100 Reims, France
| | - Philippe Rieu
- Service de néphrologie, centre hospitalier universitaire de Reims, 51100 Reims, France.
| |
Collapse
|