1
|
Schwartz L, de Dios Ruiz-Rosado J, Stonebrook E, Becknell B, Spencer JD. Uropathogen and host responses in pyelonephritis. Nat Rev Nephrol 2023; 19:658-671. [PMID: 37479904 PMCID: PMC10913074 DOI: 10.1038/s41581-023-00737-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections seen in clinical practice. The ascent of UTI-causing pathogens to the kidneys results in pyelonephritis, which can trigger kidney injury, scarring and ultimately impair kidney function. Despite sizable efforts to understand how infections develop or are cleared in the bladder, our appreciation of the mechanisms by which infections develop, progress or are eradicated in the kidney is limited. The identification of virulence factors that are produced by uropathogenic Escherichia coli to promote pyelonephritis have begun to fill this knowledge gap, as have insights into the mechanisms by which kidney tubular epithelial cells oppose uropathogenic E. coli infection to prevent or eradicate UTIs. Emerging data also illustrate how specific cellular immune responses eradicate infection whereas other immune cell populations promote kidney injury. Insights into the mechanisms by which uropathogenic E. coli circumvent host immune defences or antibiotic therapy to cause pyelonephritis is paramount to the development of new prevention and treatment strategies to mitigate pyelonephritis and its associated complications.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Juan de Dios Ruiz-Rosado
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily Stonebrook
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
2
|
Chelangarimiyandoab F, Mungara P, Batta M, Cordat E. Urinary Tract Infections: Renal Intercalated Cells Protect against Pathogens. J Am Soc Nephrol 2023; 34:1605-1614. [PMID: 37401780 PMCID: PMC10561816 DOI: 10.1681/asn.0000000000000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
Urinary tract infections affect more than 1 in 2 women during their lifetime. Among these, more than 10% of patients carry antibiotic-resistant bacterial strains, highlighting the urgent need to identify alternative treatments. While innate defense mechanisms are well-characterized in the lower urinary tract, it is becoming evident that the collecting duct (CD), the first renal segment encountered by invading uropathogenic bacteria, also contributes to bacterial clearance. However, the role of this segment is beginning to be understood. This review summarizes the current knowledge on CD intercalated cells in urinary tract bacterial clearance. Understanding the innate protective role of the uroepithelium and of the CD offers new opportunities for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Forough Chelangarimiyandoab
- Department of Physiology and Membrane Protein Disease Research Group, Faculty of Medicine & Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
3
|
Abstract
Urinary tract infection (UTI) is the most common type of urogenital disease. UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of women, 2.3% of men, and 3.4% of children in the United States will require treatment for UTI. Traditionally, bladder (cystitis) and kidney (pyelonephritis) infections are considered independently. However, both infections induce host defenses that are either shared or coordinated across the urinary tract. Here, we review the chemical and biophysical mechanisms of bacteriostasis, which limit the duration and severity of the illness. Urinary bacteria attempt to overcome each of these defenses, complicating description of the natural history of UTI.
Collapse
Affiliation(s)
| | - Anne-Catrin Uhlemann
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| | - Jonathan Barasch
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| |
Collapse
|
4
|
Bender K, Schwartz LL, Cohen A, Vasquez CM, Murtha MJ, Eichler T, Thomas JP, Jackson A, Spencer JD. Expression and function of human ribonuclease 4 in the kidney and urinary tract. Am J Physiol Renal Physiol 2021; 320:F972-F983. [PMID: 33818125 PMCID: PMC8174806 DOI: 10.1152/ajprenal.00592.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides are essential host defense mechanisms that prevent urinary tract infections. Recent studies have demonstrated that peptides in the ribonuclease A superfamily have antimicrobial activity against uropathogens and protect the urinary tract from uropathogenic Escherichia coli (UPEC). Little is known about the antibacterial function or expression of ribonuclease 4 (RNase 4) in the human urinary tract. Here, we show that full-length recombinant RNase 4 peptide and synthetic amino-terminal RNase 4 peptide fragment have antibacterial activity against UPEC and multidrug-resistant (MDR)-UPEC. RNASE4 transcript expression was detected in human kidney and bladder tissue using quantitative real-time PCR. Immunostaining or in situ hybridization localized RNase 4 expression to proximal tubules, principal and intercalated cells in the kidney's collecting duct, and the bladder urothelium. Urinary RNase 4 concentrations were quantified in healthy controls and females with a history of urinary tract infection. Compared with controls, urinary RNase 4 concentrations were significantly lower in females with a history of urinary tract infection. When RNase 4 was neutralized in human urine or silenced in vitro using siRNA, urinary UPEC replication or attachment to and invasion of urothelial and kidney medullary cells increased. These data show that RNase 4 has antibacterial activity against UPEC, is expressed in the human urinary tract, and can contribute to host defense against urinary tract infections.NEW & NOTEWORTHY Ribonuclease 4 (RNase 4) is a newly identified host defense peptide in the human kidney and bladder. RNase 4 kills uropathogenic Escherichia coli (UPEC) and multidrug-resistant UPEC. RNase 4 prevents invasive UPEC infection and suppressed RNase 4 expression may be a risk factor for more severe or recurrent urinary tract infection.
Collapse
Affiliation(s)
- Kristin Bender
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Laura L Schwartz
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Ariel Cohen
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Claudia Mosquera Vasquez
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Matthew J Murtha
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
| | - Tad Eichler
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Jason P Thomas
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - Ashley Jackson
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - John David Spencer
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
5
|
Masum MA, Ichii O, Elewa YHA, Kon Y. Podocyte Injury Through Interaction Between Tlr8 and Its Endogenous Ligand miR-21 in Obstructed and Its Collateral Kidney. Front Immunol 2021; 11:606488. [PMID: 33552064 PMCID: PMC7862702 DOI: 10.3389/fimmu.2020.606488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
While chronic kidney disease is prevalent in adults, obstructive nephropathy (ON) has been reported in both young and old patients. In ON, tubulointerstitial lesions (TILs) have been widely investigated, but glomerular lesions (GLs) have been largely neglected. Here, we show a novel mechanism underlying GL development in ON in young and old mice. TILs develop earlier than GLs owing to infiltration of inflammatory cells in the tubulointerstitium, but GLs develop following the activation of Toll-like receptor 8 (Tlr8) even though the absence of inflammatory cells infiltrating the glomerulus. TLR8 and interleukin 1 beta (IL1β) proteins colocalize with reducing podocyte function markers (PFMs), indicating the activation of TLR8 signaling in injured podocytes. Furthermore, glomerular and serum levels of miR-21, an endogenous ligand for Tlr8, were higher in the ON mouse model than in the sham control. The glomerular expression of Tlr8 positively correlates with miR-21 and the downstream cytokines Il1b and Il6 and negatively correlated with PFMs (Nphs1 and Synpo). We also show the colocalization of TLR8 and IL1β proteins with reducing PFMs in both obstructed and collateral kidney of young and old mice. Furthermore, in vitro study results revealed higher expression of Tlr8 and its downstream cytokines in glomeruli from obstructed kidneys following treatment with miR-21 mimic than in the control. In conclusion, the overexpression of Tlr8 may serve as a plausible mechanism underlying GL development in ON through podocyte injury.
