1
|
Kumar D, Raju N, Tanriover B, Azzouz L, Moinuddin I, Philogene M, Kamal L, McDougan F, Massey HD, Muthusamy S, Lee I, Halloran P, Gupta G. Tissue-based Gene Expression Diagnosis of Mild and Moderate T-cell-mediated Rejection to Guide Therapy in Kidney Transplants. Transplantation 2024:00007890-990000000-00962. [PMID: 39710875 DOI: 10.1097/tp.0000000000005296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
BACKGROUND Mild histologic lesions of tubulo-interstitial inflammation could represent a "response-to-wounding" rather than allorecognition. Tissue gene expression may complement histopathology for T-cell-mediated rejection (TCMR) diagnostics. METHODS We report on the incorporation of tissue gene expression testing using a Molecular Microscope Diagnostic System into the management of kidney transplant biopsies with suspected TCMR. Patients (N = 209) were divided into 3 groups based upon diagnosis and TCMR therapy (with high-dose steroids and/or anti-thymocyte globulin): Group 1: Untreated histologic TCMR with molecular quiescence (H+M-); Group 2: Treated histologic and molecular TCMR (H+M+); and Group 3: Controls, with no histologic or molecular (H-M-) rejection. RESULTS At biopsy, estimated glomerular filtration rate was worse (P = 0.006) in H+M+ (N = 35; 33 ± 22 mL/min/1.73 m2) and H+M- (N = 30; 40 ± 18 mL/min/1.73 m2) groups; compared with H-M- (N = 144; 47 ± 24 mL/min/1.73 m2) group. In H+M- biopsies, mean molecular acute kidney injury scores (0.33 versus 0.10; P = 0.03) were higher than in H-M-; while molecular TCMR was lower compared with H+M+ (0.04 versus 0.54; P < 0.001). At 12 m postbiopsy estimated glomerular filtration rate remained low (P < 0.001) in H+M+ (38 ± 22 mL/min/1.73 m2) but improved in untreated H+M- (44 ± 22 mL/min/1.73 m2) and H-M- (50 ± 23 mL/min/1.73 m2) groups. At a mean follow-up of 2.1 ± 1.2 y post-index biopsy, death-censored graft survival was lower in H+M+ (74%) than in H+M- (90%) and H-M- (92%; P = 0.001). H+M+ cases had numerically higher rejection on follow-up biopsy (20%) than H+M- (7%) (P = 0.12) and de novo donor-specific antibody formation (H+M+ 24%; H+M- 10%; P = 0.13). CONCLUSIONS In this large single-center study, biopsies with untreated histological TCMR and molecular quiescence had comparable clinical outcomes to cases with no rejection, whereas those with histologic and tissue gene expression confirmed TCMR had inferior outcomes.
Collapse
Affiliation(s)
- Dhiren Kumar
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Nihar Raju
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | | | - Louiza Azzouz
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Irfan Moinuddin
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Mary Philogene
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Layla Kamal
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Felecia McDougan
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Hugh Davis Massey
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | | | - Inkoo Lee
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | | | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
2
|
Mao K, Lin F, Pan Y, Li J, Ye J. Identification of glycosyltransferase genes for diagnosis of T-cell mediated rejection and prediction of graft loss in kidney transplantation. Transpl Immunol 2024; 87:102114. [PMID: 39243908 DOI: 10.1016/j.trim.2024.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Glycosylation is a complex and fundamental metabolic biosynthetic process orchestrated by multiple glycosyltransferases (GT) and glycosidases enzymes. Functions of GT have been extensively examined in multiple human diseases. Our study investigated the potential role of GT genes in T-cell mediated rejection (TCMR) and possible prediction of graft loss of kidney transplantation. METHODS We downloaded the microarray datasets and GT genes from the GEO and the HUGO Gene Nomenclature Committee (HGNC) databases, respectively. Differentially expressed GT genes (DE-GTGs) were obtained by differential expression and Venn analysis. A TCMR diagnostic model was developed based on the hub DE-GTGs using LASSO regression and XGboost machine learning algorithms. In addition, a predictive model for graft survival was constructed by univariate Cox and LASSO Cox regression analysis. RESULTS We have obtained 15 DE-GTGs. Both GO and KEGG analyses showed that the DE-GTGs were mainly involved in the glycoprotein biosynthetic process. The TCMR diagnostic model exhibited high diagnostic potential with generally highly correlated accuracies [aera under the curve (AUC) of 0.83]. The immune characteristics analysis revealed that higher levels of immune cell infiltration and immune responses were observed in the high-risk group than in the low-risk group. In particular, the Kaplan-Meier survival analysis revealed that renal grafts in the high-risk group have poor prognostic outcomes than the low-risk group. The predictive AUC values of 1-, 2- and 3-year graft survival were 0.76, 0.81, and 0.70, respectively. CONCLUSION Our results indicated that GT genes could be used for diagnosis of TCMR and prediction of graft loss in kidney transplantation. These results provide new perspectives and tools for diagnosing, treating and predicting kidney transplant-related diseases.
Collapse
Affiliation(s)
- Kaifeng Mao
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Fenwang Lin
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yige Pan
- Division of Nephrology, Department of Nursing, The University of Hong Kong-Shenzhen Hospital, Shenzhen City, Guangdong Province, China
| | - Juan Li
- School of Nursing, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Junsheng Ye
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Lim Z, Taverniti A, Downing J, Le C, Lopez P, Larkins N, Chan D, Chakera A, D'Orsogna L, Krishnan A, Chau M, Ooi E, Boroumand F, Teixeira-Pinto A, Gately R, Sharma A, Wong G, Lim WH. Clinical Applicability of 2-Field High-Resolution and Extended HLA-Allele Typing in Deceased Donor Kidney Allocation. HLA 2024; 104:e15784. [PMID: 39637319 DOI: 10.1111/tan.15784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
HLA-compatibility remains an important triage test for deceased donor kidney allocation. Low-intermediate resolution donor HLA-typing is typically available at allocation, but its accuracy in assigning pre-transplant donor-specific anti-HLA antibody (DSA) and HLA mismatches compared to 2-field high-resolution typing is poorly characterised. Consecutive deceased donor/recipient pairs from a single centre between 2016 and 2020 were included. Majority of donor typing at HLA-ABDRB1 loci were performed at low-intermediate resolution, with 2-field high-resolution NGS typing across extended loci performed by NGS-technique post-transplantation. We compared the two typing methods for (1) accuracy of pre-transplant DSA assignment; (2) misassignment of HLA-antigen/allele mismatches and performance of each model for acute rejection and (3) proportion of recipients who developed de novo DSA (dnDSA) when matched at antigen but mismatched at allele level. Of 179 deceased donor/recipient pairs, 157 donors had low-intermediate resolution typing and 22 with high-resolution ONT typing. Sixty-two recipients (35%) had potential pre-transplant DSAs, with incorrect assignment of allele-specific Class I and II actual DSAs in 31% and 53% of cases, respectively. NGS typing identified 59 (33%) additional HLA-DRB1 allele mismatches. ONT typing accurately assigned pre-transplant DSAs and allele mismatches in all cases. Seven (4%) recipients with antigen/allele level discordance developed dnDSAs, majority HLA-DQ antibodies. Two-field high-resolution donor HLA typing may provide a more accurate transplant immunological risk assessment and identify those at risk of developing dnDSA to matched HLA antigen.
Collapse
Affiliation(s)
- Zhan Lim
- Department of Renal Medicine and Transplantation, Sir Charles Gairdner Hospital, Perth, Australia
| | - Anne Taverniti
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Jonathan Downing
- PathWest Laboratory Medicine, Fiona Stanley Hospital, Perth, Australia
| | - Cindy Le
- PathWest Laboratory Medicine, Fiona Stanley Hospital, Perth, Australia
| | - Pedro Lopez
- Grupo de Pesquisa em Exercício para Populações Clínicas (GPCLIN), Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia
| | - Nicholas Larkins
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Department of Nephrology, Perth Children's Hospital, Perth, Australia
| | - Doris Chan
- Department of Renal Medicine and Transplantation, Sir Charles Gairdner Hospital, Perth, Australia
| | - Aron Chakera
- Department of Renal Medicine and Transplantation, Sir Charles Gairdner Hospital, Perth, Australia
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Harry Perkins Institute of Medical Research, Perth, Australia
| | - Lloyd D'Orsogna
- PathWest Laboratory Medicine, Fiona Stanley Hospital, Perth, Australia
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Anoushka Krishnan
- Department of Renal Medicine and Transplantation, Royal Perth Hospital, Perth, Australia
| | - Matthew Chau
- Department of Renal Medicine and Transplantation, Sir Charles Gairdner Hospital, Perth, Australia
| | - Esther Ooi
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Farzaneh Boroumand
- Sydney School of Public Health, University of Sydney, Sydney, Australia
- School of Mathematical and Physical Sciences, Macquarie University, Australia
| | - Armando Teixeira-Pinto
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
- Sydney School of Public Health, University of Sydney, Sydney, Australia
| | - Ryan Gately
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Ankit Sharma
- Department of Renal Medicine and Transplantation, Westmead Hospital, Sydney, Australia
| | - Germaine Wong
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
- Sydney School of Public Health, University of Sydney, Sydney, Australia
- Department of Renal Medicine and Transplantation, Westmead Hospital, Sydney, Australia
| | - Wai H Lim
- Department of Renal Medicine and Transplantation, Sir Charles Gairdner Hospital, Perth, Australia
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
4
|
Charmetant X, Pettigrew GJ, Thaunat O. Allorecognition Unveiled: Integrating Recent Breakthroughs Into the Current Paradigm. Transpl Int 2024; 37:13523. [PMID: 39588197 PMCID: PMC11586167 DOI: 10.3389/ti.2024.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
In transplantation, genetic differences between donor and recipient trigger immune responses that cause graft rejection. Allorecognition, the process by which the immune system discriminates allogeneic grafts, targets major histocompatibility complex (MHC) and minor histocompatibility antigens. Historically, it was believed that allorecognition was solely mediated by the recipient's adaptive immune system recognizing donor-specific alloantigens. However, recent research has shown significant roles for innate immune components, such as lymphoid and myeloid cells, which are sometimes triggered by the mere absence of a self-protein in the graft. This review integrates recent breakthroughs into the current allorecognition paradigm based on the well-established direct and indirect pathways, emphasizing the semi-direct pathway where recipient antigen-presenting cells (APCs) acquire donor MHC molecules, and the inverted direct pathway where donor CD4+ T cells within the graft activate recipient B cells to produce donor-specific antibodies (DSAs). The review also explores the role of natural killer (NK) cells in both promoting and inhibiting graft rejection, highlighting their dual role in innate allorecognition. Additionally, it discusses the emerging understanding of myeloid cell-mediated allorecognition and its implications for initiating adaptive immune responses. These insights aim to provide a more comprehensive understanding of allorecognition, potentially leading to improved transplant outcomes.
