1
|
Salvadori M, Rosso G. What is new in the pathogenesis and treatment of IgA glomerulonephritis. World J Nephrol 2024; 13:98709. [DOI: 10.5527/wjn.v13.i4.98709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Recently, new findings have been clarified concerning both pathogenesis and treatment of IgA nephritis. The four hits theory has been confirmed but several genetic wide association studies have allowed finding several genes connected with the pathogenesis of the disease. All these new genes apply to each of the four hits. Additionally, new discoveries concerning the microbiota and its connection with immune system and IgA generation have allowed finding out the role of the mucosa in IgA nephropathy pathogenesis. The IgA treatment is also changed included the future possibilities. The treatment of the chronic kidney disease, associated with the nephropathy, is mandatory, since the beginning of the disease. The classical immunosuppressive agents have poor effect. The corticosteroids remain an important cornerstone in any phase of the disease. More effect is related to the treatment of B cells and plasma cells. In particular, in very recent studies have been documented the efficacy of anti B cell-activating factor and anti A proliferation-inducing ligand agents. Most of these studies are to date in phase II/III. Finally, new agents targeting complement are arising. These agents also are still in randomized trials and act principally in hit 4 where the immunocomplexes in the mesangium activate the different pathways of the complement cascade.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Tuscany, Italy
| | - Giuseppina Rosso
- Division of Nephrology, San Giovanni di Dio Hospital, Florence 50143, Toscana, Italy
| |
Collapse
|
2
|
Huang H, Chen B, Feng C, Chen W, Wu D. Exploring the mediating role of immune cells in the pathogenesis of IgA nephropathy through the inflammatory axis of gut microbiota from a genomic perspective. Mamm Genome 2024:10.1007/s00335-024-10081-0. [PMID: 39505739 DOI: 10.1007/s00335-024-10081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
IgA nephropathy (IgAN) is a chronic glomerular disease characterized by the deposition of IgA antibodies in the kidney's mesangium. Its pathogenesis involves genetic, immune, and environmental factors, particularly within the mucosal immune system and gut microbiota. Immune cells play a central role in mediating these processes, which this study investigates using Mendelian Randomization (MR) to explore causal relationships among gut microbiota, inflammatory markers, blood cells, and immune cells in IgAN pathogenesis. We conducted a two-sample MR analysis using Genome-Wide Association Study (GWAS) summary data to assess the causal effects of gut microbiota, inflammatory markers, and blood cell traits on IgAN. Data sources included the FinnGen dataset for IgAN and relevant GWAS datasets for immune traits, blood cells, and inflammatory markers. Inverse variance weighting (IVW) was the primary MR method, supported by sensitivity analyses. We particularly examined the mediation effect of immune cells on these exposures' influence on IgAN. Significant associations were found between several factors and IgAN. Gut microbiota traits, such as Firmicutes E and Sporomusales, increased IgAN risk, while Citrobacter A and Herbinix reduced it. Inflammatory markers, including Interleukin-10 and Fibroblast Growth Factor 23, promoted IgAN onset. Blood cell traits like red blood cell perturbation response increased risk, while monocyte perturbation response was protective. Immune traits played a key mediating role, with Transitional %B cells reducing IgAN risk and CD28- CD25 + + CD8br %T cells increasing it. This study highlights the pivotal mediating role of immune cells in the interactions between gut microbiota, inflammatory markers, and IgAN risk. These findings identify potential biomarkers and therapeutic targets, providing new insights into the immune mechanisms underlying IgAN and opportunities for intervention.
Collapse
Affiliation(s)
- Haoxiang Huang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bohong Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cong Feng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Dapeng Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Li M, Hao X, Shi D, Cheng S, Zhong Z, Cai L, Jiang M, Ding L, Ding L, Wang C, Yu X. Identification of susceptibility loci and relevant cell type for IgA nephropathy in Han Chinese by integrative genome-wide analysis. Front Med 2024; 18:862-877. [PMID: 39343836 DOI: 10.1007/s11684-024-1086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/17/2024] [Indexed: 10/01/2024]
Abstract
Although many susceptibility loci for IgA nephropathy (IgAN) have been identified, they only account for 11.0% of the overall IgAN variance. We performed a large genome-wide meta-analysis of IgAN in Han Chinese with 3616 cases and 10 417 controls to identify additional genetic loci of IgAN. Considering that inflammatory bowel disease (IBD) and asthma might share an etiology of dysregulated mucosal immunity with IgAN, we performed cross-trait integrative analysis by leveraging functional annotations of relevant cell type and the pleiotropic information from IBD and asthma. Among 8 669 456 imputed variants, we identified a novel locus at 4p14 containing the long noncoding RNA LOC101060498. Cell type enrichment analysis based on annotations suggested that PMA-I-stimulated CD4+CD25-IL17+ Th17 cell was the most relevant cell type for IgAN, which highlights the essential role of Th17 pathway in the pathogenesis of IgAN. Furthermore, we identified six more novel loci associated with IgAN, which included three loci showing pleiotropic effects with IBD or asthma (2q35/PNKD, 6q25.2/SCAF8, and 22q11.21/UBE2L3) and three loci specific to IgAN (14q32.32/TRAF3, 16q22.2/TXNL4B, and 21q21.3/LINC00113) in the pleiotropic analysis. Our findings support the involvement of mucosal immunity, especially T cell immune response and IL-17 signal pathway, in the development of IgAN and shed light on further investigation of IgAN.
Collapse
Affiliation(s)
- Ming Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, 510080, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dianchun Shi
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, 510080, China
| | - Shanshan Cheng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Nephrology (Sun Yat-sen University), and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Lu Cai
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Nephrology (Sun Yat-sen University), and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Minghui Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Ding
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lanbo Ding
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xueqing Yu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Lan QG, Liang Y, Liu L, Xie HL, Wang R, Zhao JH, Liang B. Causal relationships between vitamin E and multiple kidney diseases: evidence from trans-ethnic Mendelian randomization study. Eur J Nutr 2024; 63:2779-2788. [PMID: 39052079 DOI: 10.1007/s00394-024-03471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE The association between vitamin E and the risk of kidney disease is well documented in observational studies, but the role of vitamin E in kidney disease remain inconclusive. Here, we evaluated the causal effect of vitamin E on the risk of multiple kidney diseases, including chronic kidney disease, membranous nephropathy, diabetic nephropathy, IgA nephropathy, and dialysis. METHODS We conducted a two-sample Mendelian randomization analysis from large-scale trans-ancestry genome-wide association studies to determine whether there was a significant causal relationship between vitamin E and multiple kidney diseases in European, American, and Asian ancestry. Instrumental genetic variants associated with vitamin E were selected, and summary statistic-based methods of inverse variance weighted, MR Egger, weighted median, simple mode, and weighted mode methods were conducted. Pleiotropy and sensitivity were assessed. RESULTS We obtained 87 instrumental genetic variants in European ancestry and found no causal relationship between vitamin E and chronic kidney disease, membranous nephropathy, diabetic nephropathy, IgA nephropathy, and dialysis with no heterogeneity and pleiotropy. We obtained 18 instrumental genetic variants in Asian ancestry and vitamin E had no causal relationship with membranous nephropathy, diabetic nephropathy, and IgA nephropathy with no heterogeneity and pleiotropy. In African ancestry, 25 instrumental genetic variants were obtained and no causal relationship was identified with no heterogeneity and pleiotropy. CONCLUSION Our study first suggested plausible non-causal associations between vitamin E and multiple kidney diseases among different ancestry.
Collapse
Affiliation(s)
- Qi-Gang Lan
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Liu
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hai-Lun Xie
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rui Wang
- Department of Massage, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Hong Zhao
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Bo Liang
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
5
|
Makita Y, Reich HN. Pathogenic Immunoglobulin A-Producing Cells in Immunoglobulin A Nephropathy. J Clin Med 2024; 13:5255. [PMID: 39274468 PMCID: PMC11396043 DOI: 10.3390/jcm13175255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most prevalent primary glomerular disease worldwide and it remains a leading cause of kidney failure. Clinical manifestations of IgA are exacerbated by infections, and emerging data suggest that aberrant mucosal immune responses are important contributors to the immunopathogenesis of this disease. However, the exact stimuli, location and mechanism of nephritis-inducing IgA production remains unclear. In this focused review we explore recent developments in our understanding of the contribution of the mucosal immune system and mucosal-derived IgA-producing cells to the development of IgAN.
Collapse
Affiliation(s)
- Yuko Makita
- Division of Nephrology, University Health Network, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada
| | - Heather N Reich
- Division of Nephrology, University Health Network, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
6
|
Cheung CK, Alexander S, Reich HN, Selvaskandan H, Zhang H, Barratt J. The pathogenesis of IgA nephropathy and implications for treatment. Nat Rev Nephrol 2024:10.1038/s41581-024-00885-3. [PMID: 39232245 PMCID: PMC7616674 DOI: 10.1038/s41581-024-00885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
IgA nephropathy (IgAN) is a common form of primary glomerulonephritis and represents an important cause of chronic kidney disease globally, with observational studies indicating that most patients are at risk of developing kidney failure within their lifetime. Several research advances have provided insights into the underlying disease pathogenesis, framed by a multi-hit model whereby an increase in circulating IgA1 that lacks galactose from its hinge region - probably derived from the mucosal immune system - is followed by binding of specific IgG and IgA antibodies, generating immune complexes that deposit within the glomeruli, which triggers inflammation, complement activation and kidney damage. Although treatment options are currently limited, new therapies are rapidly emerging that target different pathways, cells and mediators involved in the disease pathogenesis, including B cell priming in the gut mucosa, the cytokines APRIL and BAFF, plasma cells, complement activation and endothelin pathway activation. As more treatments become available, there is a realistic possibility of transforming the long-term outlook for many individuals with IgAN.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | | | - Heather N Reich
- Department of Medicine, Division of Nephrology, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, P. R. China
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
7
|
Ren Y, Zhang H. A Mendelian randomization study investigating the causal relationships between inflammation and immunoglobulin A nephropathy. Hum Immunol 2024; 85:110830. [PMID: 38861759 DOI: 10.1016/j.humimm.2024.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is an autoimmune disease characterized by the production of galactose‑deficient IgA1 (Gd‑IgA1) and the deposition of immune complexes in the kidney. Exploring the landscape of immune dysregulation in IgAN is valuable for pathogenesis and disease treatment. We conducted Mendelian randomization (MR) to assess the causal correlations between inflammation and IgAN. METHODS Based on available genetic datasets, we investigated potential causal links between inflammation and the risk of IgAN using two-sample MR. We used genome-wide association study (GWAS) summary statistics of 5 typical inflammation markers, 41 inflammatory cytokines, and 731 immune cell signatures, accessed from the public GWAS Catalog. The primary method employed for MR analysis was Inverse Variance Weighted (IVW). To confirm consistency across results, four supplementary MR methods were also conducted: MR-Egger, Weighted Median, Weighted Mode, and Simple Mode. To assess pleiotropy, we used the MR-Egger regression intercept test and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test. Cochrane's Q statistic was applied to evaluate heterogeneity. Additionally, the stability of the MR findings was verified through the leave-one-out sensitivity analysis. RESULTS This study revealed that interleukin-7 (IL-7) and stem cell growth factor beta (SCGF-β) were possibly associated with the risk of IgAN according to the IVW approach, with estimated odds ratios (OR) of 1.059 (95 % confidence interval [CI] 1.015 to 1.104, P = 0.008) and 1.043 (95 % CI 1.002 to 1.085, P = 0.037). Five immune traits were identified that might be linked to IgAN risk, each with P-values below 0.01, including natural killer T %T cell (OR = 1.058, 95 % CI: 1.020 to 1.097, P = 0.002), natural killer T %lymphocyte (OR = 1.055, 95 % CI: 1.016 to 1.096, P = 0.006), CD25++ CD8+ T cell %T cell (OR = 1.057, 95 % CI: 1.016 to 1.099, P = 0.006), CD3 on effector memory CD4+ T cell (OR = 1.045, 95 % CI: 1.019 to 1.071, P = 0.001), and CD3 on CD28+ CD45RA+ CD8+ T cell (OR = 1.042, 95 % CI: 1.016 to 1.068, P = 0.001). CD4 on central memory CD4+ T cell might be a protective factor for IgAN (OR = 0.922, 95 % CI: 0.875 to 0.971, P = 0.002). Moreover, IgAN may be implicated in a high risk of elevated granulocyte colony-stimulating factor (G-CSF) (OR = 1.114, 95 % CI 1.002 to 1.239, P = 0.046). CONCLUSION Our study revealed exposures among typical inflammation markers, inflammatory cytokines, and immune cell signatures that may potentially linked to IgAN risk by MR analysis. This insight may advance our understanding of the etiology of IgAN and support the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China; Department of Pathology and Pathophysiology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China; Department of Pathology and Pathophysiology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Fu S, Wu M, Cheng Y, Guan Y, Yu J, Wang X, Su S, Wu H, Ma F, Zou Y, Wu S, Xu H, Xu Z. Cathepsin S (CTSS) in IgA nephropathy: an exploratory study on its role as a potential diagnostic biomarker and therapeutic target. Front Immunol 2024; 15:1390821. [PMID: 38979419 PMCID: PMC11229174 DOI: 10.3389/fimmu.2024.1390821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction IgA nephropathy (IgAN), a prevalent form of glomerulonephritis globally, exhibits complex pathogenesis. Cathepsins, cysteine proteases within lysosomes, are implicated in various physiological and pathological processes, including renal conditions. Prior observational studies have suggested a potential link between cathepsins and IgAN, yet the precise causal relationship remains unclear. Methods We conducted a comprehensive bidirectional and multivariable Mendelian randomization (MR) study using publicly available genetic data to explore the causal association between cathepsins and IgAN systematically. Additionally, immunohistochemical (IHC) staining and enzyme-linked immunosorbent assay (ELISA) were employed to evaluate cathepsin expression levels in renal tissues and serum of IgAN patients. We investigated the underlying mechanisms via gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and immune cell infiltration analysis. Molecular docking and virtual screening were also performed to identify potential drug candidates through drug repositioning. Results Univariate MR analyses demonstrated a significant link between increased cathepsin S (CTSS) levels and a heightened risk of IgAN. This was evidenced by an odds ratio (OR) of 1.041 (95% CI=1.009-1.073, P=0.012) as estimated using the inverse variance weighting (IVW) method. In multivariable MR analysis, even after adjusting for other cathepsins, elevated CTSS levels continued to show a strong correlation with an increased risk of IgAN (IVW P=0.020, OR=1.037, 95% CI=1.006-1.069). However, reverse MR analyses did not establish a causal relationship between IgAN and various cathepsins. IHC and ELISA findings revealed significant overexpression of CTSS in both renal tissues and serum of IgAN patients compared to controls, and this high expression was unique to IgAN compared with several other primary kidney diseases such as membranous nephropathy, minimal change disease and focal segmental glomerulosclerosis. Investigations into immune cell infiltration, GSEA, and GSVA highlighted the role of CTSS expression in the immune dysregulation observed in IgAN. Molecular docking and virtual screening pinpointed Camostat mesylate, c-Kit-IN-1, and Mocetinostat as the top drug candidates for targeting CTSS. Conclusion Elevated CTSS levels are associated with an increased risk of IgAN, and this enzyme is notably overexpressed in IgAN patients' serum and renal tissues. CTSS could potentially act as a diagnostic biomarker, providing new avenues for diagnosing and treating IgAN.
