1
|
Mello F, Sampaio TB, Neuberger B, Mallmann MP, Fighera MR, Royes LFF, Furian AF, Larrick JW, Oliveira MS. Electroencephalographic and Behavioral Effects of Intranasal Administration of a Na +, K +-ATPase-Activating Antibody after Status Epilepticus. ACS Chem Neurosci 2024; 15:2695-2702. [PMID: 38989663 PMCID: PMC11311123 DOI: 10.1021/acschemneuro.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Status epilepticus (SE) is a medical emergency associated with high mortality and morbidity. Na+, K+-ATPase, is a promising therapeutic target for SE, given its critical role in regulation of neuron excitability and cellular homeostasis. We investigated the effects of a Na+, K+-ATPase-activating antibody (DRRSAb) on short-term electrophysiological and behavioral consequences of pilocarpine-induced SE. Rats were submitted to pilocarpine-induced SE, followed by intranasal administration (2 μg/nostril). The antibody increased EEG activity following SE, namely, EEG power in theta, beta, and gamma frequency bands, assessed by quantitative analysis of EEG power spectra. One week later, DRRSAb-treated animals displayed less behavioral hyperreactivity in pick-up tests and better performance in novel object recognition tests, indicating that the intranasal administration of this Na+, K+-ATPase activator immediately after SE improves behavioral outcomes at a later time point. These results suggest that Na+, K+-ATPase activation warrants further investigation as an adjunctive therapeutic strategy for SE.
Collapse
Affiliation(s)
- Fernanda
Kulinski Mello
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Tuane Bazanella Sampaio
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Bruna Neuberger
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Michele Pereira Mallmann
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Michele Rechia Fighera
- Department
of Neuropsychiatry, Federal University of
Santa Maria, Santa Maria 97105-900, Brazil
| | - Luiz Fernando Freire Royes
- Department
of Sports Methods and Techniques, Federal
University of Santa Maria, Santa
Maria 97105-900, Brazil
| | - Ana Flávia Furian
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - James W. Larrick
- Panorama
Research Institute, 1230
Bordeaux Dr., Sunnyvale, California 94089, United States
| | - Mauro Schneider Oliveira
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| |
Collapse
|
2
|
Cai L, Pessoa MT, Gao Y, Strause S, Banerjee M, Tian J, Xie Z, Pierre SV. The Na/K-ATPase α1/Src Signaling Axis Regulates Mitochondrial Metabolic Function and Redox Signaling in Human iPSC-Derived Cardiomyocytes. Biomedicines 2023; 11:3207. [PMID: 38137428 PMCID: PMC10740578 DOI: 10.3390/biomedicines11123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Na/K-ATPase (NKA)-mediated regulation of Src kinase, which involves defined amino acid sequences of the NKA α1 polypeptide, has emerged as a novel regulatory mechanism of mitochondrial function in metazoans. Mitochondrial metabolism ensures adequate myocardial performance and adaptation to physiological demand. It is also a critical cellular determinant of cardiac repair and remodeling. To assess the impact of the proposed NKA/Src regulatory axis on cardiac mitochondrial metabolic function, we used a gene targeting approach in human cardiac myocytes. Human induced pluripotent stem cells (hiPSC) expressing an Src-signaling null mutant (A420P) form of the NKA α1 polypeptide were generated using CRISPR/Cas9-mediated genome editing. Total cellular Na/K-ATPase activity remained unchanged in A420P compared to the wild type (WT) hiPSC, but baseline phosphorylation levels of Src and ERK1/2 were drastically reduced. Both WT and A420P mutant hiPSC readily differentiated into cardiac myocytes (iCM), as evidenced by marker gene expression, spontaneous cell contraction, and subcellular striations. Total NKA α1-3 protein expression was comparable in WT and A420P iCM. However, live cell metabolism assessed functionally by Seahorse extracellular flux analysis revealed significant reductions in both basal and maximal rates of mitochondrial respiration, spare respiratory capacity, ATP production, and coupling efficiency. A significant reduction in ROS production was detected by fluorescence imaging in live cells, and confirmed by decreased cellular protein carbonylation levels in A420P iCM. Taken together, these data provide genetic evidence for a role of NKA α1/Src in the tonic stimulation of basal mitochondrial metabolism and ROS production in human cardiac myocytes. This signaling axis in cardiac myocytes may provide a new approach to counteract mitochondrial dysfunction in cardiometabolic diseases.
Collapse
Affiliation(s)
- Liquan Cai
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Marco T. Pessoa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Sidney Strause
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Moumita Banerjee
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Jiang Tian
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
3
|
Li Y, Lu X, Yu Z, Wang H, Gao B. Meta-data analysis of kidney stone disease highlights ATP1A1 involvement in renal crystal formation. Redox Biol 2023; 61:102648. [PMID: 36871182 PMCID: PMC10009205 DOI: 10.1016/j.redox.2023.102648] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
Nephrolithiasis is a complicated disease affected by various environmental and genetic factors. Crystal-cell adhesion is a critical initiation process during kidney stone formation. However, genes regulated by environmental and genetic factors in this process remain unclear. In the present study, we integrated the gene expression profile data and the whole-exome sequencing data of patients with calcium stones, and found that ATP1A1 might be a key susceptibility gene involved in calcium stone formation. The study showed that the T-allele of rs11540947 in the 5'-untranslated region of ATP1A1 was associated with a higher risk of nephrolithiasis and lower activity of a promoter of ATP1A1. Calcium oxalate crystal deposition decreased ATP1A1 expression in vitro and in vivo and was accompanied by the activation of the ATP1A1/Src/ROS/p38/JNK/NF-κB signaling pathway. However, the overexpression of ATP1A1 or treatment with pNaKtide, a specific inhibitor of the ATP1A1/Src complex, inhibited the ATP1A1/Src signal system and alleviated oxidative stress, inflammatory responses, apoptosis, crystal-cell adhesion, and stone formation. Moreover, the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine reversed ATP1A1 down-regulation induced by crystal deposition. In conclusion, this is the first study to show that ATP1A1, a gene modulated by environmental factors and genetic variations, plays an important role in renal crystal formation, suggesting that ATP1A1 may be a potential therapeutic target for treating calcium stones.