Collapse
Affiliation(s)
- Xavier Charmetant
- Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Faculty of Medicine, Claude Bernard University (Lyon 1), Villeurbanne, France
| | - Gavin J. Pettigrew
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Thaunat
- Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Faculty of Medicine, Claude Bernard University (Lyon 1), Villeurbanne, France
| |
Collapse
|
5
|
Xu Z, Sun X, Ma X, Tao B, Wu J, He Y, Zhao Y, Mao H, Yang J, Jiang D, Wang L, Song C. Landscape of the immune infiltration and identification of molecular diagnostic markers associated with immune cells in patients with kidney transplantation. Sci Rep 2024; 14:24770. [PMID: 39433868 PMCID: PMC11493967 DOI: 10.1038/s41598-024-75052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Rejection seriously affects the success of kidney transplantations. However, the molecular mechanisms underlying this rejection remain unclear. The GSE21374 and GSE36059 datasets were downloaded from the Gene Expression Omnibus (GEO) database. Next, the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to infer the proportions of 22 immune cells. Moreover, infiltrating immune cell-related genes were identified using weighted gene co-expression network analysis (WGCNA), and enrichment analysis was conducted to observe their biological functions. Extreme Gradient Boosting (XGBoost) and Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression algorithms were used to screen hub genes. Quantitative real-time PCR was conducted to verify the number of immune cells and hub gene expression levels. The rejection and non-rejection groups showed significantly different distributions (P < 0.05) of eight immune cells (B cell memory, Plasma cells, mast cells, follicular helper T cells, T CD8 cells, Macrophages M1, T Cells CD4 memory activated, and gamma delta T cells). Subsequently, CD8A, CRTAM, GBP2, WARS, and VAMP5 were screened as hub genes using the XGBoost and LASSO algorithms and could be used as diagnostic biomarkers. Finally, differential analysis and quantitative real-time PCR suggested that CD8A, CRTAM, GBP2, WARS, and VAMP5 were upregulated in rejection samples compared to non-rejection samples. The present study identified five key infiltrating immune cell-related genes (CD8A, CRTAM, GBP2,WARS, and VAMP5) involved in kidney transplant rejection, which may explain the molecular mechanism of rejection in kidney transplantation development.
Collapse
Affiliation(s)
- Zhangxiao Xu
- Faculty of Life Science and Technology & The affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650302, China
| | - Xun Sun
- The Department of Urology, Kunming First People's Hospital, Affiliated Calmette Hospital of Kunming Medical University, Kunming, 650000, China
| | - Xiaobo Ma
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Bo Tao
- Faculty of Life Science and Technology & The affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650302, China
| | - Jian Wu
- Faculty of Life Science and Technology & The affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650302, China
| | - Yunpeng He
- Faculty of Life Science and Technology & The affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650302, China
| | - Yuan Zhao
- Faculty of Life Science and Technology & The affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650302, China
| | - Hexiang Mao
- Faculty of Life Science and Technology & The affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650302, China
| | - Jie Yang
- Faculty of Life Science and Technology & The affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650302, China
| | - Dehui Jiang
- Faculty of Life Science and Technology & The affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650302, China
| | - Lijun Wang
- Faculty of Life Science and Technology & The affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650302, China.
| | - Chao Song
- Faculty of Life Science and Technology & The affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650302, China.
| |
Collapse
|
6
|
Bromberg JS, Bunnapradist S, Samaniego-Picota M, Anand S, Stites E, Gauthier P, Demko Z, Prewett A, Armer-Cabral M, Marshall K, Kaur N, Bloom MS, Tabriziani H, Bhorade S, Cooper M. Elevation of Donor-derived Cell-free DNA Before Biopsy-proven Rejection in Kidney Transplant. Transplantation 2024; 108:1994-2004. [PMID: 38595232 PMCID: PMC11335081 DOI: 10.1097/tp.0000000000005007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Standard-of-care biomarkers for renal allograft rejection are lagging indicators, signaling existing organ injury. This precludes early intervention, when immunological cascades leading to rejection are most susceptible. Donor-derived cell-free DNA (dd-cfDNA) shows promise as an early indicator of rejection, allowing earlier and possibly more effective treatment. This analysis was designed to assess this promise using real-world dd-cfDNA testing evidence. METHODS This retrospective analysis of the prospective, observational ProActive registry study (NCT04091984) assessed dd-cfDNA and serum creatinine levels before biopsy in 424 patients with ≥1 dd-cfDNA test (n = 1013) in the 6 mo before biopsy. RESULTS Of 4667 enrolled patients, 1631 patients had ≥18 mo of follow-up data, of which 424 had a biopsy and were included in this analysis. Twenty-six biopsies showed antibody-mediated rejection (ABMR), 62 showed T cell-mediated rejection, and 336 showed nonrejection; each from a unique patient. dd-cfDNA fractions were significantly elevated 5 mo before ABMR biopsies, and 2 mo before T cell-mediated rejection biopsies, compared with nonrejection biopsies. In contrast, serum creatinine did not discriminate between rejection and nonrejection in advance, or concurrent with biopsy. Among patients with nonrejection biopsies, estimated glomerular filtration rate was significantly lower in cases with ≥2 increased dd-cfDNA results (≥1%), compared with those with 0 or 1 increased dd-cfDNA result. CONCLUSIONS These data indicate that dd-cfDNA is an early indicator of biopsy-proven rejection, especially ABMR, suggesting a greater role for dd-cfDNA in surveillance to identify patients at high risk of ongoing or future rejection, thus requiring closer monitoring, biopsy, or other management changes.
Collapse
Affiliation(s)
- Jonathan S. Bromberg
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, MD
| | | | | | | | - Erik Stites
- School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO
| | | | | | | | | | | | | | | | | | | | - Matthew Cooper
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
7
|
Halloran PF, Madill-Thomsen K, Aliabadi-Zuckermann AZ, Cadeiras M, Crespo-Leiro MG, Depasquale EC, Deng M, Gökler J, Hall S, Jamil A, Kim DH, Kobashigawa J, Macdonald P, Melenovsky V, Patel J, Potena L, Shah K, Stehlik J, Zuckermann A. Redefining the molecular rejection states in 3230 heart transplant biopsies: Relationships to parenchymal injury and graft survival. Am J Transplant 2024; 24:1414-1426. [PMID: 38527588 DOI: 10.1016/j.ajt.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
The first-generation Molecular Microscope (MMDx) system for heart transplant endomyocardial biopsies used expression of rejection-associated transcripts (RATs) to diagnose not only T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR) but also acute injury. However, the ideal system should detect rejection without being influenced by injury, to permit analysis of the relationship between rejection and parenchymal injury. To achieve this, we developed a new rejection classification in an expanded cohort of 3230 biopsies: 1641 from INTERHEART (ClinicalTrials.gov NCT02670408), plus 1589 service biopsies added to improve the power of the machine learning algorithms. The new system used 6 rejection classifiers instead of RATs and generated 7 rejection archetypes: No rejection, 48%; Minor, 24%; TCMR1, 2.3%; TCMR2, 2.7%; TCMR/mixed, 2.7%; early-stage ABMR, 3.9%; and fully developed ABMR, 16%. Using rejection classifiers eliminated cross-reactions with acute injury, permitting separate assessment of rejection and injury. TCMR was associated with severe-recent injury and late atrophy-fibrosis and rarely had normal parenchyma. ABMR was better tolerated, seldom producing severe injury, but in later biopsies was often associated with atrophy-fibrosis, indicating long-term risk. Graft survival and left ventricular ejection fraction were reduced not only in hearts with TCMR but also in hearts with severe-recent injury and atrophy-fibrosis, even without rejection.
Collapse
Affiliation(s)
- Philip F Halloran
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | - Martin Cadeiras
- Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Marisa G Crespo-Leiro
- Advanced Heart Failure and Heart Transplant Unit, Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | | | - Mario Deng
- Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Johannes Gökler
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Aayla Jamil
- Baylor Scott & White Health, Dallas, Texas, USA
| | - Daniel H Kim
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jon Kobashigawa
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Macdonald
- The Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Vojtech Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Jignesh Patel
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Luciano Potena
- Heart Failure and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Keyur Shah
- Department of Cardiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Josef Stehlik
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Litjens NHR, van der List ACJ, Klepper M, Reijerkerk D, Prevoo F, Betjes MGH. Older age is associated with a distinct and marked reduction of functionality of both alloreactive CD4+ and CD8+ T cells. Front Immunol 2024; 15:1406716. [PMID: 39044836 PMCID: PMC11263037 DOI: 10.3389/fimmu.2024.1406716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Older recipient age is associated with a significant decreased risk for rejection after kidney transplantation which is incompletely understood. Methods In a longitudinal study, circulating alloreactive T cells were assessed of young (≤45 years) and older (≥55 years) stable kidney transplant recipients. Alloreactive T-cells were identified by CD137-expression and phenotype, cytokine producing and proliferative capacity, were evaluated using multiparameter flowcytometry. Results The results show that before transplantation frequencies of alloreactive CD4+ and CD8+ T-cells in older KT-recipients are significantly higher and shifted towards an effector memory-phenotype. However, the frequency of polyfunctional (≥2 pro-inflammatory cytokines) CD4+ T-cells was significantly lower and less IL2 was produced. The frequency of polyfunctional alloreactive CD4+ T-cells and proliferation of alloreactive T-cells donor-specifically declined after transplantation reaching a nadir at 12 months after transplantation, irrespective of age. A striking difference was observed for the proliferative response of alloreactive CD8+ T-cells. This was not only lower in older compared to younger recipients but could also not be restored by exogenous IL2 or IL15 in the majority of older recipients while the response to polyclonal stimulation was unaffected. Conclusion In conclusion, older age is associated with a distinct and marked reduction of functionality of both alloreactive CD4+ and CD8+ T-cells.
Collapse
|
9
|
Suek N, Young T, Fu J. Immune cell profiling in intestinal transplantation. Hum Immunol 2024; 85:110808. [PMID: 38762429 PMCID: PMC11283363 DOI: 10.1016/j.humimm.2024.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
Since the first published case study of human intestinal transplantation in 1967, there have been significant studies of intestinal transplant immunology in both animal models and humans. An improved understanding of the profiles of different immune cell subsets is critical for understanding their contributions to graft outcomes. While different studies have focused on the contribution of one or a few subsets to intestinal transplant, no study has integrated these data for a comprehensive overview of immune dynamics after intestinal transplant. Here, we provide a systematic review of the literature on different immune subsets and discuss their roles in intestinal transplant outcomes on multiple levels, focusing on chimerism and graft immune reconstitution, clonal alloreactivity, and cell phenotype. In Sections 1, 2 and 3, we lay out a shared framework for understanding intestinal transplant, focusing on the mechanisms of rejection or tolerance in the context of mucosal immunology and illustrate the unique role of the bidirectional graft-versus-host (GvH) and host-versus-graft (HvG) alloresponse. In Sections 4, 5 and 6, we further expand upon these concepts as we discuss the contribution of different cell subsets to intestinal transplant. An improved understanding of intestinal transplantation immunology will bring us closer to maximizing the potential of this important treatment.
Collapse
Affiliation(s)
- Nathan Suek
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Tyla Young
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
10
|
Chauvelot L, Barba T, Saison C, Siska E, Kulifaj D, Bakker SJL, Koenig A, Rabeyrin M, Buron F, Picard C, Dijoud F, Manière L, Lina B, Morelon E, Dubois V, Thaunat O. Longitudinal monitoring of Torque Teno virus DNAemia in kidney transplant recipients correlates with long-term complications of inadequate immunosuppression. J Med Virol 2024; 96:e29806. [PMID: 39007420 DOI: 10.1002/jmv.29806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Optimization of individual immunosuppression, which reduces the risks of both graft loss and patients' death, is considered the best approach to improve long-term outcomes of renal transplantation. Torque Teno Virus (TTV) DNAemia has emerged as a potential biomarker reflecting the depth of therapeutic immunosuppression during the initial year post-transplantation. However, its efficacy in long-term monitoring remains uncertain. In a cohort study involving 34 stable kidney transplant recipients and 124 healthy volunteers, we established lower and upper TTV DNAemia thresholds (3.75-5.1 log10 cp/mL) correlating with T-cell activatability, antibody response against flu vaccine, and risk for subsequent serious infections or cancer over 50 months. Validation in an independent cohort of 92 recipients confirmed that maintaining TTV DNAemia within this range in >50% of follow-up time points was associated with reduced risks of complications due to inadequate immunosuppression, including de novo DSA, biopsy-proven antibody-mediated rejection, graft loss, infections, or cancer. Multivariate analysis highlighted "in-target" TTV DNAemia as the sole independent variable significantly linked to decreased risk for long-term complications due to inadequate immunosuppression (odds ratio [OR]: 0.27 [0.09-0.77]; p = 0.019). Our data suggest that the longitudinal monitoring of TTV DNAemia in kidney transplant recipients could help preventing the long-term complications due to inadequate immunosuppression.