Collapse
Affiliation(s)
- Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Meiyan Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yan Guan
- Department of Nephrology, Meihe Hospital, The First Hospital of Jilin University, Meihekou, China
- Department of Nephrology, Meihekou Central Hospital, Meihekou, China
| | - Jinyu Yu
- Center for Renal Pathology, The First Hospital of Jilin University, Changchun, China
| | - Xueyao Wang
- Department of Cardiac Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Sensen Su
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yan Zou
- Department of Nephrology, Meihe Hospital, The First Hospital of Jilin University, Meihekou, China
- Department of Nephrology, Meihekou Central Hospital, Meihekou, China
| | - Shan Wu
- Center for Renal Pathology, The First Hospital of Jilin University, Changchun, China
| | - Hongzhao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Xu L, Gan T, Chen P, Liu Y, Qu S, Shi S, Liu L, Zhou X, Lv J, Zhang H. Clinical Application of Polygenic Risk Score in IgA Nephropathy. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:146-157. [PMID: 38884057 PMCID: PMC11169313 DOI: 10.1007/s43657-023-00138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 06/18/2024]
Abstract
Genome-wide association studies (GWASs) have identified 30 independent genetic variants associated with IgA nephropathy (IgAN). A genetic risk score (GRS) represents the number of risk alleles carried and thus captures an individual's genetic risk. However, whether and which polygenic risk score crucial for the evaluation of any potential personal or clinical utility on risk and prognosis are still obscure. We constructed different GRS models based on different sets of variants, which were top single nucleotide polymorphisms (SNPs) reported in the previous GWASs. The case-control GRS analysis included 3365 IgAN patients and 8842 healthy individuals. The association between GRS and clinical variability, including age at diagnosis, clinical parameters, Oxford pathology classification, and kidney prognosis was further evaluated in a prospective cohort of 1747 patients. Three GRS models (15 SNPs, 21 SNPs, and 55 SNPs) were constructed after quality control. The patients with the top 20% GRS had 2.42-(15 SNPs, p = 8.12 × 10-40), 3.89-(21 SNPs, p = 3.40 × 10-80) and 3.73-(55 SNPs, p = 6.86 × 10-81) fold of risk to develop IgAN compared to the patients with the bottom 20% GRS, with area under the receiver operating characteristic curve (AUC) of 0.59, 0.63, and 0.63 in group discriminations, respectively. A positive correlation between GRS and microhematuria, mesangial hypercellularity, segmental glomerulosclerosis and a negative correlation on the age at diagnosis, body mass index (BMI), mean arterial pressure (MAP), serum C3, triglycerides can be observed. Patients with the top 20% GRS also showed a higher risk of worse prognosis for all three models (1.36, 1.42, and 1.36 fold of risk) compared to the remaining 80%, whereas 21 SNPs model seemed to show a slightly better fit in prediction. Collectively, a higher burden of risk variants is associated with earlier disease onset and a higher risk of a worse prognosis. This may be informational in translating knowledge on IgAN genetics into disease risk prediction and patient stratification. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00138-6.
Collapse
Affiliation(s)
- Linlin Xu
- Renal Division, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 People's Republic of China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, 100034 People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034 People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, 100034 People's Republic of China
| | - Ting Gan
- Renal Division, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 People's Republic of China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, 100034 People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034 People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, 100034 People's Republic of China
| | - Pei Chen
- Renal Division, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 People's Republic of China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, 100034 People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034 People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, 100034 People's Republic of China
| | - Yang Liu
- Renal Division, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 People's Republic of China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, 100034 People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034 People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, 100034 People's Republic of China
| | - Shu Qu
- Renal Division, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 People's Republic of China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, 100034 People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034 People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, 100034 People's Republic of China
| | - Sufang Shi
- Renal Division, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 People's Republic of China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, 100034 People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034 People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, 100034 People's Republic of China
| | - Lijun Liu
- Renal Division, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 People's Republic of China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, 100034 People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034 People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, 100034 People's Republic of China
| | - Xujie Zhou
- Renal Division, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 People's Republic of China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, 100034 People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034 People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, 100034 People's Republic of China
| | - Jicheng Lv
- Renal Division, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 People's Republic of China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, 100034 People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034 People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, 100034 People's Republic of China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034 People's Republic of China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, 100034 People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034 People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, 100034 People's Republic of China
| |
Collapse
|
10
|
Cheung CK, Barratt J, Liew A, Zhang H, Tesar V, Lafayette R. The role of BAFF and APRIL in IgA nephropathy: pathogenic mechanisms and targeted therapies. FRONTIERS IN NEPHROLOGY 2024; 3:1346769. [PMID: 38362118 PMCID: PMC10867227 DOI: 10.3389/fneph.2023.1346769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024]
Abstract
Immunoglobulin A nephropathy (IgAN), characterized by mesangial deposition of galactose-deficient-IgA1 (Gd-IgA1), is the most common biopsy-proven primary glomerulonephritis worldwide. Recently, an improved understanding of its underlying pathogenesis and the substantial risk of progression to kidney failure has emerged. The "four-hit hypothesis" of IgAN pathogenesis outlines a process that begins with elevated circulating levels of Gd-IgA1 that trigger autoantibody production. This results in the formation and deposition of immune complexes in the mesangium, leading to inflammation and kidney injury. Key mediators of the production of Gd-IgA1 and its corresponding autoantibodies are B-cell activating factor (BAFF), and A proliferation-inducing ligand (APRIL), each playing essential roles in the survival and maintenance of B cells and humoral immunity. Elevated serum levels of both BAFF and APRIL are observed in patients with IgAN and correlate with disease severity. This review explores the complex pathogenesis of IgAN, highlighting the pivotal roles of BAFF and APRIL in the interplay between mucosal hyper-responsiveness, B-cell activation, and the consequent overproduction of Gd-IgA1 and its autoantibodies that are key features in this disease. Finally, the potential therapeutic benefits of inhibiting BAFF and APRIL in IgAN, and a summary of recent clinical trial data, will be discussed.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Division of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Jonathan Barratt
- Division of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Adrian Liew
- The Kidney & Transplant Practice, Mount Elizabeth Novena Hospital, Singapore
| | - Hong Zhang
- Renal Division in the Department of Medicine, Peking University First Hospital, Beijing, China
| | - Vladimir Tesar
- Department of Nephrology, First School of Medicine and General University Hospital, Charles University, Prague, Czechia
| | - Richard Lafayette
- Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
11
|
Yamada K, Huang ZQ, Reily C, Green TJ, Suzuki H, Novak J, Suzuki Y. LIF/JAK2/STAT1 Signaling Enhances Production of Galactose-Deficient IgA1 by IgA1-Producing Cell Lines Derived From Tonsils of Patients With IgA Nephropathy. Kidney Int Rep 2024; 9:423-435. [PMID: 38344714 PMCID: PMC10851019 DOI: 10.1016/j.ekir.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 02/28/2024] Open
Abstract
Introduction Galactose-deficient IgA1 (Gd-IgA1) plays a key role in the pathogenesis of IgA nephropathy (IgAN). Tonsillectomy has been beneficial to some patients with IgAN, possibly due to the removal of tonsillar cytokine-activated cells producing Gd-IgA1. To test this hypothesis, we used immortalized IgA1-producing cell lines derived from tonsils of patients with IgAN or obstructive sleep apnea (OSA) and assessed the effect of leukemia inhibitory factor (LIF) or oncostatin M (OSM) on Gd-IgA1 production. Methods Gd-IgA1 production was measured by lectin enzyme-linked immunosorbent assay; JAK-STAT signaling in cultured cells was assessed by immunoblotting of cell lysates; and validated by using small interfering RNA (siRNA) knock-down and small-molecule inhibitors. Results IgAN-derived cells produced more Gd-IgA1 than the cells from patients with OSA, and exhibited elevated Gd-IgA1 production in response to LIF, but not OSM. This effect was associated with dysregulated STAT1 phosphorylation, as confirmed by STAT1 siRNA knock-down. JAK2 inhibitor, AZD1480 exhibited a dose-dependent inhibition of the LIF-induced Gd-IgA1 overproduction. Unexpectedly, high concentrations of AZD1480, but only in the presence of LIF, reduced Gd-IgA1 production in the cells derived from patients with IgAN to that of the control cells from patients with OSA. Based on modeling LIF-LIFR-gp130-JAK2 receptor complex, we postulate that LIF binding to LIFR may sequester gp130 and/or JAK2 from other pathways; and when combined with JAK2 inhibition, enables full blockade of the aberrant O-glycosylation pathways in IgAN. Conclusion In summary, IgAN cells exhibit LIF-mediated overproduction of Gd-IgA1 due to abnormal signaling. JAK2 inhibitors can counter these LIF-induced effects and block Gd-IgA1 synthesis in IgAN.
Collapse
Affiliation(s)
- Koshi Yamada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Zhi-Qiang Huang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Colin Reily
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J. Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Yamada K, Novak J, Suzuki Y. GWAS-follow-up Studies Identified a Connection between Abnormal LIF/JAK2/STAT1 Signaling and Overproduction of Galactose-Deficient IgA1 in the Tonsillar IgA1-Secreting Cells from Patients with IgA Nephropathy. JOURNAL OF CLINICAL RESEARCH & BIOETHICS 2024; 15:478. [PMID: 38440092 PMCID: PMC10911063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Affiliation(s)
- Koshi Yamada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Afolabi H, Zhang BM, O'Shaughnessy M, Chertow GM, Lafayette R, Charu V. The Association of Class I and II Human Leukocyte Antigen Serotypes With End-Stage Kidney Disease Due to Membranoproliferative Glomerulonephritis and Dense Deposit Disease. Am J Kidney Dis 2024; 83:79-89. [PMID: 37739026 PMCID: PMC11421569 DOI: 10.1053/j.ajkd.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 09/24/2023]
Abstract
RATIONALE & OBJECTIVE Membranoproliferative glomerulonephritis (MPGN), encompassing several distinct diseases, is a rare but significant cause of kidney failure in the United States. The potential etiologies of MPGN are unclear, but prior studies have suggested dysregulation of the alternative complement pathway and, recently, autoimmunity as potential mechanisms driving MPGN pathogenesis. In this study, we examined HLA associations with end-stage kidney disease (ESKD) due to MPGN and dense deposit disease (DDD) in a large racially and ethnically diverse US-based cohort. STUDY DESIGN Case-control study. SETTING & PARTICIPANTS Using US Renal Data System (USRDS) and United Network for Organ Sharing (UNOS) data, we identified 3,424 patients with kidney failure due to MPGN and 263 due to DDD. We matched patients to kidney donor controls on designated race and ethnicity in a 1:15 ratio. EXPOSURE 58 class I and II HLA serotypes. OUTCOME Case-control status. ANALYTICAL APPROACH For each disease cohort, univariable and multivariable logistic regression analyses were used to investigate associations between the disease and 58 HLA serotypes. In subgroup analyses, we investigated HLA associations in White and Black patients. We also studied antiglomerular basement membrane (anti-GBM) nephritis as a positive-control outcome. We applied a Bonferroni correction to account for multiple comparisons. RESULTS Eighteen serotypes were significantly associated with the odds of having MPGN in univariable analyses, with DR17 having the strongest association (odds ratio [OR], 1.55 [95% CI, 1.44-1.68], P=4.33e-28). No significant associations were found between any HLA serotype and DDD. Designated race-specific analyses showed comparable findings. We recapitulated known HLA associations in anti-GBM nephritis. LIMITATIONS Reliance on HLA serotypes (rather than genotype), lack of biopsy-confirmed diagnoses. CONCLUSIONS HLA-DR17 is associated with ESKD due to MPGN in a racially and ethnically diverse cohort. The strength of association was similar in White and Black patients, suggesting a role in the pathogenesis of MPGN. No HLA associations were observed in patients with DDD. PLAIN-LANGUAGE SUMMARY Prior studies have suggested dysregulation of the alternative complement pathway as a potential etiology of membranoproliferative glomerulonephritis (MPGN), but recent evidence from a British White population has implicated an autoimmune mechanism in MPGN pathogenesis. We investigated HLA associations between MPGN and dense deposit disease (DDD) in a large racially and ethnically diverse cohort of patients. We found that HLA-DR17 is associated with end-stage kidney disease (ESKD) due to MPGN in both White and Black patients. By contrast, no significant HLA associations with ESKD due to DDD were identified. These results suggest a role for autoimmunity in some cases of MPGN and highlight differences in the disease etiology of MPGN compared with DDD.
Collapse
Affiliation(s)
- Halimat Afolabi
- Department of Pathology, Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Bing M Zhang
- Department of Pathology, Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | | | - Glenn M Chertow
- Division of Nephrology, Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Richard Lafayette
- Division of Nephrology, Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Vivek Charu
- Department of Pathology, Department of Medicine, School of Medicine, Stanford University, Stanford, California; Department of Medicine and Quantitative Sciences Unit, Department of Medicine, School of Medicine, Stanford University, Stanford, California.
| |
Collapse
|
14
|
Kearney AO, Lerma E, Lin J. Building Toward Clinical Translation: New Study Refines Genetic Architecture of IgA Nephropathy. Am J Kidney Dis 2024; 83:108-111. [PMID: 37716417 DOI: 10.1053/j.ajkd.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Affiliation(s)
- Andrew O Kearney
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Edgar Lerma
- Department of Medicine, University of Illinois at Chicago/Advocate Christ Medical Center, Oak Lawn, Illinois
| | - Jennie Lin
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Illinois; Jesse Brown Veteran Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
15
|
Xu LL, Zhou XJ, Zhang H. An Update on the Genetics of IgA Nephropathy. J Clin Med 2023; 13:123. [PMID: 38202130 PMCID: PMC10780034 DOI: 10.3390/jcm13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN), the most common form of glomerulonephritis, is one of the leading causes of end-stage kidney disease (ESKD). It is widely believed that genetic factors play a significant role in the development of IgAN. Previous studies of IgAN have provided important insights to unravel the genetic architecture of IgAN and its potential pathogenic mechanisms. The genome-wide association studies (GWASs) together have identified over 30 risk loci for IgAN, which emphasizes the importance of IgA production and regulation in the pathogenesis of IgAN. Follow-up fine-mapping studies help to elucidate the candidate causal variant and the potential pathogenic molecular pathway and provide new potential therapeutic targets. With the rapid development of next-generation sequencing technologies, linkage studies based on whole-genome sequencing (WGS)/whole-exome sequencing (WES) also identify rare variants associated with IgAN, accounting for some of the missing heritability. The complexity of pathogenesis and phenotypic variability may be better understood by integrating genetics, epigenetics, and environment. We have compiled a review summarizing the latest advancements in genetic studies on IgAN. We similarly summarized relevant studies examining the involvement of epigenetics in the pathogenesis of IgAN. Future directions and challenges in this field are also proposed.
