1
|
Srivastava SP, Zhou H, Shenoi R, Morris M, Lainez-Mas B, Goedeke L, Rajendran BK, Setia O, Aryal B, Kanasaki K, Koya D, Inoki K, Dardik A, Bell T, Fernández-Hernando C, Shulman GI, Goodwin JE. Renal Angptl4 is a key fibrogenic molecule in progressive diabetic kidney disease. SCIENCE ADVANCES 2024; 10:eadn6068. [PMID: 39630889 PMCID: PMC11616692 DOI: 10.1126/sciadv.adn6068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Angiopoietin-like 4 (ANGPTL4), a key protein involved in lipoprotein metabolism, has diverse effects. There is an association between Angptl4 and diabetic kidney disease; however, this association has not been well investigated. We show that both podocyte- and tubule-specific ANGPTL4 are crucial fibrogenic molecules in diabetes. Diabetes accelerates the fibrogenic phenotype in control mice but not in ANGPTL4 mutant mice. The protective effect observed in ANGPTL4 mutant mice is correlated with a reduction in stimulator of interferon genes pathway activation, expression of pro-inflammatory cytokines, reduced epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition, lessened mitochondrial damage, and increased fatty acid oxidation. Mechanistically, we demonstrate that podocyte- or tubule-secreted Angptl4 interacts with Integrin β1 and influences the association between dipeptidyl-4 with Integrin β1. We demonstrate the utility of a targeted pharmacologic therapy that specifically inhibits Angptl4 gene expression in the kidneys and protects diabetic kidneys from proteinuria and fibrosis. Together, these data demonstrate that podocyte- and tubule-derived Angptl4 is fibrogenic in diabetic kidneys.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Han Zhou
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - Rachel Shenoi
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Myshal Morris
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Begoña Lainez-Mas
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - Leigh Goedeke
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ocean Setia
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, USA
| | - Binod Aryal
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
- The Center for Integrated Kidney Research and Advance, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, USA
| | | | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I. Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Wang L, Wang J, Zhang Y, Zhang H. Current perspectives and trends of the research on hypertensive nephropathy: a bibliometric analysis from 2000 to 2023. Ren Fail 2024; 46:2310122. [PMID: 38345042 PMCID: PMC10863539 DOI: 10.1080/0886022x.2024.2310122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Hypertensive nephropathy continues to be a major cause of end-stage renal disease and poses a significant global health burden. Despite the staggering development of research in hypertensive nephropathy, scientists and clinicians can only seek out useful information through articles and reviews, it remains a hurdle for them to quickly track the trend in this field. This study uses the bibliometric method to identify the evolutionary development and recent hotspots of hypertensive nephropathy. The Web of Science Core Collection database was used to extract publications on hypertensive nephropathy from January 2000 to November 2023. CiteSpace was used to capture the patterns and trends from multi-perspectives, including countries/regions, institutions, keywords, and references. In total, 557 publications on hypertensive nephropathy were eligible for inclusion. China (n = 208, 37.34%) was the most influential contributor among all the countries. Veterans Health Administration (n = 19, 3.41%) was found to be the most productive institution. Keyword bursting till now are renal fibrosis, outcomes, and mechanisms which are predicted to be the potential frontiers and hotspots in the future. The top seven references were listed, and their burst strength was shown. A comprehensive overview of the current status and research frontiers of hypertensive nephropathy has been provided through the bibliometric perspective. Recent advancements and challenges in hypertensive nephropathy have been discussed. These findings can offer informative instructions for researchers and scholars.
Collapse
Affiliation(s)
- Lan Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Jingyu Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Yuemiao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Wang C, Lai Z, Tan H, Zhang H, Tan L, Luo Q, Li S, Xiong Z, Yang G, Xiong Z. Impaired cardiomyocytes accelerate cardiac hypertrophy and fibrosis by delivering exosomes containing Shh/N-Shh/Gli1 in angiotensin II infused mice. Heliyon 2024; 10:e39332. [PMID: 39640644 PMCID: PMC11620221 DOI: 10.1016/j.heliyon.2024.e39332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Backgrounds Heart failure (HF) is characterized by progressive cardiac hypertrophy and fibrosis, yet the underlying pathological mechanisms remain unclear. Exosomes are pivotal in cellular communication and are key signaling carriers in HFs. This study investigated the roles of exosomes in HF. Methods Eight-week-old male mice were divided into three groups: a control group, an Ang II group receiving angiotensin II (Ang II) infusion for 4 weeks, and an Ang II + DMA group receiving Ang II and dimethyl amiloride (DMA) infusion. This study examined the associations between cardiac injury, exosomes, and their substrate Shh. Furthermore, we conducted cellular experiments to assess the effects of Ang II-induced injury in primary cardiomyocytes on other cardiomyocytes and fibroblasts, and to test the therapeutic effects of the exosome inhibitor DMA and the Shh signaling inhibitor cyclopamine (CPN). Results Ang II-induced cardiac hypertrophy and fibrosis, which were accompanied by exosome secretion and Shh upregulation in vivo. DMA relieved these cardiac lesions. Furthermore, cellular experiments revealed that Ang II-induced cardiomyocytes hypertrophy and activated cardiac fibroblasts by promoting the release of exosomes containing Shh/N-Shh/Gli1. Both DMA and CPN nullified fibroblast activation and proliferation. Conclusions Ang II-induced cardiomyocyte injury leads to cardiac hypertrophy and fibrosis through the release of exosomes carrying Shh signaling. The suppression of exosome secretion or the Shh pathway could offer new strategies for treating HF.
Collapse
Affiliation(s)
- Cong Wang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zhiwei Lai
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Huishi Tan
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hua Zhang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Lishan Tan
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Qingyun Luo
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Sanmu Li
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zibo Xiong
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, Guangdong, China
| | - Guang Yang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, Guangdong, China
- Institute of Nephrology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zuying Xiong
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, Guangdong, China
- Institute of Nephrology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Xie X, Fu G, Liu Y, Fan C, Tan S, Huang H, Yan J, Jin L. Hedgehog pathway negatively regulated depleted uranium-induced nephrotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:3833-3845. [PMID: 38546377 DOI: 10.1002/tox.24242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 06/12/2024]
Abstract
Depleted uranium (DU) retains the radiological toxicities, which accumulates preferentially in the kidneys. Hedgehog (Hh) pathway plays a critical role in tissue injury. However, the role of Hh in DU-induced nephrotoxicity was still unclear. This study was carried out to investigate the effect of Gli2, which was an important transcription effector of Hh signaling, on DU induced nephrotoxicity. To clarify it, CK19 positive tubular epithelial cells specific Gli2 conditional knockout (KO) mice model was exposed to DU, and then histopathological damage and Hh signaling pathway activation was analyzed. Moreover, HEK-293 T cells were exposed to DU with Gant61 or Gli2 overexpression, and cytotoxicity of DU as analyzed. Results showed that DU caused nephrotoxicity accompanied by activation of Hh signaling pathway. Meanwhile, genetic KO of Gli2 reduced DU-induced nephrotoxicity by normalizing biochemical indicators and reducing Hh pathway activation. Pharmacologic inhibition of Gli1/2 by Gant61 reduced DU induced cytotoxicity by inhibiting apoptosis, ROS formation and Hh pathway activation. However, overexpression of Gli2 aggravated DU-induced cytotoxicity by increasing the levels of apoptosis and ROS formation. Taken together, these results revealed that Hh signaling negatively regulated DU-inducted nephrotoxicity, and that inhibition of Gli2 might serve as a promising nephroprotective target for DU-induced kidney injury.
Collapse
Affiliation(s)
- Xueying Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Guoquan Fu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yuxin Liu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Caixia Fan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shanshan Tan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Huarong Huang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Junyan Yan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Lifang Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
5
|
He L, Sato JE, Sundar P, Azimi T, Beachy PA, Bekale LA, Pepper JP. Localized application of SAG21k-loaded fibrin hydrogels for targeted modulation of the hedgehog pathway in facial nerve injury. Int J Biol Macromol 2024; 269:131747. [PMID: 38670196 DOI: 10.1016/j.ijbiomac.2024.131747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Given the broad biological effects of the Hedgehog (Hh) pathway, there is potential clinical value in local application of Hh pathway modulators to restrict pathway activation of target tissues and avoid systemic pathway activation. One option to limit Hh pathway activation is using fibrin hydrogels to deliver pathway modulators directly to tissues of interest, bypassing systemic distribution of the drug. In this study, we loaded the potent Hh pathway agonist, SAG21k, into fibrin hydrogels. We describe the binding between fibrin and SAG21k and achieve sustained release of the drug in vitro. SAG21k-loaded fibrin hydrogels exhibit strong biological activity in vitro, using a pathway-specific reporter cell line. To test in vivo activity, we used a mouse model of facial nerve injury. Application of fibrin hydrogels is a common adjunct to surgical nerve repair, and the Hh pathway is known to play an important role in facial nerve injury and regeneration. Local application of the Hh pathway agonist SAG21k using a fibrin hydrogel applied to the site of facial nerve injury successfully activates the Hh pathway in treated nerve tissue. Importantly, this method appears to avoid systemic pathway activation when Hh-responsive organs are analyzed for transcriptional pathway activation. This method of local tissue Hh pathway agonist administration allows for effective pathway targeting surgically accessible tissues and may have translational value in situations where supranormal pathway activation is therapeutic.
Collapse
Affiliation(s)
- Lili He
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Justine Esther Sato
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Praveen Sundar
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Tannaz Azimi
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Philip Arden Beachy
- Departments of Urology, and Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Laurent Adonis Bekale
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States.
| | - Jon-Paul Pepper
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States.
| |
Collapse
|
6
|
Gui Y, Fu H, Palanza Z, Tao J, Lin YH, Min W, Qiao Y, Bonin C, Hargis G, Wang Y, Yang P, Kreutzer DL, Wang Y, Liu Y, Yu Y, Liu Y, Zhou D. Fibroblast expression of transmembrane protein smoothened governs microenvironment characteristics after acute kidney injury. J Clin Invest 2024; 134:e165836. [PMID: 38713523 PMCID: PMC11213467 DOI: 10.1172/jci165836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/02/2024] [Indexed: 05/09/2024] Open
Abstract
The smoothened (Smo) receptor facilitates hedgehog signaling between kidney fibroblasts and tubules during acute kidney injury (AKI). Tubule-derived hedgehog is protective in AKI, but the role of fibroblast-selective Smo is unclear. Here, we report that Smo-specific ablation in fibroblasts reduced tubular cell apoptosis and inflammation, enhanced perivascular mesenchymal cell activities, and preserved kidney function after AKI. Global proteomics of these kidneys identified extracellular matrix proteins, and nidogen-1 glycoprotein in particular, as key response markers to AKI. Intriguingly, Smo was bound to nidogen-1 in cells, suggesting that loss of Smo could affect nidogen-1 accessibility. Phosphoproteomics revealed that the 'AKI protector' Wnt signaling pathway was activated in these kidneys. Mechanistically, nidogen-1 interacted with integrin β1 to induce Wnt in tubules to mitigate AKI. Altogether, our results support that fibroblast-selective Smo dictates AKI fate through cell-matrix interactions, including nidogen-1, and offers a robust resource and path to further dissect AKI pathogenesis.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jianling Tao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yi-Han Lin
- National Center for Advancing Translational Sciences, Rockville, Maryland, USA
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Christopher Bonin
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Geneva Hargis
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Yuanyuan Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yanbao Yu
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
7
|
Guo C, Cui Y, Jiao M, Yao J, Zhao J, Tian Y, Dong J, Liao L. Crosstalk between proximal tubular epithelial cells and other interstitial cells in tubulointerstitial fibrosis after renal injury. Front Endocrinol (Lausanne) 2024; 14:1256375. [PMID: 38260142 PMCID: PMC10801024 DOI: 10.3389/fendo.2023.1256375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
The energy needs of tubular epithelial components, especially proximal tubular epithelial cells (PTECs), are high and they heavily depend on aerobic metabolism. As a result, they are particularly vulnerable to various injuries caused by factors such as ischemia, proteinuria, toxins, and elevated glucose levels. Initial metabolic and phenotypic changes in PTECs after injury are likely an attempt at survival and repair. Nevertheless, in cases of recurrent or prolonged injury, PTECs have the potential to undergo a transition to a secretory state, leading to the generation and discharge of diverse bioactive substances, including transforming growth factor-β, Wnt ligands, hepatocyte growth factor, interleukin (IL)-1β, lactic acid, exosomes, and extracellular vesicles. By promoting fibroblast activation, macrophage recruitment, and endothelial cell loss, these bioactive compounds stimulate communication between epithelial cells and other interstitial cells, ultimately worsening renal damage. This review provides a summary of the latest findings on bioactive compounds that facilitate the communication between these cellular categories, ultimately leading to the advancement of tubulointerstitial fibrosis (TIF).