Collapse
Affiliation(s)
- Yang Li
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang, 110036, China; Department of Cell biology and Genetics, Shenyang Medical College, Shenyang 110034, China
| | - Xiuli Lu
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang, 110036, China
| | - Zhihao Yu
- Department of Cell biology and Genetics, Shenyang Medical College, Shenyang 110034, China
| | - Haozhen Wang
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang, 110036, China
| | - Bing Gao
- Department of Cell biology and Genetics, Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
4
|
He D, Ren H, Wang H, Jose PA, Zeng C, Xia T, Yang J. Effect of D4 Dopamine Receptor on Na+-K+-ATPase Activity in Renal Proximal Tubule Cells. CARDIOLOGY DISCOVERY 2022; 3:24-29. [PMID: 36969984 PMCID: PMC10030170 DOI: 10.1097/cd9.0000000000000076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
Dopamine, via its receptors, plays a vital role in the maintenance of blood pressure by modulating renal sodium transport. However, the role of the D4 dopamine receptor (D4 receptor) in renal proximal tubules (PRTs) is still unclear. This study aimed to verify the hypothesis that activation of D4 receptor directly inhibits the activity of the Na+-K+-ATPase (NKA) in RPT cells. Methods NKA activity, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) levels were measured in RPT cells treated with the D4 receptor agonist PD168077 and/or the D4 receptor antagonist L745870, the NO synthase inhibitor NG-nitro-L-arginine-methyl ester (L-NAME) or the soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). Total D4 receptor expression and its expression in the plasma membrane were investigated by immunoblotting in RPT cells from Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Results Activation of D4 receptors with PD168077, inhibited NKA activity in RPT cells from WKY rats in a concentration- and time-dependent manner. The inhibitory effect of PD168077 on NKA activity was prevented by the addition of the D4 receptor antagonist L745870, which by itself had no effect. The NO synthase inhibitor L-NAME and the soluble guanylyl cyclase inhibitor ODQ, which by themselves had no effect on NKA activity, eliminated the inhibitory effect of PD168077 on NKA activity. Activation of D4 receptors also increased NO levels in the culture medium and cGMP levels in RPT cells. However, the inhibitory effect of D4 receptors on NKA activity was absent in RPT cells from SHRs, which could be related to decreased plasma membrane expression of D4 receptors in SHR RPT cells. Conclusions Activation of D4 receptors directly inhibits NKA activity via the NO/cGMP signaling pathway in RPT cells from WKY rats but not SHRs. Aberrant regulation of NKA activity in RPT cells may be involved in the pathogenesis of hypertension.
Collapse
|
5
|
Na,K-ATPase α4, and Not Na,K-ATPase α1, is the Main Contributor to Sperm Motility, But its High Ouabain Binding Affinity Site is Not Required for Male Fertility in Mice. J Membr Biol 2021; 254:549-561. [PMID: 34129092 DOI: 10.1007/s00232-021-00181-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023]
Abstract
Mammalian sperm express two Na,K-ATPase (NKA) isoforms, Na,K-ATPase α4 (NKAα4) and Na,K-ATPase α1 (NKAα1). While NKAα4 is critical to sperm motility, the role of NKAα1 in sperm movement remains unknown. We determined this here using a genetic and pharmacological approach, modifying the affinity of NKAα1 and NKAα4 for the inhibitor ouabain to selectively block the function of each isoform. Sperm from wild-type (WT) mice (naturally containing ouabain-resistant NKAα1 and ouabain-sensitive NKAα4) and three newly generated mouse lines, expressing both NKAα1 and NKAα4 ouabain resistant (OR), ouabain sensitive (OS), and with their ouabain affinity switched (SW) were used. All mouse lines produced normal sperm numbers and were fertile. All sperm types showed NKAα isoform expression levels and activity comparable to WT, and kinetics for ouabain inhibition confirming the expected changes in ouabain affinity for each NKA isoform. Ouabain at 1 μM, which only block ouabain-sensitive NKA, significantly inhibited total, progressive, and hyperactivated sperm motility in WT and OS, but had no significant effect on OR or SW sperm. Higher ouabain (1 mM), which inhibits both ouabain-sensitive and ouabain-resistant NKA, had little additional effect on sperm motility in all mouse lines, including the OR and SW. A similar pattern was found for the effect of ouabain on sperm intracellular sodium ([Na+]i). These results indicate that NKAα4, but not NKAα1 is the main contributor to sperm motility and that the ouabain affinity site in NKA is not an essential requirement for male fertility.