Collapse
Affiliation(s)
- Md. Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Ren Q, Cheng L, Yi J, Ma L, Pan J, Gou SJ, Fu P. Toll-like Receptors as Potential Therapeutic Targets in Kidney Diseases. Curr Med Chem 2020; 27:5829-5854. [PMID: 31161985 DOI: 10.2174/0929867325666190603110907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/15/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
Abstract
Toll-like Receptors (TLRs) are members of pattern recognition receptors and serve a pivotal role in host immunity. TLRs response to pathogen-associated molecular patterns encoded by pathogens or damage-associated molecular patterns released by dying cells, initiating an inflammatory cascade, where both beneficial and detrimental effects can be exerted. Accumulated evidence has revealed that TLRs are closely associated with various kidney diseases but their roles are still not well understood. This review updated evidence on the roles of TLRs in the pathogenesis of kidney diseases including urinary tract infection, glomerulonephritis, acute kidney injury, transplant allograft dysfunction and chronic kidney diseases.
Collapse
Affiliation(s)
- Qian Ren
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lu Cheng
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Yi
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Pan
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shen-Ju Gou
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Ching C, Schwartz L, Spencer JD, Becknell B. Innate immunity and urinary tract infection. Pediatr Nephrol 2020; 35:1183-1192. [PMID: 31197473 PMCID: PMC6908784 DOI: 10.1007/s00467-019-04269-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 01/31/2023]
Abstract
Urinary tract infections are a severe public health problem. The emergence and spread of antimicrobial resistance among uropathogens threaten to further compromise the quality of life and health of people who develop acute and recurrent upper and lower urinary tract infections. The host defense mechanisms that prevent invasive bacterial infection are not entirely delineated. However, recent evidence suggests that versatile innate immune defenses play a key role in shielding the urinary tract from invading uropathogens. Over the last decade, considerable advances have been made in defining the innate mechanisms that maintain immune homeostasis in the kidney and urinary tract. When these innate defenses are compromised or dysregulated, pathogen susceptibility increases. The objective of this review is to provide an overview of how basic science discoveries are elucidating essential innate host defenses in the kidney and urinary tract. In doing so, we highlight how these findings may ultimately translate into the clinic as new biomarkers or therapies for urinary tract infection.
Collapse
Affiliation(s)
- Christina Ching
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Urology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura Schwartz
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - John David Spencer
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Brian Becknell
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA.
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
8
|
Wang B, Li J, Wang S, Hao Y, Zhao X, Chen J. Lactobacillus plantarum ameliorates tumour necrosis factor-induced bacterial translocation in Caco-2 cells by regulation of TLR4 expression. J Med Microbiol 2019; 67:982-991. [PMID: 29877788 DOI: 10.1099/jmm.0.000762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose. Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis. In inflammatory conditions, commensal bacteria exploit transcytotic pathways to cross the intestinal epithelium in a TLR4-dependent manner. The aim of this study was to test the hypothesis that Lactobacillus plantarum ameliorates tumour necrosis factor-induced bacterial translocation by regulation of Toll-like receptor-4 expression.Methodology. L. plantarum strains were investigated to determine their capacity to inhibit the initial adhesion of Escherichia coli B5 to Caco-2 cells. The inhibitory effects of L. plantarum on TNF-α-induced E. coli B5 translocation across Caco-2 cells were studied. Barrier function and integrity were simultaneously assessed by transepithelial electrical resistance, HRP permeability, LDH release and distribution of tight junctional proteins. Expression of TLR4 was assessed by RT-PCR.Results/Key findings. Pretreatment of monolayers with L. plantarum L2 led to a significant decrease in E. coli B5 adhesion and cell internalization (P<0.01). Exposure to TNF-α for six hours caused a significant increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability and disruption of tight junction proteins. Manipulations that induced bacterial translocation were associated with a marked increase in TLR4 mRNA expression and IL-8 secretion. L. plantarum L2 significantly abrogated TNF-α-induced bacterial translocation of E. coli B5, and also downregulated expression of TLR4 and IL-8 in intestinal epithelial cells.Conclusion. Live L. plantarum L2 can inhibit TNF-α-induced transcellular bacterial translocation via regulation of TLR4 expression.
Collapse
Affiliation(s)
- Bin Wang
- Jiangsu Academy of Science and Technology for Inspection and Quarantine, Nanjing, Jiangsu 210001, PR China.,Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Jingjing Li
- Department of Ultrasound, Nanjing Hospital of Armed Police Force Corps, Nanjing, Jiangsu 210028, PR China
| | - Shuiming Wang
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Yu Hao
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Xiaoyan Zhao
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Jun Chen
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu 210002, PR China
| |
Collapse
|
9
|
Kim DG, Choi JW, Jo IJ, Kim MJ, Lee HS, Hong SH, Song HJ, Bae GS, Park SJ. Berberine ameliorates lipopolysaccharide‑induced inflammatory responses in mouse inner medullary collecting duct‑3 cells by downregulation of NF‑κB pathway. Mol Med Rep 2019; 21:258-266. [PMID: 31746359 PMCID: PMC6896374 DOI: 10.3892/mmr.2019.10823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The major role of inner medullary collecting duct (IMCD) cells is to maintain water and sodium homeostasis. In addition to the major role, it also participates in the protection of renal and systemic inflammation. Although IMCD cells could take part in renal and systemic inflammation, investigations on renal inflammation in IMCD cells have rarely been reported. Although berberine (BBR) has been reported to show diverse pharmacological effects, its anti-inflammatory and protective effects on IMCD cells have not been studied. Therefore, in the present study, we examined the anti-inflammatory and protective effects of BBR in mouse IMCD-3 (mIMCD-3) cells against lipopolysaccharide (LPS). An MTT assay was carried out to investigate the toxicity of BBR on mIMCD-3 cells. Reverse transcription quantitative-PCR and western blotting were performed to analysis pro-inflammatory molecules and cytokines. Mechanisms of BBR were examined by western blotting and immunocytochemistry. According to previous studies, pro-inflammatory molecules, such as inducible nitric oxide synthase and cyclooxygenase-2, and pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α are increased in LPS-exposed mIMCD-3 cells. However, the production of these pro-inflammatory molecules is significantly inhibited by treatment with BBR. In addition, BBR inhibited translocation of nuclear factor (NF)-κB p65 from the cytosol to the nucleus, and degradation of inhibitory κ-Bα in LPS-exposed mIMCD-3 cells. In conclusion, BBR could inhibit renal inflammatory responses via inhibition of NF-κB signaling and ultimately contribute to amelioration of renal injury during systemic inflammation.