Collapse
Affiliation(s)
- Congcong Guo
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuying Cui
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicin, Jinan, Shandong, China
| | - Mingwen Jiao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jinming Yao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yutian Tian
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicin, Jinan, Shandong, China
| |
Collapse
|
8
|
Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat Rev Nephrol 2023; 19:721-732. [PMID: 37608184 DOI: 10.1038/s41581-023-00752-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Perivascular niches in the kidney comprise heterogeneous cell populations, including pericytes and fibroblasts, with distinct functions. These perivascular cells have crucial roles in preserving kidney homeostasis as they maintain microvascular networks by stabilizing the vasculature and regulating capillary constriction. A subset of kidney perivascular cells can also produce and secrete erythropoietin; this ability can be enhanced with hypoxia-inducible factor-prolyl hydroxylase inhibitors, which are used to treat anaemia in chronic kidney disease. In the pathophysiological state, kidney perivascular cells contribute to the progression of kidney fibrosis, partly via transdifferentiation into myofibroblasts. Moreover, perivascular cells are now recognized as major innate immune sentinels in the kidney that produce pro-inflammatory cytokines and chemokines following injury. These mediators promote immune cell infiltration, leading to persistent inflammation and progression of kidney fibrosis. The crosstalk between perivascular cells and tubular epithelial, immune and endothelial cells is therefore a key process in physiological and pathophysiological states. Here, we examine the multiple roles of kidney perivascular cells in health and disease, focusing on the latest advances in this field of research.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Didier Portilla
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Wu D, Wu J, Liu H, Shi S, Wang L, Huang Y, Yu X, Lei Z, Ouyang T, Shen J, Wu G, Wang S. A biomimetic renal fibrosis progression model on-chip evaluates anti-fibrotic effects longitudinally in a dynamic fibrogenic niche. LAB ON A CHIP 2023; 23:4708-4725. [PMID: 37840380 DOI: 10.1039/d3lc00393k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Although renal fibrosis can advance chronic kidney disease and progressively lead to end-stage renal failure, no effective anti-fibrotic drugs have been clinically approved. To aid drug development, we developed a biomimetic renal fibrosis progression model on-chip to evaluate anti-fibrotic effects of natural killer cell-derived extracellular vesicles and pirfenidone (PFD) across different fibrotic stages. First, the dynamic interplay between fibroblasts and kidney-derived extracellular matrix (ECM) resembling the fibrogenic niche on-chip demonstrated that myofibroblasts induced by stiff ECM in 3 days were reversed to fibroblasts by switching to soft ECM, which was within 2, but not 7 days. Second, PFD significantly down-regulated the expression of α-SMA in NRK-49F in medium ECM, as opposed to stiff ECM. Third, a study in rats showed that early administration of PFD significantly inhibited renal fibrosis in terms of the expression levels of α-SMA and YAP. Taken together, both on-chip and animal models indicate the importance of early anti-fibrotic intervention for checking the progression of renal fibrosis. Therefore, this renal fibrosis progression on-chip with a feature of recapitulating dynamic biochemical and biophysical cues can be readily used to assess anti-fibrotic candidates and to explore the tipping point when the fibrotic fate can be rescued for better medical intervention.
Collapse
Affiliation(s)
- Di Wu
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Jianguo Wu
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Hui Liu
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Shengyu Shi
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Liangwen Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yixiao Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xiaorui Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zhuoyue Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Tanliang Ouyang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jia Shen
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Guohua Wu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Shuqi Wang
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| |
Collapse
|
10
|
Wang X, Tan S, Yang S, Liu X, Lei J, Li H. Activation of Sonic Hedgehog Signaling Pathway Regulates Human Trabecular Meshwork Cell Function. J Ocul Pharmacol Ther 2023; 39:430-438. [PMID: 37307020 DOI: 10.1089/jop.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Purpose: To investigate the effects of Sonic hedgehog (Shh) signaling on primary human trabecular meshwork (HTM) cells. Methods: Primary HTM cells were isolated from healthy donors and cultured. Recombinant Shh (rShh) protein and cyclopamine were used to activate and inhibit the Shh signaling pathway, respectively. A cell viability assay was performed to assess the effects of rShh on the activity of primary HTM cells. Functional assessment of cell adhesion and phagocytosis was also performed. The proportion of apoptotic cells was examined using flow cytometry. Fibronectin (FN) and transforming growth factor beta2 (TGF-β2) protein were detected to assess the influence of rShh on the metabolism of the extracellular matrix (ECM). Real-time polymerase chain reaction (RT-PCR) and western blot analyses were used to examine mRNA and protein expression of Shh signaling pathway-associated factors GLI Family Zinc Finger 1 (GLI1) and Suppressor of Fused (SUFU). Results: rShh significantly enhanced primary HTM cell viability at a concentration of 0.5 μg/mL. rShh increased the adhesion and phagocytic abilities of primary HTM cells, and decreased cell apoptosis. FN and TGF-β2 protein expression increased in primary HTM cells treated with rShh. rShh upregulated the transcriptional activity and protein levels of GLI1, and downregulated those of SUFU. Correspondingly, the rShh-induced GLI1 upexpression was partially blocked by pretreatment with the Shh pathway inhibitor cyclopamine at a concentration of 10 μM. Conclusions: Activation of Shh signaling can regulate the function of primary HTM cells through GLI1. Regulation of Shh signaling may be a potential target for attenuating cell damage in glaucoma.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Sisi Tan
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shuang Yang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xianmao Liu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Junqin Lei
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hong Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
11
|
Yang Q, Huo E, Cai Y, Zhang Z, Dong C, Asara JM, Wei Q. PFKFB3-Mediated Glycolysis Boosts Fibroblast Activation and Subsequent Kidney Fibrosis. Cells 2023; 12:2081. [PMID: 37626891 PMCID: PMC10453197 DOI: 10.3390/cells12162081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Renal fibrosis, a hallmark of chronic kidney diseases, is driven by the activation of renal fibroblasts. Recent studies have highlighted the role of glycolysis in this process. Nevertheless, one critical glycolytic activator, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), remains unexplored in renal fibrosis. Upon reanalyzing the single-cell sequencing data from Dr. Humphreys' lab, we noticed an upregulation of glycolysis, gluconeogenesis, and the TGFβ signaling pathway in myofibroblasts from fibrotic kidneys after unilateral ureter obstruction (UUO) or kidney ischemia/reperfusion. Furthermore, our experiments showed significant induction of PFKFB3 in mouse kidneys following UUO or kidney ischemia/reperfusion. To delve deeper into the role of PFKFB3, we generated mice with Pfkfb3 deficiency, specifically in myofibroblasts (Pfkfb3f/f/PostnMCM). Following UUO or kidney ischemia/reperfusion, a substantial decrease in fibrosis in the injured kidneys of Pfkfb3f/f/PostnMCM mice was identified compared to their wild-type littermates. Additionally, in cultured renal fibroblast NRK-49F cells, PFKFB3 was elevated upon exposure to TGFβ1, accompanied by an increase in α-SMA and fibronectin. Notably, this upregulation was significantly diminished with PFKFB3 knockdown, correlated with glycolysis suppression. Mechanistically, the glycolytic metabolite lactate promoted the fibrotic activation of NRK-49F cells. In conclusion, our study demonstrates the critical role of PFKFB3 in driving fibroblast activation and subsequent renal fibrosis.
Collapse
Affiliation(s)
- Qiuhua Yang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Emily Huo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Augusta Preparatory Day School, 285 Flowing Wells Rd, Martinez, GA 30907, USA
| | - Yongfeng Cai
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhidan Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Charles Dong
- Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
12
|
O'Sullivan ED, Mylonas KJ, Xin C, Baird DP, Carvalho C, Docherty MH, Campbell R, Matchett KP, Waddell SH, Walker AD, Gallagher KM, Jia S, Leung S, Laird A, Wilflingseder J, Willi M, Reck M, Finnie S, Pisco A, Gordon-Keylock S, Medvinsky A, Boulter L, Henderson NC, Kirschner K, Chandra T, Conway BR, Hughes J, Denby L, Bonventre JV, Ferenbach DA. Indian Hedgehog release from TNF-activated renal epithelia drives local and remote organ fibrosis. Sci Transl Med 2023; 15:eabn0736. [PMID: 37256934 DOI: 10.1126/scitranslmed.abn0736] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Progressive fibrosis is a feature of aging and chronic tissue injury in multiple organs, including the kidney and heart. Glioma-associated oncogene 1 expressing (Gli1+) cells are a major source of activated fibroblasts in multiple organs, but the links between injury, inflammation, and Gli1+ cell expansion and tissue fibrosis remain incompletely understood. We demonstrated that leukocyte-derived tumor necrosis factor (TNF) promoted Gli1+ cell proliferation and cardiorenal fibrosis through induction and release of Indian Hedgehog (IHH) from renal epithelial cells. Using single-cell-resolution transcriptomic analysis, we identified an "inflammatory" proximal tubular epithelial (iPT) population contributing to TNF- and nuclear factor κB (NF-κB)-induced IHH production in vivo. TNF-induced Ubiquitin D (Ubd) expression was observed in human proximal tubular cells in vitro and during murine and human renal disease and aging. Studies using pharmacological and conditional genetic ablation of TNF-induced IHH signaling revealed that IHH activated canonical Hedgehog signaling in Gli1+ cells, which led to their activation, proliferation, and fibrosis within the injured and aging kidney and heart. These changes were inhibited in mice by Ihh deletion in Pax8-expressing cells or by pharmacological blockade of TNF, NF-κB, or Gli1 signaling. Increased amounts of circulating IHH were associated with loss of renal function and higher rates of cardiovascular disease in patients with chronic kidney disease. Thus, IHH connects leukocyte activation to Gli1+ cell expansion and represents a potential target for therapies to inhibit inflammation-induced fibrosis.