Collapse
|
6
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
7
|
Della-Pace ID, Souza TLD, Grauncke ACB, Rambo LM, Ribeiro LR, Cipolatto RP, Severo L, Papalia WL, Santos ARS, Facundo VA, Oliveira MS, Furian AF, Fighera MR, Royes LFF. Modulation of Na +/K +- ATPase activity by triterpene 3β, 6β, 16β-trihidroxilup-20 (29)-ene (TTHL) limits the long-term secondary degeneration after traumatic brain injury in mice. Eur J Pharmacol 2019; 854:387-397. [PMID: 30807746 DOI: 10.1016/j.ejphar.2019.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) is a public health problem characterized by a combination of immediate mechanical dysfunction of the brain tissue, and secondary damage. Based on the hypothesis that selected targets, such as Na+ K+-ATPase are involved in the secondary damage after TBI and modulation of this enzyme activity by triterpene 3β, 6β, 16β-trihidroxilup-20 (29)-ene (TTHL) supports the ethnomedical applications of this plant, we decided to investigate whether previous TTHL treatment interrupts the progression of pathophysiology induced by TBI. Statistical analyses revealed that percussion fluid injury (FPI) increased Na+,K+-ATPase activity in all isoform (α1 and α2/3) 15 min after neuronal injury. The FPI protocol inhibited Na+,K+-ATPase activity total and α1 isoform, increased [3H]MK-801 binding but did not alter Dichloro-dihydro-fluorescein diacetate (DCFH-DA) oxidation, carbonylated proteins and free -SH groups 60 min after injury. The increase of immunoreactivity of protein PKC and state of phosphorylation of at Ser16 of Na+,K+-ATPase 60 min after FPI suggest the involvement of PKC on Na+,K+-ATPase activity oscillations characterized by inhibition of total and α1 isoform. Our experimental data also revealed that natural product rich in compounds such as triterpenes (TTHL; 30 mg/kg) attenuates [3H]MK-801 binding increase, phosphorylation of the PKC and the Na+,K+-ATPase alpha 1 subunit (Ser16) induced by FPI. The previous TTHL treatment had not effect on motor disability but protected against spatial memory deficit, BDNF, TrKB expression decrease, protein carbonylation and hippocampal cell death 7 days after FPI. These data suggest that TTHL-induced reduction on initial damage limits the long-term secondary degeneration and supports neural repair or behavioral compensation after neuronal injury.
Collapse
Affiliation(s)
- Iuri Domingues Della-Pace
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia - Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Thaíze Lopes de Souza
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia - Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ana Claudia Beck Grauncke
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia - Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Leonardo Magno Rambo
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Leandro Rodrigo Ribeiro
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Rafael Parcianello Cipolatto
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Leandro Severo
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Willian Link Papalia
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Adair Roberto Soares Santos
- Centro de Ciencias Biologicas, Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Brazil
| | - Valdir A Facundo
- Departamento de Química, Universidade Federal de Rondônia, Porto Velho 78900-500, RO, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências Naturais e Exatas, Laboratório de Neurotoxicidade, Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Centro de Ciências Naturais e Exatas, Laboratório de Neurotoxicidade, Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Centro de Ciências da Saúde Departamento de Clínica Médica e Pediatria, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia - Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Freitas MLD, Oliveira CVD, Mello FK, Funck VR, Fighera MR, Royes LFF, Furian AF, Larrick JW, Oliveira MS. Na +, K +-ATPase Activating Antibody Displays in vitro and in vivo Beneficial Effects in the Pilocarpine Model of Epilepsy. Neuroscience 2018. [PMID: 29522855 DOI: 10.1016/j.neuroscience.2018.02.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Na+, K+-ATPase is an important regulator of brain excitability. Accordingly, compelling evidence indicates that impairment of Na+, K+-ATPase activity contributes to seizure activity in epileptic mice and human with epilepsy. In addition, this enzyme is crucial for plasma membrane transport of water, glucose and several chemical mediators, including glutamate, the major excitatory transmitter in the mammalian brain. Since glucose hypometabolism and increased glutamate levels occur in clinical and experimental epilepsy, we aimed the present study to investigate whether activation of Na+, K+-ATPase activity with specific antibody (DRRSAb) would improve glucose uptake and glutamate release in pilocarpine-treated mice. We found decreased uptake of the glucose fluorescent analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-il)amino]-2-desoxi-d-glucose (2-NBDG) in cerebral slices from pilocarpine-treated animals. Interestingly, decreased 2-NBDG uptake was not detected in DRRSAb-treated slices, suggesting a protective effect of the Na+, K+-ATPase activator. Moreover, DRRSAb prevented the increase in glutamate levels in the incubation media of slices from pilocarpine-treated mice. In addition, in vivo intrahippocampal injection of DRRSAb restored crossing activity of pilocarpine-treated mice in the open-field test. Overall, the present data further support the hypothesis that activation of the Na+, K+-ATPase is a promising therapeutic strategy for epilepsy.
Collapse
Affiliation(s)
| | | | | | - Vinícius Rafael Funck
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michele Rechia Fighera
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Ana Flávia Furian
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - James W Larrick
- Panorama Research Institute, 1230 Bordeaux Dr, Sunnyvale, CA 94089, United States
| | | |
Collapse
|
9
|
Ouabain affects cell migration via Na,K-ATPase-p130cas and via nucleus-centrosome association. PLoS One 2017; 12:e0183343. [PMID: 28817661 PMCID: PMC5560699 DOI: 10.1371/journal.pone.0183343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023] Open
Abstract
Na,K-ATPase is a membrane protein that catalyzes ATP to maintain transmembrane sodium and potassium gradients. In addition, Na,K-ATPase also acts as a signal-transducing receptor for cardiotonic steroids such as ouabain and activates a number of signalling pathways. Several studies report that ouabain affects cell migration. Here we used ouabain at concentrations far below those required to block Na,K-ATPase pump activity and show that it significantly reduced RPE cell migration through two mechanisms. It causes dephosphorylation of a 130 kD protein, which we identify as p130cas. Src is involved, because Src inhibitors, but not inhibitors of other kinases tested, caused a similar reduction in p130cas phosphorylation and ouabain increased the association of Na,K-ATPase and Src. Knockdown of p130cas by siRNA reduced cell migration. Unexpectedly, ouabain induced separation of nucleus and centrosome, also leading to a block in cell migration. Inhibitor and siRNA experiments show that this effect is mediated by ERK1,2. This is the first report showing that ouabain can regulate cell migration by affecting nucleus-centrosome association.