Collapse
Affiliation(s)
- Dong-Gu Kim
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ji-Won Choi
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Il-Joo Jo
- Division of Beauty Sciences, School of Natural Sciences, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Myoung-Jin Kim
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho-Sub Lee
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Gi-Sang Bae
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Joo Park
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
10
|
Eichler T, Bender K, Murtha MJ, Schwartz L, Metheny J, Solden L, Jaggers RM, Bailey MT, Gupta S, Mosquera C, Ching C, La Perle K, Li B, Becknell B, Spencer JD. Ribonuclease 7 Shields the Kidney and Bladder from Invasive Uropathogenic Escherichia coli Infection. J Am Soc Nephrol 2019; 30:1385-1397. [PMID: 31239387 PMCID: PMC6683711 DOI: 10.1681/asn.2018090929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/17/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Evidence suggests that antimicrobial peptides, components of the innate immune response, protect the kidneys and bladder from bacterial challenge. We previously identified ribonuclease 7 (RNase 7) as a human antimicrobial peptide that has bactericidal activity against uropathogenic Escherichia coli (UPEC). Functional studies assessing RNase 7's contributions to urinary tract defense are limited. METHODS To investigate RNase 7's role in preventing urinary tract infection (UTI), we quantified urinary RNase 7 concentrations in 29 girls and adolescents with a UTI history and 29 healthy female human controls. To assess RNase 7's antimicrobial activity in vitro in human urothelial cells, we used siRNA to silence urothelial RNase 7 production and retroviral constructs to stably overexpress RNase 7; we then evaluated UPEC's ability to bind and invade these cells. For RNase 7 in vivo studies, we developed humanized RNase 7 transgenic mice, subjected them to experimental UTI, and enumerated UPEC burden in the urine, bladder, and kidneys. RESULTS Compared with controls, study participants with a UTI history had 1.5-fold lower urinary RNase 7 concentrations. When RNase 7 was silenced in vitro, the percentage of UPEC binding or invading human urothelial cells increased; when cells overexpressed RNase 7, UPEC attachment and invasion decreased. In the transgenic mice, we detected RNase 7 expression in the kidney's intercalated cells and bladder urothelium. RNase 7 humanized mice exhibited marked protection from UPEC. CONCLUSIONS These findings provide evidence that RNase 7 has a role in kidney and bladder host defense against UPEC and establish a foundation for investigating RNase 7 as a UTI prognostic marker or nonantibiotic-based therapy.
Collapse
Affiliation(s)
- Tad Eichler
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | - Kristin Bender
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | - Matthew J Murtha
- Centers for Clinical and Translational Research and
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
| | - Laura Schwartz
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | | | - Lindsey Solden
- Microbial Pathogenesis, The Research Institute at Nationwide Children's, Columbus, Ohio
| | - Robert M Jaggers
- Microbial Pathogenesis, The Research Institute at Nationwide Children's, Columbus, Ohio
| | - Michael T Bailey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Microbial Pathogenesis, The Research Institute at Nationwide Children's, Columbus, Ohio
| | - Sudipti Gupta
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | | | - Christina Ching
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Divisions of Urology and
- Departments of Pediatric Surgery and
| | - Krista La Perle
- Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| | - Birong Li
- Centers for Clinical and Translational Research and
| | - Brian Becknell
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Nephrology, and
- Pediatrics, Nationwide Children's, Columbus, Ohio
| | - John David Spencer
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Nephrology, and
- Pediatrics, Nationwide Children's, Columbus, Ohio
| |
Collapse
|
11
|
Olson PD, McLellan LK, Hreha TN, Liu A, Briden KE, Hruska KA, Hunstad DA. Androgen exposure potentiates formation of intratubular communities and renal abscesses by Escherichia coli. Kidney Int 2018; 94:502-513. [PMID: 30041870 DOI: 10.1016/j.kint.2018.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/02/2018] [Accepted: 04/19/2018] [Indexed: 11/18/2022]
Abstract
Females across their lifespan and certain male populations are susceptible to urinary tract infections (UTI). The influence of female vs. male sex on UTI is incompletely understood, in part because preclinical modeling has been performed almost exclusively in female mice. Here, we employed established and new mouse models of UTI with uropathogenic Escherichia coli (UPEC) to investigate androgen influence on UTI pathogenesis. Susceptibility to UPEC UTI in both male and female hosts was potentiated with 5α-dihydrotestosterone, while males with androgen receptor deficiency and androgenized females treated with the androgen receptor antagonist enzalutamide were protected from severe pyelonephritis. In androgenized females and in males, UPEC formed dense intratubular, biofilm-like communities, some of which were sheltered from infiltrating leukocytes by the tubular epithelium and by peritubular fibrosis. Abscesses were nucleated by small intratubular collections of UPEC first visualized at five days postinfection and briskly expanded over the subsequent 24 hours. Male mice deficient in Toll-like receptor 4, which fail to contain UPEC within abscesses, were susceptible to lethal dissemination. Thus, androgen receptor activation imparts susceptibility to severe upper-tract UTI in both female and male murine hosts. Visualization of intratubular UPEC communities illuminates early renal abscess pathogenesis and the role of abscess formation in preventing dissemination of infection. Additionally, our study suggests that androgen modulation may represent a novel therapeutic route to combat recalcitrant or recurrent UTI in a range of patient populations.
Collapse
Affiliation(s)
- Patrick D Olson
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lisa K McLellan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Teri N Hreha
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alice Liu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kelleigh E Briden
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Keith A Hruska
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David A Hunstad
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
12
|
Mowbray CA, Shams S, Chung G, Stanton A, Aldridge P, Suchenko A, Pickard RS, Ali ASM, Hall J. High molecular weight hyaluronic acid: a two-pronged protectant against infection of the urogenital tract? Clin Transl Immunology 2018; 7:e1021. [PMID: 29928502 PMCID: PMC5993165 DOI: 10.1002/cti2.1021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Recurrent urinary tract infections are associated with uropathogenic Escherichia coli (UPEC) ascending and infecting the urinary tract. Antibiotics provide only symptomatic relief, not prevent recurrence. Clinical evidence suggests that intravesical glycosaminoglycan therapy, such as hyaluronic acid (HA), helps reduce UTI recurrence. This has been investigated here using in vitro systems modelling the urogenital tract tissues. METHODS RT4 bladder cells were preconditioned with high molecular weight HA (> 1500 kDa) at 2 mg mL-1 and challenged with UPEC to analyse barrier protection and bacterial adherence. Untreated and HA-preconditioned VK2 E6/E7 vaginal cells were challenged with E. coli flagellin (50 ng mL-1) to mimic bacterial challenge, and media analysed for lipocalin-2, human β-defensin 2 and interleukin-8 by ELISA. Experiments were repeated after siRNA knockdown of Toll-like receptors 2, 4 and 5, and CD44 to investigate signalling. RESULTS Microscopic analyses showed reduced bacterial adherence and urothelial disruption with HA, suggesting that HA functions as a barrier protecting the epithelium from bacterial infection. Cells treated with HA and flagellin simultaneously produced more of the host antimicrobial peptide LCN2 and pro-inflammatory IL-8 (P < 0.05) compared to the no HA/flagellin challenges. Increased gene expression of DEFB4 (P < 0.05), but not the hBD2 peptide, was observed in the HA/flagellin-challenged cells. CONCLUSION These data suggest that exogenous HA has potential to protect the urogenital epithelia from UPEC infection via a two-pronged approach that involves the physical enhancement of the epithelial barrier and augmentation of its innate immune response.