Collapse
Affiliation(s)
- Luc Chauvelot
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Groupement Hospitalier Centre, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Thomas Barba
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Groupement Hospitalier Centre, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
- Department of Internal Medicine, Hospices Civils de Lyon, Groupement Hospitalier Centre, Lyon, France
| | - Carole Saison
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- French National Blood Service (EFS), HLA Laboratory, Lyon, France
| | - Evangelia Siska
- BioMérieux SA, 138, Rue Louis PASTEUR, Parc Technologique Delta Sud, Verniolle, France
| | - Dorian Kulifaj
- BioMérieux SA, 138, Rue Louis PASTEUR, Parc Technologique Delta Sud, Verniolle, France
| | - Stephan J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Alice Koenig
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Groupement Hospitalier Centre, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Maud Rabeyrin
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Fanny Buron
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Groupement Hospitalier Centre, Lyon, France
| | - Cécile Picard
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Frédérique Dijoud
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Louis Manière
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Groupement Hospitalier Centre, Lyon, France
| | - Bruno Lina
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Emmanuel Morelon
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Groupement Hospitalier Centre, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Valerie Dubois
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- French National Blood Service (EFS), HLA Laboratory, Lyon, France
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Groupement Hospitalier Centre, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
11
|
Friedmann J, Schuster A, Reichelt-Wurm S, Banas B, Bergler T, Steines L. Serum IL-6 predicts risk of kidney transplant failure independently of immunological risk. Transpl Immunol 2024; 84:102043. [PMID: 38548029 DOI: 10.1016/j.trim.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Interleukin-6 (IL-6) is an important immune mediator and a target for novel antibody therapies. In this study, we aimed to determine whether serum IL-6 levels are associated with immunological risk, allograft rejection and outcomes in kidney transplant (Ktx) patients. We retrospectively analyzed the data of 104 patients who underwent Ktx at our center between 2011 and 2015. The patients were divided into high- and low-risk groups (n = 52 per group) based on panel reactive antibody (PRA) percentage ≥ 35%, the existence of pre-Ktx donor-specific antibodies (DSA), or a previous transplant. IL-6 concentrations were measured before and at 3 months, 12 months, and 3 years after Ktx. Serum IL-6 levels tended to be higher in high-risk patients than in low-risk patients prior to Ktx and at 12 months after Ktx; however, the difference did not reach statistical significance (pre-Ktx, high-risk: 1.995 ± 2.79 pg/ml vs. low-risk: 1.43 ± 1.76 pg/ml, p = 0.051; 12 mo. high-risk: 1.16 ± 1.87 pg/ml vs. low-risk: 0.78 ± 1.13 pg/ml, p = 0.067). IL-6 levels were correlated with the types (no rejection, T cell mediated rejection (TCMR), antibody-mediated rejection (ABMR), or both) and time (<1 year vs. >1 year after Ktx) of rejection, as well as patient and graft survival. Patients with both TCMR and ABMR had significantly higher IL-6 levels at 3 months (14.1 ± 25.2 pg/ml) than patients with ABMR (3.4 ± 4.8 pg/ml, p = 0.017), with TCMR (1.7 ± 1.3 pg/ml, p < 0.001), and without rejection (1.7 ± 1.4 pg/ml, p < 0.001). Three years after Ktx, patients with AMBR had significantly higher IL-6 levels (5.30 ± 7.66 pg/ml) than patients with TCMR (1.81 ± 1.61 pg/ml, p = 0.009) and patients without rejection (1.19 ± 0.95 pg/ml; p = 0.001). Moreover, three years after Ktx IL-6 levels were significantly higher in patients with late rejections (3.5 ± 5.4 pg/ml) than those without rejections (1.2 ± 1.0 pg/ml) (p = 0.006). The risk of death-censored graft failure was significantly increased in patients with elevated IL-6 levels at 12 months (IL-6 level > 1.396 pg/ml, HR 4.61, p = 0.007) and 3 years (IL-6 level > 1.976 pg/ml, HR 6.75, p = 0.003), but elevated IL-6 levels were not associated with a higher risk of death. Overall, our study highlights IL-6 as a risk factor for allograft failure and confirms that IL-6 levels are higher in patients developing ABMR compared to TCMR alone or no rejection.
Collapse
Affiliation(s)
- Julius Friedmann
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | | | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany; Department of Nephrology, Hospital Ingolstadt, Ingolstadt, Germany
| | - Louisa Steines
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
12
|
Wu L, van Heugten MH, van den Bosch TPP, Duimel H, López-Iglesias C, Hesselink DA, Baan CC, Boer K. Polarized HLA Class I Expression on Renal Tubules Hinders the Detection of Donor-Specific Urinary Extracellular Vesicles. Int J Nanomedicine 2024; 19:3497-3511. [PMID: 38628433 PMCID: PMC11020244 DOI: 10.2147/ijn.s446525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Kidney transplantation is the optimal treatment for patients with end-stage kidney disease. Donor-specific urinary extracellular vesicles (uEVs) hold potential as biomarkers for assessing allograft status. We aimed to develop a method for identifying donor-specific uEVs based on human leukocyte antigen (HLA) mismatching with the kidney transplant recipients (KTRs). Patients and Methods Urine and plasma were obtained from HLA-A2+ donors and HLA-A2- KTRs pre-transplant. CD9 (tetraspanin, EV marker) and HLA-A2 double-positive (CD9+ HLA-A2+) EVs were quantified using isolation-free imaging flow cytometry (IFCM). Healthy individuals' urine was used to investigate CD9+ HLA-class-I+ uEV quantification using IFCM, time-resolved fluoroimmunoassay (TR-FIA), and immunogold staining cryo-electron microscopy (cryo-EM). Culture-derived CD9+ HLA-class-I+ EVs were spiked into the urine to investigate urine matrix effects on uEV HLA detection. Deceased donor kidneys and peritumoral kidney tissue were used for HLA class I detection with histochemistry. Results The concentrations of CD9+ HLA-A2+ EVs in both donor and recipient urine approached the negative (detergent-treated) control levels for IFCM and were significantly lower than those observed in donor plasma. In parallel, universal HLA class I+ uEVs were similarly undetectable in the urine and uEV isolates compared with plasma, as verified by IFCM, TR-FIA, and cryogenic electron microscopy. Culture supernatant containing HLA class I+ vesicles from B, T, and human proximal tubule cells were spiked into the urine, and these EVs remained stable at 37°C for 8 hours. Immunohistochemistry revealed that HLA class I was predominantly expressed on the basolateral side of renal tubules, with limited expression on their urine/apical side. Conclusion The detection of donor-specific uEVs is hindered by the limited release of HLA class I+ EVs from the kidney into the urine, primarily due to the polarized HLA class I expression on renal tubules. Identifying donor-specific uEVs requires further advancements in recognizing transplant-specific uEVs and urine-associated markers.
Collapse
Affiliation(s)
- Liang Wu
- Department of Nephrology, the First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, People’s Republic of China
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Martijn H van Heugten
- University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | | | - Hans Duimel
- The Microscopy CORE Laboratory at the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- The Microscopy CORE Laboratory at the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Dennis A Hesselink
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Carla C Baan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Karin Boer
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Luo S, Nie M, Song L, Xie Y, Zhong M, Tan S, An R, Li P, Tan L, Xie X. Characteristic changes in blood routine and peripheral blood lymphocyte subpopulations in recipients of different types of rejection. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:417-425. [PMID: 38970516 PMCID: PMC11208394 DOI: 10.11817/j.issn.1672-7347.2024.230543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 07/08/2024]
Abstract
OBJECTIVES Rejection remains the most important factor limiting the survival of transplanted kidneys. Although a pathological biopsy of the transplanted kidney is the gold standard for diagnosing rejection, its limitations prevent it from being used as a routine monitoring method. Recently, peripheral blood lymphocyte subpopulation testing has become an important means of assessing the body's immune system, however, its application value and strategy in the field of kidney transplantation need further exploration. Additionally, the development and utilization of routine test parameters are also important methods for exploring diagnostic strategies and predictive models for kidney transplant diseases. This study aims to explore the correlation between peripheral blood lymphocyte subpopulations and T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR), as well as their diagnostic value, in conjunction with routine blood tests. METHODS A total of 154 kidney transplant recipients, who met the inclusion and exclusion criteria and were treated at the Second Xiangya Hospital of Central South University from January to December, 2021, were selected as the study subjects. They were assigned into a stable group, a TCMR group, and an ABMR group, based on the occurrence and type of rejection. The basic and clinical data of these recipients were retrospectively analyzed and compared among the 3 groups. The transplant kidney function, routine blood tests, and peripheral blood lymphocyte subpopulation data of the TCMR group and the ABMR group before rejection treatment were compared with those of the stable group. RESULTS The stable, TCMR group, and ABMR group showed no statistically significant differences in immunosuppressive maintenance regimens or sources of transplanted kidneys (all P>0.05). However, the post-transplant duration was significantly longer in the ABMR group compared with the stable group (P<0.001) and the TCMR group (P<0.05). Regarding kidney function, serum creatinine levels in the ABMR group were higher than in the stable group and the TCMR group (both P<0.01), with the TCMR group also showing higher levels than the stable group (P<0.01). Both TCMR and ABMR groups had significantly higher blood urea nitrogen levels than the stable group (P<0.01), with no statistically significant difference between TCMR and ABMR groups (P>0.05). The estimated glomerular filtration rate (eGFR) was lower in both TCMR and ABMR groups compared with the stable group (both P<0.01). In routine blood tests, the ABMR group had lower hemoglobin, red blood cell count, and platelet count than the stable group (all P<0.05). The TCMR group had higher neutrophil percentage (P<0.05) and count (P<0.05) than the stable group, and the ABMR group had a higher neutrophil percentage than the stable group (P<0.05). The eosinophil percentage and count in the TCMR group were lower than in the stable and ABMR groups (all P<0.05). Both TCMR and ABMR groups had lower basophil percentage and count, as well as lower lymphocyte percentage and count, compared with the stable group (all P<0.05). There were no significant differences in monocyte percentage and count among the 3 groups (all P>0.05). In lymphocyte subpopulations, the TCMR and ABMR groups had lower counts of CD45+ cells and T cells compared with the stable group (all P<0.05). The TCMR group also had lower counts of CD4+ T cells, NK cells, and B cells than the stable group (all P<0.05). There were no significant differences in the T cell percentage, CD4+ T cell percentage, CD8+ T cell percentage and their counts, CD4+/CD8+ T cell ratio, NK cell percentage, and B cell percentage among the stable, TCMR, and ABMR groups (all P>0.05). CONCLUSIONS The occurrence of rejection leads to impaired transplant kidney function, accompanied by characteristic changes in some parameters of routine blood tests and peripheral blood lymphocyte subpopulations in kidney transplant recipients. The different characteristics of changes in some parameters of routine blood tests and peripheral blood lymphocyte subpopulations during TCMR and ABMR may help predict and diagnose rejection and differentiate between TCMR and ABMR.