Collapse
Affiliation(s)
- Lin-Lin Xu
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| |
Collapse
|
16
|
Stamellou E, Seikrit C, Tang SCW, Boor P, Tesař V, Floege J, Barratt J, Kramann R. IgA nephropathy. Nat Rev Dis Primers 2023; 9:67. [PMID: 38036542 DOI: 10.1038/s41572-023-00476-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
IgA nephropathy (IgAN), the most prevalent primary glomerulonephritis worldwide, carries a considerable lifetime risk of kidney failure. Clinical manifestations of IgAN vary from asymptomatic with microscopic or intermittent macroscopic haematuria and stable kidney function to rapidly progressive glomerulonephritis. IgAN has been proposed to develop through a 'four-hit' process, commencing with overproduction and increased systemic presence of poorly O-glycosylated galactose-deficient IgA1 (Gd-IgA1), followed by recognition of Gd-IgA1 by antiglycan autoantibodies, aggregation of Gd-IgA1 and formation of polymeric IgA1 immune complexes and, lastly, deposition of these immune complexes in the glomerular mesangium, leading to kidney inflammation and scarring. IgAN can only be diagnosed by kidney biopsy. Extensive, optimized supportive care is the mainstay of therapy for patients with IgAN. For those at high risk of disease progression, the 2021 KDIGO Clinical Practice Guideline suggests considering a 6-month course of systemic corticosteroid therapy; however, the efficacy of systemic steroid treatment is under debate and serious adverse effects are common. Advances in understanding the pathophysiology of IgAN have led to clinical trials of novel targeted therapies with acceptable safety profiles, including SGLT2 inhibitors, endothelin receptor blockers, targeted-release budesonide, B cell proliferation and differentiation inhibitors, as well as blockade of complement components.
Collapse
Affiliation(s)
- Eleni Stamellou
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Claudia Seikrit
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Peter Boor
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Vladimir Tesař
- Department of Nephrology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
17
|
Li Y, Tang Y, Lin T, Song T. Risk factors and outcomes of IgA nephropathy recurrence after kidney transplantation: a systematic review and meta-analysis. Front Immunol 2023; 14:1277017. [PMID: 38090563 PMCID: PMC10713786 DOI: 10.3389/fimmu.2023.1277017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Background IgA nephropathy may recur in patients receiving kidney transplantation due to IgA nephropathy induced renal failure. The risk factors for recurrence are still at issue. The aim of this study was to conduct a systematic review and meta-analysis to assess risk factors and outcomes for IgA nephropathy recurrence. Methods We used PubMed, EMBASE, Cochrane Library, Web of Science, Scopus, CNKI, WanFang, VIP and CBM to search for relevant studies published in English and Chinese. Cohort or case-control studies reporting risk factors or outcomes for IgA nephropathy recurrence were included. Results Fifty-eight studies were included. Compare to no recurrence group, those with IgAN recurrence had younger age (mean difference [MD]=-4.27 years; risk ratio [RR]=0.96), younger donor age (MD=-2.19 years), shorter time from IgA nephropathy diagnosis to end stage renal disease (MD=-1.84 years; RR=0.94), shorter time on dialysis (MD=-3.14 months), lower human leukocyte-antigen (HLA) mismatches (MD=-0.11) and HLA-DR mismatches (MD=-0.13). HLA-B46 antigen (RR=0.39), anti-IL-2-R antibodies induction (RR=0.68), mycophenolate mofetil (RR=0.69), and pretransplant tonsillectomy (RR=0.43) were associated with less IgAN recurrence. Of note, male recipient gender (RR=1.17), related donor (RR=1.53), retransplantation (RR=1.43), hemodialysis (RR=1.68), no induction therapy (RR=1.73), mTOR inhibitor (RR=1.51), angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers (RR=1.63) were risk factors for IgAN recurrence. Recurrence increased the risk of graft loss (RR=2.19). Conclusions This study summarized the risk factors for recurrence of IgA nephropathy after kidney transplantation. Well-designed prospective studies are warranted for validation. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=377480, identifier CRD42022377480.
Collapse
Affiliation(s)
- Yue Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Transplant Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yangming Tang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Transplant Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Lin
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Transplant Center, West China Hospital, Sichuan University, Chengdu, China
| | - Turun Song
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Transplant Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Buianova AA, Proskura MV, Cheranev VV, Belova VA, Shmitko AO, Pavlova AS, Vasiliadis IA, Suchalko ON, Rebrikov DV, Petrosyan EK, Korostin DO. Candidate Genes for IgA Nephropathy in Pediatric Patients: Exome-Wide Association Study. Int J Mol Sci 2023; 24:15984. [PMID: 37958966 PMCID: PMC10647220 DOI: 10.3390/ijms242115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
IgA nephropathy (IgAN) is an autoimmune disorder which is believed to be non-monogenic. We performed an exome-wide association study of 70 children with IgAN and 637 healthy donors. The HLA allele frequencies were compared between the patients and healthy donors from the bone marrow registry of the Pirogov University. We tested 78,020 gene markers for association and performed functional enrichment analysis and transcription factor binding preference detection. We identified 333 genetic variants, employing three inheritance models. The most significant association with the disorder was observed for rs143409664 (PRAG1) in the case of the additive and dominant models (PBONF = 1.808 × 10-15 and PBONF = 1.654 × 10-15, respectively), and for rs13028230 (UBR3) in the case of the recessive model (PBONF = 1.545 × 10-9). Enrichment analysis indicated the strongly overrepresented "immune system" and "kidney development" terms. The HLA-DQA1*01:01:01G allele (p = 0.0076; OR, 2.021 [95% CI, 1.322-3.048]) was significantly the most frequent among IgAN patients. Here, we characterized, for the first time, the genetic background of Russian IgAN patients, identifying the risk alleles typical of the population. The most important signals were detected in previously undescribed loci.
Collapse
Affiliation(s)
- Anastasiia A. Buianova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Str., 1, p. 1, 117513 Moscow, Russia; (V.V.C.); (V.A.B.); (A.O.S.); (A.S.P.); (I.A.V.); (O.N.S.); (D.V.R.); (D.O.K.)
| | - Mariia V. Proskura
- Nephrology Department, Russian Children’s Clinical Hospital, Leninsky Prospect 117, 119571 Moscow, Russia; (M.V.P.); (E.K.P.)
| | - Valery V. Cheranev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Str., 1, p. 1, 117513 Moscow, Russia; (V.V.C.); (V.A.B.); (A.O.S.); (A.S.P.); (I.A.V.); (O.N.S.); (D.V.R.); (D.O.K.)
| | - Vera A. Belova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Str., 1, p. 1, 117513 Moscow, Russia; (V.V.C.); (V.A.B.); (A.O.S.); (A.S.P.); (I.A.V.); (O.N.S.); (D.V.R.); (D.O.K.)
| | - Anna O. Shmitko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Str., 1, p. 1, 117513 Moscow, Russia; (V.V.C.); (V.A.B.); (A.O.S.); (A.S.P.); (I.A.V.); (O.N.S.); (D.V.R.); (D.O.K.)
| | - Anna S. Pavlova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Str., 1, p. 1, 117513 Moscow, Russia; (V.V.C.); (V.A.B.); (A.O.S.); (A.S.P.); (I.A.V.); (O.N.S.); (D.V.R.); (D.O.K.)
| | - Iuliia A. Vasiliadis
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Str., 1, p. 1, 117513 Moscow, Russia; (V.V.C.); (V.A.B.); (A.O.S.); (A.S.P.); (I.A.V.); (O.N.S.); (D.V.R.); (D.O.K.)
| | - Oleg N. Suchalko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Str., 1, p. 1, 117513 Moscow, Russia; (V.V.C.); (V.A.B.); (A.O.S.); (A.S.P.); (I.A.V.); (O.N.S.); (D.V.R.); (D.O.K.)
| | - Denis V. Rebrikov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Str., 1, p. 1, 117513 Moscow, Russia; (V.V.C.); (V.A.B.); (A.O.S.); (A.S.P.); (I.A.V.); (O.N.S.); (D.V.R.); (D.O.K.)
| | - Edita K. Petrosyan
- Nephrology Department, Russian Children’s Clinical Hospital, Leninsky Prospect 117, 119571 Moscow, Russia; (M.V.P.); (E.K.P.)
| | - Dmitriy O. Korostin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Str., 1, p. 1, 117513 Moscow, Russia; (V.V.C.); (V.A.B.); (A.O.S.); (A.S.P.); (I.A.V.); (O.N.S.); (D.V.R.); (D.O.K.)
| |
Collapse
|
19
|
Mathur M, Chan TM, Oh KH, Kooienga L, Zhuo M, Pinto CS, Chacko B. A PRoliferation-Inducing Ligand (APRIL) in the Pathogenesis of Immunoglobulin A Nephropathy: A Review of the Evidence. J Clin Med 2023; 12:6927. [PMID: 37959392 PMCID: PMC10650434 DOI: 10.3390/jcm12216927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A PRoliferation-Inducing Ligand (APRIL), the thirteenth member of the tumor necrosis factor superfamily, plays a key role in the regulation of activated B cells, the survival of long-lived plasma cells, and immunoglobulin (Ig) isotype class switching. Several lines of evidence have implicated APRIL in the pathogenesis of IgA nephropathy (IgAN). Globally, IgAN is the most common primary glomerulonephritis, and it can progress to end-stage kidney disease; yet, disease-modifying treatments for this condition have historically been lacking. The preliminary data in ongoing clinical trials indicate that APRIL inhibition can reduce proteinuria and slow the rate of kidney disease progression by acting at an upstream level in IgAN pathogenesis. In this review, we examine what is known about the physiologic roles of APRIL and evaluate the experimental and epidemiological evidence describing how these normal biologic processes are thought to be subverted in IgAN. The weight of the preclinical, clinical, and genetic data supporting a key role for APRIL in IgAN has galvanized pharmacologic research, and several anti-APRIL drug candidates have now entered clinical development for IgAN. Herein, we present an overview of the clinical results to date. Finally, we explore where more research and evidence are needed to transform potential therapies into clinical benefits for patients with IgAN.
Collapse
Affiliation(s)
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Laura Kooienga
- Colorado Kidney and Vascular Care, Denver, CO 80012, USA;
| | - Min Zhuo
- Visterra, Inc., Waltham, MA 02451, USA;
- Division of Renal Medicine, Department of Medicine Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Cibele S. Pinto
- Otsuka Pharmaceutical Development & Commercialization, Princeton, NJ 08540, USA;
| | - Bobby Chacko
- Nephrology and Transplantation Unit, John Hunter Hospital, Newcastle, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
20
|
Liu J, Xie J. Uncovering Rare Coding Variants in IgA Nephropathy. J Am Soc Nephrol 2023; 34:1769-1771. [PMID: 37759350 PMCID: PMC10631600 DOI: 10.1681/asn.0000000000000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Affiliation(s)
- Jian Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Zhang Y, Li Q, Shi S, Liu L, Lv J, Zhu L, Zhang H. Clinical and pathological characteristics in elderly patients with IgA nephropathy. Clin Kidney J 2023; 16:1974-1979. [PMID: 37915928 PMCID: PMC10616429 DOI: 10.1093/ckj/sfad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 11/03/2023] Open
Abstract
Background Immunoglobulin A nephropathy (IgAN) is the most common cause of primary glomerulonephritis, with highly variable manifestations. Although the peak incidence of IgAN is in young adults, the diagnosis among elderly people is increasing. Here we explored the effect of aging on IgAN features, as well as cellular senescence in the kidney of IgAN. Methods A total of 910 patients with IgAN were enrolled, which contained 182 individuals in each age stage (aged ≥60, 50-59, 40-49, 30-39 and 20-29 years). Clinical and pathological manifestations at the time of renal biopsy were compared. Additionally, 38 patients with IgAN (19 aged over or equal to 60 years and 19 aged below 60 years) were randomly selected for p16INK4a staining by immunohistochemistry. The percentage of p16INK4a-positive cells in glomeruli, renal tubule and interstitium were separately quantified. Results Compared with young IgAN patients, elderly patients presented with higher levels of circulating IgA, uric acid and proteinuria, but lower estimated glomerular filtration rates (eGFR), as well as lower red blood cell counts, platelet counts and lymphocyte counts. Moreover, elderly IgAN patients showed higher incidence of hypertension, and lower incidence of prodromic infection. Regarding histological lesions in the kidney, young IgAN patients had higher degree of IgA and C3 deposits, while elderly IgAN patients had more severe Oxford-E lesions, but less severe Oxford-S lesions. The percentage of glomerular and tubular p16INK4a-positive cells in elderly patients showed an increasing trend, but statistical significance was not reached. The percentage of p16INK4a-positive nuclei in renal interstitium was positively associated with T score, while increased percentage of p16INK4a-positive nuclei in renal tubule was associated with eGFR and 24-h urinary protein level. Conclusion In our IgAN cohort, elderly IgAN patients presented with some aging-related features, and both aging- and IgAN-induced pathological injury contributed to the kidney lesions in patients with IgAN.
Collapse
Affiliation(s)
- Yongji Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Qianqian Li
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Sufang Shi
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Lijun Liu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Jicheng Lv
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Li Zhu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
22
|
Kohan DE, Barratt J, Heerspink HJ, Campbell KN, Camargo M, Ogbaa I, Haile-Meskale R, Rizk DV, King A. Targeting the Endothelin A Receptor in IgA Nephropathy. Kidney Int Rep 2023; 8:2198-2210. [PMID: 38025243 PMCID: PMC10658204 DOI: 10.1016/j.ekir.2023.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 12/01/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and carries a substantial risk of kidney failure. New agency-approved therapies, either specifically for IgAN or for chronic kidney disease (CKD) in general, hold out hope for mitigating renal deterioration in patients with IgAN. The latest addition to this therapeutic armamentarium targets the endothelin-A receptor (ETAR). Activation of ETAR on multiple renal cell types elicits a host of pathophysiological effects, including vasoconstriction, cell proliferation, inflammation, apoptosis, and fibrosis. Blockade of ETAR is renoprotective in experimental models of IgAN and reduces proteinuria in patients with IgAN. This review discusses the evidence supporting the use of ETAR blockade in IgAN as well as addressing the potential role for this class of agents among the current and emerging therapies for treating this disorder.