Collapse
|
10
|
Ouabain Protects Human Renal Cells against the Cytotoxic Effects of Shiga Toxin Type 2 and Subtilase Cytotoxin. Toxins (Basel) 2017; 9:toxins9070226. [PMID: 28718802 PMCID: PMC5535173 DOI: 10.3390/toxins9070226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/17/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is one of the most common causes of acute renal failure in children. The majority of cases are associated with Shiga toxin (Stx)-producing Escherichia coli (STEC). In Argentina, HUS is endemic and presents the highest incidence rate in the world. STEC strains expressing Stx type 2 (Stx2) are responsible for the most severe cases of this pathology. Subtilase cytotoxin (SubAB) is another STEC virulence factor that may contribute to HUS pathogenesis. To date, neither a licensed vaccine nor effective therapy for HUS is available for humans. Considering that Ouabain (OUA) may prevent the apoptosis process, in this study we evaluated if OUA is able to avoid the damage caused by Stx2 and SubAB on human glomerular endothelial cells (HGEC) and the human proximal tubule epithelial cell (HK-2) line. HGEC and HK-2 were pretreated with OUA and then incubated with the toxins. OUA protected the HGEC viability from Stx2 and SubAB cytotoxic effects, and also prevented the HK-2 viability from Stx2 effects. The protective action of OUA on HGEC and HK-2 was associated with a decrease in apoptosis and an increase in cell proliferation. Our data provide evidence that OUA could be considered as a therapeutic strategy to avoid the renal damage that precedes HUS.
Collapse
|
11
|
Tang L, Zheng S, Ren H, He D, Zeng C, Wang WE. Activation of angiotensin II type 1 receptors increases D 4 dopamine receptor expression in rat renal proximal tubule cells. Hypertens Res 2017; 40:652-657. [PMID: 28230199 DOI: 10.1038/hr.2017.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022]
Abstract
Both the dopaminergic and renin-angiotensin systems play important roles in the regulation of blood pressure. Our previous study showed that the stimulation of dopaminergic D4 receptors reduced angiotensin II type 1 (AT1) receptor expression in renal proximal tubule (RPT) cells. In this study, we tested whether AT1 receptors, in return, would regulate D4 receptor expression and function in RPT cells. Expression of the D4 receptor from Wistar-Kyoto (WKY) or spontaneously hypertensive rats (SHRs) RPT cells and renal cortex tissues were determined by western blot, and Na+-K+ ATPase activity was determined using an enzyme assay. Urine volume and urine sodium of WKY rats and SHRs treated with or without D4 receptor stimulation were measured. Thus, activation of AT1 receptors with angiotensin II (Ang II) increased D4 receptor protein expression in RPT cells, and this increase was blocked by nicardipine, a calcium influx blocker. The D4 receptor agonist PD168077 inhibited Na+-K+ ATPase activity in WKY RPT cells but not in SHR RPT cells. Ang II pre-treatment promoted D4 receptor-mediated inhibition of Na+-K+ ATPase in RPT cells in WKY rats but not in SHRs. Meanwhile, Ang II pre-treatment augmented the natriuretic effect of PD168077 in WKY rats but not in SHRs. In conclusion, AT1 stimulation can regulate the expression and natriuretic function of dopaminergic D4 receptors in RPT cells and might be involved in the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- Luxun Tang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Duofen He
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
12
|
Burlaka I, Nilsson LM, Scott L, Holtbäck U, Eklöf AC, Fogo AB, Brismar H, Aperia A. Prevention of apoptosis averts glomerular tubular disconnection and podocyte loss in proteinuric kidney disease. Kidney Int 2016; 90:135-48. [PMID: 27217195 PMCID: PMC6101029 DOI: 10.1016/j.kint.2016.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/19/2016] [Accepted: 03/10/2016] [Indexed: 01/09/2023]
Abstract
There is a great need for treatment that arrests progression of chronic kidney disease. Increased albumin in urine leads to apoptosis and fibrosis of podocytes and tubular cells and is a major cause of functional deterioration. There have been many attempts to target fibrosis, but because of the lack of appropriate agents, few have targeted apoptosis. Our group has described an ouabain-activated Na,K-ATPase/IP3R signalosome, which protects from apoptosis. Here we show that albumin uptake in primary rat renal epithelial cells is accompanied by a time- and dose-dependent mitochondrial accumulation of the apoptotic factor Bax, down-regulation of the antiapoptotic factor Bcl-xL and mitochondrial membrane depolarization. Ouabain opposes these effects and protects from apoptosis in albumin-exposed proximal tubule cells and podocytes. The efficacy of ouabain as an antiapoptotic and kidney-protective therapeutic tool was then tested in rats with passive Heymann nephritis, a model of proteinuric chronic kidney disease. Chronic ouabain treatment preserved renal function, protected from renal cortical apoptosis, up-regulated Bax, down-regulated Bcl-xL, and rescued from glomerular tubular disconnection and podocyte loss. Thus we have identified a novel clinically feasible therapeutic tool, which has the potential to protect from apoptosis and rescue from loss of functional tissue in chronic proteinuric kidney disease.