Collapse
Affiliation(s)
- Shuaiyu Luo
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011.
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Manhua Nie
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Lei Song
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Yixin Xie
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Mingda Zhong
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Shubo Tan
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
- Department of Urology, Institute of Urology Transplantation, Second Hospital, University of South China, Hengyang Hunan 421001, China
| | - Rong An
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Pan Li
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Liang Tan
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011.
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Xubiao Xie
- Department of Kidney Transplantation, Second Xiangya Hospital, Central South University, Changsha 410011.
- Clinical Research Center for Organ Transplantation in Hunan Province, Second Xiangya Hospital, Central South University, Changsha 410011.
| |
Collapse
|
14
|
Zhang H, Haun RS, Collin F, Cassol C, Napier JOH, Wilson J, Hassen S, Ararat K, Boils C, Messias N, Caza TN, Cossey LN, Sharma S, Ambruzs JM, Agrawal N, Shekhtman G, Tian W, Srinivas T, Qu K, Woodward RN, Larsen CP, Stone S, Coley SM. Development and Validation of a Multiclass Model Defining Molecular Archetypes of Kidney Transplant Rejection: A Large Cohort Study of the Banff Human Organ Transplant Gene Expression Panel. J Transl Med 2024; 104:100304. [PMID: 38092179 DOI: 10.1016/j.labinv.2023.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 01/15/2024] Open
Abstract
Gene expression profiling from formalin-fixed paraffin-embedded (FFPE) renal allograft biopsies is a promising approach for feasibly providing a molecular diagnosis of rejection. However, large-scale studies evaluating the performance of models using NanoString platform data to define molecular archetypes of rejection are lacking. We tested a diverse retrospective cohort of over 1400 FFPE biopsy specimens, rescored according to Banff 2019 criteria and representing 10 of 11 United Network of Organ Sharing regions, using the Banff Human Organ Transplant panel from NanoString and developed a multiclass model from the gene expression data to assign relative probabilities of 4 molecular archetypes: No Rejection, Antibody-Mediated Rejection, T Cell-Mediated Rejection, and Mixed Rejection. Using Least Absolute Shrinkage and Selection Operator regularized regression with 10-fold cross-validation fitted to 1050 biopsies in the discovery cohort and technically validated on an additional 345 biopsies, our model achieved overall accuracy of 85% in the discovery cohort and 80% in the validation cohort, with ≥75% positive predictive value for each class, except for the Mixed Rejection class in the validation cohort (positive predictive value, 53%). This study represents the technical validation of the first model built from a large and diverse sample of diagnostic FFPE biopsy specimens to define and classify molecular archetypes of histologically defined diagnoses as derived from Banff Human Organ Transplant panel gene expression profiling data.
Collapse
Affiliation(s)
| | | | | | | | | | - Jon Wilson
- Arkana Laboratories, Little Rock, Arkansas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang D, Zhang H, Lu J, Hu X. Multiomics Data Reveal the Important Role of ANXA2R in T Cell-mediated Rejection After Renal Transplantation. Transplantation 2024; 108:430-444. [PMID: 37677931 PMCID: PMC10798590 DOI: 10.1097/tp.0000000000004754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND T cell-mediated rejection (TCMR) is a severe issue after renal transplantation, but research on its T cell-receptor (TCR) repertoire is lacking. This study intended to elucidate the TCR repertoire landscape in TCMR and hence identify novel potential targets. METHODS A total of 12 multiomics data sets were collected. The TRUST4 algorithm was used to construct and analyze the TCR repertoire in renal allografts with TCMR and stable renal function. Then, novel TCR-related key genes were identified through various criteria and literature research. In bulk transcriptome, cell line, single-cell transcriptome data sets, multiple immune cell infiltration algorithms, and gene set enrichment analysis were used to analyze potential mechanisms of the identified key gene. Twenty-three pathological sections were collected for immunofluorescence staining in the clinical cohort. Finally, the diagnostic and prognostic values of ANXA2R were evaluated in multiple renal transplant data sets. RESULTS Allografts with TCMR showed significantly increased clonotype and specific clonal expansion. ANXA2R was found to be a novel key gene for TCMR and showed strong positive connections with the TCR complex and lymphocyte cells, especially CD8 + T cells. Immunofluorescence staining confirmed the existence of ANXA2R + CD8 + T cells, with their percentage significantly elevated in TCMR compared with stable renal function. Finally, both mRNA and protein levels of ANXA2R showed promising diagnostic and prognostic value for renal transplant recipients. CONCLUSIONS ANXA2R , identified as a novel TCR-related gene, had critical roles in clinicopathology, diagnosis, and prognosis in renal transplantation, which offered promising potential therapeutic targets.
Collapse
Affiliation(s)
- Di Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - He Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jun Lu
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Betjes MGH, Kal-van Gestel J, Roodnat JI, de Weerd AE. The Incidence of Antibody-Mediated Rejection Is Age-Related, Plateaus Late After Kidney Transplantation, and Contributes Little to Graft Loss in the Older Recipients. Transpl Int 2023; 36:11751. [PMID: 38188697 PMCID: PMC10768842 DOI: 10.3389/ti.2023.11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
It is not known whether antibody-mediated rejection (ABMR) is age-related, whether it plateaus late after transplantation, and to what extent it contributes to graft loss in older recipients. Patients transplanted between 2010 and 2015 (n = 1,054) in a single center had regular follow-up until January 2023. Recipients were divided into age groups at transplantation: 18-39 years ("young"), 40-55 years ("middle age"), and >55 years ("elderly"). Ten years after transplantation the cumulative % of recipients with ABMR was 17% in young, 15% in middle age, and 12% in elderly recipients (p < 0.001). The cumulative incidence of ABMR increased over time and plateaued 8-10 years after transplantation. In the elderly, with a median follow-up of 7.5 years, on average 30% of the recipients with ABMR died with a functional graft and ABMR contributed only 4% to overall graft loss in this group. These results were cross-validated in a cohort of recipients with >15 years follow-up. Multivariate cox-regression analysis showed that increasing recipient age was independently associated with decreasing risk for ABMR. In conclusion, the cumulative risk for ABMR is age-dependent, plateaus late after transplantation, and contributes little to overall graft loss in older recipients.
Collapse
Affiliation(s)
- Michiel G. H. Betjes
- Rotterdam Transplantation Institute, Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | |
Collapse
|
17
|
Abinti M, Favi E, Alfieri CM, Zanoni F, Armelloni S, Ferraresso M, Cantaluppi V, Castellano G. Update on current and potential application of extracellular vesicles in kidney transplantation. Am J Transplant 2023; 23:1673-1693. [PMID: 37517555 DOI: 10.1016/j.ajt.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Kidney transplantation (KT) is the best treatment for end-stage kidney disease. However, early diagnosis of graft injury remains challenging, mainly because of the lack of accurate and noninvasive diagnostic techniques. Improving graft outcomes is equally demanding, as is the development of innovative therapies. Many research efforts are focusing on extracellular vesicles, cellular particles free in each body fluid that have shown promising results as precise markers of damage and potential therapeutic targets in many diseases, including the renal field. In fact, through their receptors and cargo, they act in damage response and immune modulation. In transplantation, they may be used to determine organ quality and aging, the presence of delayed graft function, rejection, and many other transplant-related pathologies. Moreover, their low immunogenicity and safe profile make them ideal for drug delivery and the development of therapies to improve KT outcomes. In this review, we summarize current evidence about extracellular vesicles in KT, starting with their characteristics and major laboratory techniques for isolation and characterization. Then, we discuss their use as potential markers of damage and as therapeutic targets, discussing their promising use in clinical practice as a form of liquid biopsy.
Collapse
Affiliation(s)
- Matteo Abinti
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Evaldo Favi
- Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Carlo Maria Alfieri
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Francesca Zanoni
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Silvia Armelloni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Mariano Ferraresso
- Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplant Unit, Department of Translational Medicine (DIMET), University of Piemonte Orientale (UPO), "Maggiore della Carita" University Hospital, Novara, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
18
|
Betriu S, Rovira J, Arana C, García-Busquets A, Matilla-Martinez M, Ramirez-Bajo MJ, Bañon-Maneus E, Lazo-Rodriguez M, Bartoló-Ibars A, Claas FHJ, Mulder A, Heidt S, Juan M, Bayés-Genís B, Campistol JM, Palou E, Diekmann F. Chimeric HLA antibody receptor T cells for targeted therapy of antibody-mediated rejection in transplantation. HLA 2023; 102:449-463. [PMID: 37503860 DOI: 10.1111/tan.15156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
The presence of donor-specific antibodies (DSA), mainly against HLA, increases the risk of allograft rejection. Moreover, antibody-mediated rejection (ABMR) remains an important barrier to optimal long-term outcomes after solid organ transplantation. The development of chimeric autoantibody receptor T lymphocytes has been postulated for targeted therapy of autoimmune diseases. We aimed to develop a targeted therapy for DSA desensitization and ABMR, generating T cells with a chimeric HLA antibody receptor (CHAR) that specifically eliminates DSA-producing B cells. We have genetically engineered an HLA-A2-specific CHAR (A2-CHAR) and transduced it into human T cells. Then, we have performed in vitro experiments such as cytokine measurement, effector cell activation, and cytotoxicity against anti-HLA-A2 antibody-expressing target cells. In addition, we have performed A2-CHAR-Tc cytotoxic assays in an immunodeficient mouse model. A2-CHAR expressing T cells could selectively eliminate HLA-A2 antibody-producing B cells in vitro. The cytotoxic capacity of A2-CHAR expressing T cells mainly depended on Granzyme B release. In the NSG mouse model, A2-CHAR-T cells could identify and eradicate HLA-A2 antibody-producing B cells even when those cells are localized in the bone marrow. This ability is effector:target ratio dependent. CHAR technology generates potent and functional human cytotoxic T cells to target alloreactive HLA class I antibody-producing B cells. Thus, we consider that CHAR technology may be used as a selective desensitization protocol or an ABMR therapy in transplantation.