Collapse
Affiliation(s)
- Donald E. Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kirk N. Campbell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Ike Ogbaa
- Chinook Therapeutics, Seattle, Washington, USA
| | | | - Dana V. Rizk
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew King
- Chinook Therapeutics, Seattle, Washington, USA
| |
Collapse
|
23
|
Rajasekaran A, Green TJ, Renfrow MB, Julian BA, Novak J, Rizk DV. Current Understanding of Complement Proteins as Therapeutic Targets for the Treatment of Immunoglobulin A Nephropathy. Drugs 2023; 83:1475-1499. [PMID: 37747686 PMCID: PMC10807511 DOI: 10.1007/s40265-023-01940-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and a frequent cause of kidney failure. Currently, the diagnosis necessitates a kidney biopsy, with routine immunofluorescence microscopy revealing IgA as the dominant or co-dominant immunoglobulin in the glomerular immuno-deposits, often with IgG and sometimes IgM or both. Complement protein C3 is observed in most cases. IgAN leads to kidney failure in 20-40% of patients within 20 years of diagnosis and reduces average life expectancy by about 10 years. There is increasing clinical, biochemical, and genetic evidence that the complement system plays a paramount role in the pathogenesis of IgAN. The presence of C3 in the kidney immuno-deposits differentiates the diagnosis of IgAN from subclinical glomerular mesangial IgA deposition. Markers of complement activation via the lectin and alternative pathways in kidney-biopsy specimens are associated with disease activity and are predictive of poor outcome. Levels of select complement proteins in the circulation have also been assessed in patients with IgAN and found to be of prognostic value. Ongoing genetic studies have identified at least 30 loci associated with IgAN. Genes within some of these loci encode complement-system regulating proteins that can interact with immune complexes. The growing appreciation for the central role of complement components in IgAN pathogenesis highlighted these pathways as potential treatment targets and sparked great interest in pharmacological agents targeting the complement cascade for the treatment of IgAN, as evidenced by the plethora of ongoing clinical trials.
Collapse
Affiliation(s)
- Arun Rajasekaran
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Todd J Green
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana V Rizk
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Gagliano Taliun SA, Dinsmore IR, Mirshahi T, Chang AR, Paterson AD, Barua M. GWAS for the composite traits of hematuria and albuminuria. Sci Rep 2023; 13:18084. [PMID: 37872228 PMCID: PMC10593773 DOI: 10.1038/s41598-023-45102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Our GWAS of hematuria in the UK Biobank identified 6 loci, some of which overlap with loci for albuminuria suggesting pleiotropy. Since clinical syndromes are often defined by combinations of traits, generating a combined phenotype can improve power to detect loci influencing multiple characteristics. Thus the composite trait of hematuria and albuminuria was chosen to enrich for glomerular pathologies. Cases had both hematuria defined by ICD codes and albuminuria defined as uACR > 3 mg/mmol. Controls had neither an ICD code for hematuria nor an uACR > 3 mg/mmol. 2429 cases and 343,509 controls from the UK Biobank were included. eGFR was lower in cases compared to controls, with the exception of the comparison in females using CKD-EPI after age adjustment. Variants at 4 loci met genome-wide significance with the following nearest genes: COL4A4, TRIM27, ETV1 and CUBN. TRIM27 is part of the extended MHC locus. All loci with the exception of ETV1 were replicated in the Geisinger MyCode cohort. The previous GWAS of hematuria reported COL4A3-COL4A4 variants and HLA-B*0801 within MHC, which is in linkage disequilibrium with the TRIM27 variant (D' = 0.59). TRIM27 is highly expressed in the tubules. Additional loci included a coding sequence variant in CUBN (p.Ala2914Val, MAF = 0.014 (A), p = 3.29E-8, OR = 2.09, 95% CI = 1.61-2.72). Overall, GWAS for the composite trait of hematuria and albuminuria identified 4 loci, 2 of which were not previously identified in a GWAS of hematuria.
Collapse
Affiliation(s)
- Sarah A Gagliano Taliun
- Department of Medicine and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Montréal Heart Institute, Montréal, QC, Canada
| | - Ian R Dinsmore
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | | | - Alexander R Chang
- Department of Population Health Sciences, Center for Kidney Health Research, Geisinger, Danville, PA, USA
- Department of Nephrology, Geisinger, Danville, PA, USA
| | - Andrew D Paterson
- Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, Toronto, ON, Canada.
- Genetics and Genome Biology, Research Institute at the Hospital for Sick Children, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Moumita Barua
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Division of Nephrology, University Health Network, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital Research Institute, 8NU-855, 200 Elizabeth Street, Toronto, ON, M5G2C4, Canada.
| |
Collapse
|
25
|
Song J, Ke B, Tu W, Fang X. Roles of interferon regulatory factor 4 in the AKI-CKD transition, glomerular diseases and kidney allograft rejection. Ren Fail 2023; 45:2259228. [PMID: 37755331 PMCID: PMC10538460 DOI: 10.1080/0886022x.2023.2259228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Interferon regulatory factor 4 (IRF4) is expressed in immune cells and is a member of the interferon regulatory factor family. Recently, it has been found that IRF4 plays important roles in the acute kidney injury (AKI)-chronic kidney disease (CKD) transition, glomerular diseases and kidney allograft rejection. In particular, the relationship between IRF4 and the AKI-CKD transition has attracted widespread attention. Furthermore, it was also found that the deficiency of IRF4 hindered the transition from AKI to CKD through the suppression of macrophage-to-fibroblast conversion, inhibition of M1-M2 macrophage polarization, and reduction in neutrophil inward flow. Additionally, an examination of the crucial role of IRF4 in glomerular disease was conducted. It was reported that inhibiting IRF4 could alleviate the progression of glomerular disease, and potential physiopathology mechanisms associated with IRF4 were postulated. Lastly, IRF4 was found to have detrimental effects on the development of antibody-mediated rejection (ABMR) and T-cell-mediated rejection (TCMR).
Collapse
Affiliation(s)
- Jianling Song
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, P.R. China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, P.R. China
| | - Weiping Tu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, P.R. China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, P.R. China
| |
Collapse
|
26
|
Lian X, Wang Y, Wang S, Peng X, Wang Y, Huang Y, Chen W. Does inflammatory bowel disease promote kidney diseases: a mendelian randomization study with populations of European ancestry. BMC Med Genomics 2023; 16:225. [PMID: 37752523 PMCID: PMC10521387 DOI: 10.1186/s12920-023-01644-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND This study aimed to investigate a causal relationship between IBD and multiple kidney diseases using two-sample Mendelian randomization (MR) analyses. METHODS We selected a group of single nucleotide polymorphisms (SNPs) specific to IBD as instrumental variables from a published genome-wide association study (GWAS) with 86,640 individuals of European ancestry. Summary statistics for multiple kidney diseases were obtained from the publicly available GWAS. Genetic data from one GWAS involving 210 extensive T-cell traits was used to estimate the mediating effect on specific kidney disease. Inverse-variance weighted method were used to evaluate the MR estimates for primary analysis. RESULTS Genetic predisposition to IBD was associated with higher risk of IgA nephropathy (IgAN) (OR, 1.78; 95% CI, 1.45-2.19), but not membranous nephropathy, diabetic nephropathy, glomerulonephritis, nephrotic syndrome, chronic kidney disease, and urolithiasis. CD4 expression on CD4 + T cell had a significant genetic association with the risk of IgAN (OR, 2.72; 95% CI, 1.10-6.72). Additionally, consistent results were also observed when IBD was subclassified as ulcerative colitis (OR, 1.38; 95% CI, 1.10-1.71) and Crohn's disease (OR, 1.37; 95% CI, 1.12-1.68). MR-PRESSO and the MR-Egger intercept did not identify pleiotropic SNPs. CONCLUSIONS This study provides genetic evidence supporting a positive casual association between IBD, including its subclassification as ulcerative colitis and Crohn's disease, and the risk of IgAN. However, no casual association was found between IBD and other types of kidney diseases. Further exploration of IBD interventions as potential preventive measures for IgAN is warranted.
Collapse
Affiliation(s)
- Xingji Lian
- Department of Nephrology, The First Affiliated Hospital, NHC Key Laboratory of Nephrology (Sun Yat-sen University), Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, National Key Clinic Specialty, South China University of Technology, Guangzhou, 510180, China
| | - Yiqin Wang
- Department of Nephrology, The First Affiliated Hospital, NHC Key Laboratory of Nephrology (Sun Yat-sen University), Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuyi Wang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaohui Peng
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, National Key Clinic Specialty, South China University of Technology, Guangzhou, 510180, China
| | - Yanhui Wang
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, National Key Clinic Specialty, South China University of Technology, Guangzhou, 510180, China
| | - Yuyu Huang
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, National Key Clinic Specialty, South China University of Technology, Guangzhou, 510180, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, NHC Key Laboratory of Nephrology (Sun Yat-sen University), Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
27
|
Wang YN, Gan T, Qu S, Xu LL, Hu Y, Liu LJ, Shi SF, Lv JC, Tsoi LC, Patrick MT, He K, Berthier CC, Xu HJ, Zhou XJ, Zhang H. MTMR3 risk alleles enhance Toll Like Receptor 9-induced IgA immunity in IgA nephropathy. Kidney Int 2023; 104:562-576. [PMID: 37414396 DOI: 10.1016/j.kint.2023.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Multiple genome-wide association studies (GWASs) have reproducibly identified the MTMR3/HORMAD2/LIF/OSM locus to be associated with IgA nephropathy (IgAN). However, the causal variant(s), implicated gene(s), and altered mechanisms remain poorly understood. Here, we performed fine-mapping analyses based on GWAS datasets encompassing 2762 IgAN cases and 5803 control individuals, and identified rs4823074 as the candidate causal variant that intersects the MTMR3 promoter in B-lymphoblastoid cells. Mendelian randomization studies suggested the risk allele may modulate disease susceptibility by affecting serum IgA levels through increased MTMR3 expression. Consistently, elevated MTMR3 expression in peripheral blood mononuclear cells was observed in patients with IgAN. Further mechanistic studies in vitro demonstrated that MTMR3 increased IgA production dependent upon its phosphatidylinositol 3-phosphate binding domain. Moreover, our study provided the in vivo functional evidence that Mtmr3-/- mice exhibited defective Toll Like Receptor 9-induced IgA production, glomerular IgA deposition, as well as mesangial cell proliferation. RNA-seq and pathway analyses showed that MTMR3 deficiency resulted in an impaired intestinal immune network for IgA production. Thus, our results support the role of MTMR3 in IgAN pathogenesis by enhancing Toll Like Receptor 9-induced IgA immunity.
Collapse
Affiliation(s)
- Yan-Na Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Ting Gan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Shu Qu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Lin-Lin Xu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Li-Jun Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Su-Fang Shi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Ji-Cheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin He
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA; Kidney Epidemiology and Cost Center, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Celine C Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hu-Ji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | - Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China.
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
28
|
Zanoni F, Abinti M, Belingheri M, Castellano G. Present and Future of IgA Nephropathy and Membranous Nephropathy Immune Monitoring: Insights from Molecular Studies. Int J Mol Sci 2023; 24:13134. [PMID: 37685941 PMCID: PMC10487514 DOI: 10.3390/ijms241713134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
IgA Nephropathy (IgAN) and Membranous Nephropathy (MN) are primary immune-mediated glomerular diseases with highly variable prognosis. Current guidelines recommend that greater immunologic activity and worse prognosis should guide towards the best treatment in an individualized approach. Nevertheless, proteinuria and glomerular filtration rate, the current gold standards for prognosis assessment and treatment guidance in primary glomerular diseases, may be altered with chronic damage and nephron scarring, conditions that are not related to immune activity. In recent years, thanks to the development of new molecular technologies, among them genome-wide genotyping, RNA sequencing techniques, and mass spectrometry, we have witnessed an outstanding improvement in understanding the pathogenesis of IgAN and MN. In addition, recent genome-wide association studies have suggested potential targets for immunomodulating agents, stressing the need for the identification of specific biomarkers of immune activity. In this work, we aim to review current evidence and recent progress, including the more recent use of omics techniques, in the identification of potential biomarkers for immune monitoring in IgAN and MN.
Collapse
Affiliation(s)
- Francesca Zanoni
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
| | - Matteo Abinti
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Mirco Belingheri
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
| | - Giuseppe Castellano
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
29
|
Schimpf J, Kronbichler A, Windpessl M, Zitt E, Eller K, Säemann MD, Lhotta K, Rudnicki M. [Diagnosis and Treatment of IgA Nephropathy-2023]. Wien Klin Wochenschr 2023; 135:621-627. [PMID: 37728647 PMCID: PMC10511560 DOI: 10.1007/s00508-023-02257-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/21/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common glomerulonephritis. It leads to end-stage kidney disease in about a third of the patients within 10 to 20 years. The pathogenesis of IgAN is incompletely understood. It is believed that a dysregulation of the mucosal immune system leads to undergalactosylation of IgA, followed by formation of IgG autoantibodies against undergalactosylated IgA, circulation of these IgG-IgA immune complexes, deposition of the immune complexes in the mesangium, ultimately resulting in glomerular inflammation. IgAN can occasionally be triggered by other diseases, these secondary causes of IgAN should be identified or ruled out (chronic inflammatory bowel disease, infections, tumors, rheumatic diseases). Characteristic findings of IgAN of variable extent are a nephritic urinary sediment (erythrocytes, acanthocytes, erythrocyte casts), proteinuria, impaired renal function, arterial hypertension, or intermittent painless macrohematuria, especially during infections of the upper respiratory tract. However, the diagnosis of IgAN can only be made by a kidney biopsy. A histological classification (MEST‑C score) should always be reported to be able to estimate the prognosis. The most important therapeutic measure is an optimization of the supportive therapy, which includes, among other things, a consistent control of the blood pressure, an inhibition of the RAS, and the administration of an SGLT2 inhibitor. A systemic immunosuppressive therapy with corticosteroids is discussed controversially, should be used restrictively and only administered after an individual benefit-risk assessment under certain conditions that speak for a progressive IgAN. New promising therapeutics are enteral Budesonide or the dual angiotensin-II-receptor- and endothelin-receptor-antagonist Sparsentan. Rapidly progressive IgAN should be treated with corticosteroids and cyclophosphamide like ANCA-associated vasculitis.