Collapse
Affiliation(s)
- Eoin D O'Sullivan
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Katie J Mylonas
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Cuiyan Xin
- Renal Division and Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - David P Baird
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Cyril Carvalho
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marie-Helena Docherty
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ross Campbell
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kylie P Matchett
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Scott H Waddell
- Cancer Research UK Scotland Centre and MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alexander D Walker
- Cancer Research UK Scotland Centre and MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kevin M Gallagher
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Department of Urology, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Siyang Jia
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Steve Leung
- Department of Urology, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Alexander Laird
- Department of Urology, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Julia Wilflingseder
- Renal Division and Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Physiology and Pathophysiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Michaela Willi
- Laboratory of Genetics and Physiology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Maximilian Reck
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sarah Finnie
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Angela Pisco
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Alexander Medvinsky
- Centre for Regenerative Medicine. University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Luke Boulter
- Cancer Research UK Scotland Centre and MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Cancer Research UK Scotland Centre and MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kristina Kirschner
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Tamir Chandra
- Cancer Research UK Scotland Centre and MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Bryan R Conway
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jeremy Hughes
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Joseph V Bonventre
- Renal Division and Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - David A Ferenbach
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Renal Division and Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 160.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Guan Y, Quan D, Chen K, Kang L, Yang D, Wu H, Yan M, Wu S, Lv L, Zhang G. Kaempferol inhibits renal fibrosis by suppression of the sonic hedgehog signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154246. [PMID: 36274411 DOI: 10.1016/j.phymed.2022.154246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Most chronic kidney diseases (CKDs) develop to end-stage renal disease (ESRD), which is characterized by fibrosis and permanent tissue and function loss. As a result, better and more effective remedies are essential. Kaempferol (KAE) is a common flavonoid extracted from plants. It can control the progression of kidney fibrosis and the epithelial-to-mesenchymal transition (EMT) of the renal tubular system. PURPOSE We aim to investigate the effect of KAE therapy on extracellular matrix deposition and stimulation of EMT in vitro and in vivo to elucidate the treatment mechanisms regulating these effects. STUDY DESIGN Chronic hypertension-induced kidney fibrosis was studied in spontaneously hypertensive rats with chronic kidney disease. Biochemical analysis, histological staining, and the expression level of relative proteins were used to assess the effect of KAE on renal function and fibrosis. The direct impact of KAE on proliferation and migration was evaluated using human renal tubular epithelial cells (HK-2) induced by transforming growth factor-β1 (TGF-β1), which can then induce EMT. The molecular mechanism of KAE was verified using co-IP assay and immunofluorescence. RESULTS KAE could reduce blood pressure and decrease the extracellular matrix (ECM) components (including collagen I and collagen Ш), TGF-β1, and α-SMA in the kidneys of hypertension-induced rats with chronic kidney disease. Moreover, in HK-2 cell treated with TGF-β1, KAE administration significantly suppressed proliferation, migration, and EMT via increasing the expression of E-cadherin, while reducing the N-cadherin and α-SMA. Sufu was exceedingly repressed in HK-2 cells treated with TGF-β1. KAE inhibited the activation of Shh and Gli through increasing the expression of Sufu, thereby blocking the nuclear translocation of Gli1 in vitro. CONCLUSION KAE ameliorated kidney fibrosis and EMT by inhibiting the sonic hedgehog signaling pathway, thereby to attenuate the pathological progression of hypertensive kidney fibrosis.
Collapse
Affiliation(s)
- Yiqing Guan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Dongling Quan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Kai Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Liangqi Kang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Danni Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Huanxian Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Mengqiu Yan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Shaoyu Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Lin Lv
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China.
| | - Guohua Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
15
|
Xu S, Yang X, Chen Q, Liu Z, Chen Y, Yao X, Xiao A, Tian J, Xie L, Zhou M, Hu Z, Zhu F, Xu X, Hou F, Nie J. Leukemia inhibitory factor is a therapeutic target for renal interstitial fibrosis. EBioMedicine 2022; 86:104312. [PMID: 36335669 PMCID: PMC9646860 DOI: 10.1016/j.ebiom.2022.104312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The role of the IL6 family members in organ fibrosis, including renal interstitial fibrosis (TIF), has been widely explored. However, few studies have ever simultaneously examined them in the same cohort of patients. Besides, the role of leukemia inhibitory factor (LIF) in TIF remains unclear. METHODS RNA-seq data of kidney biopsies from chronic kidney disease (CKD) patients, in both public databases and our assays, were used to analyze transcript levels of IL6 family members. Two TIF mouse models, the unilateral ureteral obstruction (UUO) and the ischemia reperfusion injury (IRI), were employed to validate the finding. To assess the role of LIF in vivo, short hairpin RNA, lenti-GFP-LIF was used to knockdown LIF receptor (LIFR), overexpress LIF, respectively. LIF-neutralizing antibody was used in therapeutic studies. Whether urinary LIF could be used as a promising predictor for CKD progression was investigated in a prospective observation patient cohort. FINDINGS Among IL6 family members, LIF is the most upregulated one in both human and mouse renal fibrotic lesions. The mRNA level of LIF negatively correlated with eGFR with the strongest correlation and the smallest P value. Baseline urinary concentrations of LIF in CKD patients predict the risk of CKD progression to end-stage kidney disease by Kaplan-Meier analysis. In mouse TIF models, knockdown of LIFR alleviated TIF; conversely, overexpressing LIF exacerbated TIF. Most encouragingly, visible efficacy against TIF was observed by administering LIF-neutralizing antibodies to mice. Mechanistically, LIF-LIFR-EGR1 axis and Sonic Hedgehog signaling formed a vicious cycle between fibroblasts and proximal tubular cells to augment LIF expression and promote the pro-fibrotic response via ERK and STAT3 activation. INTERPRETATION This study discovered that LIF is a noninvasive biomarker for the progression of CKD and a potential therapeutic target of TIF. FUNDINGS Stated in the Acknowledgements section of the manuscript.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Fanfan Hou
- Corresponding author. Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jing Nie
- Corresponding author. Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Li L, Gan H. Intact Fibroblast Growth Factor 23 Regulates Chronic Kidney Disease–Induced Myocardial Fibrosis by Activating the Sonic Hedgehog Signaling Pathway. J Am Heart Assoc 2022; 11:e026365. [DOI: 10.1161/jaha.122.026365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Clinically, myocardial fibrosis is one of the most common complications caused by chronic kidney disease (CKD). However, the potential mechanisms of CKD‐induced myocardial fibrosis have not been clarified.
Methods and Results
In our in vivo study, a rat model of CKD with 5/6 nephrectomy was established. The CKD model was treated with the glioma 1 (Gli‐1) inhibitor GANT‐61, and myocardial fibrosis and serum intact fibroblast growth factor 23 levels were assessed 16 weeks after nephrectomy. Finally, we found that Gli‐1 and Smoothened in the Sonic Hedgehog (Shh) signaling pathway were activated and that collagen‐1 and collagen‐3, which constitute the fibrotic index, were expressed in CKD myocardial tissue. After administering the Gli‐1 inhibitor GANT‐61, the degree of myocardial fibrosis was reduced, and Gli‐1 expression was also inhibited. We also measured blood pressure, cardiac biomarkers, and other indicators in rats and performed hematoxylin‐eosin staining of myocardial tissue. Furthermore, in vitro studies showed that intact fibroblast growth factor 23 promoted cardiac fibroblast proliferation and transdifferentiation into myofibroblasts by activating the Shh signaling pathway, thereby promoting cardiac fibrosis, as manifested by increased expression of the Shh, Patch 1, and Gli‐1 mRNAs and Shh, Smoothened, and Gli‐1 proteins in the Shh signaling pathway. The protein and mRNA levels of other fibrosis indicators, such as α‐smooth muscle actin, which are also markers of transdifferentiation, collagen‐1, and collagen‐3, were increased.
Conclusions
On the basis of these results, intact fibroblast growth factor 23 promotes CKD‐induced myocardial fibrosis by activating the Shh signaling pathway.
Collapse
Affiliation(s)
- Lanlan Li
- Department of Nephrology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Hua Gan
- Department of Nephrology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
17
|
Riemekasten G, Distler JH. A broad look into the future of systemic sclerosis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221109404. [PMID: 35966183 PMCID: PMC9373175 DOI: 10.1177/1759720x221109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune disease with the key features of inflammation, vasculopathy and fibrosis. This article focussed on emerging fields based on the authors' current work and expertise. The authors provide a hierarchical structure into the studies of the pathogenesis of SSc starting with the contribution of environmental factors. Regulatory autoantibodies (abs) are discussed, which are parts of the human physiology and are specifically dysregulated in SSc. Abs against the angiotensin II receptor subtype 1 (AT1R) and the endothelin receptor type A (ETAR) are discussed in more detail. Extracellular vesicles are another novel player to possess disease processes. Fibroblasts are a key effector cell in SSc. Therefore, the current review will provide an overview about their plasticity in the phenotype and function. Promising nuclear receptors as key regulators of transcriptional programmes will be introduced as well as epigenetic modifications, which are pivotal to maintain the profibrotic fibroblast phenotype independent of external stimuli. Fibroblasts from SSc patients exhibit a specific signalling and reactivate developmental pathways and stem cell maintenance such as by employing hedgehog and WNT, which promote fibroblast-to-myofibroblast transition and extracellular matrix generation. Pharmacological interventions, although for other indications, are already in clinical use to address pathologic signalling.