Collapse
Affiliation(s)
- Ievgeniia Burlaka
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Linnéa M Nilsson
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Lena Scott
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| | - Ulla Holtbäck
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ann-Christine Eklöf
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
13
|
Jiang X, Chen W, Liu X, Wang Z, Liu Y, Felder RA, Gildea JJ, Jose PA, Qin C, Yang Z. The Synergistic Roles of Cholecystokinin B and Dopamine D5 Receptors on the Regulation of Renal Sodium Excretion. PLoS One 2016; 11:e0146641. [PMID: 26751218 PMCID: PMC4709046 DOI: 10.1371/journal.pone.0146641] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/21/2015] [Indexed: 01/07/2023] Open
Abstract
Renal dopamine D1-like receptors (D1R and D5R) and the gastrin receptor (CCKBR) are involved in the maintenance of sodium homeostasis. The D1R has been found to interact synergistically with CCKBR in renal proximal tubule (RPT) cells to promote natriuresis and diuresis. D5R, which has a higher affinity for dopamine than D1R, has some constitutive activity. Hence, we sought to investigate the interaction between D5R and CCKBR in the regulation of renal sodium excretion. In present study, we found D5R and CCKBR increase each other’s expression in a concentration- and time-dependent manner in the HK-2 cell, the specificity of which was verified in HEK293 cells heterologously expressing both human D5R and CCKBR and in RPT cells from a male normotensive human. The specificity of D5R in the D5R and CCKBR interaction was verified further using a selective D5R antagonist, LE-PM436. Also, D5R and CCKBR colocalize and co-immunoprecipitate in BALB/c mouse RPTs and human RPT cells. CCKBR protein expression in plasma membrane-enriched fractions of renal cortex (PMFs) is greater in D5R-/- mice than D5R+/+ littermates and D5R protein expression in PMFs is also greater in CCKBR-/- mice than CCKBR+/+ littermates. High salt diet, relative to normal salt diet, increased the expression of CCKBR and D5R proteins in PMFs. Disruption of CCKBR in mice caused hypertension and decreased sodium excretion. The natriuresis in salt-loaded BALB/c mice was decreased by YF476, a CCKBR antagonist and Sch23390, a D1R/D5R antagonist. Furthermore, the natriuresis caused by gastrin was blocked by Sch23390 while the natriuresis caused by fenoldopam, a D1R/D5R agonist, was blocked by YF476. Taken together, our findings indicate that CCKBR and D5R synergistically interact in the kidney, which may contribute to the maintenance of normal sodium balance following an increase in sodium intake.
Collapse
Affiliation(s)
- Xiaoliang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
| | - Wei Chen
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
| | - Xing Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
| | - Zihao Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
| | - Yunpeng Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
| | - Robin A. Felder
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - John J. Gildea
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Pedro A. Jose
- Division of Nephrology, Departments of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (PAJ); (CQ); (ZWY)
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
- * E-mail: (PAJ); (CQ); (ZWY)
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
- CollaborativeInnovation Center for Cardiovascular Disorders, Beijing, P. R. China
- * E-mail: (PAJ); (CQ); (ZWY)
| |
Collapse
|
14
|
Gattineni J, Baum M. Developmental changes in renal tubular transport-an overview. Pediatr Nephrol 2015; 30:2085-98. [PMID: 24253590 PMCID: PMC4028442 DOI: 10.1007/s00467-013-2666-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/01/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. Nonetheless, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development.
Collapse
Affiliation(s)
- Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Mavrogonatou E, Papadimitriou K, Urban JP, Papadopoulos V, Kletsas D. Deficiency in the α1 subunit of Na+/K+-ATPase enhances the anti-proliferative effect of high osmolality in nucleus pulposus intervertebral disc cells. J Cell Physiol 2015; 230:3037-48. [PMID: 25967398 DOI: 10.1002/jcp.25040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/05/2015] [Indexed: 12/31/2022]
Abstract
Intervertebral disc cells are constantly exposed to a hyperosmotic environment. Among cellular responses towards this stress is the inhibition of proliferation through the activation of p38 MAPK and p53. In an effort to further elucidate the biochemical pathways triggered by hyperosmotic stress, we assessed the high osmolality-induced transcriptional changes of bovine nucleus pulposus cells using whole-genome arrays. A 5- and a 24-h hyperosmotic treatment led to the differential expression of >100 and >200 genes, respectively, including nine genes encoding transporters (SLC4A11, SLC5A3, ATP1A1, SLC38A2, KCNK17, KCTD20, KCTD11, SLC7A5, and CLCA2). Differences in the transcriptional profile of these selected genes, as indicated by the microarrays experiments, were validated by qRT-PCR in 2D and 3D cell cultures, under hyperosmolar salt and sorbitol conditions, revealing the presence of a common triggering signal for osmotic adaptation. The key signaling molecules p38 MAPK and p53 were demonstrated to differently participate in the regulation of the aforementioned transporters. Finally, siRNA-mediated knocking-down of each one of the three transporters with the highest and sustained over-expression (i.e., SLC4A11, SLC5A3, and ATP1A1) had a distinct outcome on the transcriptional profile of the other transporters, on p38 MAPK and p53 phosphorylation and consequently on cell cycle progression. The inhibition of ATP1A1 had the most prominent effect on the transcription of the rest of the transporters and was found to enhance the anti-proliferative effect of hyperosmotic conditions through an increased G2/M cell cycle block, ascribing to this pump a central role in the osmoregulatory response of nucleus pulposus cells.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Konstantinos Papadimitriou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, Greece
| | - Jill P Urban
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
16
|
Gomez-Sanchez CE, Kuppusamy M, Gomez-Sanchez EP. Somatic mutations of the ATP1A1 gene and aldosterone-producing adenomas. Mol Cell Endocrinol 2015; 408:213-9. [PMID: 25496839 PMCID: PMC4417446 DOI: 10.1016/j.mce.2014.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023]
Abstract
Primary aldosteronism is the most common form of secondary hypertension. It affects approximately 10% of patients with hypertension and causes greater cardiovascular morbidity and mortality compared to essential hypertension of similar severity and duration. The cause of primary aldosteronism in about half of these patients is an aldosterone-producing adenoma; over half of these adenomas have mutations in one of several ion channels and pumps, including the potassium channel KCNJ5, calcium channel Cav1.3, α1 subunit of the sodium potassium ATPase, and membrane calcium ATPase 3. This review concentrates on the molecular and physiological mechanisms by which mutations of the ATP1A1 gene increase aldosterone production.