Collapse
Affiliation(s)
- Judith Schimpf
- Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Akademisches Lehrkrankenhaus Feldkirch, Feldkirch, Österreich
| | - Andreas Kronbichler
- Department Innere Medizin IV (Nephrologie und Hypertensiologie), Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Martin Windpessl
- Abteilung für Innere Medizin IV, Klinikum Wels-Grieskirchen, Wels, Österreich
- Medizinische Fakultät, JKU Linz, Linz, Österreich
| | - Emanuel Zitt
- Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Akademisches Lehrkrankenhaus Feldkirch, Feldkirch, Österreich
| | - Kathrin Eller
- Klinische Abteilung für Nephrologie, Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Medizinische Universität Graz, Graz, Österreich
| | - Marcus D Säemann
- 6. Medizinische Abteilung mit Nephrologie & Dialyse, Klinik Ottakring, Wien, Österreich
- Medizinische Fakultät, SFU, Wien, Österreich
| | - Karl Lhotta
- Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Akademisches Lehrkrankenhaus Feldkirch, Feldkirch, Österreich
| | - Michael Rudnicki
- Department Innere Medizin 4 (Nephrologie und Hypertensiologie), Medizinische Universität Innsbruck, Innsbruck, Österreich.
| |
Collapse
|
30
|
Kiryluk K, Sanchez-Rodriguez E, Zhou XJ, Zanoni F, Liu L, Mladkova N, Khan A, Marasa M, Zhang JY, Balderes O, Sanna-Cherchi S, Bomback AS, Canetta PA, Appel GB, Radhakrishnan J, Trimarchi H, Sprangers B, Cattran DC, Reich H, Pei Y, Ravani P, Galesic K, Maixnerova D, Tesar V, Stengel B, Metzger M, Canaud G, Maillard N, Berthoux F, Berthelot L, Pillebout E, Monteiro R, Nelson R, Wyatt RJ, Smoyer W, Mahan J, Samhar AA, Hidalgo G, Quiroga A, Weng P, Sreedharan R, Selewski D, Davis K, Kallash M, Vasylyeva TL, Rheault M, Chishti A, Ranch D, Wenderfer SE, Samsonov D, Claes DJ, Akchurin O, Goumenos D, Stangou M, Nagy J, Kovacs T, Fiaccadori E, Amoroso A, Barlassina C, Cusi D, Del Vecchio L, Battaglia GG, Bodria M, Boer E, Bono L, Boscutti G, Caridi G, Lugani F, Ghiggeri G, Coppo R, Peruzzi L, Esposito V, Esposito C, Feriozzi S, Polci R, Frasca G, Galliani M, Garozzo M, Mitrotti A, Gesualdo L, Granata S, Zaza G, Londrino F, Magistroni R, Pisani I, Magnano A, Marcantoni C, Messa P, Mignani R, Pani A, Ponticelli C, Roccatello D, Salvadori M, Salvi E, Santoro D, Gembillo G, Savoldi S, Spotti D, Zamboli P, Izzi C, Alberici F, Delbarba E, Florczak M, Krata N, Mucha K, Pączek L, Niemczyk S, Moszczuk B, Pańczyk-Tomaszewska M, Mizerska-Wasiak M, Perkowska-Ptasińska A, Bączkowska T, Durlik M, Pawlaczyk K, Sikora P, Zaniew M, Kaminska D, Krajewska M, Kuzmiuk-Glembin I, Heleniak Z, Bullo-Piontecka B, Liberek T, Dębska-Slizien A, Hryszko T, Materna-Kiryluk A, Miklaszewska M, Szczepańska M, Dyga K, Machura E, Siniewicz-Luzeńczyk K, Pawlak-Bratkowska M, Tkaczyk M, Runowski D, Kwella N, Drożdż D, Habura I, Kronenberg F, Prikhodina L, van Heel D, Fontaine B, Cotsapas C, Wijmenga C, Franke A, Annese V, Gregersen PK, Parameswaran S, Weirauch M, Kottyan L, Harley JB, Suzuki H, Narita I, Goto S, Lee H, Kim DK, Kim YS, Park JH, Cho B, Choi M, Van Wijk A, Huerta A, Ars E, Ballarin J, Lundberg S, Vogt B, Mani LY, Caliskan Y, Barratt J, Abeygunaratne T, Kalra PA, Gale DP, Panzer U, Rauen T, Floege J, Schlosser P, Ekici AB, Eckardt KU, Chen N, Xie J, Lifton RP, Loos RJF, Kenny EE, Ionita-Laza I, Köttgen A, Julian BA, Novak J, Scolari F, Zhang H, Gharavi AG. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat Genet 2023; 55:1091-1105. [PMID: 37337107 DOI: 10.1038/s41588-023-01422-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
IgA nephropathy (IgAN) is a progressive form of kidney disease defined by glomerular deposition of IgA. Here we performed a genome-wide association study of 10,146 kidney-biopsy-diagnosed IgAN cases and 28,751 controls across 17 international cohorts. We defined 30 genome-wide significant risk loci explaining 11% of disease risk. A total of 16 loci were new, including TNFSF4/TNFSF18, REL, CD28, PF4V1, LY86, LYN, ANXA3, TNFSF8/TNFSF15, REEP3, ZMIZ1, OVOL1/RELA, ETS1, IGH, IRF8, TNFRSF13B and FCAR. The risk loci were enriched in gene orthologs causing abnormal IgA levels when genetically manipulated in mice. We also observed a positive genetic correlation between IgAN and serum IgA levels. High polygenic score for IgAN was associated with earlier onset of kidney failure. In a comprehensive functional annotation analysis of candidate causal genes, we observed convergence of biological candidates on a common set of inflammatory signaling pathways and cytokine ligand-receptor pairs, prioritizing potential new drug targets.
Collapse
Affiliation(s)
- Krzysztof Kiryluk
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA.
- Institute for Genomic Medicine, Columbia University, New York City, NY, USA.
| | - Elena Sanchez-Rodriguez
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Francesca Zanoni
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Lili Liu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Nikol Mladkova
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Atlas Khan
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Maddalena Marasa
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Jun Y Zhang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Olivia Balderes
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Simone Sanna-Cherchi
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
- Institute for Genomic Medicine, Columbia University, New York City, NY, USA
| | - Andrew S Bomback
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Pietro A Canetta
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Gerald B Appel
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Jai Radhakrishnan
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Hernan Trimarchi
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Ben Sprangers
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology, KU Leuven, Leuven, Belgium
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Daniel C Cattran
- Department of Nephrology, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | - Heather Reich
- Department of Nephrology, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | - York Pei
- Department of Nephrology, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | - Pietro Ravani
- Division of Nephrology, Department of Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Dita Maixnerova
- 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Vladimir Tesar
- 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Benedicte Stengel
- Centre for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles Saint Quentin University, INSERM Clinical Epidemiology Team, Villejuif, France
| | - Marie Metzger
- Centre for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles Saint Quentin University, INSERM Clinical Epidemiology Team, Villejuif, France
| | - Guillaume Canaud
- Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Nicolas Maillard
- Nephrology, Dialysis, and Renal Transplantation Department, University North Hospital, Saint Etienne, France
| | - Francois Berthoux
- Nephrology, Dialysis, and Renal Transplantation Department, University North Hospital, Saint Etienne, France
| | | | - Evangeline Pillebout
- Center for Research on Inflammation, University of Paris, INSERM and CNRS, Paris, France
| | - Renato Monteiro
- Center for Research on Inflammation, University of Paris, INSERM and CNRS, Paris, France
| | - Raoul Nelson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Robert J Wyatt
- Division of Pediatric Nephrology, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Children's Foundation Research Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - William Smoyer
- Division of Pediatric Nephrology, Nationwide Children's Hospital, Columbus, OH, USA
| | - John Mahan
- Division of Pediatric Nephrology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Al-Akash Samhar
- Division of Pediatric Nephrology, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Guillermo Hidalgo
- Division of Pediatric Nephrology, Department of Pediatrics, HMH Hackensack University Medical Center, Hackensack, NJ, USA
| | - Alejandro Quiroga
- Division of Pediatric Nephrology, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Patricia Weng
- Division of Pediatric Nephrology, Mattel Children's Hospital, Los Angeles, CA, USA
| | - Raji Sreedharan
- Division of Pediatric Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David Selewski
- Division of Pediatric Nephrology, Mott Children's Hospital, Ann Arbor, MI, USA
| | - Keefe Davis
- Division of Pediatric Nephrology, Department of Pediatrics, The Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Mahmoud Kallash
- Division of Pediatric Nephrology, SUNY Buffalo, Buffalo, NY, USA
| | - Tetyana L Vasylyeva
- Division of Pediatric Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michelle Rheault
- Division of Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
| | - Aftab Chishti
- Division of Pediatric Nephrology, University of Kentucky, Lexington, KY, USA
| | - Daniel Ranch
- Division of Pediatric Nephrology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Scott E Wenderfer
- Division of Pediatric Nephrology, Baylor College of Medicine/Texas Children's Hospital, Houston, TX, USA
| | - Dmitry Samsonov
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Donna J Claes
- Division of Pediatric Nephrology, Department of Pediatrics, New York Medical College, New York City, NY, USA
| | - Oleh Akchurin
- Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medical College, New York City, NY, USA
| | | | - Maria Stangou
- The Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Judit Nagy
- 2nd Department of Internal Medicine, Nephrological and Diabetological Center, University of Pécs, Pécs, Hungary
| | - Tibor Kovacs
- 2nd Department of Internal Medicine, Nephrological and Diabetological Center, University of Pécs, Pécs, Hungary
| | - Enrico Fiaccadori
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristina Barlassina
- Renal Division, Dipartimento di Medicina, Chirurgia e Odontoiatria, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Daniele Cusi
- Renal Division, Dipartimento di Medicina, Chirurgia e Odontoiatria, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | | | | | | | - Emanuela Boer
- Division of Nephrology and Dialysis, Gorizia Hospital, Gorizia, Italy
| | - Luisa Bono
- Nephrology and Dialysis, A.R.N.A.S. Civico and Benfratelli, Palermo, Italy
| | - Giuliano Boscutti
- Nephrology, Dialysis and Renal Transplant Unit, S. Maria della Misericordia Hospital, ASUFC, Udine, Italy
| | - Gianluca Caridi
- Division of Nephrology, Dialysis and Transplantation, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Francesca Lugani
- Division of Nephrology, Dialysis and Transplantation, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - GianMarco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Rosanna Coppo
- Regina Margherita Children's Hospital, Torino, Italy
| | - Licia Peruzzi
- Regina Margherita Children's Hospital, Torino, Italy
| | | | | | | | | | - Giovanni Frasca
- Division of Nephrology, Dialysis and Renal Transplantation, Riuniti Hospital, Ancona, Italy
| | | | - Maurizio Garozzo
- Unità Operativa di Nefrologia e Dialisi, Ospedale di Acireale, Acireale, Italy
| | - Adele Mitrotti
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University of Verona, Verona, Italy
| | | | - Riccardo Magistroni
- Department of Surgical, Medical, Dental, Oncologic and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabella Pisani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Magnano
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Piergiorgio Messa
- Nephrology Dialysis and Kidney Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Renzo Mignani
- Azienda Unità Sanitaria Locale Rimini, Rimini, Italy
| | - Antonello Pani
- Department of Nephrology and Dialysis, G. Brotzu Hospital, Cagliari, Italy
| | | | - Dario Roccatello
- Nephrology and Dialysis Unit, G. Bosco Hub Hospital (ERK-net Member) and University of Torino, Torino, Italy
| | - Maurizio Salvadori
- Division of Nephrology and Renal Transplantation, Carreggi Hospital, Florence, Italy
| | - Erica Salvi
- Renal Division, DMCO (Dipartimento di Medicina, Chirurgia e Odontoiatria), San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, AOU G Martino, University of Messina, Messina, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, AOU G Martino, University of Messina, Messina, Italy
| | - Silvana Savoldi
- Unit of Nephrology and Dialysis, ASL TO4-Consultorio Cirié, Turin, Italy
| | | | | | - Claudia Izzi
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Federico Alberici
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Elisa Delbarba
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Michał Florczak
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Krata
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Stanisław Niemczyk
- Department of Internal Disease, Nephrology and Dialysotherapy, Military Institute of Medicine, Warsaw, Poland
| | - Barbara Moszczuk
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Teresa Bączkowska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Pawlaczyk
- Department of Nephrology, Transplantology and Internal Medicine, Poznan Medical University, Poznan, Poland
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Dorota Kaminska
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Krajewska
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Izabella Kuzmiuk-Glembin
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Heleniak
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Bullo-Piontecka
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Liberek
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Dębska-Slizien
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Hryszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | | | - Monika Miklaszewska
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Dyga
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Edyta Machura
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Siniewicz-Luzeńczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Monika Pawlak-Bratkowska
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Dariusz Runowski
- Department of Nephrology, Kidney Transplantation and Hypertension, Children's Memorial Health Institute, Warsaw, Poland
| | - Norbert Kwella
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dorota Drożdż
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Ireneusz Habura
- Department of Nephrology, Karol Marcinkowski Hospital, Zielona Góra, Poland
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Larisa Prikhodina
- Division of Inherited and Acquired Kidney Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - David van Heel
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bertrand Fontaine
- Sorbonne University, INSERM, Center of Research in Myology, Institute of Myology, University Hospital Pitie-Salpetriere, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service of Neuro-Myology, University Hospital Pitie-Salpetriere, Paris, France
| | - Chris Cotsapas
- Departments of Neurology and Genetics, Yale University, New Haven, CT, USA
| | | | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vito Annese
- CBP American Hospital, Dubai, United Arab Emirates
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, North Shore LIJ Health System, New York City, NY, USA
| | | | - Matthew Weirauch
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leah Kottyan
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John B Harley
- US Department of Veterans Affairs Medical Center and Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, USA
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hajeong Lee
- Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Ki Kim
- Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yon Su Kim
- Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - BeLong Cho
- Department of Family Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
- Institute on Aging, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ans Van Wijk
- Amsterdam University Medical Centre, VU University Medical Center (VUMC), Amsterdam, the Netherlands
| | - Ana Huerta
- Hospital Universitario Puerta del Hierro Majadahonda, REDINREN, IISCIII, Madrid, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory and Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, REDINREN, IISCIII, Barcelona, Spain
| | - Jose Ballarin
- Molecular Biology Laboratory and Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, REDINREN, IISCIII, Barcelona, Spain
| | - Sigrid Lundberg
- Department of Nephrology, Danderyd University Hospital, and Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laila-Yasmin Mani
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yasar Caliskan
- Division of Nephrology, Saint Louis University, Saint Louis, MO, USA
| | - Jonathan Barratt
- John Walls Renal Unit, University Hospitals of Leicester, Leicester, UK
| | | | | | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
| | | | - Thomas Rauen
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nan Chen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York City, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York City, NY, USA
- Center for Population Genomic Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Bruce A Julian
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Francesco Scolari
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Ali G Gharavi
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA.