Collapse
Affiliation(s)
- Gabriela Riemekasten
- Clinic for Rheumatology and Clinical
Immunology, University Clinic Schleswig-Holstein and University
of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jörg H.W. Distler
- Department of Internal Medicine 3,
Universitätsklinikum Erlangen, Friedrich-Alexander-University
(FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Hsieh CL, Jerman SJ, Sun Z. Non-cell-autonomous activation of hedgehog signaling contributes to disease progression in a mouse model of renal cystic ciliopathy. Hum Mol Genet 2022; 31:4228-4240. [PMID: 35904445 PMCID: PMC9759329 DOI: 10.1093/hmg/ddac175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/10/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Polycystic kidney disease (PKD) is a ciliopathy characterized by fluid-filled epithelial cysts in the kidney. Although it is well established that the primary cilium is essential for hedgehog (HH) signaling and HH signaling is abnormally activated in multiple PKD models, the mechanism and function of HH activation in PKD pathogenesis remain incompletely understood. Here we used a transgenic HH reporter mouse line to identify the target tissue of HH signaling in Arl13f/f;Ksp-Cre mutant kidney, in which the cilia biogenesis gene Arl13b is specifically deleted in epithelial cells of the distal nephron. In addition, we used a co-culture system to dissect cross-talk between epithelial and mesenchymal cells in the absence of expanding cysts. Finally, we treated Arl13bf/f;Ksp-Cre mice with the GLI inhibitor GANT61 and analyzed its impact on PKD progression in this model. We found that deletion of Arl13b in epithelial cells in the mouse kidney, in vivo, led to non-cell-autonomous activation of the HH pathway in the interstitium. In vitro, when co-cultured with mesenchymal cells, Arl13b-/- epithelial cells produced more sonic hedgehog in comparison to cells expressing Arl13b. Reciprocally, HH signaling was activated in mesenchymal cells co-cultured with Arl13b-/- epithelial cells. Finally, whole body inhibition of the HH pathway by GANT61 reduced the number of proliferating cells, inhibited cyst progression and fibrosis and preserved kidney function in Arl13bf/f;Ksp-Cre mice. Our results reveal non-cell-autonomous activation of HH signaling in the interstitium of the Arl13bf/f;Ksp-Cre kidney and suggest that abnormal activation of the HH pathway contributes to disease progression.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Department of Genetics, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Stephanie Justine Jerman
- Department of Genetics, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Zhaoxia Sun
- To whom correspondence should be addressed. Tel: +1 2037853589; Fax: +1 2037857227;
| |
Collapse
|
19
|
Liu XY, Zhang XB, Zhao YF, Qu K, Yu XY. Research Progress of Chinese Herbal Medicine Intervention in Renal Interstitial Fibrosis. Front Pharmacol 2022; 13:900491. [PMID: 35770077 PMCID: PMC9235922 DOI: 10.3389/fphar.2022.900491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney diseases usually cause renal interstitial fibrosis, the prevention, delay, and treatment of which is a global research hotspot. However, no definite treatment options are available in modern medicine. Chinese herbal medicine has a long history, rich varieties, and accurate treatment effects. Hitherto, many Chinese herbal medicine studies have emerged to improve renal interstitial fibrosis. This paper reviews the mechanisms of renal interstitial fibrosis and recent studies on the disease intervention with Chinese herbal medicine through literature search, intend to reveal the importance of Chinese herbal medicine in renal interstitial fibrosis. The results show that Chinese herbal medicine can improve renal interstitial fibrosis, and the effects of Chinese herbal medicine on specific pathological mechanisms underlying renal interstitial fibrosis have been explored. Additionally, the limitations and advantages of Chinese herbal medicine in the treatment of renal interstitial fibrosis, possible research directions, and new targets of Chinese herbal medicine are discussed to provide a basis for studies of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Xiao-Yuan Liu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xu-Bin Zhang
- Department of Orthopaedic, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Ya-Feng Zhao
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Kai Qu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
- *Correspondence: Xiao-Yong Yu,
| |
Collapse
|
20
|
Zeng LH, Barkat MQ, Syed SK, Shah S, Abbas G, Xu C, Mahdy A, Hussain N, Hussain L, Majeed A, Khan KUR, Wu X, Hussain M. Hedgehog Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Cells 2022; 11:1774. [PMID: 35681469 PMCID: PMC9179967 DOI: 10.3390/cells11111774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
The development of the embryonic lung demands complex endodermal-mesodermal interactions, which are regulated by a variety of signaling proteins. Hedgehog (Hh) signaling is vital for lung development. It plays a key regulatory role during several morphogenic mechanisms, such as cell growth, differentiation, migration, and persistence of cells. On the other hand, abnormal expression or loss of regulation of Hh signaling leads to airway asthmatic remodeling, which is characterized by cellular matrix modification in the respiratory system, goblet cell hyperplasia, deposition of collagen, epithelial cell apoptosis, proliferation, and activation of fibroblasts. Hh also targets some of the pathogens and seems to have a significant function in tissue repairment and immune-related disorders. Similarly, aberrant Hh signaling expression is critically associated with the etiology of a variety of other airway lung diseases, mainly, bronchial or tissue fibrosis, lung cancer, and pulmonary arterial hypertension, suggesting that controlled regulation of Hh signaling is crucial to retain healthy lung functioning. Moreover, shreds of evidence imply that the Hh signaling pathway links to lung organogenesis and asthmatic airway remodeling. Here, we compiled all up-to-date investigations linked with the role of Hh signaling in the development of lungs as well as the attribution of Hh signaling in impairment of lung expansion, airway remodeling, and immune response. In addition, we included all current investigational and therapeutic approaches to treat airway asthmatic remodeling and immune system pathway diseases.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Muhammad Qasim Barkat
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, Lahore 54000, Pakistan;
| | - Shahid Shah
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Ghulam Abbas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Chengyun Xu
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Amina Mahdy
- Medical Pharmacology Department, International School of Medicine, Istanbul Medipol University, Istanbul 34000, Turkey;
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Abdul Majeed
- Faculty of Pharmacy, Bahauddin Zakariya University, Mulatn 60000, Pakistan;
| | - Kashif-ur-Rehman Khan
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Musaddique Hussain
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| |
Collapse
|
21
|
Zhang Y, Wang Y, Zheng G, Liu Y, Li J, Huang H, Xu C, Zeng Y, Zhang X, Qin J, Dai C, Hambrock HO, Hartmann U, Feng B, Mak KK, Liu Y, Lan HY, Huang Y, Zheng ZH, Xia Y. Follistatin-like 1 (FSTL1) interacts with Wnt ligands and Frizzled receptors to enhance Wnt/β-catenin signaling in obstructed kidneys in vivo. J Biol Chem 2022; 298:102010. [PMID: 35525270 PMCID: PMC9234244 DOI: 10.1016/j.jbc.2022.102010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Follistatin (FS)-like 1 (FSTL1) is a member of the FS-SPARC (secreted protein, acidic and rich in cysteine) family of secreted and extracellular matrix proteins. The functions of FSTL1 have been studied in heart and lung injury as well as in wound healing; however, the role of FSTL1 in the kidney is largely unknown. Here, we show using single-cell RNA-Seq that Fstl1 was enriched in stromal cells in obstructed mouse kidneys. In addition, immunofluorescence demonstrated that FSTL1 expression was induced in fibroblasts during kidney fibrogenesis in mice and human patients. We demonstrate that FSTL1 overexpression increased renal fibrosis and activated the Wnt/β-catenin signaling pathway, known to promote kidney fibrosis, but not the transforming growth factor β (TGF-β), Notch, Hedgehog, or Yes-associated protein (YAP) signaling pathways in obstructed mouse kidneys, whereas inhibition of FSTL1 lowered Wnt/β-catenin signaling. Importantly, we show that FSTL1 interacted with Wnt ligands and the Frizzled (FZD) receptors but not the coreceptor lipoprotein receptor–related protein 6 (LRP6). Specifically, we found FSTL1 interacted with Wnt3a through its extracellular calcium–binding (EC) domain and von Willebrand factor type C–like (VWC) domain, and with FZD4 through its EC domain. Furthermore, we show that FSTL1 increased the association of Wnt3a with FZD4 and promoted Wnt/β-catenin signaling and fibrogenesis. The EC domain interacting with both Wnt3a and FZD4 also enhanced Wnt3a signaling. Therefore, we conclude that FSTL1 is a novel extracellular enhancer of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoxun Zheng
- iHuman Institute, Shanghai Tech University, Shanghai 201210, China
| | - Yang Liu
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinhong Li
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huihui Huang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Chunhua Xu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yelin Zeng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyi Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinzhong Qin
- The Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Harald O Hambrock
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Ursula Hartmann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kingston Kinglun Mak
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Tu W, Hong Y, Huang M, Chen M, Gan H. Effect of kaempferol on hedgehog signaling pathway in rats with --chronic atrophic gastritis - Based on network pharmacological screening and experimental verification. Biomed Pharmacother 2021; 145:112451. [PMID: 34839256 DOI: 10.1016/j.biopha.2021.112451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The effect of active ingredients of Chaishaoliujun Decoction (CD) on chronic atrophic gastritis (CAG) was screened by network pharmacological method and verified by preliminary experiment. METHODS Firstly, the active ingredients and drug targets of CD were retrieved in TCMSP database; CAG-related targets from PharmGkb, OMIM, GeneCards and DrugBank databases were collected as well. Secondly, the drug targets and disease targets were mapped to obtain the intersection targets. PPI network and active ingredient-common target network were constructed for the intersection targets obtained and KEGG enrichment analysis was also carried out. Finally, the core active ingredient (kaempferol), effective targets (IL-1β、IL-6) and hedgehog signaling pathway were verified by animal experiments. RESULTS There were 137 active ingredients, 243 potential target so and 48 intersection targets with CAG in CD. 147 KEGG enrichment pathways were obtained, mainly involving JAK/STAT signaling pathway, PI3K/Akt signaling pathway, hedgehog signaling pathway, etc. The results of animal experiments showed: The content of IL-1β and IL-6 in model group was significantly increased compared with the normal group, while the mRNA and protein expressions of Shh, Ptch1 and Gli1 were also significantly decreased (P < 0.05); compared with model group, the content of IL-1β and IL-6 in the vitacoenzyme group, the CD group and the kaempferol group were significantly decreased, while the mRNA and protein expressions of Shh, Ptch1 and Gli1 were significantly increased (P < 0.05). CONCLUSION Kaempferol, the active ingredient of CD, could reduce the levels of IL-6 and IL-1β by regulating hedgehog signaling pathway so as to play a role in the treatment of CAG. Hence this paper could provide the methodological basis and theoretical basis for further revealing the pharmacological mechanism of CD.
Collapse
Affiliation(s)
- Wenling Tu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yinjie Hong
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Miaoan Huang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Meimei Chen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Huijuan Gan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
23
|
Bai X, Nie P, Lou Y, Zhu Y, Jiang S, Li B, Luo P. Pirfenidone is a renal protective drug: Mechanisms, signalling pathways, and preclinical evidence. Eur J Pharmacol 2021; 911:174503. [PMID: 34547247 DOI: 10.1016/j.ejphar.2021.174503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022]
Abstract
Renal fibrosis, a characteristic of all chronic kidney diseases, lacks effective therapeutic drugs currently. Pirfenidone (PFD), a small molecule drug with good oral bioavailability, is widely used in idiopathic pulmonary fibrosis and exerts anti-fibrotic, anti-inflammatory, antioxidant, and anti-apoptotic effects. These effects have been attributed to the suppression of cell growth factors (in particular, but not exclusively, transforming growth factor-β) and the epithelial-mesenchymal transition, as well as the possible down-regulation of pro-inflammatory mediators (such as tumour necrosis factor-α), the protection of mitochondrial function, and the regulation of inflammatory cells. Considering the activation of similar anti-fibrotic pathways in lung and kidney disease and the broad activity of PFD, this drug has improved the treatment of the renal fibrotic disease. In this review, we briefly summarize the pharmacokinetics and safety of PFD as well as the mechanisms of PFD focusing on kidney disease. We summarize the effects of PFD on renal function and pathological alterations based on animal experiments, as well as changes in growth factors based on both animal and renal cell experiments. Moreover, given the activation of similar profibrotic pathways in pulmonary diseases and other disorders, we reviewed in-depth the possible signalling pathways targeted by PFD to attenuate renal fibrosis and protect renal function. Finally, we provide an overview of the current clinical trials of PFD for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
24
|
Zhao S, Li W, Yu W, Rao T, Li H, Ruan Y, Yuan R, Li C, Ning J, Li S, Chen W, Cheng F, Zhou X. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys. Am J Cancer Res 2021; 11:8660-8673. [PMID: 34522205 PMCID: PMC8419054 DOI: 10.7150/thno.62820] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: Ureteral obstruction-induced hydronephrosis is associated with renal fibrosis and progressive chronic kidney disease (CKD). Exosome-mediated cell-cell communication has been suggested to be involved in various diseases, including renal fibrosis. However, little is known regarding how exosomes regulate renal fibrosis in obstructed kidneys. Methods: We first examined the secretion of exosomes in UUO (unilateral ureteral obstruction) mouse kidneys and TGF-β1-stimulated tubular epithelial cells (NRK-52E). Exosomes from NRK-52E cells were subsequently harvested and incubated with fibroblasts (NRK-49F) or injected into UUO mice via the tail vein. We next constructed Rab27a knockout mice to further confirm the role of exosome-mediated epithelial-fibroblast communication relevant to renal fibrosis in UUO mice. High-throughput miRNA sequencing was performed to detect the miRNA profiles of TGFβ1-Exos. The roles of candidate miRNAs, their target genes and relevant pathways were predicted and assessed in vitro and in vivo by setting specific miRNA mimic, miRNA inhibitor, siRNA or miRNA LNA groups. Results: Increased renal fibrosis was associated with prolonged UUO days, and the secretion of exosomes was markedly increased in UUO kidneys and TGF-β1-stimulated NRK-52E cells. Purified exosomes from TGF-β1-stimulated NRK-52E cells could activate fibroblasts and aggravate renal fibrosis in vitro and in vivo. In addition, the inhibition of exosome secretion by Rab27a knockout or GW4869 treatment abolished fibroblast activation and ameliorated renal fibrosis. Exosomal miR-21 was significantly increased in TGFβ1-Exos compared with Ctrl-Exos, and PTEN is a certain target of miR-21. The promotion or inhibition of epithelial exosomal miR-21 correspondingly accelerated or abolished fibroblast activation in vitro, and renal fibrosis after UUO was alleviated by miR-21-deficient exosomes in vivo through the PTEN/Akt pathway. Conclusion: Our findings reveal that exosomal miR-21 from tubular epithelial cells may accelerate the development of renal fibrosis by activating fibroblasts via the miR-21/PTEN/Akt pathway in obstructed kidneys.