Collapse
Affiliation(s)
- Sergi Betriu
- Department of Immunology, Clinic Barcelona, Barcelona, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolt Arana
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Nephrology and Kidney Transplantation, Institut Clínic de Nefrologia i Urologia (ICNU), Clínic Barcelona, Barcelona, Spain
| | - Ainhoa García-Busquets
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Marina Matilla-Martinez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Maria J Ramirez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisenda Bañon-Maneus
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | | | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manel Juan
- Department of Immunology, Clinic Barcelona, Barcelona, Spain
| | - Beatriu Bayés-Genís
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Nephrology and Kidney Transplantation, Institut Clínic de Nefrologia i Urologia (ICNU), Clínic Barcelona, Barcelona, Spain
| | - Josep M Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Nephrology and Kidney Transplantation, Institut Clínic de Nefrologia i Urologia (ICNU), Clínic Barcelona, Barcelona, Spain
| | - Eduard Palou
- Department of Immunology, Clinic Barcelona, Barcelona, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nephrology and Kidney Transplantation, Institut Clínic de Nefrologia i Urologia (ICNU), Clínic Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Schmitz R, Manook M, Fitch Z, Anwar I, DeLaura I, Olaso D, Choi A, Yoon J, Bae Y, Song M, Farris AB, Kwun J, Knechtle S. Belatacept and carfilzomib-based treatment for antibody-mediated rejection in a sensitized nonhuman primate kidney transplantation model. FRONTIERS IN TRANSPLANTATION 2023; 2:1230393. [PMID: 38993898 PMCID: PMC11235304 DOI: 10.3389/frtra.2023.1230393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/22/2023] [Indexed: 07/13/2024]
Abstract
Introduction One-third of HLA-incompatible kidney transplant recipients experience antibody mediated rejection (AMR) with limited treatment options. This study describes a novel treatment strategy for AMR consisting of proteasome inhibition and costimulation blockade with or without complement inhibition in a nonhuman primate model of kidney transplantation. Methods All rhesus macaques in the present study were sensitized to maximally MHC-mismatched donors by two sequential skin transplants prior to kidney transplant from the same donor. All primates received induction therapy with rhesus-specific ATG (rhATG) and were maintained on various immunosuppressive regimens. Primates were monitored postoperatively for signs of acute AMR, which was defined as worsening kidney function resistant to high dose steroid rescue therapy, and a rise in serum donor-specific antibody (DSA) levels. Kidney biopsies were performed to confirm AMR using Banff criteria. AMR treatment consisted of carfilzomib and belatacept for a maximum of four weeks with or without complement inhibitor. Results Treatment with carfilzomib and belatacept was well tolerated and no treatment-specific side effects were observed. After initiation of treatment, we observed a reduction of class I and class II DSA in all primates. Most importantly, primates had improved kidney function evident by reduced serum creatinine and BUN as well as increased urine output. A four-week treatment was able to extend graft survival by up to two months. Discussion In summary, combined carfilzomib and belatacept effectively treated AMR in our highly sensitized nonhuman primate model, resulting in normalization of renal function and prolonged allograft survival. This regimen may translate into clinical practice to improve outcomes of patients experiencing AMR.
Collapse
Affiliation(s)
- Robin Schmitz
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Miriam Manook
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Zachary Fitch
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Imran Anwar
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Isabel DeLaura
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Danae Olaso
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Ashley Choi
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Janghoon Yoon
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Yeeun Bae
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Mingqing Song
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Alton B. Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jean Kwun
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Stuart Knechtle
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
20
|
Hara S. The Chronology of Renal Allograft Dysfunction: The Pathological Perspectives. Nephron Clin Pract 2023; 147 Suppl 1:67-73. [PMID: 37573772 DOI: 10.1159/000531575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/22/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Antibody-mediated rejection (ABMR), T-cell-mediated rejection (TCMR), BK polyomavirus nephropathy, and calcineurin inhibitor (CNI) toxicity are all common causes of kidney allograft dysfunction that can affect long-term allograft function. SUMMARY The prevalence of various pathological diagnoses changes over time for both indication and protocol biopsies. Active ABMR and CNI toxic tubulopathy are the leading causes of kidney allograft dysfunction in the early posttransplant period. Active ABMR can also manifest as thrombotic microangiopathy. Acute TCMR, borderline for acute TCMR, and BK polyomavirus nephropathy will occur, then comes a causal peak of renal allograft dysfunction, followed by chronic active ABMR. Active ABMR in the late posttransplant period would progress to chronic active ABMR, indicating sequential evolution from the incipient to advanced phase of chronic active ABMR. CNI toxicity also manifests as chronic lesions of arteriolar hyalinosis. Interstitial fibrosis and tubular atrophy are the result of multiple insults and are linked to underlying diseases, particularly in the late posttransplant period. Even with established pathological criteria of the Banff scheme, it can be still challenging to clearly delineate the causes of the allograft dysfunction, especially in the complicated cases. Understanding the chronological causes of renal allograft dysfunctions improves comprehension of renal allograft pathology. KEY MESSAGES Identifying the time-dependent prevalence of renal allograft dysfunction can be a critical and effective approach to pathological diagnosis.
Collapse
Affiliation(s)
- Shigeo Hara
- Department of Diagnostic Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
21
|
Lin J, Lv J, Yu X, Xue X, Yu S, Wang H, Chen J. Single-Cell Heterogeneity Restorative Chimeric Engineering Nanoparticles for Alleviating Antibody-Mediated Allograft Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34588-34606. [PMID: 37459593 DOI: 10.1021/acsami.3c06885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Disturbance of single-cell transcriptional heterogeneity is an inevitable consequence of persistent donor-specific antibody (DSA) production and allosensitization. However, identifying and efficiently clearing allospecific antibody repertoires to restore single-cell transcriptional profiles remain challenging. Here, inspired by the high affinity of natural bacterial proteins for antibodies, a genetic engineered membrane-coated nanoparticle termed as DSA trapper by the engineering chimeric gene of protein A/G with phosphatidylserine ligands for macrophage phagocytosis was reported. It has been shown that DSA trappers adsorbed alloreactive antibodies with high saturation and activated the heterophagic clearance of antibody complexes, alleviating IgG deposition and complement activation. Remarkably, DSA trappers increased the endothelial protective lineages by 8.39-fold, reversed the highly biased cytotoxicity, and promoted the proliferative profiles of Treg cells, directly providing an obligate immune tolerant niche for single-cell heterogeneity restoration. In the mice of allogeneic transplantation, the DSA trapper spared endothelial from inflammatory degenerative rosette, improved the glomerular filtration rate, and prolonged the survival of allogeneic mice from 23.6 to 78.3 days. In general, by identifying the lineage characteristics of rejection-related antibodies, the chimeric engineered DSA trapper realized immunoadsorption and further phagocytosis of alloantibody complexes to restore the single-cell genetic architecture of the allograft, offering a promising prospect for the treatment of alloantibody-mediated immune injury.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Junhao Lv
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Xianping Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Shiping Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Huiping Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases. Institute of Nephrology, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| |
Collapse
|
22
|
Betjes MGH, De Weerd A. Lowering maintenance immune suppression in elderly kidney transplant recipients; connecting the immunological and clinical dots. Front Med (Lausanne) 2023; 10:1215167. [PMID: 37502354 PMCID: PMC10368955 DOI: 10.3389/fmed.2023.1215167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
The management of long-term immune suppressive medication in kidney transplant recipients is a poorly explored field in the area of transplant medicine. In particular, older recipients are at an increased risk for side effects and have an exponentially increased risk of infection-related death. In contrast, an aged immune system decreases the risk of acute T-cell-mediated rejection in older recipients. Recent advances in alloimmunity research have shown a rapid and substantial decline in polyfunctional, high-risk CD4+ T cells post-transplantation. This lowers the direct alloreactivity responsible for T-cell-mediated rejection, also known as donor-specific hyporesponsiveness. Chronic antibody-mediated rejection (c-aABMR) is the most frequent cause of kidney graft loss in the long term. However, in older adults, c-aABMR as a cause of graft loss is outnumbered by death with a functioning graft. In addition, DSA development and a diagnosis of c-aABMR plateau ~10 years after transplantation, resulting in a very low risk for rejection thereafter. The intensity of immune suppression regimes could likely be reduced accordingly, but trials in this area are scarce. Tacrolimus monotherapy for 1 year after transplantation seems feasible in older kidney transplant recipients with standard immunological risk, showing the expected benefits of fewer infections and better vaccination responses.
Collapse
|
23
|
Aghbash PS, Rasizadeh R, Arefi V, Nahand JS, Baghi HB. Immune-checkpoint expression in antigen-presenting cells (APCs) of cytomegaloviruses infection after transplantation: as a diagnostic biomarker. Arch Microbiol 2023; 205:280. [PMID: 37430000 DOI: 10.1007/s00203-023-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Cytomegalovirus (CMV), a member of the Herpesviridae family, mostly causes only slight feverish symptoms or can be asymptomatic in immunocompetent individuals. However, it is known to be particularly a significant cause of morbidity in immunocompromised patients, including transplant recipients, whose immune system has been weakened due to the consumption of immunosuppressor drugs. Therefore, the diagnosis of CMV infection after transplantation is crucial. New diagnostic methods for the quick detection of CMV have been developed as a result of understanding the clinical importance of invasive CMV. Antigen-presenting cells (APCs) and T cells are important components of the immune system and it may be possible to diagnose viral infections using immunological markers, such as lymphocytosis, cytotoxic T lymphocytes (CTL), and serum cytokine levels. Moreover, PD-1, CTLA 4, and TIGIT, which are expressed on certain T cells and antigen-presenting cells, are over-expressed during the infection. The assessment of CMV infection based on T cell and APC activity, and the expression of immunological checkpoints, can be helpful for the diagnosis of transplant patients at risk for CMV infection. In this review, we will investigate how immune checkpoints affect immune cells and how they impair organ transplantation after CMV infection.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Arefi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
| |
Collapse
|
24
|
Madill-Thomsen KS, Böhmig GA, Bromberg J, Einecke G, Eskandary F, Gupta G, Myslak M, Viklicky O, Perkowska-Ptasinska A, Solez K, Halloran PF. Relating Molecular T Cell-mediated Rejection Activity in Kidney Transplant Biopsies to Time and to Histologic Tubulitis and Atrophy-fibrosis. Transplantation 2023; 107:1102-1114. [PMID: 36575574 PMCID: PMC10125115 DOI: 10.1097/tp.0000000000004396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND We studied the variation in molecular T cell-mediated rejection (TCMR) activity in kidney transplant indication biopsies and its relationship with histologic lesions (particularly tubulitis and atrophy-fibrosis) and time posttransplant. METHODS We examined 175 kidney transplant biopsies with molecular TCMR as defined by archetypal analysis in the INTERCOMEX study ( ClinicalTrials.gov #NCT01299168). TCMR activity was defined by a molecular classifier. RESULTS Archetypal analysis identified 2 TCMR classes, TCMR1 and TCMR2: TCMR1 had higher TCMR activity and more antibody-mediated rejection ("mixed") activity and arteritis but little hyalinosis, whereas TCMR2 had less TCMR activity but more atrophy-fibrosis. TCMR1 and TCMR2 had similar levels of molecular injury and tubulitis. Both TCMR1 and TCMR2 biopsies were uncommon after 2 y posttransplant and were rare after 10 y, particularly TCMR1. Within late TCMR biopsies, TCMR classifier activity and activity molecules such as IFNG fell progressively with time, but tubulitis and molecular injury were sustained. Atrophy-fibrosis was increased in TCMR biopsies, even in the first year posttransplant, and rose with time posttransplant. TCMR1 and TCMR2 both reduced graft survival, but in random forests, the strongest determinant of survival after biopsies with TCMR was molecular injury, not TCMR activity. CONCLUSIONS TCMR varies in intensity but is always strongly related to molecular injury and atrophy-fibrosis, which ultimately explains its effect on survival. We hypothesize, based on the reciprocal relationship with hyalinosis, that the TCMR1-TCMR2 gradient reflects calcineurin inhibitor drug underexposure, whereas the time-dependent decline in TCMR activity and frequency after the first year reflects T-cell exhaustion.