- Institute for Genomic Medicine, Columbia University, New York City, NY, USA.
| |
Collapse
|
31
|
Downie ML, Gupta S, Chan MMY, Sadeghi-Alavijeh O, Cao J, Parekh RS, Diz CB, Bierzynska A, Levine AP, Pepper RJ, Stanescu H, Saleem MA, Kleta R, Bockenhauer D, Koziell AB, Gale DP. Shared genetic risk across different presentations of gene test-negative idiopathic nephrotic syndrome. Pediatr Nephrol 2023; 38:1793-1800. [PMID: 36357634 PMCID: PMC10154254 DOI: 10.1007/s00467-022-05789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Idiop athic nephrotic syndrome (INS) is classified in children according to response to initial corticosteroid therapy into steroid-sensitive (SSNS) and steroid-resistant nephrotic syndrome (SRNS), and in adults according to histology into minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). However, there is well-recognised phenotypic overlap between these entities. Genome-wide association studies (GWAS) have shown a strong association between SSNS and variation at HLA, suggesting an underlying immunological basis. We sought to determine whether a risk score generated from genetic variants associated with SSNS could be used to gain insight into the pathophysiology of INS presenting in other ways. METHODS We developed an SSNS genetic risk score (SSNS-GRS) from the five variants independently associated with childhood SSNS in a previous European GWAS. We quantified SSNS-GRS in independent cohorts of European individuals with childhood SSNS, non-monogenic SRNS, MCD, and FSGS, and contrasted them with SSNS-GRS quantified in individuals with monogenic SRNS, membranous nephropathy (a different immune-mediated disease-causing nephrotic syndrome), and healthy controls. RESULTS The SSNS-GRS was significantly elevated in cohorts with SSNS, non-monogenic SRNS, MCD, and FSGS compared to healthy participants and those with membranous nephropathy. The SSNS-GRS in all cohorts with non-monogenic INS were also significantly elevated compared to those with monogenic SRNS. CONCLUSIONS The shared genetic risk factors among patients with different presentations of INS strongly suggests a shared autoimmune pathogenesis when monogenic causes are excluded. Use of the SSNS-GRS, in addition to testing for monogenic causes, may help to classify patients presenting with INS. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Mallory L Downie
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sanjana Gupta
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Melanie M Y Chan
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Omid Sadeghi-Alavijeh
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Jingjing Cao
- Department of Medicine, Women's College Hospital, Toronto, Canada
| | - Rulan S Parekh
- Department of Medicine, Women's College Hospital, Toronto, Canada
- Department of Pediatrics, Division of Nephrology, The Hospital for Sick Children, Toronto, Canada
| | - Carmen Bugarin Diz
- Department of Paediatric Nephrology, Evelina London and Faculty of Life Sciences, King's College London, London, UK
| | - Agnieszka Bierzynska
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Adam P Levine
- Research Department of Pathology, University College London, London, UK
| | - Ruth J Pepper
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Horia Stanescu
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Moin A Saleem
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Robert Kleta
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ania B Koziell
- Department of Paediatric Nephrology, Evelina London and Faculty of Life Sciences, King's College London, London, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
32
|
Zhou XJ, Su T, Xie J, Xie QH, Wang LZ, Hu Y, Chen G, Jia Y, Huang JW, Li G, Liu Y, Yu XJ, Nath SK, Tsoi LC, Patrick MT, Berthier CC, Liu G, Wang SX, Xu H, Chen N, Hao CM, Zhang H, Yang L. Genome-Wide Association Study in Acute Tubulointerstitial Nephritis. J Am Soc Nephrol 2023; 34:895-908. [PMID: 36749126 PMCID: PMC10125656 DOI: 10.1681/asn.0000000000000091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/28/2022] [Indexed: 02/08/2023] Open
Abstract
SIGNIFICANCE STATEMENT Polymorphisms of HLA genes may confer susceptibility to acute tubulointerstitial nephritis (ATIN), but small sample sizes and candidate gene design have hindered their investigation. The first genome-wide association study of ATIN identified two significant loci, risk haplotype DRB1*14-DQA1*0101-DQB1*0503 (DR14 serotype) and protective haplotype DRB1*1501-DQA1*0102-DQB1*0602 (DR15 serotype), with amino acid position 60 in the peptide-binding groove P10 of HLA-DR β 1 key. Risk alleles were shared among different causes of ATIN and HLA genotypes associated with kidney injury and immune therapy response. HLA alleles showed the strongest association. The findings suggest that a genetically conferred risk of immune dysregulation is part of the pathogenesis of ATIN. BACKGROUND Acute tubulointerstitial nephritis (ATIN) is a rare immune-related disease, accounting for approximately 10% of patients with unexplained AKI. Previous elucidation of the relationship between genetic factors that contribute to its pathogenesis was hampered because of small sample sizes and candidate gene design. METHODS We undertook the first two-stage genome-wide association study and meta-analysis involving 544 kidney biopsy-defined patients with ATIN and 2346 controls of Chinese ancestry. We conducted statistical fine-mapping analysis, provided functional annotations of significant variants, estimated single nucleotide polymorphism (SNP)-based heritability, and checked genotype and subphenotype correlations. RESULTS Two genome-wide significant loci, rs35087390 of HLA-DQA1 ( P =3.01×10 -39 ) on 6p21.32 and rs2417771 of PLEKHA5 on 12p12.3 ( P =2.14×10 -8 ), emerged from the analysis. HLA imputation using two reference panels suggested that HLA-DRB1*14 mainly drives the HLA risk association . HLA-DRB1 residue 60 belonging to pocket P10 was the key amino acid position. The SNP-based heritability estimates with and without the HLA locus were 20.43% and 10.35%, respectively. Different clinical subphenotypes (drug-related or tubulointerstitial nephritis and uveitis syndrome) seemed to share the same risk alleles. However, the HLA risk genotype was associated with disease severity and response rate to immunosuppressive therapy. CONCLUSIONS We identified two candidate genome regions associated with susceptibility to ATIN. The findings suggest that a genetically conferred risk of immune dysregulation is involved in the pathogenesis of ATIN.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Tao Su
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jingyuan Xie
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong-Hong Xie
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Zhong Wang
- WeGene, Shenzhen Zaozhidao Technology Co., Ltd., Shenzhen, China
- Human Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
- Shenzhen WeGene Clinical Laboratory, Shenzhen, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, China
| | - Gang Chen
- WeGene, Shenzhen Zaozhidao Technology Co., Ltd., Shenzhen, China
- Human Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
- Shenzhen WeGene Clinical Laboratory, Shenzhen, China
| | - Yan Jia
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jun-Wen Huang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Gui Li
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yang Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xiao-Juan Yu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Matthew T. Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gang Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Su-Xia Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Nan Chen
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li Yang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
33
|
He C, Shi D, Guo L, Zhong Z, Yu XQ, Li M. Polymorphisms of CARD9 Gene Predict Disease Progression and Renal Survival of Immunoglobulin A Nephropathy. Kidney Blood Press Res 2023; 48:436-444. [PMID: 37062285 PMCID: PMC10308535 DOI: 10.1159/000530262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
INTRODUCTION A previous genome-wide association study has identified CARD9 (caspase recruitment domain family member 9) as a susceptibility gene for immunoglobulin A nephropathy (IgAN), which encodes an adapter protein and is related to mucosal immunity. This study aimed to investigate the association of CARD9 variants with the clinicopathological phenotypes and prognosis of IgAN. METHODS Eight single nucleotide polymorphisms within CARD9 were genotyped using Sequenom MassARRAY iPLEX for 986 IgAN patients in this study. Logistic and linear regression analyses adjusted for age and gender were performed to evaluate the effects of CARD9 gene polymorphisms on clinicopathological phenotypes. The Kaplan-Meier method and Cox proportional hazard models were applied to analyze the associations between genetic variants and renal survival. RESULTS The T allele of rs10747047 was strongly associated with higher levels of serum creatinine (p = 0.005) and lower levels of estimated glomerular filtration rate (p = 0.005). The rs10870149-G and rs10870077-C alleles were associated with elevated 24-h urine protein excretion (p = 0.041 and 0.022, respectively) and more serious segmental glomerulosclerosis lesions (p = 0.005 and 0.041, respectively) in IgAN patients. Carriers with the T allele of rs10781533 and the C allele of rs3812552 also presented with severe segmental glomerulosclerosis lesions (p = 0.001 and 0.010, respectively). Additionally, rs10747047-C and rs10870077-C alleles were independently related to the poor prognosis of IgAN patients after adjustments for covariates (TT vs. CC hazard ratio [HR] = 0.138, 95% confidence interval [95% CI] = 0.022-0.871, p = 0.035; GG vs. CC HR = 0.321, 95% CI = 0.123, 0.836, p = 0.020, respectively). CONCLUSION CARD9 variants are associated with disease severity and rapid disease progression for IgAN in a Chinese Han population.
Collapse
Affiliation(s)
- Chunhong He
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Dianchun Shi
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lin Guo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xue-Qing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ming Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
34
|
Oo HH, Choy MYD, Arora A, Yeo SC, Ramachandran R, Gupta V, McCluskey P, Agrawal R. Ocular manifestations in IgA nephropathy. Surv Ophthalmol 2023; 68:290-307. [PMID: 36191648 DOI: 10.1016/j.survophthal.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Immunoglobulin A nephropathy (IgAN) is a rare but important systemic disease with or without ocular manifestations. We describe 4 cases of IgAN presenting with scleritis and review the various ocular manifestations in patients with IgAN. We found 55 cases with ocular manifestations in patients with prior or newly-diagnosed IgAN described in 38 publications. The most common ocular manifestations of IgAN were episcleritis (23.6%), scleritis (16.4%), hypertensive retinopathy or retinal vasculopathy (20.0%), and uveitis (14.5%). The median age at presentation was 36.5 years, with 54.5% female patients. 61.8% had history of IgAN prior to ocular involvement, while 29.1% had ocular presentations as the first manifestation of IgAN. The majority received systemic corticosteroids and/or immunosuppressants. Additionally, we report 4 women with anterior scleritis and previous diagnosis of IgAN. All 4 were treated with topical and systemic corticosteroids. Three out of 4 patients had no recurrence for at least 1 year since the first presentation. IgAN is a rare but important systemic association to be considered in ocular inflammatory conditions. Timely recognition and comanagement of the disease with nephrologist could reduce disease morbidity.
Collapse
Affiliation(s)
- Hnin Hnin Oo
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Mun Yoong Darren Choy
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Atul Arora
- Department of Ophthalmology, Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - See Cheng Yeo
- Department of Renal Medicine, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishali Gupta
- Department of Ophthalmology, Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Peter McCluskey
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| | - Rupesh Agrawal
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Singapore Eye Research Institute, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Duke NUS Medical School, Singapore.
| |
Collapse
|
35
|
Shwan NAA, Moise EC, Necsoiu PE, Farr AJ, Gale DP, Barratt J, Armour JAL. Segregation analysis identifies specific alpha-defensin (DEFA1A3) SNP-CNV haplotypes in predisposition to IgA nephropathy. Ann Hum Genet 2023; 87:1-8. [PMID: 36214424 DOI: 10.1111/ahg.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Immunoglobulin A (IgA) nephropathy is a disorder of the immune system affecting kidney function, and genome-wide association studies (GWAS) have defined numerous loci with associated variation, all implicating components of innate or adaptive immunity. Among these, single nucleotide polymorphisms (SNPs) in a region including the multiallelic copy number variation (CNV) of DEFA1A3 are associated with IgA nephropathy in both European and Asian populations. At present, the precise factors underlying the observed associations at DEFA1A3 have not been defined, although the key alleles differ between Asian and European populations, and multiple independent factors may be involved even within a single population. METHODS In this study, we measured DEFA1A3 copy number in UK family trios with an offspring affected by IgA nephropathy, used the population distributions of joint SNP-CNV haplotypes to infer the likely segregation in trios, and applied transmission disequilibrium tests (TDT) to examine joint SNP-CNV haplotypes for over- or undertransmission into affected offspring from heterozygous parents. RESULTS AND CONCLUSIONS We observed overtransmission of 3-copy class 2 haplotypes (raw p = 0.029) and some evidence for under-transmission of 3-copy class 1 haplotypes (raw p = 0.051), although these apparent effects were not statistically significant after correction for testing of multiple haplotypes.
Collapse
Affiliation(s)
- Nzar A A Shwan
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Eric C Moise
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Paula E Necsoiu
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Amy J Farr
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Daniel P Gale
- Department of Renal Medicine, Division of Medicine, University College London, London, UK
| | - Jonathan Barratt
- Department of Cardiovascular Medicine, University of Leicester, Leicester, UK
| | - John A L Armour
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
36
|
Exploring genes for immunoglobulin A nephropathy: a summary data-based mendelian randomization and FUMA analysis. BMC Med Genomics 2023; 16:16. [PMID: 36709307 PMCID: PMC9884184 DOI: 10.1186/s12920-023-01436-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/09/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is a complex autoimmune disease, and the exact pathogenesis remains to be elucidated. This study aimed to explore genes underlying the pathogenesis of IgAN. METHODS We conducted the summary data-based Mendelian randomization (SMR) analysis and performed functional mapping and annotation using FUMA to explore genetic loci that are potentially involved in the pathogenies of IgAN. Both analyses used summarized data of a recent genome-wide association study (GWAS) on IgANs, which included 477,784 Europeans (15,587 cases and 462,197 controls) and 175,359 East Asians (71 cases and 175,288 controls). We performed SMR analysis using Consortium for the Architecture of Gene Expression (CAGE) expression quantitative trait loci (eQTL) data and replicated the analysis using Genotype-Tissue Expression (GTEx) eQTL data. RESULTS Using the CAGE eQTL data, our SMR analysis identified 32 probes tagging 25 unique genes whose expression were pleiotropically associated with IgAN, with the top three probes being ILMN_2150787 (tagging HLA-C, PSMR= 2.10 × 10-18), ILMN_1682717 (tagging IER3, PSMR= 1.07 × 10-16) and ILMN_1661439 (tagging FLOT1, PSMR=1.16 × 10-14). Using GTEx eQTL data, our SMR analysis identified 24 probes tagging 24 unique genes whose expressions were pleiotropically associated with IgAN, with the top three probes being ENSG00000271581.1 (tagging XXbac-BPG248L24.12, PSMR= 1.44 × 10-10), ENSG00000186470.9 (tagging BTN3A2, PSMR= 2.28 × 10-10), and ENSG00000224389.4 (tagging C4B, PSMR= 1.23 × 10 -9). FUMA analysis identified 3 independent, significant and lead SNPs, 2 genomic risk loci and 39 genes that are potentially involved in the pathogenesis of IgAN. CONCLUSION We identified many genetic variants/loci that are potentially involved in the pathogenesis of IgAN. More studies are needed to elucidate the exact mechanisms of the identified genetic variants/loci in the etiology of IgAN.