Collapse
|
25
|
Vogt B, Chokri I. Characterization of Sonic Hedgehog/Gli1 Signal Expression in Human Ureter Either Un-Stented or Fitted with Double-Pigtail Stent or a Thread. Res Rep Urol 2021; 13:529-533. [PMID: 34345615 PMCID: PMC8324979 DOI: 10.2147/rru.s324192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction The Sonic Hedgehog/Gli1 signal is involved in smooth muscle activity. An experiment showed that the double-pigtail stent caused ureteral inflammation and decreased Gli1 expression in smooth muscle cells. The innovative pigtail-suture stent (JFil® or MiniJFil®) with a thin 0.3F suture thread significantly decreased stent-related symptoms. Fortuitously, a dilation of the ureter containing the sutures was discovered, and a previous study confirmed that the sutures caused less ureteral inflammation than the double-pigtail stent. However, the mechanisms involved in the ureteral dilation are still unknown. In this study, we assessed ureteral Gli1 expression in the human ureter when it was un-stunted or when fitted with a double-pigtail stent or a suture thread. Material and Methods After consent and inclusion of patients in the protocol, nine segments of ureters were collected during cystectomy procedures for bladder cancers. There was no selection or exclusion, and patients with large tumors were included. Gli1 expression was assessed on the histological section to control the reflection of an active hedgehog signal. The expression of Gli1 in smooth muscle cells of the stented ureter was subjectively compared to un-stented ureter. Results A decrease in the intensity of Gli1 expression of smooth muscle cells was observed in all cases of ureter fitted with a double-pigtail stent. For the un-stunted ureters and the ureters fitted with the thin 0.3F suture thread, Gli1 staining of smooth muscle cells was heterogeneous, and the small number of cases did not allow us to conclude. Conclusion Apart from the cases of ureters fitted with the double-pigtail stent, Gli1 expression of smooth muscle was heterogeneous. The Shh/Gli1 pathway may not be involved in ureteral dilation by the thread. A broader exploration of molecular mechanisms could make it possible to obtain the mechanisms involved in the dilation of the ureter by the thread.
Collapse
Affiliation(s)
- Benoît Vogt
- Department of Urology, Polyclinique de Blois, La Chaussée Saint-Victor, 41260, France
| | - Ilham Chokri
- Laboratory of Anatomocytopathology, Laboratoire Léonard de Vinci, Chambray-lès-Tours, 37170, France
| |
Collapse
|
26
|
Abstract
Renal epithelial cells show remarkable regenerative capacity to recover from acute injury, which involves specific phenotypic changes, but also significant profibrotic tubule-interstitial crosstalk. Tubule-derived profibrotic stimuli and subsequent myofibroblast activation and extracellular matrix deposition have been linked closely with decline of renal function and nephron loss. However, recent data have questioned the view of purely detrimental effects of myofibroblast activation in the injured kidney and even suggested its beneficial role for epithelial regeneration. This article reviews the current understanding of the underlying mechanisms of tubular cell turnover, new suggested pathways of proregenerative tubular-interstitial crosstalk, and relevant insights of proliferation-enhancing effects of myofibroblasts on epithelial cells in nonrenal tissues.
Collapse
|
27
|
Abstract
Acute kidney injury (AKI), defined as a rapid decrease in glomerular filtration rate, is a common and devastating pathologic condition. AKI is associated with significant morbidity and subsequent chronic kidney disease (CKD) development. Regardless of the initial insult, CKD progression after AKI involves multiple types of cells, including proximal tubular cells, fibroblasts, and immune cells. Although the mechanisms underlying this AKI to CKD progression have been investigated extensively over the past decade, therapeutic strategies still are lacking. One of the reasons for this stems from the fact that AKI and its progression toward CKD is multifactorial and variable because it is dependent on patient background. In this review, we describe the current understanding of AKI and its maladaptive repair with a focus on proximal tubules and resident fibroblasts. Subsequently, we discuss the unique pathophysiology of AKI in the elderly, highlighting our recent finding of age-dependent tertiary lymphoid tissues.
Collapse
Affiliation(s)
- Yuki Sato
- Medical Innovation Center, TMK Project, Kyoto University, Kyoto, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Takahashi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
28
|
Zhang J, Liu C, Liang Q, Zheng F, Guan Y, Yang G, Chen L. Postnatal deletion of Bmal1 in mice protects against obstructive renal fibrosis via suppressing Gli2 transcription. FASEB J 2021; 35:e21530. [PMID: 33813752 DOI: 10.1096/fj.202002452r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Circadian clock is involved in regulating most renal physiological functions, including water and electrolyte balance and blood pressure homeostasis, however, the role of circadian clock in renal pathophysiology remains largely unknown. Here we aimed to investigate the role of Bmal1, a core clock component, in the development of renal fibrosis, the hallmark of pathological features in many renal diseases. The inducible Bmal1 knockout mice (iKO) whose gene deletion occurred in adulthood were used in the study. Analysis of the urinary water, sodium and potassium excretion showed that the iKO mice exhibit abolished diurnal variations. In the model of renal fibrosis induced by unilateral ureteral obstruction, the iKO mice displayed significantly decreased tubulointerstitial fibrosis reflected by attenuated collagen deposition and mitigated expression of fibrotic markers α-SMA and fibronectin. The hedgehog pathway transcriptional effectors Gli1 and Gli2, which have been reported to be involved in the pathogenesis of renal fibrosis, were significantly decreased in the iKO mice. Mechanistically, ChIP assay and luciferase reporter assay revealed that BMAL1 bound to the promoter of and activate the transcription of Gli2, but not Gli1, suggesting that the involvement of Bmal1 in renal fibrosis was possibly mediated via Gli2-dependent mechanisms. Furthermore, treatment with TGF-β increased Bmal1 in cultured murine proximal tubular cells. Knockdown of Bmal1 abolished, while overexpression of Bmal1 increased, Gli2 and the expression of fibrosis-related genes. Collectively, these results revealed a prominent role of the core clock gene Bmal1 in tubulointerstitial fibrosis. Moreover, we identified Gli2 as a novel target of Bmal1, which may mediate the adverse effect of Bmal1 in obstructive nephropathy.
Collapse
Affiliation(s)
- Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Chengcheng Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qing Liang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Xu D, Chen PP, Zheng PQ, Yin F, Cheng Q, Zhou ZL, Xie HY, Li JY, Ni JY, Wang YZ, Chen SJ, Zhou L, Wang XX, Liu J, Zhang W, Lu LM. KLF4 initiates sustained YAP activation to promote renal fibrosis in mice after ischemia-reperfusion kidney injury. Acta Pharmacol Sin 2021; 42:436-450. [PMID: 32647339 PMCID: PMC8027004 DOI: 10.1038/s41401-020-0463-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Acute renal injury (AKI) causes a long-term risk for progressing into chronic kidney disease (CKD) and interstitial fibrosis. Yes-associated protein (YAP), a key transcriptional cofactor in Hippo signaling pathway, shuttles between the cytoplasm and nucleus, which is required for the renal tubular epithelial cells repair in the acute phase of AKI. In this study we investigated the role of YAP during ischemia-reperfusion (IR)-induced AKI to CKD. Mice were subjected to left kidney IR followed by removal of the right kidney on the day before tissue harvests. Mouse shRNA expression adenovirus (Ad-shYAP or Ad-shKLF4) and mouse KLF4 expression adenovirus (Ad-KLF4) were delivered to mice by intrarenal injection on D7 after IR. We showed that the expression and nucleus distribution of YAP were persistently increased until the end of experiment (D21 after IR). The sustained activation of YAP in post-acute phase of AKI was accompanied by renal dysfunction and interstitial fibrosis. Knockdown of YAP significantly attenuated IR-induced renal dysfunction and decreased the expression of fibrogenic factors TGF-β and CTGF in the kidney. We showed that the expression of the transcription factor KLF4, lined on the upstream of YAP, was also persistently increased. Knockdown on KLF4 attenuated YAP increase and nuclear translocation as well as renal functional deterioration and interstitial fibrosis in IR mice, whereas KLF4 overexpression caused opposite effects. KLF4 increased the expression of ITCH, and ITCH facilitated YAP nuclear translocation via degrading LATS1. Furthermore, we demonstrated in primary cultured renal tubular cells that KLF4 bound to the promoter region of YAP and positively regulates YAP expression. In biopsy sample from CKD patients, we also observed increased expression and nuclear distribution of YAP. In conclusion, the activation of YAP in the post-acute phase of AKI is implicated in renal functional deterioration and fibrosis although it exhibits beneficial effect in acute phase. Reprogramming factor KLF4 is responsible for the persistent activation of YAP. Blocking the activation of KLF4-YAP pathway might be a way to prevent the transition of AKI into CKD.
Collapse
Affiliation(s)
- Dan Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pan-Pan Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pei-Qing Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fan Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhuan-Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong-Yan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing-Yao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jia-Yun Ni
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan-Zhe Wang
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Si-Jia Chen
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Xia Wang
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Li-Min Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Abstract
Acute kidney injury (AKI) and chronic kidney disease are common interconnected syndromes that represent a public health problem. Acute kidney disease (AKD) is defined as the post-AKI status of acute or subacute kidney damage/dysfunction manifested by persistence of AKI beyond 7 to 90 days after the initial AKI diagnosis. Limited clinical data exist regarding AKD epidemiology but its incidence is observed in ∼25% of AKI survivors. Useful risk-stratification tools to predict risk of AKD and its prognosis are needed. Interventions on fluid management, nephrotoxic exposure, and follow-up care hold promise to ameliorate the burden of AKD and its complications.
Collapse
Affiliation(s)
- Javier A Neyra
- Department of Internal Medicine, Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky Medical Center, 800 Rose Street, MN668, Lexington, KY 40536, USA.
| | - Lakhmir S Chawla
- Department of Medicine, Veterans Affairs Medical Center, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
31
|
Li L, Zhou G, Fu R, He Y, Xiao L, Peng F, Yuan C. Polysaccharides extracted from balanophora polyandra Griff (BPP) ameliorate renal Fibrosis and EMT via inhibiting the Hedgehog pathway. J Cell Mol Med 2021; 25:2828-2840. [PMID: 33507617 PMCID: PMC7957266 DOI: 10.1111/jcmm.16313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Renal interstitial fibrosis (RIF) is a crucial pathological change leading to chronic kidney disease (CKD). Currently, no effective medicines have been available for treating it. In our research, we examined the effects of polysaccharides extracted from Balanophora polyandra Griff (BPPs) on kidney fibrosis and epithelial to mesenchymal transition (EMT) in vivo and in vitro, aiming to explore the underlying mechanisms. By using the mice with unilateral urethral obstruction (UUO) as experimental subjects, we examined the medicinal values of BPPs on alleviating RIF. The effects of BPPs were evaluated by examining the histological staining and relative mRNA and protein expression levels of the related genes. The possible underlying mechanisms were further explored with human normal renal proximal tubular epithelia (HK‐2 cells) as in vitro model. In UUO mice, BPP treatment could significantly alleviate interstitial fibrosis through reducing the components (Collagens I, III and IV) of extracellular matrix (ECM), and reducing the activation of fibroblasts producing these components, as revealed by inhibiting the hallmarks (fibronectin and α‐SMA) of fibroblast activation. Furthermore, BPP administration increased the expression levels of matrix metalloproteinases (MMPs) and declined those of tissue inhibitors of metalloproteinases (TIMPs). BPPs markedly ameliorated EMT in both the kidneys of UUO mice and TGF‐β1 treated HK‐2 cells. Moreover, BPP treatment decreased the expression levels of several transcriptional factors involved in regulating E‐cadherin expression, including snail, twist and ZEB1. Additionally, the Hedgehog pathway was found to be closely correlated with renal fibrosis and EMT. Altogether, our results clearly demonstrated that BPP treatment effectively inhibited the Hedgehog pathway both in renal tissues of UUO mice and TGF‐β1‐treated HK‐2 cells. Thus, BPPs ameliorated RIF and EMT in vivo and in vitro via suppressing Hedgehog signalling pathway.