Collapse
Affiliation(s)
- Catherine A Mowbray
- Institute of Cell and Molecular BiosciencesMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| | - Syema Shams
- Institute of Cell and Molecular BiosciencesMedical SchoolNewcastle UniversityNewcastle upon TyneUK
- Institute of Cellular MedicineMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| | - Git Chung
- Institute of Cell and Molecular BiosciencesMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| | - Anna Stanton
- Institute of Cell and Molecular BiosciencesMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| | - Phillip Aldridge
- Institute of Cell and Molecular BiosciencesMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| | - Andrejus Suchenko
- Institute of Cell and Molecular BiosciencesMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| | - Robert S Pickard
- Institute of Cellular MedicineMedical SchoolNewcastle UniversityNewcastle upon TyneUK
- Department of UrologyNewcastle upon Tyne Hospitals NHS TrustNewcastle upon TyneUK
| | - Ased SM Ali
- Institute of Cellular MedicineMedical SchoolNewcastle UniversityNewcastle upon TyneUK
- Department of Urology and Regional Spinal Injuries UnitMid Yorkshire Hospitals NHS TrustNewcastle upon TyneUK
| | - Judith Hall
- Institute of Cell and Molecular BiosciencesMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
13
|
Feng S, Dai Z, Liu A, Wang H, Chen J, Luo Z, Yang CS. β-Sitosterol and stigmasterol ameliorate dextran sulfate sodium-induced colitis in mice fed a high fat Western-style diet. Food Funct 2018; 8:4179-4186. [PMID: 29034917 DOI: 10.1039/c7fo00375g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytosterols, the plant analogues of cholesterol, widely occur in the human diet. In this study, we investigated and compared the effects of stigmasterol and β-sitosterol (both with purities ≥95%) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J male mice fed a high fat Western-style diet. Mice treated with DSS developed severe mucosal colitis, with a marked distortion and crypt loss of colonic surface epithelium. Both β-sitosterol and stigmasterol significantly inhibited colon shortening, lowered fecal hemoglobin content, and reduced the severity of colitis in the middle and distal colon (p < 0.05). These phytosterols also significantly suppressed the activation of nuclear factor-kappa B. They also significantly decreased colony stimulating factor-1 and the nuclear translocation of inflammatory master regulator nuclear factor-kappa B. Stigmasterol significantly lowered the colonic inflammation score and the expression of cyclooxygenase-2 and colony stimulating factor-1, while β-sitosterol was less or not effective. These results suggest that dietary intake of stigmasterol and β-sitosterol ameliorates colitis. Such activities of stigmasterol and β-sitosterol in humans remain to be investigated.
Collapse
Affiliation(s)
- Simin Feng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Sadio M, Tourneur E, Bens M, Goujon JM, Vandewalle A, Chassin C. Cyclosporine A Induces MicroRNAs Controlling Innate Immunity during Renal Bacterial Infection. J Innate Immun 2017; 10:14-29. [PMID: 29069656 DOI: 10.1159/000480248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022] Open
Abstract
Urinary tract infections (UTIs) mainly due to uropathogenic Escherichia coli (UPEC) are one of the most frequent complications in kidney-transplanted patients, causing significant morbidity. However, the mechanisms underlying UTI in renal grafts remain poorly understood. Here, we analysed the effects of the potent immunosuppressive agent cyclosporine A (CsA) on the activation of collecting duct cells that represent a preferential site of adhesion and translocation for UPEC. CsA induced the inhibition of lipopolysaccharide- induced activation of collecting duct cells due to the downregulation of the expression of TLR4 via the microRNA Let-7i. Using an experimental model of ascending UTI, we showed that the pretreatment of mice with CsA prior to infection induced a marked fall in cytokine production by collecting duct cells, neutrophil recruitment, and a dramatic rise of bacterial load, but not in infected TLR4-defective mice kidneys. This effect was also observed in CsA-treated infected kidneys, where the expression of Let-7i was increased. Treatment with a synthetic Let-7i mimic reproduced the effects of CsA. Conversely, pretreatment with an anti-Let-7i antagonised the effects of CsA and rescued the innate immune response of collecting duct cells against UPEC. Thus, the utilisation of an anti-Let-7i during kidney transplantation may protect CsA-treated patients from ascending bacterial infection.
Collapse
Affiliation(s)
- Malick Sadio
- ATIP-Avenir Team Chassin, University Paris Diderot, Sorbonne Paris Cité, CRI, UMR 1149, Inserm, Paris, France
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, and a scarcity of nutrients. These problems may be circumvented in part by the ability of uropathogenic Escherichia coli and several other uropathogens to invade the epithelial cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional nutrients and protection from both host defenses and antibiotic treatments. Translocation through host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary tract infections. Here we review the mechanisms and consequences of host cell invasion by uropathogenic bacteria, with consideration of the defenses that are brought to bear against facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to the pathogenesis of urinary tract infections in human patients is also assessed, along with some of the emerging treatment options that build upon our growing understanding of the infectious life cycle of uropathogenic E. coli and other uropathogens.
Collapse
|
16
|
Cai W, Cai X, Yang Y, Yan S, Zhang H. Transcriptional Control of Dual Transporters Involved in α-Ketoglutarate Utilization Reveals Their Distinct Roles in Uropathogenic Escherichia coli. Front Microbiol 2017; 8:275. [PMID: 28270808 PMCID: PMC5318444 DOI: 10.3389/fmicb.2017.00275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are the primary causative agents of urinary tract infections. Some UPEC isolates are able to infect renal proximal tubule cells, and can potentially cause pyelonephritis. We have previously shown that to fulfill their physiological roles renal proximal tubule cells accumulate high concentrations of α-ketoglutarate (KG) and that gene cluster c5032–c5039 contribute to anaerobic utilization of KG by UPEC str. CFT073, thereby promoting its in vivo fitness. Given the importance of utilizing KG for UPEC, this study is designed to investigate the roles of two transporters KgtP and C5038 in KG utilization, their transcriptional regulation, and their contributions to UPEC fitness in vivo. Our phylogenetic analyses support that kgtP is a widely conserved locus in commensal and pathogenic E. coli, while UPEC-associated c5038 was acquired through horizontal gene transfer. Global anaerobic transcriptional regulators Fumarate and nitrate reduction (FNR) and ArcA induced c5038 expression in anaerobiosis, and C5038 played a major role in anaerobic growth on KG. KgtP was required for aerobic growth on KG, and its expression was repressed by FNR and ArcA under anaerobic conditions. Analyses of FNR and ArcA binding sites and results of EMS assays suggest that FNR and ArcA likely inhibit kgtP expression through binding to the –35 region of kgtP promoter and occluding the occupancy of RNA polymerases. Gene c5038 can be specifically induced by KG, whereas the expression of kgtP does not respond to KG, yet can be stimulated during growth on glycerol. In addition, c5038 and kgtP expression were further shown to be controlled by different alternative sigma factors RpoN and RpoS, respectively. Furthermore, dual-strain competition assays in a murine model showed that c5038 mutant but not kgtP mutant was outcompeted by the wild-type strain during the colonization of murine bladders and kidneys, highlighting the importance of C5038 under in vivo conditions. Therefore, different transcriptional regulation led to distinct roles played by C5038 and KgtP in KG utilization and fitness in vivo. This study thus potentially expanded our understanding of UPEC pathobiology.