Collapse
|
37
|
Ren F, Jin Q, Liu T, Ren X, Zhan Y. Causal effects between gut microbiota and IgA nephropathy: a bidirectional Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1171517. [PMID: 37201114 PMCID: PMC10185820 DOI: 10.3389/fcimb.2023.1171517] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Background Therapeutic approaches that target the gut microbiota (GM) may be helpful in the potential prevention and treatment of IgA nephropathy (IgAN). Meanwhile, relevant studies demonstrated a correlation between GM and IgAN, however, these confounding evidence cannot prove a causal relationship between GM and IgAN. Methods Based on the data from the GM genome-wide association study (GWAS) of MiBioGen and the IgAN GWAS data from the FinnGen research. A bi-directional Mendelian randomization (MR) study was performed to explore the causal relationship between GM and IgAN. We used inverse variance weighted (IVW) method as the primary method to determine the causal relationship between exposure and outcome in our MR study. Besides, we used additional analysis (MR-Egger, weighted median) and sensitivity analysis (Cochrane's Q test, MR-Egger and MR-PRESSO) to select significant results, followed by Bayesian model averaging (MR-BMA) to test the results of MR study. Finally, a reverse MR analysis was conducted to estimate the probability of reverse causality. Results At the locus-wide significance level, the results of IVW method and additional analysis showed that Genus Enterorhabdus was a protective factor for IgAN [OR: 0.456, 95% CI: 0.238-0.875, p=0.023], while Genus butyricicoccus was a risk factor for IgAN [OR: 3.471, 95% CI: 1.671-7.209, p=0.0008]. In the sensitivity analysis, no significant pleiotropy or heterogeneity of the results was found. Conclusion Our study revealed the causal relationship between GM and IgAN, and expanded the variety of bacterial taxa causally related to IgAN. These bacterial taxa could become novel biomarkers to facilitate the development of targeted therapies for IgAN, developing our understanding of the "gut-kidney axis".
Collapse
Affiliation(s)
- Feihong Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiubai Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuelei Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yongli Zhan,
| |
Collapse
|
38
|
Nishino T, Takahashi K, Tomori S, Ono S, Mimaki M. Association of human leukocyte antigen with IgA vasculitis with nephritis in Japanese children. Pediatr Int 2023; 65:e15422. [PMID: 36413137 DOI: 10.1111/ped.15422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Tomohiko Nishino
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazuhiro Takahashi
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Shinya Tomori
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Sayaka Ono
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Deng P, Li Z, Yi B, Leng Y. A Mendelian randomization study to assess the genetic liability of type 1 diabetes mellitus for IgA nephropathy. Front Endocrinol (Lausanne) 2022; 13:1000627. [PMID: 36589806 PMCID: PMC9797097 DOI: 10.3389/fendo.2022.1000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background The prevalence of immunoglobulin A nephropathy (IgAN) seems to be higher in patients with type 1 diabetes mellitus (T1DM) than that in the general population. However, whether there exists a causal relationship between T1DM and IgAN remains unknown. Methods This study conducted a standard two-sample Mendelian randomization (MR) analysis to assess the causal inference by four MR methods, and the inverse variance-weighted (IVW) approach was selected as the primary method. To further test the independent causal effect of T1DM on IgAN, multivariable MR (MVMR) analysis was undertaken. Sensitivity analyses incorporating multiple complementary MR methods were applied to evaluate how strong the association was and identify potential pleiotropy. Results MR analyses utilized 81 single-nucleotide polymorphisms (SNPs) for T1DM. The evidence supports a significant causal relationship between T1DM and increased risk of IgAN [odds ratio (OR): 1.39, 95% confidence interval (CI): 1.10-1.74 for IVW, p < 0.05]. The association still exists after adjusting for triglyceride (TG), fasting insulin (FI), fasting blood glucose (FBG), homeostasis model assessment of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR), and glycated hemoglobin (HbA1c). MVMR analysis indicated that the effect of T1DM on IgAN vanished upon accounting for low-density lipoprotein cholesterol (LDL-c; OR: 0.97, 95% CI: 0.90-1.05, p > 0.05). Conclusions This MR study provided evidence that T1DM may be a risk factor for the onset of IgAN, which might be driven by LDL-c. Lipid-lowering strategies targeting LDL-c should be enhanced in patients with T1DM to prevent IgAN.
Collapse
Affiliation(s)
- Peizhi Deng
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixin Li
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiping Leng
- The Affiliated Changsha Central Hospital, Research Center for Phase I Clinical Trials, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
40
|
Xu X, Eales JM, Jiang X, Sanderson E, Drzal M, Saluja S, Scannali D, Williams B, Morris AP, Guzik TJ, Charchar FJ, Holmes MV, Tomaszewski M. Contributions of obesity to kidney health and disease: insights from Mendelian randomization and the human kidney transcriptomics. Cardiovasc Res 2022; 118:3151-3161. [PMID: 34893803 PMCID: PMC9732514 DOI: 10.1093/cvr/cvab357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Obesity and kidney diseases are common complex disorders with an increasing clinical and economic impact on healthcare around the globe. Our objective was to examine if modifiable anthropometric obesity indices show putatively causal association with kidney health and disease and highlight biological mechanisms of potential relevance to the association between obesity and the kidney. METHODS AND RESULTS We performed observational, one-sample, two-sample Mendelian randomization (MR) and multivariable MR studies in ∼300 000 participants of white-British ancestry from UK Biobank and participants of predominantly European ancestry from genome-wide association studies. The MR analyses revealed that increasing values of genetically predicted body mass index and waist circumference were causally associated with biochemical indices of renal function, kidney health index (a composite renal outcome derived from blood biochemistry, urine analysis, and International Classification of Disease-based kidney disease diagnoses), and both acute and chronic kidney diseases of different aetiologies including hypertensive renal disease and diabetic nephropathy. Approximately 13-16% and 21-26% of the potentially causal effect of obesity indices on kidney health were mediated by blood pressure and type 2 diabetes, respectively. A total of 61 pathways mapping primarily onto transcriptional/translational regulation, innate and adaptive immunity, and extracellular matrix and metabolism were associated with obesity measures in gene set enrichment analysis in up to 467 kidney transcriptomes. CONCLUSIONS Our data show that a putatively causal association of obesity with renal health is largely independent of blood pressure and type 2 diabetes and uncover the signatures of obesity on the transcriptome of human kidney.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Xiao Jiang
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, BS8 2BN, UK
| | - Maciej Drzal
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Sushant Saluja
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - David Scannali
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Bryan Williams
- Institute of Cardiovascular Sciences, University College London, Roger Williams Building, London, WC1E 6HX, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Tomasz J Guzik
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Department of Internal and Agricultural Medicine, Jagiellonian University College of Medicine, Skarbowa 1, 31-121 Kraków, Poland
| | - Fadi J Charchar
- School of Science, Psychology and Sport, Federation University, Ballarat, Victoria, 3353, Australia
- Department of Cardiovascular Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
- Department of Physiology, University of Melbourne, Medical Building 181, Melbourne, Victoria, 3010, Australia
| | - Michael V Holmes
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX4 2PG, UK
- Medical Research Council Population Health Research Unit at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Roosevelt Drive, Oxford, OX3 7LF, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
- Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL, UK
| |
Collapse
|
41
|
Xiao M, Ran Y, Shao J, Lei Z, Chen Y, Li Y. Causal association between inflammatory bowel disease and IgA nephropathy: A bidirectional two-sample Mendelian randomization study. Front Genet 2022; 13:1002928. [PMID: 36467999 PMCID: PMC9710718 DOI: 10.3389/fgene.2022.1002928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 09/26/2023] Open
Abstract
Background: An association between inflammatory bowel disease (IBD) [which includes ulcerative colitis (UC) and Crohn's disease (CD)] and IgA nephropathy (IgAN) has been discovered in observational studies, but the causal relationship is still unknown. The aim of this study was to clarify the causal link between IBD (which includes UC and CD) and IgAN via a two-sample Mendelian randomization (MR) analysis. Methods: Eligible single-nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs) for analyses and were obtained from the publicly available genome-wide association study (GWAS) summary statistics. Inverse-variance weighting (IVW), Mendelian randomization-Egger (MR-Egger) regression, the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test, and the weighted median were utilized to obtain the results. The MR-PRESSO test and MR-Egger regression were also performed to detect and correct horizontal pleiotropy. The Cochran's Q test and "leave-one-out" analysis were also conducted to assess the stability and reliability of the MR results. Results: This study found that IBD, UC, and CD all had significant positive causal effects on IgAN risk (IBD: OR = 1.58, 95% CI 1.15-2.16, p = 4.53 × 10-3; UC: OR = 1.55, 95% CI 1.14-2.11, p = 4.88 × 10-3; CD: OR = 1.57, 95% CI 1.21-2.03, p = 5.97 × 10-4). No significant horizontal pleiotropic effect was found for the causal association between IBD, UC, CD, and the risk of IgAN. Cochran's Q test identified no evidence of heterogeneity for the IV estimates. The "leave-one-out" sensitivity analysis also revealed that the MR results were robust. Conclusion: The results of this two-sample MR analysis supported that IBD, UC, and CD were causally associated with the risk of IgAN, while there was no sufficient evidence for the causal effect of IgAN on IBD, UC, or CD. Our findings provide theoretical support and a new perspective for the diagnosis and treatment of these two diseases.
Collapse
Affiliation(s)
- Mofan Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Ran
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiayuan Shao
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhangni Lei
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuling Chen
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingchao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
42
|
Complement factor H variants are associated with microangiopathy lesions in IgA nephropathy. Int Immunopharmacol 2022; 112:109234. [PMID: 36113314 DOI: 10.1016/j.intimp.2022.109234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thrombotic microangiopathy (TMA) occurs in immunoglobulin A nephropathy (IgAN), and the pathogenesis is not known behind the endothelium injury. The genetic studies have indicated that complement factor H (CFH) and complement factor H-related protein genes (CFHRs)play a key role in IgAN. We perform a study to investigate the CFH /CFHRs gene variants and their roles in IgAN with microangiopathy based on a previous genome-wide association study (GWAS). METHODS We re-review microangiopathic lesions in 2055 IgAN patients by light microscopy. And 204 IgAN patients with MA and 1851 IgAN without MA are confirmed in this study. Nineteen single nucleotide polymorphisms (SNPs) across CFH and CFHRs genes information are extracted from GWAS data. RESULTS The results show that 204 out of 2055(9.93 %) MA patients are screened from our IgAN cohort. Patients with MA lesions are strongly associated with more severe clinical conditions and higher serum complement factor H (FH) levels than IgAN without MA(MA vs IgAN-non MA:428.16 ± 141.05 vs 364.62 ± 139.06ug/mL, p = 0.004). The genetic association study indicates the frequency of rs800292-G in CFH was significantly higher in the MA group (0.441 vs 0.374, odds ratio1.37[1.07-1.62], p = 0.010) compared with IgAN without MA. In addition, patients with the rs412852-G allele in CFH become an independent risk factor for end-stage renal disease (ESRD)in MA patients (Hazard Ratio 2.77[1.17-6.65], p = 0.021). However, the gene variants did not correlate with serum FH, serum C3, and C3 deposits in the renal specimens. CONCLUSION Our results indicated that variants in CFH are associated with the development and progression of IgAN with microangiopathy.
Collapse
|
43
|
The Diagnostic and Predictive Significance of Immune-Related Genes and Immune Characteristics in the Occurrence and Progression of IgA Nephropathy. J Immunol Res 2022; 2022:9284204. [PMID: 35528619 PMCID: PMC9071862 DOI: 10.1155/2022/9284204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate the potential diagnostic and predictive significance of immune-related genes in IgA nephropathy (IgAN) and discover the abnormal glomerular inflammation in IgAN. Methods GSE116626 was used as a training set to identify different immune-related genes (DIRGs) and establish machine learning models for the diagnosis of IgAN; then, a nomogram model was generated based on GSE116626, and GSE115857 was used as a test set to evaluate its clinical value. Short Time-Series Expression Miner (STEM) analysis was also performed to explore the changing trend of DIRGs with the progression of IgAN lesions. GSE141344 was used with DIRGs to establish the ceRNA network associated with IgAN progression. Finally, ssGSEA analysis was performed on the GSE141295 dataset to discover the abnormal inflammation in IgAN. Results Machine learning (ML) performed excellently in diagnosing IgAN using six DIRGs. A nomogram model was constructed to predict IgAN based on the six DIRGs. Three trends related to IgAN lesions were identified using STEM analysis. A ceRNA network associated with IgAN progression which contained 8 miRNAs, 14 lncRNAs, and 3 mRNAs was established. A higher macrophage ratio and lower CD4+ T cell ratio in IgAN compared to controls were observed, and the correlation between macrophages and monocytes in the glomeruli of IgAN patients was inverse compared to controls. Conclusion This study reveals the diagnostic and predictive significance of DIRGs in IgAN and finds that the imbalance between macrophages and CD4+ immune cells may be an important pathomechanism of IgAN. These results provide potential directions for the treatment and prevention of IgAN.
Collapse
|
44
|
Gagliano Taliun SA, Sulem P, Sveinbjornsson G, Gudbjartsson DF, Stefansson K, Paterson AD, Barua M. GWAS of Hematuria. Clin J Am Soc Nephrol 2022; 17:672-683. [PMID: 35474271 PMCID: PMC9269584 DOI: 10.2215/cjn.13711021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/21/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Glomerular hematuria has varied causes but can have a genetic basis, including Alport syndrome and IgA nephropathy. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We used summary statistics to identify genetic variants associated with hematuria in White British UK Biobank participants. Individuals with glomerular hematuria were enriched by excluding participants with genitourinary conditions. A strongly associated locus on chromosome 2 (COL4A4-COL4A3) was identified. The region was reimputed using the Trans-Omics for Precision Medicine Program followed by sequential rounds of regional conditional analysis, conditioning on previous genetic signals. Similarly, we applied conditional analysis to identify independent variants in the MHC region on chromosome 6 using imputed HLA haplotypes. RESULTS In total, 16,866 hematuria cases and 391,420 controls were included. Cases had higher urinary albumin-creatinine compared with controls (women: 13.01 mg/g [8.05-21.33] versus 12.12 mg/g [7.61-19.29]; P<0.001; men: 8.85 mg/g [5.66-16.19] versus 7.52 mg/g [5.04-12.39]; P<0.001) and lower eGFR (women: 88±14 versus 90±13 ml/min per 1.72 m2; P<0.001; men: 87±15 versus 90±13 ml/min per 1.72 m2; P<0.001), supporting enrichment of glomerular hematuria. Variants at six loci (PDPN, COL4A4-COL4A3, HLA-B, SORL1, PLLP, and TGFB1) met genome-wide significance (P<5E-8). At chromosome 2, COL4A4 p.Ser969X (rs35138315; minor allele frequency=0.00035; P<7.95E-35; odds ratio, 87.3; 95% confidence interval, 47.9 to 159.0) had the most significant association, and two variants in the locus remained associated with hematuria after conditioning for this variant: COL4A3 p.Gly695Arg (rs200287952; minor allele frequency=0.00021; P<2.16E-7; odds ratio, 45.5; 95% confidence interval, 11.8 to 168.0) and a common COL4A4 intron 25 variant (not previously reported; rs58261427; minor allele frequency=0.214; P<2.00E-9; odds ratio, 1.09; 95% confidence interval, 1.06 to 1.12). Of the HLA haplotypes, HLA-B (*0801; minor allele frequency=0.14; P<4.41E-24; odds ratio, 0.84; 95% confidence interval, 0.82 to 0.88) displayed the most statistically significant association. For remaining loci, we identified three novel associations, which were replicated in the deCODE dataset for dipstick hematuria (nearest genes: PDPN, SORL1, and PLLP). CONCLUSIONS Our study identifies six loci associated with hematuria, including independent variants in COL4A4-COL4A3 and HLA-B. Additionally, three novel loci are reported, including an association with an intronic variant in PDPN expressed in the podocyte. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_04_26_CJN13711021.mp3.