Collapse
Affiliation(s)
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Gunilla Einecke
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Marek Myslak
- Department of Clinical Interventions, Department of Nephrology and Kidney Transplantation SPWSZ Hospital, Pomeranian Medical University, Szczecin, Poland
| | - Ondrej Viklicky
- Department of Nephrology and Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Kim Solez
- Department of Laboratory Medicine and Pathology, Division of Anatomical Pathology, University of Alberta, Edmonton, Canada
| | - Philip F. Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
- Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Smith RN, Rosales IA, Tomaszewski KT, Mahowald GT, Araujo-Medina M, Acheampong E, Bruce A, Rios A, Otsuka T, Tsuji T, Hotta K, Colvin R. Utility of Banff Human Organ Transplant Gene Panel in Human Kidney Transplant Biopsies. Transplantation 2023; 107:1188-1199. [PMID: 36525551 PMCID: PMC10132999 DOI: 10.1097/tp.0000000000004389] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Microarray transcript analysis of human renal transplantation biopsies has successfully identified the many patterns of graft rejection. To evaluate an alternative, this report tests whether gene expression from the Banff Human Organ Transplant (B-HOT) probe set panel, derived from validated microarrays, can identify the relevant allograft diagnoses directly from archival human renal transplant formalin-fixed paraffin-embedded biopsies. To test this hypothesis, principal components (PCs) of gene expressions were used to identify allograft diagnoses, to classify diagnoses, and to determine whether the PC data were rich enough to identify diagnostic subtypes by clustering, which are all needed if the B-HOT panel can substitute for microarrays. METHODS RNA was isolated from routine, archival formalin-fixed paraffin-embedded tissue renal biopsy cores with both rejection and nonrejection diagnoses. The B-HOT panel expression of 770 genes was analyzed by PCs, which were then tested to determine their ability to identify diagnoses. RESULTS PCs of microarray gene sets identified the Banff categories of renal allograft diagnoses, modeled well the aggregate diagnoses, showing a similar correspondence with the pathologic diagnoses as microarrays. Clustering of the PCs identified diagnostic subtypes including non-chronic antibody-mediated rejection with high endothelial expression. PCs of cell types and pathways identified new mechanistic patterns including differential expression of B and plasma cells. CONCLUSIONS Using PCs of gene expression from the B-Hot panel confirms the utility of the B-HOT panel to identify allograft diagnoses and is similar to microarrays. The B-HOT panel will accelerate and expand transcript analysis and will be useful for longitudinal and outcome studies.
Collapse
Affiliation(s)
- Rex N Smith
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - Ivy A Rosales
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - Kristen T Tomaszewski
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - Grace T Mahowald
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Milagros Araujo-Medina
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ellen Acheampong
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Amy Bruce
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Andrea Rios
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Takuya Otsuka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Robert Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
26
|
Virmani S, Rao A, Menon MC. Allograft tissue under the microscope: only the beginning. Curr Opin Organ Transplant 2023; 28:126-132. [PMID: 36787238 PMCID: PMC10214011 DOI: 10.1097/mot.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
PURPOSE OF REVIEW To review novel modalities for interrogating a kidney allograft biopsy to complement the current Banff schema. RECENT FINDINGS Newer approaches of Artificial Intelligence (AI), Machine Learning (ML), digital pathology including Ex Vivo Microscopy, evaluation of the biopsy gene expression using bulk, single cell, and spatial transcriptomics and spatial proteomics are now available for tissue interrogation. SUMMARY Banff Schema of classification of allograft histology has standardized reporting of tissue pathology internationally greatly impacting clinical care and research. Inherent sampling error of biopsies, and lack of automated morphometric analysis with ordinal outputs limit its performance in prognostication of allograft health. Over the last decade, there has been an explosion of newer methods of evaluation of allograft tissue under the microscope. Digital pathology along with the application of AI and ML algorithms could revolutionize histopathological analyses. Novel molecular diagnostics such as spatially resolved single cell transcriptomics are identifying newer mechanisms underlying the pathologic diagnosis to delineate pathways of immunological activation, tissue injury, repair, and regeneration in allograft tissues. While these techniques are the future of tissue analysis, costs and complex logistics currently limit their clinical use.
Collapse
Affiliation(s)
- Sarthak Virmani
- Section of Nephrology, Division of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
27
|
Buxeda A, Llinàs-Mallol L, Gimeno J, Redondo-Pachón D, Arias-Cabrales C, Burballa C, Puche A, López-Botet M, Yélamos J, Vilches C, Naesens M, Pérez-Sáez MJ, Pascual J, Crespo M. Microvascular inflammation in the absence of human leukocyte antigen-donor-specific antibody and C4d: An orphan category in Banff classification with cytotoxic T and natural killer cell infiltration. Am J Transplant 2023; 23:464-474. [PMID: 36710135 DOI: 10.1016/j.ajt.2022.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
Isolated microvascular inflammation (iMVI) without HLA donor-specific antibodies or C4d deposition in peritubular capillaries remains an enigmatic phenotype that cannot be categorized as antibody-mediated rejection (ABMR) in recent Banff classifications. We included 221 kidney transplant recipients with biopsies with ABMR (n = 73), iMVI (n = 32), and normal (n = 116) diagnoses. We compared peripheral blood leukocyte distribution by flow cytometry and inflammatory infiltrates in kidney transplant biopsies among groups. Flow cytometry showed fewer lymphocytes and total, CD4+, and CD8+ peripheral T cells in iMVI compared with ABMR and normal cases. ABMR and iMVI had fewer total natural Killer (NK) cells but more NKG2A+ NK cells. Immunohistochemistry indicated that ABMR and iMVI had greater CD3+ and CD68+ glomerular infiltration than normal biopsies, whereas CD8+ and TIA1+ cells showed only increased iMVI, suggesting they are cytotoxic T cells. Peritubular capillaries displayed more CD3+, CD56+, TIA1+, and CD68+ cells in both ABMR and iMVI. In contrast, iMVI had less plasma cell infiltration in peritubular capillaries and interstitial aggregates than ABMR. iMVI displayed decreased circulating T and NK cells mirrored by T cell and NK cell infiltration in the renal allograft, similar to ABMR. However, the lesser plasma cell infiltration in iMVI may suggest an antibody-independent underlying stimulus.
Collapse
Affiliation(s)
- Anna Buxeda
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Laura Llinàs-Mallol
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Javier Gimeno
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Dolores Redondo-Pachón
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carlos Arias-Cabrales
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carla Burballa
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Adrián Puche
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - José Yélamos
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Immunology, Hospital del Mar, Barcelona, Spain
| | - Carlos Vilches
- Immunogenetics-HLA, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - María José Pérez-Sáez
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Julio Pascual
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| |
Collapse
|
28
|
Yamamoto I, Kawabe M, Hayashi A, Kobayashi A, Yamamoto H, Yokoo T. Challenges Posed by the Banff Classification: Diagnosis and Treatment of Chronic Active T-Cell-Mediated Rejection. Nephron Clin Pract 2023; 147 Suppl 1:74-79. [PMID: 36928337 DOI: 10.1159/000530158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
The three primary sites of acute T-cell-mediated rejection (TCMR) in transplanted kidneys are the tubular epithelial cells, interstitium, and the vascular endothelial cells. The pathology of acute lesions is characterized by inflammatory cell infiltration; the final diagnosis suggested by the Banff 2019 classification is guided by grading of tubulitis (the t score), interstitial inflammation (the i score), and endarteritis (the v score). Consistent major issues when using the Banff classification are the etiological classifications of interstitial fibrosis and tubular atrophy (IFTA). From 2015 to 2019, technological advances (i.e., genetic analysis in paraffin sections) increased our understanding of IFTA status in patients with smoldering acute TCMR and the roles played by inflammatory cell infiltration (the i-IFTA score) and tubulitis (the t-IFTA score) in IFTA. These two scores were introduced when establishing the diagnostic criteria for chronic active TCMR. Despite the increase in complexity and the lack of a consensus treatment for chronic active TCMR, the Banff classification may evolve as new techniques (i.e., genetic analysis in paraffin sections and deep learning of renal pathology) are introduced. The Banff conference proceeded as follows. First, lesions were defined. Next, working groups were established to better understand the lesions and to derive better classification methods. Finally, the new Banff classification was developed. This approach will continue to evolve; the Banff classification will become a very useful diagnostic standard. This paper overviews the history of TCMR diagnosis using the Banff classification, and the clinical importance, treatment, and prospects for acute and chronic active TCMR.
Collapse
Affiliation(s)
- Izumi Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mayuko Kawabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ayaka Hayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akimitsu Kobayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyasu Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Santarsiero D, Aiello S. The Complement System in Kidney Transplantation. Cells 2023; 12:cells12050791. [PMID: 36899927 PMCID: PMC10001167 DOI: 10.3390/cells12050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
Collapse
|
30
|
The Molecular Diagnosis Might Be Clinically Useful in Discrepant Kidney Allograft Biopsy Findings: An Analysis of Clinical Outcomes. Transplantation 2023; 107:485-494. [PMID: 36117252 PMCID: PMC9875837 DOI: 10.1097/tp.0000000000004284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The Molecular Microscope Diagnostic System (MMDx) may overcome histology shortcomings. Previous studies have simply examined discrepant findings but have not attempted to determine clinical endpoints. To measure performance, clinical outcomes are strongly required. METHODS This single-center cohort study described discrepancies between MMDx and histology from 51 kidney transplant recipients (KTRs) and analyzed 72 indication biopsies, including 21 follow-up biopsies. Clinical performance was assessed by a combined endpoint of graft failure, rejection on follow-up biopsy, de novo donor-specific antibody, and improvement of kidney allograft function upon antirejection treatment. RESULTS MMDx agreed in 33 (65%) and differed in 18 (35%) of 51 KTRs. Most discrepancies occurred in biopsies called no rejection by MMDx and rejection by histology (15/24, 63%). In contrast, in biopsies called rejection by MMDx, 3 were classified as no rejection by histology (3/27, 11%). Discrepant findings between MMDx and histology occurred following delayed graft function and MMDx from biopsies with a low percentage of cortex. Among 15 biopsies classified as no rejection by MMDx but rejection by histology, the clinical course suggested no rejection in 9 cases. Six KTRs reached the endpoint, showing predominant t ≥ 2 lesions. CONCLUSIONS The most often occurring discrepancy is rejection by histology but no rejection by MMDx. As more KTRs do not meet the combined endpoint for rejection, MMDx might be clinically useful in these discrepant cases. Although strong histological findings have priority in indicating the treatment, clinical implementation of MMDx could strengthen treatment strategies.
Collapse
|
31
|
Llinàs-Mallol L, Raïch-Regué D, Pascual J, Crespo M. Alloimmune risk assessment for antibody-mediated rejection in kidney transplantation: A practical proposal. Transplant Rev (Orlando) 2023; 37:100745. [PMID: 36572001 DOI: 10.1016/j.trre.2022.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Kidney transplantation is the treatment of choice for patients with end-stage renal disease. Although an improvement in graft survival has been observed in the last decades with the use of different immunosuppressive drugs, this is still limited in time with antibody-mediated rejection being a main cause of graft-loss. Immune monitoring and risk assessment of antibody-mediated rejection before and after kidney transplantation with useful biomarkers is key to tailoring treatments to achieve the best outcomes. Here, we provide a review of the rationale and several accessible tools for immune monitoring, from the most classic to the modern ones. Finally, we end up discussing a practical proposal for alloimmune risk assessment in kidney transplantation, including histocompatibility leukocyte antigen (HLA) and non-HLA antibodies, HLA molecular mismatch analysis and characterization of peripheral blood immune cells.