Collapse
Affiliation(s)
- Wentong Cai
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Yongwu Yang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Shigan Yan
- School of Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology Jinan, China
| | - Haibin Zhang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Department of Clinical Veterinary Science, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
17
|
Krentz T, Allen S. Bacterial translocation in critical illness. J Small Anim Pract 2017; 58:191-198. [PMID: 28186322 DOI: 10.1111/jsap.12626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022]
Abstract
Bacterial translocation involves the passage of intestinal bacteria to extraintestinal sites and has been shown to increase morbidity and mortality in critical illness. This review outlines the pathophysiology of bacterial translocation, host defence mechanisms, and reviews the evidence for the clinical management of critically ill patients in order to minimise the negative outcomes associated with bacterial translocation.
Collapse
Affiliation(s)
- T Krentz
- Department of Emergency and Critical Care, Massachusetts Veterinary Referral Hospital, Woburn, MA, 01801, USA
| | - S Allen
- Department of Emergency and Critical Care, Massachusetts Veterinary Referral Hospital, Woburn, MA, 01801, USA
| |
Collapse
|
18
|
Kim DG, Bae GS, Jo IJ, Choi SB, Kim MJ, Jeong JH, Kang DG, Lee HS, Song HJ, Park SJ. Guggulsterone Attenuated Lipopolysaccharide-Induced Inflammatory Responses in Mouse Inner Medullary Collecting Duct-3 Cells. Inflammation 2016; 39:87-95. [PMID: 26260258 DOI: 10.1007/s10753-015-0226-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guggulsterone (GS) is a phytosterol that has been used to treat inflammatory diseases such as colitis, obesity, and thrombosis. Although many previous studies have examined activities of GS, the effect of GS on lipopolysaccharide (LPS)-induced inflammatory responses in mouse inner medullary collecting duct-3 (mIMCD-3) cells have not been examined. Therefore, here, we investigated the anti-inflammatory action of GS on mIMCD-3 cells exposed to LPS. LPS treatment on mIMCD-3 cells produced pro-inflammatory molecules such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) significantly; however, GS treatment significantly inhibited the production of pro-inflammatory molecules. In addition, GS inhibited the degradation of Iκ-Bα and translocation of NF-κB on mIMCD-3 cells. These results suggest that GS could inhibit inflammatory responses in collecting duct cells which could contribute to kidney injury during systemic infection.
Collapse
Affiliation(s)
- Dong-Goo Kim
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Gi-Sang Bae
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Il-Joo Jo
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Sun-Bok Choi
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Myoung-Jin Kim
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Jun-Hyeok Jeong
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Dae-Gil Kang
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Professional Graduate School of Oriental Medicine and College of Oriental Medicine, Wonkwang University, Shinyong-dong, Iksan, Jeonbuk, 570-749, South Korea
| | - Ho-Sub Lee
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Professional Graduate School of Oriental Medicine and College of Oriental Medicine, Wonkwang University, Shinyong-dong, Iksan, Jeonbuk, 570-749, South Korea
| | - Ho-Joon Song
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Sung-Joo Park
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea. .,Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea. .,Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.
| |
Collapse
|
19
|
Strengths and Limitations of Model Systems for the Study of Urinary Tract Infections and Related Pathologies. Microbiol Mol Biol Rev 2016; 80:351-67. [PMID: 26935136 DOI: 10.1128/mmbr.00067-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are some of the most common bacterial infections worldwide and are a source of substantial morbidity among otherwise healthy women. UTIs can be caused by a variety of microbes, but the predominant etiologic agent of these infections is uropathogenic Escherichia coli (UPEC). An especially troubling feature of UPEC-associated UTIs is their high rate of recurrence. This problem is compounded by the drastic increase in the global incidence of antibiotic-resistant UPEC strains over the past 15 years. The need for more-effective treatments for UTIs is driving research aimed at bettering our understanding of the virulence mechanisms and host-pathogen interactions that occur during the course of these infections. Surrogate models of human infection, including cell culture systems and the use of murine, porcine, avian, teleost (zebrafish), and nematode hosts, are being employed to define host and bacterial factors that modulate the pathogenesis of UTIs. These model systems are revealing how UPEC strains can avoid or overcome host defenses and acquire scarce nutrients while also providing insight into the virulence mechanisms used by UPEC within compromised individuals, such as catheterized patients. Here, we summarize our current understanding of UTI pathogenesis while also giving an overview of the model systems used to study the initiation, persistence, and recurrence of UTIs and life-threatening sequelae like urosepsis. Although we focus on UPEC, the experimental systems described here can also provide valuable insight into the disease processes associated with other bacterial pathogens both within the urinary tract and elsewhere within the host.
Collapse
|
20
|
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections of humans. The mouse provides an excellent and tractable model system for cystitis and pyelonephritis caused by Escherichia coli and other uropathogens. Using a well-established model of experimental cystitis in which the bladders of female mice are infected via transurethral catheterization, the molecular details of the pathogenesis of bacterial cystitis have been substantially illuminated in the last decade. Uropathogenic E. coli attach to bladder epithelium (both in human and mouse) via adhesive type 1 pili, establish a replicative niche within epithelial cell cytoplasm, and form intracellular bacterial communities that are protected from antibiotic effects and immune clearance. The use of different inbred and mutant mouse strains offers the opportunity to study outcomes of infection, including resolution, formation of quiescent intracellular bacterial reservoirs, chronic bacterial cystitis, and recurrent infections. Urine, bladder, and kidney tissues can be analyzed by bacterial culture, histology, immunohistochemistry, immunofluorescent and confocal microscopy, electron microscopy, and flow cytometry, while a broad array of soluble markers (e.g., cytokines) can also be profiled in serum, urine, and tissue homogenates by ELISA, Western blotting, multiplex bead array, and other approaches. This model promises to afford continued opportunity for discovery of pathogenic mechanisms and evaluation of therapeutic and preventive strategies for acute, chronic, and recurrent UTI.
Collapse
Affiliation(s)
- Thomas J Hannan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Hunstad
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, 8208, St. Louis, MO, 63110, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
The role of the galU gene of uropathogenic Escherichia coli in modulating macrophage TNF-α response. Int J Med Microbiol 2015; 305:893-901. [DOI: 10.1016/j.ijmm.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/04/2015] [Accepted: 09/10/2015] [Indexed: 11/24/2022] Open
|
22
|
Abstract
Urinary tract infections (UTIs), including pyelonephritis, are among the most common and serious infections encountered in nephrology practice. UTI risk is increased in selected patient populations with renal and urinary tract disorders. As the prevalence of antibiotic-resistant uropathogens increases, novel and alternative treatment options will be needed to reduce UTI-associated morbidity. Discoveries over the past decade demonstrate a fundamental role for the innate immune system in protecting the urothelium from bacterial challenge. Antimicrobial peptides, an integral component of this urothelial innate immune system, demonstrate potent bactericidal activity toward uropathogens and might represent a novel class of UTI therapeutics. The urothelium of the bladder and the renal epithelium secrete antimicrobial peptides into the urinary stream. In the kidney, intercalated cells--a cell-type involved in acid-base homeostasis--have been shown to be an important source of antimicrobial peptides. Intercalated cells have therefore become the focus of new investigations to explore their function during pyelonephritis and their role in maintaining urinary tract sterility. This Review provides an overview of UTI pathogenesis in the upper and lower urinary tract. We describe the role of intercalated cells and the innate immune response in preventing UTI, specifically highlighting the role of antimicrobial peptides in maintaining urinary tract sterility.