Collapse
Affiliation(s)
- Celso E Gomez-Sanchez
- Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA; Department of Medicine-Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Maniselvan Kuppusamy
- Department of Medicine-Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
17
|
Li F, Yang J, Jones JE, Villar VAM, Yu P, Armando I, Felder RA, Jose PA. Sorting nexin 5 and dopamine d1 receptor regulate the expression of the insulin receptor in human renal proximal tubule cells. Endocrinology 2015; 156:2211-21. [PMID: 25825816 PMCID: PMC4430625 DOI: 10.1210/en.2014-1638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sorting nexin 5 (SNX5) belongs to the SNX family, which is composed of a diverse group of proteins that mediate trafficking of plasma membrane proteins, receptors, and transporters. SNX5 is important in the resensitization of the dopamine D1-like receptor (D1R). D1R is uncoupled from its effector proteins in hypertension and diabetes, and treatment of diabetes restores D1R function and insulin receptor (IR) expression. We tested the hypothesis that the D1R and SNX5 regulate IR by studying the expression, distribution, dynamics, and functional consequences of their interaction in human renal proximal tubule cells (hRPTCs). D1R, SNX5, and IR were expressed and colocalized in the brush border of RPTs. Insulin promoted the colocalization of SNX5 and IR at the perinuclear area of hRPTCs. Unlike SNX5, the D1R colocalized and coimmunoprecipitated with IR, and this interaction was enhanced by insulin. To evaluate the role of SNX5 and D1R on IR signaling, we silenced via RNA interference the endogenous expression of SNX5 or the D1R gene DRD1 in hRPTCs. We observed a decrease in IR expression and abundance of phosphorylated IR substrate and phosphorylated protein kinase B, which are crucial components of the IR signal transduction pathway. Our data indicate that SNX5 and D1R are necessary for normal IR expression and activity. It is conceivable that D1R and SNX5 may interact to increase the sensitivity to insulin via a positive regulation of IR and insulin signaling.
Collapse
Affiliation(s)
- Fengmin Li
- Department of Physiology and Biophysics (F.L., P.A.J.), Georgetown University Medical Center, Washington, DC 20057; Liver Disease Branch (F.L.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Department of Nutrition (J.Y.), Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China; Division of Nephrology (J.Y.J.E.J., V.A.M.V., P.Y., I.A., P.A.J.), Department of Medicine, and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore, Maryland 21201; and University of Virginia Health Sciences Center (R.A.F.), Charlottesville, Virginia 22908
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Armando I, Konkalmatt P, Felder RA, Jose PA. The renal dopaminergic system: novel diagnostic and therapeutic approaches in hypertension and kidney disease. Transl Res 2015; 165:505-11. [PMID: 25134060 PMCID: PMC4305499 DOI: 10.1016/j.trsl.2014.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 12/15/2022]
Abstract
Salt sensitivity of blood pressure, whether in hypertensive or normotensive subjects, is associated with increased cardiovascular risk and overall mortality. Salt sensitivity can be treated by reducing NaCl consumption. However, decreasing salt intake in some may actually increase cardiovascular risk, including an increase in blood pressure, that is, inverse salt sensitivity. Several genes have been associated with salt sensitivity and inverse salt sensitivity. Some of these genes encode proteins expressed in the kidney that are needed to excrete a sodium load, for example, dopamine receptors and their regulators, G protein-coupled receptor kinase 4 (GRK4). We review here research in this field that has provided several translational opportunities, ranging from diagnostic tests to gene therapy, such as (1) a test in renal proximal tubule cells isolated from the urine of humans that may determine the salt-sensitive phenotype by analyzing the recruitment of dopamine D1 receptors to the plasma membrane; (2) the presence of common GRK4 gene variants that are not only associated with hypertension but may also be predictive of the response to antihypertensive therapy; (3) genetic testing for polymorphisms of the dopamine D2 receptor that may be associated with hypertension and inverse salt sensitivity and may increase the susceptibility to chronic kidney disease because of loss of the antioxidant and anti-inflammatory effects of the renal dopamine D2 receptor, and (4) in vivo renal selective amelioration of renal tubular genetic defects by a gene transfer approach, using adeno-associated viral vectors introduced to the kidney by retrograde ureteral infusion.