Collapse
Affiliation(s)
- Laura Llinàs-Mallol
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Dàlia Raïch-Regué
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Julio Pascual
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| |
Collapse
|
32
|
Chronic Active T-Cell Mediated Kidney Rejection as a Clinically Significant Type of Allograft Loss? Diagnostics (Basel) 2022; 12:diagnostics12123220. [PMID: 36553226 PMCID: PMC9777502 DOI: 10.3390/diagnostics12123220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The purpose of this article is to assess the present knowledge about chronic active (CA) T-cell mediated rejection (TCMR) of a kidney. In the research authors review current Banff diagnostic criteria used in kidney rejection, focus on their possible future evolution, and investigate the role of currently available molecular methods that could be implemented into the diagnostic scheme. Research also points out previously and currently available treatment methods applied to CA TCMR and takes into account possible side effects consequent upon the therapy. Moreover, attention is being paid to the CA TCMR coincidence with other kidney rejection types such as antibody-mediated rejection (ABMR) and its influence on the treatment approach. Authors also mark the possibility of non-HLA antibodies coexistence in patients with CA TCMR and describe its possible resonance on kidney allograft function. Nonetheless, it seems that current knowledge about CA TCMR is not sufficient and requires further investigation.
Collapse
|
33
|
Johnson AC, Silva JAF, Kim SC, Larsen CP. Progress in kidney transplantation: The role for systems immunology. Front Med (Lausanne) 2022; 9:1070385. [PMID: 36590970 PMCID: PMC9800623 DOI: 10.3389/fmed.2022.1070385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
The development of systems biology represents an immense breakthrough in our ability to perform translational research and deliver personalized and precision medicine. A multidisciplinary approach in combination with use of novel techniques allows for the extraction and analysis of vast quantities of data even from the volume and source limited samples that can be obtained from human subjects. Continued advances in microfluidics, scalability and affordability of sequencing technologies, and development of data analysis tools have made the application of a multi-omics, or systems, approach more accessible for use outside of specialized centers. The study of alloimmune and protective immune responses after solid organ transplant offers innumerable opportunities for a multi-omics approach, however, transplant immunology labs are only just beginning to adopt the systems methodology. In this review, we focus on advances in biological techniques and how they are improving our understanding of the immune system and its interactions, highlighting potential applications in transplant immunology. First, we describe the techniques that are available, with emphasis on major advances that allow for increased scalability. Then, we review initial applications in the field of transplantation with a focus on topics that are nearing clinical integration. Finally, we examine major barriers to adapting these methods and discuss potential future developments.
Collapse
|
34
|
Bouchet A, Muller B, Olagne J, Barba T, Joly M, Obrecht A, Rabeyrin M, Dijoud F, Picard C, Mezaache S, Sicard A, Koenig A, Parissiadis A, Dubois V, Morelon E, Caillard S, Thaunat O. Evolution of humoral lesions on follow-up biopsy stratifies the risk for renal graft loss after antibody-mediated rejection treatment. Nephrol Dial Transplant 2022; 37:2555-2568. [PMID: 35675302 DOI: 10.1093/ndt/gfac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The standard-of-care protocol, based on plasma exchanges, high-dose intravenous immunoglobulin and optimization of maintenance immunosuppression, can slow down the evolution of antibody-mediated rejection (AMR), but with high interindividual variability. Identification of a reliable predictive tool of the response to AMR treatment is a mandatory step for personalization of the follow-up strategy and to guide second-line therapies. METHODS Interrogation of the electronic databases of 2 French university hospitals (Lyon and Strasbourg) retrospectively identified 81 renal transplant recipients diagnosed with AMR without chronic lesions (cg score ≤1) at diagnosis and for whom a follow-up biopsy had been performed 3-6 months after initiation of therapy. RESULTS The evolution of humoral lesions on follow-up biopsy (disappearance versus persistence versus progression) correlated with the risk for allograft loss (logrank test, P = .001). Patients with disappearance of humoral lesions had ∼80% graft survival at 10 years. The hazard ratio for graft loss in multivariate analysis was 3.91 (P = .04) and 5.15 (P = .02) for patients with persistence and progression of lesions, respectively. The non-invasive parameters classically used to follow the intensity of humoral alloimmune response (evolution of immunodominant DSA mean fluorescence intensity) and the decline of renal graft function (estimated glomerular filtration rate decrease and persistent proteinuria) showed little clinical value to predict the histological response to AMR therapy. CONCLUSION We conclude that invasive monitoring of the evolution of humoral lesions by the mean of follow-up biopsy performed 3-6 months after the initiation of therapy is an interesting tool to predict long-term outcome after AMR treatment.
Collapse
Affiliation(s)
- Antonin Bouchet
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Unité de Formation et de Recherche de Médecine Lyon Est, Université Claude-Bernard Lyon I, Lyon, France
| | - Brieuc Muller
- Service de Néphrologie et Transplantation, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jerome Olagne
- Service de Néphrologie et Transplantation, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Thomas Barba
- Unité de Formation et de Recherche de Médecine Lyon Est, Université Claude-Bernard Lyon I, Lyon, France.,Institut National de la Santé et de la Recherche Médicale U1111, Lyon, France
| | - Mélanie Joly
- Service de Néphrologie et Transplantation, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Augustin Obrecht
- Service de Néphrologie et Transplantation, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Maud Rabeyrin
- Institut de Pathologie Multisite, Groupement Hospitalier Est, Bron, France
| | - Frédérique Dijoud
- Institut de Pathologie Multisite, Groupement Hospitalier Est, Bron, France
| | - Cécile Picard
- Institut de Pathologie Multisite, Groupement Hospitalier Est, Bron, France
| | - Sarah Mezaache
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Unité de Formation et de Recherche de Médecine Lyon Est, Université Claude-Bernard Lyon I, Lyon, France
| | - Antoine Sicard
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Unité de Formation et de Recherche de Médecine Lyon Est, Université Claude-Bernard Lyon I, Lyon, France
| | - Alice Koenig
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Unité de Formation et de Recherche de Médecine Lyon Est, Université Claude-Bernard Lyon I, Lyon, France.,Institut National de la Santé et de la Recherche Médicale U1111, Lyon, France
| | - Anne Parissiadis
- Laboratoire d'Histocompatibilité, Etablissement Français du Sang, Strasbourg, France
| | - Valérie Dubois
- Institut National de la Santé et de la Recherche Médicale U1111, Lyon, France.,Laboratoire d'Histocompatibilité, Etablissement Français du Sang, Lyon, France
| | - Emmanuel Morelon
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Unité de Formation et de Recherche de Médecine Lyon Est, Université Claude-Bernard Lyon I, Lyon, France.,Institut National de la Santé et de la Recherche Médicale U1111, Lyon, France
| | - Sophie Caillard
- Service de Néphrologie et Transplantation, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Thaunat
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Unité de Formation et de Recherche de Médecine Lyon Est, Université Claude-Bernard Lyon I, Lyon, France.,Institut National de la Santé et de la Recherche Médicale U1111, Lyon, France
| |
Collapse
|
35
|
Liu X, Liu D, Zhou S, Jiang W, Zhang J, Hu J, Liao G, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Zhao M, Liu Y. CARARIME: Interactive web server for comprehensive analysis of renal allograft rejection in immune microenvironment. Front Immunol 2022; 13:1026280. [DOI: 10.3389/fimmu.2022.1026280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundRenal transplantation is a very effective treatment for renal failure patients following kidney transplant. However, the clinical benefit is restricted by the high incidence of organ rejection. Therefore, there exists a wealth of literature regarding the mechanism of renal transplant rejection, including a large library of expression data. In recent years, research has shown the immune microenvironment to play an important role in renal transplant rejection. Nephrology web analysis tools currently exist to address chronic nephropathy, renal tumors and children’s kidneys, but no such tool exists that analyses the impact of immune microenvironment in renal transplantation rejection.MethodsTo fill this gap, we have developed a web page analysis tool called Comprehensive Analysis of Renal Allograft Rerejction in Immune Microenvironment (CARARIME).ResultsCARARIME analyzes the gene expression and immune microenvironment of published renal transplant rejection cohorts, including differential analysis (gene expression and immune cells), prognosis analysis (logistics regression, Univariable Cox Regression and Kaplan Meier), correlation analysis, enrichment analysis (GSEA and ssGSEA), and ROC analysis.ConclusionsUsing this tool, researchers can easily analyze the immune microenvironment in the context of renal transplant rejection by clicking on the available options, helping to further the development of approaches to renal transplant rejection in the immune microenvironment field. CARARIME can be found in http://www.cararime.com.
Collapse
|
36
|
Randhawa P. The MMDx ® diagnostic system: A critical re-appraisal of its knowledge gaps and a call for rigorous validation studies. Clin Transplant 2022; 36:e14747. [PMID: 35678044 DOI: 10.1111/ctr.14747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022]
Abstract
Transcriptomics generates pathogenetic insights not obtainable by histology, but translation of these insights into diagnostic tests is not a trivial task. This opinion-piece critically appraises declarative MMDx statements, such as the infallibility of machine learning algorithms, measurements of gene expression with >99% precision, and "unambiguous reclassifications" of contentious biopsies such as those with borderline change, polyomavirus nephropathy, chronic active T-cell or mixed rejection, isolated intimal arteritis, and renal medullary pathology. It is shown that molecular diagnoses that do not agree with histology cannot be attributed primarily to pathology reading errors. Neither can all molecular calls derived from arbitrary binary thresholds be automatically accepted as the ground truth. Important other sources of discrepancies between clinico-pathologic and molecular calls include: (a) organ being studied, (b) disease definition, (c) clinical histologic, and gene expression heterogeneity within the same diagnostic label, (d) size and composition of comparator groups, (e) molecular noise, (f) variability in output of different machine learning algorithms, and (g) the nonavailability of a molecular classifier for chronic active TCMR. Carefully designed clinical trials are needed to determine which of the proposed indications of MMDx provide incremental value over existing standard of care protocols.
Collapse
Affiliation(s)
- Parmjeet Randhawa
- Division of Transplantation Pathology, Department of Pathology, The Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
37
|
Heo S, Park Y, Lee N, Kim Y, Kim YN, Shin HS, Jung Y, Rim H, Rennke HG, Chandraker A. Lack of Efficacy and Safety of Eculizumab for Treatment of Antibody-Mediated Rejection Following Renal Transplantation. Transplant Proc 2022; 54:2117-2124. [PMID: 36192209 DOI: 10.1016/j.transproceed.2022.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 10/07/2022]
Abstract
BACKGROUND We evaluated the efficacy and safety of eculizumab in comparison with plasmapheresis and intravenous immunoglobulin therapy in renal transplant recipients diagnosed with antibody-mediated rejection (AMR). METHODS This was a multicenter, open-label, prospective, randomized analysis. The patients were randomized by therapy type (eg, eculizumab infusions or standard of care [SOC]: plasmapheresis/intravenous immunoglobulin). The patients (ie, eculizumab arm: 7 patients, SOC arm: 4 patients) were evaluated for the continued presence of donor-specific antibodies (DSAs) and C4d (staining on biopsy), as well as histologic evidence, using repeat renal biopsy after treatment. RESULTS The allograft biopsies revealed that eculizumab did not prevent the progression to transplant glomerulopathy. Only 2 patients in the SOC arm experienced rejection reversal, and no graft losses occurred in either group. After AMR treatment, the DSA titers generally decreased compared to titers taken at the time of AMR diagnosis. There were no serious adverse effects in the eculizumab arm. CONCLUSIONS Eculizumab alone cannot treat AMR effectively and does not prevent acute AMR from progressing to chronic AMR or transplant glomerulopathy. However, it should be considered as a potential alternative therapy because it may be associated with decreased DSA levels.