Collapse
|
23
|
Overexpression of Toll-like receptor 8 correlates with the progression of podocyte injury in murine autoimmune glomerulonephritis. Sci Rep 2014; 4:7290. [PMID: 25468389 PMCID: PMC4252901 DOI: 10.1038/srep07290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/12/2014] [Indexed: 12/23/2022] Open
Abstract
Members of the Toll-like receptor (TLR) family serve as pathogen sensors and participate in local autoimmune responses. This study found a correlation between glomerular injury and TLR expression by analysing BXSB/MpJ-Yaa (BXSB-Yaa) lupus model mice. In isolated glomeruli, the mRNA expression of several TLRs was higher in BXSB-Yaa mice than in healthy control BXSB mice. In particular, the expression of Tlr8 and its downstream cytokines was markedly increased. In mouse kidneys, TLR8 protein and mRNA localized to podocytes, and TLR8 protein expression in the glomerulus was higher in BXSB-Yaa mice than in BXSB mice. In BXSB-Yaa mice, the glomerular levels of Tlr8 mRNA negatively correlated with the glomerular levels of podocyte functional markers (Nphs1, Nphs2, and Synpo) and positively correlated with urinary albumin levels. Furthermore, the glomerular and serum levels of miR-21, a putative microRNA ligand of TLR8, were higher in BXSB-Yaa mice than in BXSB mice. The urinary levels of Tlr8 mRNA were also higher in BXSB-Yaa mice than in BXSB mice. In conclusion, the overexpression of TLR8 correlates with the progression of podocyte injury in glomerulonephritis. Thus, altered levels of urinary Tlr8 mRNA might reflect podocyte injury.
Collapse
|
24
|
Hato T, Dagher PC. How the Innate Immune System Senses Trouble and Causes Trouble. Clin J Am Soc Nephrol 2014; 10:1459-69. [PMID: 25414319 DOI: 10.2215/cjn.04680514] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The innate immune system is the first line of defense in response to nonself and danger signals from microbial invasion or tissue injury. It is increasingly recognized that each organ uses unique sets of cells and molecules that orchestrate regional innate immunity. The cells that execute the task of innate immunity are many and consist of not only "professional" immune cells but also nonimmune cells, such as renal epithelial cells. Despite a high level of sophistication, deregulated innate immunity is common and contributes to a wide range of renal diseases, such as sepsis-induced kidney injury, GN, and allograft dysfunction. This review discusses how the innate immune system recognizes and responds to nonself and danger signals. In particular, the roles of renal epithelial cells that make them an integral part of the innate immune apparatus of the kidney are highlighted.
Collapse
Affiliation(s)
- Takashi Hato
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Pierre C Dagher
- Department of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
25
|
Abstract
Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NLRs) are families of pattern recognition receptors that, together with inflammasomes, sense and respond to highly conserved pathogen motifs and endogenous molecules released upon cell damage or stress. Evidence suggests that TLRs, NLRs and the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome have important roles in kidney diseases through regulation of inflammatory and tissue-repair responses to infection and injury. In this Review, we discuss the pathological mechanisms that are related to TLRs, NLRs and NLRP3 in various kidney diseases. In general, these receptors are protective in the host defence against urinary tract infection, but can sustain and self-perpetuate tissue damage in sterile inflammatory and immune-mediated kidney diseases. TLRs, NLRs and NLRP3, therefore, have become promising drug targets to enable specific modulation of kidney inflammation and suppression of immunopathology in kidney disease.
Collapse
|
26
|
A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob Agents Chemother 2014; 58:4997-5004. [PMID: 24867985 DOI: 10.1128/aac.02824-14] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli sequence type 131 (ST131) is an extensively antimicrobial-resistant E. coli clonal group that has spread explosively throughout the world. Recent molecular epidemiologic and whole-genome phylogenetic studies have elucidated the fine clonal structure of ST131, which comprises multiple ST131 subclones with distinctive resistance profiles, including the (nested) H30, H30-R, and H30-Rx subclones. The most prevalent ST131 subclone, H30, arose from a single common fluoroquinolone (FQ)-susceptible ancestor containing allele 30 of fimH (type 1 fimbrial adhesin gene). An early H30 subclone member acquired FQ resistance and launched the rapid expansion of the resulting FQ-resistant subclone, H30-R. Subsequently, a member of H30-R acquired the CTX-M-15 extended-spectrum beta-lactamase and launched the rapid expansion of the CTX-M-15-containing subclone within H30-R, H30-Rx. Clonal expansion clearly is now the dominant mechanism for the rising prevalence of both FQ resistance and CTX-M-15 production in ST131 and in E. coli generally. Reasons for the successful dissemination and expansion of the key ST131 subclones remain undefined but may include increased transmissibility, greater ability to colonize and/or persist in the intestine or urinary tract, enhanced virulence, and more-extensive antimicrobial resistance compared to other E. coli. Here we discuss the epidemiology and molecular phylogeny of ST131 and its key subclones, possible mechanisms for their ecological success, implications of their widespread dissemination, and future research needs.
Collapse
|
27
|
Bens M, Vimont S, Ben Mkaddem S, Chassin C, Goujon JM, Balloy V, Chignard M, Werts C, Vandewalle A. Flagellin/TLR5 signalling activates renal collecting duct cells and facilitates invasion and cellular translocation of uropathogenic Escherichia coli. Cell Microbiol 2014; 16:1503-17. [PMID: 24779433 DOI: 10.1111/cmi.12306] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/03/2014] [Accepted: 04/18/2014] [Indexed: 12/11/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) colonizing kidneys is the main cause of acute pyelonephritis. TLR5 that senses flagellin was shown to be highly expressed in the bladder and to participate in host defence against flagellated UPEC, although its role in kidneys still remains elusive. Here we show that TLR5 is expressed in renal medullary collecting duct (MCD) cells, which represent a preferential site of UPEC adhesion. Flagellin, like lipopolysaccharide, stimulated the production of the chemoattractant chemokines CXCL1 and CXCL2, and subsequent migration capacity of neutrophils in cultured wild-type (WT) and Tlr4(-/-) MCDs, but not in Tlr5(-/-) MCDs. UPEC can translocate across intact MCD layers without altering tight junctions. Strikingly, the invasion capacity and transcellular translocation of the UPEC strain HT7 were significantly lower in Tlr5(-/-) than in WT MCDs. The non-motile HT7ΔfliC mutant lacking flagellin also exhibited much lower translocation capacities than the HT7 isolates. Finally, Tlr5(-/-) kidneys exhibited less infiltrating neutrophils than WT kidneys one day after the transurethral inoculation of HT7, and greater delayed renal bacterial loads in the day 4 post-infected Tlr5(-/-) kidneys. Overall, these findings indicate that the epithelial TLR5 participates to renal antibacterial defence, but paradoxically favours the translocation of UPEC across intact MCD cell layers.