Collapse
Affiliation(s)
- Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Prasad Konkalmatt
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Robin A Felder
- Department of Pathology, The University of Virginia School of Medicine, Charlottesville, VA
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
19
|
Khundmiri SJ. Advances in understanding the role of cardiac glycosides in control of sodium transport in renal tubules. J Endocrinol 2014; 222:R11-24. [PMID: 24781255 DOI: 10.1530/joe-13-0613] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiotonic steroids have been used for the past 200 years in the treatment of congestive heart failure. As specific inhibitors of membrane-bound Na(+)/K(+) ATPase, they enhance cardiac contractility through increasing myocardial cell calcium concentration in response to the resulting increase in intracellular Na concentration. The half-minimal concentrations of cardiotonic steroids required to inhibit Na(+)/K(+) ATPase range from nanomolar to micromolar concentrations. In contrast, the circulating levels of cardiotonic steroids under physiological conditions are in the low picomolar concentration range in healthy subjects, increasing to high picomolar levels under pathophysiological conditions including chronic kidney disease and heart failure. Little is known about the physiological function of low picomolar concentrations of cardiotonic steroids. Recent studies have indicated that physiological concentrations of cardiotonic steroids acutely stimulate the activity of Na(+)/K(+) ATPase and activate an intracellular signaling pathway that regulates a variety of intracellular functions including cell growth and hypertrophy. The effects of circulating cardiotonic steroids on renal salt handling and total body sodium homeostasis are unknown. This review will focus on the role of low picomolar concentrations of cardiotonic steroids in renal Na(+)/K(+) ATPase activity, cell signaling, and blood pressure regulation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Division of Nephrology and HypertensionDepartment of MedicineDepartment of Physiology and BiophysicsUniversity of Louisville, 570 S. Preston Street, Louisville, Kentucky 40202, USADivision of Nephrology and HypertensionDepartment of MedicineDepartment of Physiology and BiophysicsUniversity of Louisville, 570 S. Preston Street, Louisville, Kentucky 40202, USA
| |
Collapse
|
20
|
Illarionava NB, Brismar H, Aperia A, Gunnarson E. Role of Na,K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake. PLoS One 2014; 9:e98469. [PMID: 24901986 PMCID: PMC4046997 DOI: 10.1371/journal.pone.0098469] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/03/2014] [Indexed: 01/28/2023] Open
Abstract
Glutamate released during neuronal activity is cleared from the synaptic space via the astrocytic glutamate/Na+ co-transporters. This transport is driven by the transmembrane Na+ gradient mediated by Na,K-ATPase. Astrocytes express two isoforms of the catalytic Na,K-ATPase α subunits; the ubiquitously expressed α1 subunit and the α2 subunit that has a more specific expression profile. In the brain α2 is predominantly expressed in astrocytes. The isoforms differ with regard to Na+ affinity, which is lower for α2. The relative roles of the α1 and α2 isoforms in astrocytes are not well understood. Here we present evidence that the presence of the α2 isoform may contribute to a more efficient restoration of glutamate triggered increases in intracellular sodium concentration [Na+]i. Studies were performed on primary astrocytes derived from E17 rat striatum expressing Na,K-ATPase α1 and α2 and the glutamate/Na+ co-transporter GLAST. Selective inhibition of α2 resulted in a modest increase of [Na+]i accompanied by a disproportionately large decrease in uptake of aspartate, an indicator of glutamate uptake. To compare the capacity of α1 and α2 to handle increases in [Na+]i triggered by glutamate, primary astrocytes overexpressing either α1 or α2 were used. Exposure to glutamate 200 µM caused a significantly larger increase in [Na+]i in α1 than in α2 overexpressing cells, and as a consequence restoration of [Na+]i, after glutamate exposure was discontinued, took longer time in α1 than in α2 overexpressing cells. Both α1 and α2 interacted with astrocyte glutamate/Na+ co-transporters via the 1st intracellular loop.
Collapse
Affiliation(s)
- Nina B. Illarionava
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Hjalmar Brismar
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Cell Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Anita Aperia
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Eli Gunnarson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
21
|
Stevens CW. New pathways for an old molecule: the role of the Na⁺-K⁺ ATPase pump in peripheral neuropathy. J Neurol Sci 2014; 340:3-4. [PMID: 24667006 DOI: 10.1016/j.jns.2014.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Craig W Stevens
- OSU-Center for Health Sciences, College of Osteopathic Medicine, 1111 W 17th Street, Tulsa, OK 74107-1898, United States.
| |
Collapse
|
22
|
Melo Z, Cruz-Rangel S, Bautista R, Vázquez N, Castañeda-Bueno M, Mount DB, Pasantes-Morales H, Mercado A, Gamba G. Molecular evidence for a role for K(+)-Cl(-) cotransporters in the kidney. Am J Physiol Renal Physiol 2013; 305:F1402-11. [PMID: 24089410 DOI: 10.1152/ajprenal.00390.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
K(+)-Cl(-) cotransporter (KCC) isoforms 3 (KCC3) and 4 (KCC4) are expressed at the basolateral membrane of proximal convoluted tubule cells, and KCC4 is present in the basolateral membrane of the thick ascending loop of Henle's limb and α-intercalated cells of the collecting duct. Little is known, however, about the physiological roles of these transporters in the kidney. We evaluated KCC3 and KCC4 mRNA and protein expression levels and intrarenal distribution in male Wistar rats or C57 mice under five experimental conditions: hyperglycemia after a single dose of streptozotocin, a low-salt diet, metabolic acidosis induced by ammonium chloride in drinking water, and low- or high-K(+) diets. Both KCC3 mRNA and protein expression were increased during hyperglycemia in the renal cortex and at the basolateral membrane of proximal tubule cells but not with a low-salt diet or acidosis. In contrast, KCC4 protein expression was increased by a low-sodium diet in the whole kidney and by metabolic acidosis in the renal outer medulla, specifically at the basolateral membrane of α-intercalated cells. The increased protein expression of KCC4 by a low-salt diet was also observed in WNK4 knockout mice, suggesting that upregulation of KCC4 in these circumstances is not WNK4 dependent. No change in KCC3 or KCC4 protein expression was observed under low- or high-K(+) diets. Our data are consistent with a role for KCC3 in the proximal tubule glucose reabsorption mechanism and for KCC4 in salt reabsorption of the thick ascending loop of Henle's loop and acid secretion of the collecting duct.