Collapse
Affiliation(s)
- Sarah A. Gagliano Taliun
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada,Research Centre, Montréal Heart Institute, Montreal, Quebec, Canada
| | | | | | | | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Andrew D. Paterson
- Division of Epidemiology, Dalla Lana School of Public Health, Toronto, Ontario, Canada,Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Ontario, Canada,Genetics and Genome Biology, Research Institute at The Hospital for Sick Children, Toronto, Ontario, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Moumita Barua
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada,Division of Nephrology, University Health Network, Toronto, Ontario, Canada,Department of Medicine, University of Toronto, Toronto, Ontario, Canada,Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Hastings MC, Rizk DV, Kiryluk K, Nelson R, Zahr RS, Novak J, Wyatt RJ. IgA vasculitis with nephritis: update of pathogenesis with clinical implications. Pediatr Nephrol 2022; 37:719-733. [PMID: 33818625 PMCID: PMC8490493 DOI: 10.1007/s00467-021-04950-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
IgA vasculitis with nephritis (IgAVN) shares many pathogenetic features with IgA nephropathy (IgAN). The purpose of this review is to describe our current understanding of the pathogenesis of pediatric IgAVN, particularly as it relates to the four-hit hypothesis for IgAN. These individual steps, i.e., hits, in the pathogenesis of IgAN are (1) elevated production of IgA1 glycoforms with some O-glycans deficient in galactose (galactose-deficient IgA1; Gd-IgA1), (2) generation of circulating IgG autoantibodies specific for Gd-IgA1, (3) formation of pathogenic circulating Gd-IgA1-containing immune complexes, and (4) kidney deposition of the Gd-IgA1-IgG immune complexes from the circulation and induction of glomerular injury. Evidence supporting the four-hit hypothesis in the pathogenesis of pediatric IgAVN is detailed. The genetics, pediatric outcomes, and kidney histopathologic features and the impact of these findings on future treatment and potential biomarkers are discussed. In summary, the evidence points to the critical roles of Gd-IgA1-IgG immune complexes and complement activation in the pathogenesis of IgAVN. Future studies are needed to characterize the features of the immune and autoimmune responses that enable progression of IgA vasculitis to IgAVN.
Collapse
Affiliation(s)
- M Colleen Hastings
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Children's Foundation Research Institute at the Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Dana V Rizk
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Raoul Nelson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Rima S Zahr
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
- Children's Foundation Research Institute at the Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert J Wyatt
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.
- Children's Foundation Research Institute at the Le Bonheur Children's Hospital, Memphis, TN, USA.
| |
Collapse
|
46
|
Zanoni F, Khairallah P, Kiryluk K, Batal I. Glomerular Diseases of the Kidney Allograft: Toward a Precision Medicine Approach. Semin Nephrol 2022; 42:29-43. [PMID: 35618394 PMCID: PMC9139085 DOI: 10.1016/j.semnephrol.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The continual development of potent immunosuppressive regimens has led to a decreased incidence of acute rejection and improvement of short-term kidney allograft survival. In contrast to acute rejection, glomerular diseases of the kidney allograft are being encountered more frequently and are emerging as leading causes of late kidney allograft failure. Although data on the pathogeneses of glomerular diseases in the kidney allograft are sparse, cumulative evidence suggests that post-transplant glomerular diseases may be the result of inherited predispositions and immunologic triggers. Although studying immunologic signals and performing genome-wide association studies are ideal approaches to tackle glomerular diseases in the kidney allograft, such studies are challenging because of the lack of adequately powered cohorts. In this review, we focus on the most commonly encountered recurrent and de novo glomerular diseases in the kidney allograft. We address the important advances made in understanding the immunopathology and genetic susceptibility of glomerular diseases in the native kidney and how to benefit from such knowledge to further our knowledge of post-transplant glomerular diseases. Defining genomic and immune predictors for glomerular diseases in the kidney allograft would support novel donor-recipient matching strategies and development of targeted therapies to ultimately improve long-term kidney allograft survival.
Collapse
Affiliation(s)
- Francesca Zanoni
- Medicine, Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Krzysztof Kiryluk
- Medicine, Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ibrahim Batal
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA,Corresponding Author: Ibrahim Batal MD, Department of Pathology and Cell Biology, Renal Division, Columbia University Irving Medical Center, 630 W 168th street, VC14-238, New York, NY 10032, Phone: 212-305-9669, Fax: 212-342-5380,
| |
Collapse
|
47
|
In JW, Jung K, Shin S, Park KU, Lee H, Song EY. Association of HLA-DRB1 and -DQB1 Alleles with Susceptibility to IgA Nephropathy in Korean Patients. Ann Lab Med 2022; 42:54-62. [PMID: 34374349 PMCID: PMC8368226 DOI: 10.3343/alm.2022.42.1.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
Background Associations between IgA nephropathy (IgAN) and HLA-DRB1 and -DQB1 alleles have been reported in several ethnic groups. We investigated the association of HLA-DRB1 and -DQB1 alleles with the predisposition for IgAN and disease progression to end-stage kidney disease (ESKD) in Korean patients. Methods We analyzed HLA-DRB1 and -DQB1 genotypes in 399 IgAN patients between January 2000 and January 2019 using a LIFECODES sequence-specific oligonucleotide (SSO) typing kit (Immucor, Stamford, CT, USA) or a LABType SSO Typing Test (One Lambda, Canoga Park, CA, USA). Alleles with a significant difference in two-digit resolution were further analyzed using in-house sequence-based typing and sequence-specific primer PCR. As controls, 613 healthy hematopoietic stem cell donors were included. Kidney survival was analyzed in 281 IgAN patients with available clinical and laboratory data using Cox regression analysis. Where needed, P-values were adjusted using Bonferroni correction. Results The allele frequencies of HLA-DRB1*0405 (corrected P [Pc]<0.001), -DQB1*0401 (Pc=0.048), and -DQB1*0302 (Pc=0.021) were significantly higher in IgAN patients than in controls, whereas those of HLA-DRB1*0701, -DRB1*1501, -DQB1*0202, and -DQB1*0602 (Pc<0.001 for all) were significantly lower in IgAN patients than in controls. The allele frequency of HLA-DQB1*0503 (Pc=0.016) was significantly lower in the ESKD group than in the non-ESKD group; however, there was no significant difference for ESKD progression between these groups. Conclusions We report novel associations of HLA-DRB1*1501, DQB1*0202, -DQB1*0302, and -DQB1*0401 with IgAN. Further studies of HLA alleles associated with IgAN progression in a larger cohort and in various ethnic groups are needed.
Collapse
Affiliation(s)
- Ji Won In
- Department of Laboratory Medicine, Seoul Medical Center, Seoul, Korea
| | - Kiwook Jung
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eun Young Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Kavanagh CR, Zanoni F, Leal R, Jain NG, Stack MN, Vasilescu ER, Serban G, Shaut C, Kamal J, Kudose S, Martinho A, Alves R, Santoriello D, Canetta PA, Cohen D, Radhakrishnan J, Appel GB, Stokes MB, Markowitz GS, D’Agati VD, Kiryluk K, Andeen NK, Batal I. Clinical Predictors and Prognosis of Recurrent IgA Nephropathy in the Kidney Allograft. GLOMERULAR DISEASES 2022; 2:42-53. [PMID: 35450416 PMCID: PMC9017582 DOI: 10.1159/000519834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction Although IgA nephropathy (IgAN) is the most common recurrent glomerulonephritis encountered in the kidney allograft, the clinical and immunogenetic characteristics remain poorly understood. We sought to study determinants and prognosis of recurrent IgAN with special focus on HLA antigens. Materials and Methods Between 2005 and 2019, we identified 282 transplanted patients with failure secondary to IgAN from two North American and one European Medical Centers, including 80 with recurrent IgAN and 202 without recurrence. Prevalence of HLA antigens was compared to external healthy controls of European ancestry (n=15,740). Graft survival was assessed by Kaplan-Meier method and log rank test. Cox proportional hazards were used for multivariable analyses. Results Compared to external controls of European ancestry, kidney transplant recipients of European ancestry with kidney failure secondary to IgAN had higher frequency of HLA-DQ5 (42% vs. 30%, OR=1.68, P=0.002) and lower frequency of HLA-DR15 (15% vs. 28%, OR=0.46, P<0.001) and HLA-DQ6 (32% vs. 45%, OR=0.59, P=0.003); however, the frequency of these HLA antigens were similar in recurrent versus non-recurring IgAN. Younger recipient age at transplantation was an independent predictor of recurrence. HLA-matching was an independent predictor for recurrent IgAN only in recipients of living-related but not deceased or living unrelated transplants. Recurrent IgAN was an independent predictor of allograft failure, along with acute rejection. In patients with recurrent IgAN, serum creatinine at biopsy, degree of proteinuria, and concurrent acute rejection were associated with inferior allograft survival. Discussion/ Conclusion Recurrent IgAN negatively affects allograft survival. Younger recipient age at transplantation is an independent predictor of recurrent IgAN, while the presence of HLA antigens associated with IgAN in the native kidney and HLA-matching in recipients of deceased or living unrelated transplants are not.
Collapse
Affiliation(s)
- Catherine R. Kavanagh
- Pediatric, Nephrology, Columbia University Irving Medical Center, Morgan Stanley Children's Hospital, New York, NY, USA
| | - Francesca Zanoni
- Medicine, Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rita Leal
- Nephrology department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Portugal
| | - Namrata G. Jain
- Pediatric, Nephrology, Columbia University Irving Medical Center, Morgan Stanley Children's Hospital, New York, NY, USA
| | - Megan Nicole Stack
- Medicine, Nephrology, Oregon Health & Science University, Portland, OR, USA
| | - Elena-Rodica Vasilescu
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Geo Serban
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Carley Shaut
- Medicine, Nephrology, Oregon Health & Science University, Portland, OR, USA
| | - Jeanne Kamal
- Medicine, Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Satoru Kudose
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - António Martinho
- Centro de Histocompatibilidade do Centro, Instituto Português do Sangue da Transplantação, Coimbra, Portugal
| | - Rui Alves
- Nephrology department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Portugal
| | - Dominick Santoriello
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pietro A Canetta
- Medicine, Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Cohen
- Medicine, Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jai Radhakrishnan
- Medicine, Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Gerald B. Appel
- Medicine, Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael B. Stokes
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Glen S. Markowitz
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Vivette D. D’Agati
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Nicole K. Andeen
- Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Ibrahim Batal
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
49
|
Ouyang Y, Zhao Z, Li G, Luo H, Xu F, Shao L, Chen Z, Yu S, Jin Y, Xu J, Shi M, Hussain HMJ, Du W, Fang Z, Pan X, Wang W, Xie J, Chen N. A Validation Study Comparing Risk Prediction Models of IgA Nephropathy. Front Immunol 2021; 12:753901. [PMID: 34721428 PMCID: PMC8554097 DOI: 10.3389/fimmu.2021.753901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022] Open
Abstract
We aimed to validate three IgAN risk models proposed by an international collaborative study and another CKD risk model generated by an extended CKD cohort with our multicenter Chinese IgAN cohort. Biopsy-proven IgAN patients with an eGFR ≥15 ml/min/1.73 m2 at baseline and a minimum follow-up of 6 months were enrolled. The primary outcomes were a composite outcome (50% decline in eGFR or ESRD) and ESRD. The performance of those models was assessed using discrimination, calibration, and reclassification. A total of 2,300 eligible cases were enrolled. Of them, 288 (12.5%) patients reached composite outcome and 214 (9.3%) patients reached ESRD during a median follow-up period of 30 months. Using the composite outcome for analysis, the Clinical, Limited, Full, and CKD models had relatively good performance with similar C statistics (0.81, 0.81, 0.82, and 0.82, respectively). While using ESRD as the end point, the four prediction models had better performance (all C statistics > 0.9). Furthermore, subgroup analysis showed that the models containing clinical and pathological variables (Full model and Limited model) had better discriminatory abilities than the models including only clinical indicators (Clinical model and CKD model) in low-risk patients characterized by higher baseline eGFR (≥60 ml/min/1.73 m2). In conclusion, we validated recently reported IgAN and CKD risk models in our Chinese IgAN cohort. Compared to pure clinical models, adding pathological variables will increase performance in predicting ESRD in low-risk IgAN patients with baseline eGFR ≥60 ml/min/1.73 m2.
Collapse
Affiliation(s)
- Yan Ouyang
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guisen Li
- Department of Nephrology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Huimin Luo
- Department of Nephrology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Feifei Xu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leping Shao
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
| | - Zijin Chen
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuwen Yu
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanmeng Jin
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manman Shi
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hafiz Muhammad Jafar Hussain
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Du
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengying Fang
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Pan
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiming Wang
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyuan Xie
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Chen
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Zhang Z, Zhang Y, Zhang H. IgA Nephropathy: A Chinese Perspective. GLOMERULAR DISEASES 2021; 2:30-41. [PMID: 36751266 PMCID: PMC9677733 DOI: 10.1159/000520039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022]
Abstract
Background IgA nephropathy (IgAN) is the most common primary glomerular disease worldwide and remains a leading cause of chronic kidney disease and end-stage renal disease. The disease prevalence, clinical and pathological phenotypes, the underlying pathogenic molecular mechanisms, and the response to treatments are highly heterogeneous in different ethnic populations, which raise the concern that IgAN may differ across different parts of the world. Summary From a Chinese perspective, we stated the disease burden of IgAN, summarized genome-wide association studies and research into pathological molecules, and compared them with findings based on other populations. The emerging biomarkers, indigenous clinical trials, and major challenges for Chinese researchers and nephrologists in studying IgAN are also discussed. Key Messages In this review, we described a higher risk of major susceptible loci in mucosal immunity, IgA production, and complement activation pathways in Chinese patients with IgAN. With our understanding of the pathogenesis of IgAN, novel biomarkers are emerging. Although there are challenges for conducting high-quality clinical trials in China, it is still feasible to conduct innovative and well-designed studies of IgAN. In the future, international collaborations on research infrastructure would be helpful to advance clinical and basic research in China.
Collapse
Affiliation(s)
- Zhao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China,Institute of Nephrology, Peking University, Beijing, China,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Yuemiao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China,Institute of Nephrology, Peking University, Beijing, China,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China,Institute of Nephrology, Peking University, Beijing, China,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China,*Hong Zhang,
| |
Collapse
|