Collapse
Affiliation(s)
- Marcelle Bens
- Centre de Recherche sur l'Inflammation (CRI), UMRS 1149, Université Denis Diderot - Paris 7, Paris, France; Groupe ATIP-AVENIR INSERM, Université Denis Diderot - Paris 7, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
ASC in Renal Collecting Duct Epithelial Cells Contributes to Inflammation and Injury after Unilateral Ureteral Obstruction. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1287-98. [DOI: 10.1016/j.ajpath.2014.01.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/16/2013] [Accepted: 01/07/2014] [Indexed: 12/18/2022]
|
29
|
Cai W, Wannemuehler Y, Dell'Anna G, Nicholson B, Barbieri NL, Kariyawasam S, Feng Y, Logue CM, Nolan LK, Li G. A novel two-component signaling system facilitates uropathogenic Escherichia coli's ability to exploit abundant host metabolites. PLoS Pathog 2013; 9:e1003428. [PMID: 23825943 PMCID: PMC3694859 DOI: 10.1371/journal.ppat.1003428] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/25/2013] [Indexed: 12/20/2022] Open
Abstract
Two-component signaling systems (TCSs) are major mechanisms by which bacteria adapt to environmental conditions. It follows then that TCSs would play important roles in the adaptation of pathogenic bacteria to host environments. However, no pathogen-associated TCS has been identified in uropathogenic Escherichia coli (UPEC). Here, we identified a novel TCS, which we termed KguS/KguR (KguS: α-ketoglutarate utilization sensor; KguR: α-ketoglutarate utilization regulator) in UPEC CFT073, a strain isolated from human pyelonephritis. kguS/kguR was strongly associated with UPEC but was found only rarely among other E. coli including commensal and intestinal pathogenic strains. An in vivo competition assay in a mouse UTI model showed that deletion of kguS/kguR in UPEC CFT073 resulted in a significant reduction in its colonization of the bladders and kidneys of mice, suggesting that KguS/KguR contributed to UPEC fitness in vivo. Comparative proteomics identified the target gene products of KguS/KguR, and sequence analysis showed that TCS KguS/KguR and its targeted-genes, c5032 to c5039, are encoded on a genomic island, which is not present in intestinal pathogenic E. coli. Expression of the target genes was induced by α-ketoglutarate (α-KG). These genes were further shown to be involved in utilization of α-KG as a sole carbon source under anaerobic conditions. KguS/KguR contributed to the regulation of the target genes with the direct regulation by KguR verified using an electrophoretic mobility shift assay. In addition, oxygen deficiency positively modulated expression of kguS/kguR and its target genes. Taken altogether, this study describes the first UPEC-associated TCS that functions in controlling the utilization of α-ketoglutarate in vivo thereby facilitating UPEC adaptation to life inside the urinary tract.
Collapse
Affiliation(s)
- Wentong Cai
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yvonne Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Giuseppe Dell'Anna
- Laboratory Animal Resources, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Bryon Nicholson
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Nicolle L. Barbieri
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Subhashinie Kariyawasam
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yaping Feng
- Laurence H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Catherine M. Logue
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Lisa K. Nolan
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Ganwu Li
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
30
|
Necrosis is the dominant cell death pathway in uropathogenic Escherichia coli elicited epididymo-orchitis and is responsible for damage of rat testis. PLoS One 2013; 8:e52919. [PMID: 23301002 PMCID: PMC3534655 DOI: 10.1371/journal.pone.0052919] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
Male infertility is a frequent medical condition, compromising approximately one in twenty men, with infections of the reproductive tract constituting a major etiological factor. Bacterial epididymo-orchitis results in acute inflammation most often caused by ascending canalicular infections from the urethra via the continuous male excurrent ductal system. Uropathogenic Escherichia coli (UPEC) represent a relevant pathogen in urogenital tract infections. To explore how bacteria can cause damage and cell loss and thus impair fertility, an in vivo epididymo-orchitis model was employed in rats by injecting UPEC strain CFT073 into the vas deference in close proximity to the epididymis. Seven days post infection bacteria were found predominantly in the testicular interstitial space. UPEC infection resulted in severe impairment of spermatogenesis by germ cell loss, damage of testicular somatic cells, a decrease in sperm numbers and a significant increase in TUNEL (+) cells. Activation of caspase-8 (extrinsic apoptotic pathway), caspase-3/−6 (intrinsic apoptotic pathway), caspase-1 (pyroptosis pathway) and the presence of 180 bp DNA fragments, all of which serve as indicators of the classical apoptotic pathway, were not observed in infected testis. Notably, electron microscopical examination revealed degenerative features of Sertoli cells (SC) in UPEC infected testis. Furthermore, the passive release of high mobility group protein B1 (HMGB1), as an indication of necrosis, was observed in vivo in infected testis. Thus, necrosis appears to be the dominant cell death pathway in UPEC infected testis. Substantial necrotic changes seen in Sertoli cells will contribute to impaired spermatogenesis by loss of function in supporting the dependent germ cells.
Collapse
|
31
|
Vimont S, Boyd A, Bleibtreu A, Bens M, Goujon JM, Garry L, Clermont O, Denamur E, Arlet G, Vandewalle A. The CTX-M-15-producing Escherichia coli clone O25b: H4-ST131 has high intestine colonization and urinary tract infection abilities. PLoS One 2012; 7:e46547. [PMID: 23029548 PMCID: PMC3460912 DOI: 10.1371/journal.pone.0046547] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/02/2012] [Indexed: 12/13/2022] Open
Abstract
Increasing numbers of pyelonephritis-associated uropathogenic Escherichia coli (UPEC) are exhibiting high resistance to antibiotic therapy. They include a particular clonal group, the CTX-M-15-producing O25b:H4-ST131 clone, which has been shown to have a high dissemination potential. Here we show that a representative isolate of this E. coli clone, referred to as TN03, has enhanced metabolic capacities, acts as a potent intestine- colonizing strain, and displays the typical features of UPEC strains. In a modified streptomycin-treated mouse model of intestinal colonization where streptomycin was stopped 5 days before inoculation, we show that TN03 outcompetes the commensal E. coli strains K-12 MG1655, IAI1, and ED1a at days 1 and 7. Using an experimental model of ascending UTI in C3H/HeN mice, we then show that TN03 colonized the urinary tract. One week after the transurethral inoculation of the TN03 isolates, the bacterial loads in the bladder and kidneys were significantly greater than those of two other UPEC strains (CFT073 and HT7) belonging to the same B2 phylogenetic group. The differences in bacterial loads did not seem to be directly linked to differences in the inflammatory response, since the intrarenal expression of chemokines and cytokines and the number of polymorphonuclear neutrophils attracted to the site of inflammation was the same in kidneys colonized by TN03, CFT073, or HT7. Lastly, we show that in vitro TN03 has a high maximum growth rate in both complex (Luria-Bertani and human urine) and minimum media. In conclusion, our findings indicate that TN03 is a potent UPEC strain that colonizes the intestinal tract and may persist in the kidneys of infected hosts.