Collapse
Affiliation(s)
- Luoying Li
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Rui Fu
- Department of Psychiatry and Psychology, Stomatological Hospital of Jingmen City, Jingmen, China
| | - Yumin He
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Li Xiao
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Fan Peng
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| |
Collapse
|
32
|
The crosstalk of hedgehog, PI3K and Wnt pathways in diabetes. Arch Biochem Biophys 2020; 698:108743. [PMID: 33382998 DOI: 10.1016/j.abb.2020.108743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Hyperglycaemia causes pancreatic β-cells to release insulin that then attaches to a specific expression of receptor isoform and reverses high glucose concentrations. It is well known that insulin is capable of initiating insulin-receptor substrate (IRS)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling pathways in target cells; such as liver, adipose tissues, and muscles. However, recent discoveries indicate that many other pathways, such as the Hedgehog (Hh) and growth factor-stimulating Wingless-related integration (Wnt) signaling pathways; are activated in hyperglycaemia as well. Although these two pathways are traditionally thought to have a decisive role in cellular growth and differentiation only, recent reports show that they are involved in regulating cellular homeostasis and energy balance. While insulin-activated IRS/PI3K/PKB pathway cascades are primarily known to reduce glucose production, it was recently discovered to increase the Hh signaling pathway's stability, thereby activating the PI3K/PKB/mammalian target of rapamycin complex 2 (mTORC2) signaling pathway. The Hh signaling pathway not only plays a role in lipid metabolism, insulin sensitivity, inflammatory response, diabetes-related complications, but crosstalks with the Wnt signaling pathway resulting in improved insulin sensitivity and decrease inflammatory response in diabetes.
Collapse
|
33
|
High-Fat Diet Induced Hedgehog Signaling Modifications during Chronic Kidney Damage. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8073926. [PMID: 33294454 PMCID: PMC7718043 DOI: 10.1155/2020/8073926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022]
Abstract
Excessive consumption of dietary fats leads to the deposition of unnecessary metabolites and multiple organ damage. Lipids, important key regulators of Hedgehog signaling, are involved in triggering fibrotic chronic kidney disease. The present study encompasses the assessment of renal morphofunctional modifications and alteration of lipid metabolism influencing the changes in gene expression of hedgehog signaling pathway genes. Fifteen male Rattus norvegicus of 200 ± 25 grams weight were equally divided into three groups: control (standard rat chow), D-1 (unsaturated high-fat diet) and D-2 (saturated high-fat diet). Animals were provided with respective diets and were followed for 16 weeks. Both HFD-fed groups did not show overall body weight gain as compared to the control. While significant downregulation of hedgehog pathway genes was found in fatty diet groups. In comparison with the control group, Shh, Gli1, Gli2, and Gli3 were downregulated after the consumption of both unsaturated and saturated fatty diets. Ihh and Smo exhibit a similar downregulation in the D-1 group, but an upregulation was detected in the D-2 group. D-2 group also had an increased serum urea concentration as compared to the control (P = 0.0023). Furthermore, renal histopathology revealed tubular necrosis, glomerular edema, glomerular shrinkage, and hypocellularity. Collagen deposition in both HFD groups marks the extent of fibrosis summary figure. Extravagant intake of dietary fats impaired normal kidney functioning and morphofunctionally anomalous kidney triggers on Hh signaling in adult rats. These anomalies can be linked to an escalated risk of chronic kidney disease in adults strongly recommending the reduced uptake of fatty diets to prevent impaired metabolism and renal lipotoxicity.
Collapse
|
34
|
Huang A, Guo G, Yu Y, Yao L. The roles of collagen in chronic kidney disease and vascular calcification. J Mol Med (Berl) 2020; 99:75-92. [PMID: 33236192 DOI: 10.1007/s00109-020-02014-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023]
Abstract
The extracellular matrix component collagen is widely expressed in human tissues and participates in various cellular biological processes. The collagen amount generally remains stable due to intricate regulatory networks, but abnormalities can lead to several diseases. During the development of renal fibrosis and vascular calcification, the expression of collagen is significantly increased, which promotes phenotypic changes in intrinsic renal cells and vascular smooth muscle cells, thereby exacerbating disease progression. Reversing the overexpression of collagen substantially prevents or slows renal fibrosis and vascular calcification in a wide range of animal models, suggesting a novel target for treating patients with these diseases. Stem cell therapy seems to be an effective strategy to alleviate these two conditions. However, recent findings indicate that the natural pore structure of collagen fibers is sufficient to induce the inappropriate differentiation of stem cells and thereby exacerbate renal fibrosis and vascular calcification. A comprehensive understanding of the role of collagen in these diseases and its effect on stem cell biology will assist in improving the unmet requirements for treating patients with kidney disease.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, 110013, China. .,Shenyang Engineering Technology R&D Center of Cell Therapy Co. LTD., Shenyang, 110169, China.
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
35
|
Zhou SS, Ai ZZ, Li WN, Li L, Zhu XY, Ba YM. Shenkang VII Recipe Attenuates Unilateral Ureteral Obstruction-induced Renal Fibrosis via TGF-β/Smad, NF-κB and SHH Signaling Pathway. Curr Med Sci 2020; 40:917-930. [PMID: 32980902 DOI: 10.1007/s11596-020-2255-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to explore the protective effects of the traditional Chinese Medicine formula Shenkang VII recipe (SK-7) on renal fibrosis and the mechanisms. Renal fibrosis was induced by unilateral ureteral obstruction (UUO) in rats. The rats were then divided into 5 groups: control group (Sham operation), UUO model group, UUO model plus low to high doses of SK-7 (0.5, 1.0, or 2.0 g/kg/day, for 14 days) groups. The animals were sacrificed on the 7th or 14th day. Kidney tissues were collected for histopathological examinations (hematoxylin and eosin and Masson's trichrome staining). Immunohistochemistry was used to detect the expression of collagen type III (Col III), fibronectin (FN), α-smooth muscle actin (α-SMA), TIMP metallopeptidase inhibitor 2 (TIMP2), matrix metallopeptidase 2 (MMP2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and monocyte chemotactic protein-1 (MCP-1). The TGF-β1/Smad, NF-kB and Sonic hedgehog signaling proteins were detected by Western blotting. Our results showed that SK-7 prevented UUO-induced renal injury and accumulation of collagen fibrils. Renal fibrosis biomarkers Col III, FN, α-SMA and TIMP2 were increased in the rats after UUO and decreased by SK-7, while MMP2 was upregulated after treatment. SK-7 also suppressed the levels of TNF-α, IL-1β and MCP-1 in UUO rats. In addition, SK-7 inhibited activation of the TGF-β/Smad, NF-κB and sonic hedgehog signaling (SHH) pathways. Taken together, these findings suggest that SK-7 may regulate the synthesis and degradation of extracellular matrix, reduce inflammation and suppress the proliferation of fibroblasts, by blocking the TGF-β1/Smad, NF-κB and SHH signaling pathways to exert its anti-renal fibrosis effect in UUO rats.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhong-Zhu Ai
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wei-Nan Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Liang Li
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Yun Zhu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yuan-Ming Ba
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China. .,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
36
|
Sheng L, Zhuang S. New Insights Into the Role and Mechanism of Partial Epithelial-Mesenchymal Transition in Kidney Fibrosis. Front Physiol 2020; 11:569322. [PMID: 33041867 PMCID: PMC7522479 DOI: 10.3389/fphys.2020.569322] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is described as the process in which injured renal tubular epithelial cells undergo a phenotype change, acquiring mesenchymal characteristics and morphing into fibroblasts. Initially, it was widely thought of as a critical mechanism of fibrogenesis underlying chronic kidney disease. However, evidence that renal tubular epithelial cells can cross the basement membrane and become fibroblasts in the renal interstitium is rare, leading to debate about the existence of EMT. Recent research has demonstrated that after injury, renal tubular epithelial cells acquire mesenchymal characteristics and the ability to produce a variety of profibrotic factors and cytokines, but remain attached to the basement membrane. On this basis, a new concept of “partial epithelial-mesenchymal transition (pEMT)” was proposed to explain the contribution of renal epithelial cells to renal fibrogenesis. In this review, we discuss the concept of pEMT and the most recent findings related to this process, including cell cycle arrest, metabolic alternation of epithelial cells, infiltration of immune cells, epigenetic regulation as well as the novel signaling pathways that mediate this disturbed epithelial-mesenchymal communication. A deeper understanding of the role and the mechanism of pEMT may help in developing novel therapies to prevent and halt fibrosis in kidney disease.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
37
|
Wei C, Pan Y, Zhang Y, Dai Y, Jiang L, Shi L, Yang W, Xu S, Zhang Y, Xu W, Zhang Y, Lin X, Zhang S. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells. Cell Death Dis 2020; 11:755. [PMID: 32934215 PMCID: PMC7492405 DOI: 10.1038/s41419-020-02956-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Autophagy can be dynamically induced in response to stresses and is an essential, ubiquitous intracellular recycling system that impacts the fate of damaged resident cells, thereby influencing wound healing. Endometrial fibrosis is a form of abnormal wound healing that causes intrauterine adhesion (IUA) and infertility. We previously demonstrated that overactivated sonic hedgehog (SHH) signaling exacerbated endometrial fibrosis, but the role of autophagy in this process is still unknown. Here, we report that impaired autophagy participates in SHH pathway-induced endometrial fibrosis. Endometrial stroma-myofibroblast transition accompanied by autophagy dysfunction was present in both endometrial biopsies of IUA patients and Amhr2cre/+R26-SmoM2+/− (AM2) transgenic mouse. Mechanistically, SHH pathway negatively regulated autophagy through pAKT-mTORC1 in a human endometrial stromal cell line (T-HESCs). Furthermore, SHH pathway-mediated fibrosis was partly counteracted by autophagy modulation in both T-HESCs and the murine IUA model. Specifically, the impact of SHH pathway inhibition (GANT61) was reversed by the pharmacological autophagy inhibitor chloroquine (CQ) or RNA interference of autophagy-related gene ATG5 or ATG7. Similar results were obtained from the murine IUA model treated with GANT61 and CQ. Moreover, promoting autophagy with rapamycin reduced fibrosis in the AM2 IUA model to baseline levels. In summary, defective autophagy is involved in SHH pathway-driven endometrial fibrosis, suggesting a potential novel molecular target for IUA treatment.
Collapse
Affiliation(s)
- Cheng Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Shiqian Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yingyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Wenzhi Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yanling Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
38
|
Gaikwad AV, Eapen MS, McAlinden KD, Chia C, Larby J, Myers S, Dey S, Haug G, Markos J, Glanville AR, Sohal SS. Endothelial to mesenchymal transition (EndMT) and vascular remodeling in pulmonary hypertension and idiopathic pulmonary fibrosis. Expert Rev Respir Med 2020; 14:1027-1043. [PMID: 32659128 DOI: 10.1080/17476348.2020.1795832] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible fibrotic disease associated with respiratory failure. The disease remains idiopathic, but repeated alveolar epithelium injury, disruption of alveolar-capillary integrity, abnormal vascular repair, and pulmonary vascular remodeling are considered possible pathogenic mechanisms. Also, the development of comorbidities such as pulmonary hypertension (PH) could further impact disease outcome, quality of life and survival rates in IPF. AREAS COVERED The current review provides a comprehensive literature survey of the mechanisms involved in the development and manifestations of IPF and their links to PH pathology. This review also provides the current understanding of molecular mechanisms that link the two pathologies and will specifically decipher the role of endothelial to mesenchymal transition (EndMT) along with the possible triggers of EndMT. The possibility of targeting EndMT as a therapeutic option in IPF is discussed. EXPERT OPINION With a steady increase in prevalence and mortality, IPF is no longer considered a rare disease. Thus, it is of utmost importance and urgency that the underlying profibrotic pathways and mechanisms are fully understood, to enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Kielan D McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Josie Larby
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - James Markos
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Allan R Glanville
- Lung Transplant Unit, Department of Thoracic Medicine, St Vincent's Hospital , Sydney, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| |
Collapse
|
39
|
Kidney allograft fibrosis: what we learned from latest translational research studies. J Nephrol 2020; 33:1201-1211. [PMID: 32193834 DOI: 10.1007/s40620-020-00726-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
To add new molecular and pathogenetic insights into the biological machinery associated to kidney allograft fibrosis is a major research target in nephrology and organ transplant translational medicine. Interstitial fibrosis associated to tubular atrophy (IF/TA) is, in fact, an inevitable and progressive process that occurs in almost every type of chronic allograft injury (particularly in grafts from expanded criteria donors) characterized by profound remodeling and excessive production/deposition of fibrillar extracellular matrix (ECM) with a great clinical impact. IF/TA is detectable in more than 50% of kidney allografts at 2 years. However, although well studied, the complete cellular/biological network associated with IF/TA is only partially evaluated. In the last few years, then, thanks to the introduction of new biomolecular technologies, inflammation in scarred/fibrotic parenchyma areas (recently acknowledged by the BANFF classification) has been recognized as a pivotal element able to accelerate the onset and development of the allograft chronic damage. Therefore, in this review, we focused on some new pathogenetic elements involved in graft fibrosis (including epithelial/endothelial to mesenchymal transition, oxidative stress, activation of Wnt and Hedgehog signaling pathways, fatty acids oxidation and cellular senescence) that, in our opinion, could become in future good candidates as potential biomarkers and therapeutic targets.