Collapse
Affiliation(s)
- Zesergio Melo
- Molecular Physiology Unit, Vasco de Quiroga no. 15, Tlalpan 14000, Mexico City, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang LN, Li JX, Hao L, Sun YJ, Xie YH, Wu SM, Liu L, Chen XL, Gao ZB. Crosstalk between dopamine receptors and the Na⁺/K⁺-ATPase (review). Mol Med Rep 2013; 8:1291-9. [PMID: 24065247 DOI: 10.3892/mmr.2013.1697] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/05/2013] [Indexed: 11/06/2022] Open
Abstract
Dopamine (DA) receptors, which belong to the G protein-coupled receptor family, are the target of ~50% of all modern medicinal drugs and constitute a large and diverse class of proteins whose primary function is to transduce extracellular stimuli into intracellular signals. Na+/K+-ATPase (NKA) is ubiquitous and crucial for the maintenance of intracellular ion homeostasis and excitability. Furthermore, it plays a critical role in diverse effects, including clinical cardiotonic and cardioprotective effects, ischemic preconditioning in the brain, natriuresis, lung edema clearance and other processes. NKA regulation is of physiological and pharmacological importance and has species- and tissue-specific variations. The activation of DA receptors regulates NKA expression/activity and trafficking in various tissues and cells, for example in the kidney, lung, intestine, brain, non-pigmented ciliary epithelium and the vascular bed. DA receptor-mediated regulation of NKA mediates a diverse range of cellular responses and includes endocytosis/exocytosis, phosphorylation/dephosphorylation of the α subunit of NKA and multiple signaling pathways, including phosphatidylinositol (PI)-phospholipase C/protein kinase (PK) C, cAMP/PKA, PI3K, adaptor protein 2, tyrosine phosphatase and mitogen-activated protein kinase/extracellular signal-regulated protein kinase. Furthermore, in brain and HEK293T cells, D1 and D2 receptors exist in a complex with NKA. Among D1 and D2 receptors and NKA, regulations are reciprocal, which leads to crosstalk between DA receptors and NKA. In the present study, the current understanding of signaling mechanisms responsible for the crosstalk between DA receptors and NKA, as well as with specific consequent functions, is reviewed.
Collapse
Affiliation(s)
- Li-Nan Zhang
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fontana JM, Burlaka I, Khodus G, Brismar H, Aperia A. Calcium oscillations triggered by cardiotonic steroids. FEBS J 2013; 280:5450-5. [PMID: 23890276 DOI: 10.1111/febs.12448] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 01/19/2023]
Abstract
Na(+), K(+)-ATPase (NKA) is well known for its function as an ion pump. Studies during the last decade have revealed an additional role for NKA as a signal transducer. In this brief review, we describe how cardiotonic steroids, which are highly specific NKA ligands, trigger slow Ca(2+) oscillations by promoting the interaction between NKA and the inositol trisphosphate receptor, and how this Ca(2+) signal activates the NF-κB subunit p65 and increases the expression of the antiapoptotic factor Bcl-xL. The potential tissue-protective effects of this signal are discussed.
Collapse
Affiliation(s)
- Jacopo M Fontana
- Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
25
|
Blanco G, Wallace DP. Novel role of ouabain as a cystogenic factor in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2013; 305:F797-812. [PMID: 23761677 DOI: 10.1152/ajprenal.00248.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The classic role of the Na-K-ATPase is that of a primary active transporter that utilizes cell energy to establish and maintain transmembrane Na(+) and K(+) gradients to preserve cell osmotic stability, support cell excitability, and drive secondary active transport. Recent studies have revealed that Na-K-ATPase located within cholesterol-containing lipid rafts serves as a receptor for cardiotonic steroids, including ouabain. Traditionally, ouabain was viewed as a toxin produced only in plants, and it was used in relatively high concentrations to experimentally block the pumping action of the Na-K-ATPase. However, the new and unexpected role of the Na-K-ATPase as a signal transducer revealed a novel facet for ouabain in the regulation of a myriad of cell functions, including cell proliferation, hypertrophy, apoptosis, mobility, and metabolism. The seminal discovery that ouabain is endogenously produced in mammals and circulates in plasma has fueled the interest in this endogenous molecule as a potentially important hormone in normal physiology and disease. In this article, we review the role of the Na-K-ATPase as an ion transporter in the kidney, the experimental evidence for ouabain as a circulating hormone, the function of the Na-K-ATPase as a signal transducer that mediates ouabain's effects, and novel results for ouabain-induced Na-K-ATPase signaling in cystogenesis of autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Gustavo Blanco
- Dept. of Molecular and Integrative Physiology, 3901 Rainbow Blvd., Kansas City, KS 66160.
| | | |
Collapse
|