Collapse
Affiliation(s)
- Sophie Vimont
- AP-HP, Hôpitaux Universitaires Est Parisien - site Tenon, Service de Bactériologie, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zgair AK, Al-Adressi AMH. Stenotrophomonas maltophilia fimbrin stimulates mouse bladder innate immune response. Eur J Clin Microbiol Infect Dis 2012; 32:139-46. [DOI: 10.1007/s10096-012-1729-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/08/2012] [Indexed: 11/28/2022]
|
33
|
Mani V, Weber TE, Baumgard LH, Gabler NK. Growth and Development Symposium: Endotoxin, inflammation, and intestinal function in livestock. J Anim Sci 2012; 90:1452-65. [PMID: 22247110 DOI: 10.2527/jas.2011-4627] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endotoxin, also referred to as lipopolysaccharide (LPS), can stimulate localized or systemic inflammation via the activation of pattern recognition receptors. Additionally, endotoxin and inflammation can regulate intestinal epithelial function by altering integrity, nutrient transport, and utilization. The gastrointestinal tract is a large reservoir of both gram-positive and gram-negative bacteria, of which the gram-negative bacteria serve as a source of endotoxin. Luminal endotoxin can enter circulation via two routes: 1) nonspecific paracellular transport through epithelial cell tight junctions, and 2) transcellular transport through lipid raft membrane domains involving receptor-mediated endocytosis. Paracellular transport of endotoxin occurs through dissociation of tight junction protein complexes resulting in reduced intestinal barrier integrity, which can be a result of enteric disease, inflammation, or environmental and metabolic stress. Transcellular transport, via specialized membrane regions rich in glycolipids, sphingolipids, cholesterol, and saturated fatty acids, is a result of raft recruitment of endotoxin-related signaling proteins leading to endotoxin signaling and endocytosis. Both transport routes and sensitivity to endotoxin may be altered by diet and environmental and metabolic stresses. Intestinal-derived endotoxin and inflammation result in suppressed appetite, activation of the immune system, and partitioning of energy and nutrients away from growth toward supporting the immune system requirements. In livestock, this leads to the suppression of growth, particularly suppression of lean tissue accretion. In this paper, we summarize the evidence that intestinal transport of endotoxin and the subsequent inflammation leads to decrease in the production performance of agricultural animals and we present an overview of endotoxin detoxification mechanisms in livestock.
Collapse
Affiliation(s)
- V Mani
- Department of Animal Science, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
34
|
Chassin C, Tourneur E, Bens M, Vandewalle A. A role for collecting duct epithelial cells in renal antibacterial defences. Cell Microbiol 2011; 13:1107-13. [PMID: 21615666 DOI: 10.1111/j.1462-5822.2011.01614.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Urinary tract infections (UTIs), which are mainly due to uropathogenic Escherichia coli (UPEC), occur via the retrograde ascent of the bacteria along the urinary tract system. The adhesion and invasion mechanisms of UPEC have been extensively studied in bladder epithelial cells, but less is known about the role of renal tubule epithelial cells (RTEC) in renal antibacterial defences. This review considers recent advances in the understanding of the role of RTECs in inducing an innate immune response mediated by Toll-like receptors (TLRs) in experimental UTI. Collecting duct cells are a preferential site of adhesion of UPEC colonizing the kidneys. Epithelial TLR4 activation induces an inflammatory response and the recruitment of lipid rafts to the plasma membrane, both of which facilitate the transcytosis of non-cytolytic UPEC strains across intact collecting duct cell layers to invade the renal interstitium. Arginine vasopressin, which regulates water absorption in the collecting duct, also acts as a potent modulator of the TLR4-mediated intrarenal innate response caused by UPEC. The role of epithelial TLR5 in renal host defences is also discussed. These findings highlight the role of RTECs in triggering the innate immune response in the context of ascending UTIs.
Collapse
Affiliation(s)
- Cecilia Chassin
- INSERM U773, Centre de Recherche Biomédicale Bichat-Beaujon (CRB3), F-75018, Paris, France
| | | | | | | |
Collapse
|
35
|
Tóthová L, Hodosy J, Kamodyová N, Janega P, Slobodníková L, Liptáková A, Boor P, Celec P. Bactofection with toll-like receptor 4 in a murine model of urinary tract infection. Curr Microbiol 2011; 62:1739-42. [PMID: 21442393 DOI: 10.1007/s00284-011-9922-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/11/2011] [Indexed: 01/13/2023]
Abstract
The role of innate immunity in the prevention of urinary tract infection is well-documented. Toll-like receptor 4 (TLR4) is a major determinant of innate immune response. In an animal model of urinary tract infection, bactofection-mediated gene transfer of TLR4 was tested in a preventive approach. Bactofection with TLR4 reduced the colonization with uropathogenic Escherichia coli by 91% in the kidney and by 41% in the bladder. Reduced colonization was associated with lower oxidative stress and expression of monocyte chemoattractant protein-1 and myeloperoxidase in the kidney. Bactofection with TLR4 was successful in the prevention of ascending pyelonephritis. Further studies should focus on long-term effects, the dose response and the potential therapeutic use in models of chronic urinary tract infection.
Collapse
Affiliation(s)
- Lubomíra Tóthová
- Institute of Molecular Biomedicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hunstad DA, Justice SS. Intracellular lifestyles and immune evasion strategies of uropathogenic Escherichia coli. Annu Rev Microbiol 2010; 64:203-21. [PMID: 20825346 DOI: 10.1146/annurev.micro.112408.134258] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Paradigms in the pathogenesis of urinary tract infections have shifted dramatically as a result of recent scientific revelations. Beyond extracellular colonization of the bladder luminal surface, as traditional clinical thinking would hold, uropathogenic bacteria direct a complex, intracellular cascade that shelters bacteria from host defenses and leads to persistent bacterial residence within the epithelium. After epithelial invasion, many organisms are promptly expelled by bladder epithelial cells; a minority establish a niche in the cytoplasm that results in the development of biofilm-like intracellular bacterial communities and serves as the primary location for bacterial expansion. Exfoliation of the superficial epithelial layer acts to reduce the bacterial load but facilitates chronic residence of small nests of bacteria that later reemerge to cause some episodes of recurrent cystitis, a familiar clinical scenario in otherwise healthy women. Advances in both in vitro and animal models of cystitis promise to provide insights into the bacterial and host transcriptional and biochemical pathways that define these pathogenic stages.
Collapse
Affiliation(s)
- David A Hunstad
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
37
|
Torgersen ML, Engedal N, Pedersen AMG, Husebye H, Espevik T, Sandvig K. Toll-like receptor 4 facilitates binding of Shiga toxin to colon carcinoma and primary umbilical vein endothelial cells. ACTA ACUST UNITED AC 2010; 61:63-75. [DOI: 10.1111/j.1574-695x.2010.00749.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Vandewalle A, Chassin C. [Renal collecting duct cells act as modulators of the innate immune response during ascending pyelonephritis]. Med Sci (Paris) 2009; 25:224-6. [PMID: 19361380 DOI: 10.1051/medsci/2009253224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|