Collapse
|
40
|
Panchapakesan U, Pollock C. The primary cilia in diabetic kidney disease: A tubulocentric view? Int J Biochem Cell Biol 2020; 122:105718. [PMID: 32070746 DOI: 10.1016/j.biocel.2020.105718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 01/18/2023]
Abstract
Diabetic kidney disease is growing exponentially. This review aims to discuss alternate therapeutic approaches beyond the glomerulocentric view and to consider a novel tubulocentric approach with focus on the primary cilia. Renin-angiotensin-aldosterone system blockade to decrease glomerular capillary pressure and prevent albuminuria has been the mainstay of treatment for diabetic and non-diabetic proteinuric kidney disease. Landmark clinical trials have also shown cardiorenal benefit with sodium-glucose linked co-transporter 2 inhibitors and glucagon-like peptide 1 receptor analogues in patients with type 2 diabetes. Effective renoprotective drugs seem to have a common mechanistic mode of reducing glomerular hyperfiltration/hypertension. In the tubules, primary cilia act as "antennae" to detect mechanosensory changes such as glomerular hyperfiltration and trgger intracellular signalling pathways. They are also implicated in obesity and metabolic disorders linked to diabetes. To conclude, primary cilia of the kidney tubules offer a novel therapeutic target and may complement the current glomerulocentric approaches.
Collapse
Affiliation(s)
- Usha Panchapakesan
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW,2065, Australia.
| | - Carol Pollock
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW,2065, Australia
| |
Collapse
|
41
|
Abstract
Chronic kidney disease (CKD) is a devastating condition that is reaching epidemic levels owing to the increasing prevalence of diabetes mellitus, hypertension and obesity, as well as ageing of the population. Regardless of the underlying aetiology, CKD is slowly progressive and leads to irreversible nephron loss, end-stage renal disease and/or premature death. Factors that contribute to CKD progression include parenchymal cell loss, chronic inflammation, fibrosis and reduced regenerative capacity of the kidney. Current therapies have limited effectiveness and only delay disease progression, underscoring the need to develop novel therapeutic approaches to either stop or reverse progression. Preclinical studies have identified several approaches that reduce fibrosis in experimental models, including targeting cytokines, transcription factors, developmental and signalling pathways and epigenetic modulators, particularly microRNAs. Some of these nephroprotective strategies are now being tested in clinical trials. Lessons learned from the failure of clinical studies of transforming growth factor β1 (TGFβ1) blockade underscore the need for alternative approaches to CKD therapy, as strategies that target a single pathogenic process may result in unexpected negative effects on simultaneously occurring processes. Additional promising avenues include preventing tubular cell injury and anti-fibrotic therapies that target activated myofibroblasts, the main collagen-producing cells.
Collapse
|
42
|
Sahinturk V, Kacar S, Sahin E, Aykanat NEB. Investigation of endoplasmic reticulum stress and sonic hedgehog pathway in diabetic liver injury in mice. Life Sci 2020; 246:117416. [PMID: 32035927 DOI: 10.1016/j.lfs.2020.117416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/31/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
AIMS Diabetes is a common metabolic disease which damages many organs including the liver and causes endoplasmic reticulum (ER) stress, which originates from non-folded proteins. Sonic hedgehog (Shh) pathway plays a role in liver regeneration and repair. To our knowledge, there is no study showing the relation between ER stress and Shh pathway in the liver in diabetes. Thus, the aim of this study was to investigate the interaction between ER stress and Shh pathway in the liver of diabetic mice. MAIN METHODS Six groups of male mice were formed as control, diabetes (streptozotocine-treated), Shh activator (SAG-treated), Shh inhibitor (SANT1-treated), diabetes + SAG and diabetes + SANT1. At the end of the experiment, mice were weighed, anaesthetized and euthanized. Blood samples were collected, livers were excised and weighed. Thereafter, blood glucose, serum ALT and AST levels, TOS and TAC levels in liver tissue were measured. ER stress marker (GRP78) and Shh pathway molecules (Gli1 and Smo) were evaluated by immunohistochemistry, H-score and western blot analyses. Besides, histopathological examination was performed. KEY FINDINGS Results showed that GRP78, Gli1 and Smo were increased in liver due to Type 1 diabetes. The SAG agent decreased GRP78 and increased Gli1 and Smo, leading to liver repair, while the inhibitor SANT1 increased GRP78 and decreased Gli1and Smo, causing progression of the liver stress induced by diabetes. SIGNIFICANCE In conclusion, the Shh pathway is related to ER stress and may provide a new strategy for its treatment, especially liver stress induced by diabetes.
Collapse
Affiliation(s)
- Varol Sahinturk
- Ekisehir Osmangazi University, Faculty of Medicine, Department of Histology and Embryology, Eskisehir, Turkey.
| | - Sedat Kacar
- Ekisehir Osmangazi University, Faculty of Medicine, Department of Histology and Embryology, Eskisehir, Turkey
| | - Erhan Sahin
- Ekisehir Osmangazi University, Faculty of Medicine, Department of Histology and Embryology, Eskisehir, Turkey
| | - Nuriye Ezgi Bektur Aykanat
- Ekisehir Osmangazi University, Faculty of Medicine, Department of Histology and Embryology, Eskisehir, Turkey
| |
Collapse
|
43
|
Ren D, Luo J, Li Y, Zhang J, Yang J, Liu J, Zhang X, Cheng N, Xin H. Saikosaponin B2 attenuates kidney fibrosis via inhibiting the Hedgehog Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153163. [PMID: 31901891 DOI: 10.1016/j.phymed.2019.153163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Renal interstitial fibrosis is a common pathway through which chronic kidney disease progresses to end-stage renal disease. There are currently no effective drugs available to treat kidney fibrosis, so traditional medicine is likely to be a candidate. The therapeutic potential of saikosaponin B2 (SSB2), a biologically active ingredient of Radix Bupleuri, on renal fibrosis has not been reported. METHODS A unilateral ureteral obstruction (UUO) model was conducted to induce renal interstitial fibrosis in mice. SSB2's effect was valuated by histological staining and exploring the changes in expression of relative proteins and mRNAs. A conditional medium containing sonic hedgehog variant protein stimulating normal rat kidney interstitial fibroblast cells (NRK-49F) was used in an in vitro model to determine the possible mechanism. The molecular target of SSB2 was verified using several mutation plasmids. RESULTS SSB2 administration reduced kidney injury and alleviated interstitial fibrosis by decreasing excessive accumulation of extracellular matrix components in UUO mice. It could also reduce the expression of α-SMA, fibronectin and Gli1, a crucial molecule of the hedgehog (Hh) signaling pathway both in vivo and in vitro. In NIH-3T3 cells simulated by conditional medium containing sonic hedgehog variant protein, SSB2 showed the ability to decrease the expression of Gli1 and Ptch1 mRNA. Using a dual-luciferase reporter assay, SSB2 suppressed the Gli-luciferase reporter activity in NIH-3T3 cells, and the IC50 was 0.49 μM, but had no effect on the TNF-α/NF-κB and Wnt/β-catenin signaling pathways, indicating the inhibition selectivity on the Hh signaling pathway. Furthermore, SSB2 failed to inhibit the Hh pathway activity evoked by ectopic expression of Gli2ΔN and Smo D473H, suggesting that SSB2 might potentially act on smoothened receptors. CONCLUSION SSB2 could attenuate renal fibrosis and decrease fibroblast activation by inhibiting the Hh signaling pathway.
Collapse
Affiliation(s)
- Dadui Ren
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jia Luo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Yingxue Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jiahong Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Junqiu Liu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Nengneng Cheng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
44
|
Altered molecular signatures during kidney development after intrauterine growth restriction of different origins. J Mol Med (Berl) 2020; 98:395-407. [PMID: 32008055 PMCID: PMC7080693 DOI: 10.1007/s00109-020-01875-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Abstract This study was performed to identify transcriptional alterations in male intrauterine growth restricted (IUGR) rats during and at the end of nephrogenesis in order to generate hypotheses which molecular mechanisms contribute to adverse kidney programming. IUGR was induced by low protein (LP) diet throughout pregnancy, bilateral uterine vessel ligation (LIG), or intrauterine stress (IUS) by sham operation. Offspring of unimpaired dams served as controls. Significant acute kidney damage was ruled out by negative results for proteins indicative of ER-stress, autophagy, apoptosis, or infiltration with macrophages. Renal gene expression was examined by transcriptome microarrays, demonstrating 53 (LP, n = 12; LIG, n = 32; IUS, n = 9) and 134 (LP, n = 10; LIG, n = 41; IUS, n = 83) differentially expressed transcripts on postnatal days (PND) 1 and 7, respectively. Reduced Pilra (all IUGR groups, PND 7), Nupr1 (LP and LIG, PND 7), and Kap (LIG, PND 1) as well as increased Ccl20, S100a8/a9 (LIG, PND 1), Ifna4, and Ltb4r2 (IUS, PND 7) indicated that inflammation-related molecular dysregulation could be a “common” feature after IUGR of different origins. Network analyses of transcripts and predicted upstream regulators hinted at proinflammatory adaptions mainly in LIG (arachidonic acid-binding, neutrophil aggregation, toll-like-receptor, NF-kappa B, and TNF signaling) and dysregulation of AMPK and PPAR signaling in LP pups. The latter may increase susceptibility towards obesity-associated kidney damage. Western blots of the most prominent predicted upstream regulators confirmed significant dysregulation of RICTOR in LP (PND 7) and LIG pups (PND 1), suggesting that mTOR-related processes could further modulate kidney programming in these groups of IUGR pups. Key messages Inflammation-related transcripts are dysregulated in neonatal IUGR rat kidneys. Upstream analyses indicate renal metabolic dysregulation after low protein diet. RICTOR is dysregulated after low protein diet and uterine vessel ligation.
Electronic supplementary material The online version of this article (10.1007/s00109-020-01875-1) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Liu X, Miao J, Wang C, Zhou S, Chen S, Ren Q, Hong X, Wang Y, Hou FF, Zhou L, Liu Y. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney Int 2019; 97:1181-1195. [PMID: 32139089 DOI: 10.1016/j.kint.2019.11.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles such as exosomes are involved in mediating cell-cell communication by shuttling an assortment of proteins and genetic information. Here, we tested whether renal tubule-derived exosomes play a central role in mediating kidney fibrosis. The production of exosomes was found to be increased in the early stage of unilateral ureteral obstruction, ischemia reperfusion injury or 5/6 nephrectomy models of kidney disease. Exosome production occurred primarily in renal proximal tubular epithelium and was accompanied by induction of sonic hedgehog (Shh). In vitro, upon stimulation with transforming growth factor-β1, kidney proximal tubular cells (HKC-8) increased exosome production. Purified exosomes from these cells were able to induce renal interstitial fibroblast (NRK-49F) activation. Conversely, pharmacologic inhibition of exosome secretion with dimethyl amiloride, depletion of exosome from the conditioned media or knockdown of Shh expression abolished the ability of transforming growth factor-β1-treated HKC-8 cells to induce NRK-49F activation. In vivo, injections of tubular cell-derived exosomes aggravated kidney injury and fibrosis, which was negated by an Shh signaling inhibitor. Blockade of exosome secretion in vivo ameliorated renal fibrosis after either ischemic or obstructive injury. Furthermore, knockdown of Rab27a, a protein that is essential for exosome formation, also preserved kidney function and attenuated renal fibrotic lesions in mice. Thus, our results suggest that tubule-derived exosomes play an essential role in renal fibrogenesis through shuttling Shh ligand. Hence, strategies targeting exosomes could be a new avenue in developing therapeutics against renal fibrosis.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cong Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuangqin Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Ren
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongping Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
46
|
Pillai SM, Herzog B, Seebeck P, Pellegrini G, Roth E, Verrey F. Differential Impact of Dietary Branched Chain and Aromatic Amino Acids on Chronic Kidney Disease Progression in Rats. Front Physiol 2019; 10:1460. [PMID: 31920685 PMCID: PMC6913537 DOI: 10.3389/fphys.2019.01460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
The metabolism of dietary proteins generates waste products that are excreted by the kidney, in particular nitrogen-containing urea, uric acid, ammonia, creatinine, and other metabolites such as phosphates, sulfates, and protons. Kidney adaptation includes an increase in renal plasma flow (RPF) and glomerular filtration rate (GFR) and represents a burden for diseased kidneys increasing the progression rate of CKD. The present study aimed at identifying potential differences between amino acid (AA) groups constituting dietary proteins regarding their impact on RPF, GFR, and CKD progression. We utilized the well-established 5/6 nephrectomy (5/6 Nx) CKD model in rats and submitted the animals for 5 weeks to either the control diet (18% casein protein) or to diets containing 8% casein supplemented with 10% of a mix of free amino acids, representing all or only a subset of the amino acids contained in casein. Whereas the RPF and GFR measured in free moving animals remained stable during the course of the diet in rats receiving the control mix, these parameters decreased in animals receiving the branched chain amino acid (BCAA) supplementation and increased in the ones receiving the aromatic amino acids (AAAs). In animals receiving essential amino acids (EAAs) containing both BCAAs and AAAs, there was only a small increase in RPF. The kidneys of the 5/6 Nx rats receiving the BCAA diet showed the strongest increase in smooth muscle actin and collagen mRNA expression as a result of higher level of inflammation and fibrosis. These animals receiving BCAAs also showed an increase in plasma free fatty acids pointing to a problem at the level of energy metabolism. In contrast, the animals under AAA diet showed an activation of AMPK and STAT3. Taken together, our results demonstrate that subsets of EAAs contained in dietary proteins, specifically BCAAs and AAAs, exert contrasting effects on kidney functional parameters and CKD progression.
Collapse
Affiliation(s)
- Samyuktha Muralidharan Pillai
- Institute of Physiology and The Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Brigitte Herzog
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology (LAMP), Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Eva Roth
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology and The Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Liu X, Sun N, Mo N, Lu S, Song E, Ren C, Li Z. Quercetin inhibits kidney fibrosis and the epithelial to mesenchymal transition of the renal tubular system involving suppression of the Sonic Hedgehog signaling pathway. Food Funct 2019; 10:3782-3797. [PMID: 31180394 DOI: 10.1039/c9fo00373h] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Quercetin is the most ubiquitous flavonoid in fruits, herbs, vegetables and products made from them. It shows the potential to inhibit the progression of kidney fibrosis and the epithelial to mesenchymal transition (EMT) of the renal tubular system, but the molecular mechanism behind this is still not known. In our study, we explored the effect of quercetin treatment on extracellular matrix (ECM) deposition and stimulation of the EMT in vitro and in vivo and tried to deduce the mechanisms regulating these effects. In rats having unilateral ureter obstruction (UUO), quercetin treatment significantly prevented renal function decline. Quercetin reduced the TGF-β1 expression and inhibited the epithelial cell to mesenchymal cell phenotypic switch, as well as ECM deposition in rats with UUO. In cultured epithelial cells of the renal tubular region (NRK-52E), quercetin markedly ameliorated the EMT and ECM synthesis induced by TGF-β1. Activation of the Hedgehog pathway was closely related to EMT induction. Quercetin effectively suppressed the hyperactive Hedgehog pathway in NRK-52E cells treated with TGF-β1 and in kidney obstructed rats, which reduced the EMT, ECM deposition and cellular proliferation. Moreover, we examined certain transcriptional factors (slug, snail, ZEB-1 and twist) that govern the E-cadherin expression at the level of transcription. The results unveiled that the four transcriptional factors were highly repressed in NRK-52E cells treated with TGF-β1 and also in obstructed kidneys by quercetin-mediated inhibition. Therefore, these outcomes indicate that quercetin could alleviate fibrosis and the EMT in vitro and in vivo by inhibiting the activation of Hedgehog signaling and could act as a therapeutic agent for patients having several kinds of renal fibrotic diseases.
Collapse
Affiliation(s)
- Xianghua Liu
- Scientific Research and Experiment Center, Henan University of Chinese Medicine, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhang X, Lu H, Xie S, Wu C, Guo Y, Xiao Y, Zheng S, Zhu H, Zhang Y, Bai Y. Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in kidneys via proliferation-related signalling pathways. Br J Pharmacol 2019; 176:4745-4759. [PMID: 31454852 PMCID: PMC6965682 DOI: 10.1111/bph.14842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Renal fibrosis acts as the common pathway leading to the development of end-stage renal disease. Previous studies have shown that resveratrol has anti-fibrotic activity, but its potential molecular mechanisms of action are not well understood. EXPERIMENTAL APPROACH The anti-fibrotic effects of resveratrol were assayed in a rat model of unilateral ureteral obstruction (UUO) in vivo and in fibroblasts and tubular epithelial cells (TECs) stimulated by TGF-β1 in vitro. Gene and protein expression levels were analysed by PCR, Western blotting, and immunohistochemical staining. KEY RESULTS Resveratrol inhibits the myofibroblastic phenotype and fibrosis formation in UUO kidneys by targeting fibroblast-myofibroblast differentiation (FMD) and epithelial-mesenchymal transition (EMT). The anti-fibrotic effects of resveratrol correlated with decreased proliferation of TECs in the interstitium and tubules, resulting in suppressed activity of the proliferation-related signalling pathways, including that of the MAPK, PI3K/Akt, Wnt/β-catenin, and JAK2/STAT3 pathways. Resveratrol treatment suppressed TGF-β1-induced FMD and the expression of the myofibroblastic phenotype in fibroblasts in vitro by antagonizing the activation of proliferation-related signalling. Similarly, TGF-β1-mediated overactivation of the proliferation-related signalling in TECs induced EMT, and the myofibroblastic phenotype was suppressed by resveratrol. The anti-fibrotic and anti-proliferative effects of resveratrol were associated with the inactivation of Smad2/3 signalling and resulted in a partial reversal of FMD and EMT and the inhibition of the myofibroblastic phenotype. CONCLUSIONS AND IMPLICATIONS Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in vivo and in vitro via proliferation-related pathways, making it a potential therapeutic agent for preventing renal fibrosis.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Hong Lu
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | | | - Cunzao Wu
- Department of TransplantationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shizhang Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yan Zhang
- Department of TransplantationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Kidney Health, Center for Health AssessmentWenzhou Medical UniversityWenzhouChina
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Kidney Health, Center for Health AssessmentWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
49
|
Xu CG, Zhu XL, Wang W, Zhou XJ. Ursolic acid inhibits epithelial-mesenchymal transition in vitro and in vivo. PHARMACEUTICAL BIOLOGY 2019; 57:169-175. [PMID: 30905239 PMCID: PMC6442106 DOI: 10.1080/13880209.2019.1577464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 05/21/2023]
Abstract
CONTEXT Ursolic acid (UA; 3β-hydroxy-urs-12-en-28-oic acid), one of the pentacyclic triterpenoids found in various plants and herbs, possesses some beneficial effects under pathological conditions, including combating hepatic fibrosis. OBJECTIVE This study investigates the effects of UA on renal tubulointerstitial fibrosis in vivo and in vitro. MATERIALS AND METHODS In vivo, 24 male C57BL6 mice were divided into four groups. Eighteen mice were subjected to unilateral ureteral obstruction (UUO) and the remaining six sham-operated mice served as control. UUO mice received either vehicle or UA (50 or 100 mg/kg) by gastric gavage for 6 days. In vitro, HK-2 cells were treated with 10 or 50 μM UA and 10 ng/mL recombinant human transforming growth factor-β1 (TGF-β1). The molecular mechanisms of fibrosis were investigated. RESULTS UUO induced marked interstitial collagen I and fibronectin deposition and epithelial-mesenchymal transition (EMT), as evidenced by increased α-smooth muscle actin (α-SMA) and decreased E-cadherin. However, UA treatment significantly reduced collagen I and fibronectin accumulation in the fibrotic kidney. UA treatment also decreased α-SMA and preserved E-cadherin in vivo. In vitro, TGF-β1-treated HK-2 cells demonstrated elevated α-SMA, snail1, slug, TGF-β1, and p-smad3, as well as diminished E-cadherin. UA pretreatment prevented E-cadherin loss and diminished α-SMA expression in HK-2 cells. UA downregulated mRNA expression of snail1 and slug. UA also lowered TGF-β1 protein expression and p-Smad3 in HK-2 cells. CONCLUSIONS UA attenuated renal tubulointerstitial fibrosis by inhibiting EMT, and such inhibition may be achieved by decreasing profibrotic factors. UA may be a novel therapeutic agent for renal fibrosis.
Collapse
Affiliation(s)
- Chang-Geng Xu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia-Lian Zhu
- Department of Hand Surgery, Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang-Jun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Zhou D, Fu H, Han Y, Zhang L, Liu S, Lin L, Stolz DB, Liu Y. Sonic hedgehog connects podocyte injury to mesangial activation and glomerulosclerosis. JCI Insight 2019; 4:130515. [PMID: 31647783 PMCID: PMC6948867 DOI: 10.1172/jci.insight.130515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/08/2019] [Indexed: 01/11/2023] Open
Abstract
Glomerular disease is characterized by proteinuria and glomerulosclerosis, two pathologic features caused by podocyte injury and mesangial cell activation, respectively. However, whether these two events are linked remains elusive. Here, we report that sonic hedgehog (Shh) is the mediator that connects podocyte damage to mesangial activation and glomerulosclerosis. Shh was induced in glomerular podocytes in various models of proteinuric chronic kidney diseases (CKD). However, mesangial cells in the glomeruli, but not podocytes, responded to hedgehog ligand. In vitro, Shh was induced in podocytes after injury and selectively promoted mesangial cell activation and proliferation. In a miniorgan culture of isolated glomeruli, Shh promoted mesangial activation but did not affect the integrity of podocytes. Podocyte-specific ablation of Shh in vivo exhibited no effect on proteinuria after adriamycin injection but hampered mesangial activation and glomerulosclerosis. Consistently, pharmacologic blockade of Shh signaling decoupled proteinuria from glomerulosclerosis. In humans, Shh was upregulated in glomerular podocytes in patients with CKD and its circulating level was associated with glomerulosclerosis but not proteinuria. These studies demonstrate that Shh mechanistically links podocyte injury to mesangial activation in the pathogenesis of glomerular diseases. Our findings also illustrate a crucial role for podocyte-mesangial communication in connecting proteinuria to glomerulosclerosis.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Han
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Shijia Liu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna B. Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|