Collapse
Affiliation(s)
- Sujung Heo
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Youngchan Park
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Nagyeom Lee
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Yanghyeon Kim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Ye Na Kim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Ho Sik Shin
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea.
| | - Yeonsoon Jung
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Hark Rim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Helmut G Rennke
- Renal Pathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Charmetant X, Chen CC, Hamada S, Goncalves D, Saison C, Rabeyrin M, Rabant M, Duong van Huyen JP, Koenig A, Mathias V, Barba T, Lacaille F, le Pavec J, Brugière O, Taupin JL, Chalabreysse L, Mornex JF, Couzi L, Graff-Dubois S, Jeger-Madiot R, Tran-Dinh A, Mordant P, Paidassi H, Defrance T, Morelon E, Badet L, Nicoletti A, Dubois V, Thaunat O. Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation. Sci Transl Med 2022; 14:eabg1046. [PMID: 36130013 DOI: 10.1126/scitranslmed.abg1046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The generation of antibodies against donor-specific major histocompatibility complex (MHC) antigens, a type of donor-specific antibodies (DSAs), after transplantation requires that recipient's allospecific B cells receive help from T cells. The current dogma holds that this help is exclusively provided by the recipient's CD4+ T cells that recognize complexes of recipient's MHC II molecules and peptides derived from donor-specific MHC alloantigens, a process called indirect allorecognition. Here, we demonstrated that, after allogeneic heart transplantation, CD3ε knockout recipient mice lacking T cells generate a rapid, transient wave of switched alloantibodies, predominantly directed against MHC I molecules. This is due to the presence of donor CD4+ T cells within the graft that recognize intact recipient's MHC II molecules expressed by B cell receptor-activated allospecific B cells. Indirect evidence suggests that this inverted direct pathway is also operant in patients after transplantation. Resident memory donor CD4+ T cells were observed in perfusion liquids of human renal and lung grafts and acquired B cell helper functions upon in vitro stimulation. Furthermore, T follicular helper cells, specialized in helping B cells, were abundant in mucosa-associated lymphoid tissue of lung and intestinal grafts. In the latter, more graft-derived passenger T cells correlated with the detection of donor T cells in recipient's circulation; this, in turn, was associated with an early transient anti-MHC I DSA response and worse transplantation outcomes. We conclude that this inverted direct allorecognition is a possible explanation for the early transient anti-MHC DSA responses frequently observed after lung or intestinal transplantations.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Sarah Hamada
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - David Goncalves
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Carole Saison
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Maud Rabeyrin
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Marion Rabant
- Pathology Department, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France
| | | | - Alice Koenig
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Virginie Mathias
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Thomas Barba
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Florence Lacaille
- Pediatric Gastroenterology-Hepatology-Nutrition Unit, Hôpital Universitaire Necker-Enfants malades, 75015 Paris, France
| | - Jérôme le Pavec
- Department of Pulmonology and Lung Transplantation, Marie Lannelongue Hospital, 92350 Le Plessis Robinson, France
| | - Olivier Brugière
- Pulmonology Department, Adult Cystic Fibrosis Centre and Lung Transplantation Department, Foch Hospital, 92150 Suresnes, France
| | - Jean-Luc Taupin
- Laboratory of Immunology and Histocompatibility, Hôpital Saint-Louis APHP, 75010 Paris, France
- INSERM U976 Institut de Recherche Saint-Louis, Université Paris Diderot, 75010 Paris, France
| | - Lara Chalabreysse
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Jean-François Mornex
- Université de Lyon, Université Lyon 1, INRAE, IVPC, UMR754, 69000 Lyon, France
- Department of Pneumology, GHE, Hospices Civils de Lyon, 69000 Lyon, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis, Apheresis, Pellegrin Hospital, 33000 Bordeaux, France
| | - Stéphanie Graff-Dubois
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Raphaël Jeger-Madiot
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Alexy Tran-Dinh
- Université de Paris, LVTS, INSERM U1148, 75018 Paris, France
| | - Pierre Mordant
- Department of Vascular and Thoracic Surgery, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard Hospital, 75018 Paris, France
| | - Helena Paidassi
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Thierry Defrance
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Emmanuel Morelon
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Lionel Badet
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Urology and Transplantation Surgery, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | | | - Valérie Dubois
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| |
Collapse
|
39
|
Halloran PF, Madill‐Thomsen KS, Pon S, Sikosana MLN, Böhmig GA, Bromberg J, Einecke G, Eskandary F, Gupta G, Hidalgo LG, Myslak M, Viklicky O, Perkowska‐Ptasinska A. Molecular diagnosis of ABMR with or without donor-specific antibody in kidney transplant biopsies: Differences in timing and intensity but similar mechanisms and outcomes. Am J Transplant 2022; 22:1976-1991. [PMID: 35575435 PMCID: PMC9540308 DOI: 10.1111/ajt.17092] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We studied the clinical, histologic, and molecular features distinguishing DSA-negative from DSA-positive molecularly defined antibody-mediated rejection (mABMR). We analyzed mABMR biopsies with available DSA assessments from the INTERCOMEX study: 148 DSA-negative versus 248 DSA-positive, compared with 864 no rejection (excluding TCMR and Mixed). DSA-positivity varied with mABMR stage: early-stage (EABMR) 56%; fully developed (FABMR) 70%; and late-stage (LABMR) 58%. DSA-negative patients with mABMR were usually sensitized, 60% being HLA antibody-positive. Compared with DSA-positive mABMR, DSA-negative mABMR was more often C4d-negative; earlier by 1.5 years (average 2.4 vs. 3.9 years); and had lower ABMR activity and earlier stage in molecular and histology features. However, the top ABMR-associated transcripts were identical in DSA-negative versus DSA-positive mABMR, for example, NK-associated (e.g., KLRD1 and GZMB) and IFNG-inducible (e.g., PLA1A). Genome-wide class comparison between DSA-negative and DSA-positive mABMR showed no significant differences in transcript expression except those related to lower intensity and earlier time of DSA-negative ABMR. Three-year graft loss in DSA-negative mABMR was the same as DSA-positive mABMR, even after adjusting for ABMR stage. Thus, compared with DSA-positive mABMR, DSA-negative mABMR is on average earlier, less active, and more often C4d-negative but has similar graft loss, and genome-wide analysis suggests that it involves the same mechanisms. SUMMARY SENTENCE: In 398 kidney transplant biopsies with molecular antibody-mediated rejection, the 150 DSA-negative cases are earlier, less intense, and mostly C4d-negative, but use identical molecular mechanisms and have the same risk of graft loss as the 248 DSA-positive cases.
Collapse
Affiliation(s)
- Philip F. Halloran
- Alberta Transplant Applied Genomics CentreEdmontonAlbertaCanada,Department of Medicine, Division of Nephrology and Transplant ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Shane Pon
- Alberta Transplant Applied Genomics CentreEdmontonAlbertaCanada
| | | | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine IIIMedical University of ViennaViennaAustria
| | | | - Gunilla Einecke
- Department of NephrologyHannover Medical SchoolHannoverGermany
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Gaurav Gupta
- Division of NephrologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Marek Myslak
- Department of Clinical Interventions, Department of Nephrology and Kidney Transplantation SPWSZ HospitalPomeranian Medical UniversitySzczecinPoland
| | - Ondrej Viklicky
- Department of Nephrology and Transplant CenterInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | | | | |
Collapse
|
40
|
Crane C, Loop L, Anterasian C, Geng B, Ingulli E. Balancing B cell responses to the allograft: implications for vaccination. Front Immunol 2022; 13:948379. [PMID: 35967363 PMCID: PMC9363634 DOI: 10.3389/fimmu.2022.948379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Balancing enough immunosuppression to prevent allograft rejection and yet maintaining an intact immune system to respond to vaccinations, eliminate invading pathogens or cancer cells is an ongoing challenge to transplant physicians. Antibody mediated allograft rejection remains problematic in kidney transplantation and is the most common cause of graft loss despite current immunosuppressive therapies. The goal of immunosuppressive therapies is to prevent graft rejection; however, they prevent optimal vaccine responses as well. At the center of acute and chronic antibody mediated rejection and vaccine responses is the B lymphocyte. This review will highlight the role of B cells in alloimmune responses including the dependency on T cells for antibody production. We will discuss the need to improve vaccination rates in transplant recipients and present data on B cell populations and SARS-CoV-2 vaccine response rates in pediatric kidney transplant recipients.
Collapse
Affiliation(s)
- Clarkson Crane
- Department of Pediatrics, Division of Pediatric Nephrology, University of California at San Diego and Rady Children’s Hospital, San Diego, CA, United States
| | - Lauren Loop
- Department of Pediatrics, Division of Allergy and Immunology, University of California at San Diego and Rady Children’s Hospital, San Diego, CA, United States
| | - Christine Anterasian
- Department of Pediatrics, Division of Allergy and Immunology, University of California at San Diego and Rady Children’s Hospital, San Diego, CA, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital, Seattle, WA, United States
| | - Bob Geng
- Department of Pediatrics, Division of Allergy and Immunology, University of California at San Diego and Rady Children’s Hospital, San Diego, CA, United States
| | - Elizabeth Ingulli
- Department of Pediatrics, Division of Pediatric Nephrology, University of California at San Diego and Rady Children’s Hospital, San Diego, CA, United States
- *Correspondence: Elizabeth Ingulli,
| |
Collapse
|
41
|
The CD226/TIGIT axis is involved in T cell hypo-responsiveness appearance in long-term kidney transplant recipients. Sci Rep 2022; 12:11821. [PMID: 35821240 PMCID: PMC9276733 DOI: 10.1038/s41598-022-15705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
T cell exhaustion refers to a dysfunctional state in which effector T cells present a decreased ability to proliferate and to produce cytokines, while the co-expression of inhibitory receptors increases. We investigated global and donor-specific T cell responses in a cohort of stable, living-donor kidney transplant patients that received similar immunosuppression. After transplantation, an increase in the ratio of TIGIT + /CD226 + in mCD4 + T cells (r = 0.47, p = 0.01), and a decrease of CD226 + TIGIT-mCD4 + T cells was observed (r = − 0.55, p = 0.001). This leads to an increase of dysfunctional T cells in patients far from transplantation. In mCD8 + T cells, a decrease of IL-2 production after mitogenic stimulation was observed far from transplantation. Phenotypic analyses revealed an increase of mCD8 + T cells co-expressing PD-1 and TIGIT over time (r = 0.51, p = 0.02). After donor-specific stimulation, the ability of CD4 + T cells to proliferate was decreased compared with third parties. CD4 + T cells expressing CD226 and TIGIT were correlated with allospecific CD4 + proliferation (r = 0.68, p = 0.04). Our study suggests that after kidney transplantation a T cell hyporesponsiveness appears over time, driven by a dysregulation of CD226/TIGIT axis in mCD4 + T cells, associated with an increase of PD1 + TIGIT + in mCD8 + T cells.
Collapse
|
42
|
Alfaro R, Lorente S, Jimenez-Coll V, Martínez-Banaclocha H, Galián JA, Botella C, Moya-Quiles MR, Muro-Pérez M, de la Peña-Moral J, Minguela A, Legaz I, Muro M. Evaluating the Link between BAFF System Gene Expression and Acute Rejection Development in Kidney Transplantation. J Clin Med 2022; 11:jcm11143956. [PMID: 35887720 PMCID: PMC9319040 DOI: 10.3390/jcm11143956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
B-cell activating factor (BAFF) system signaling is critical for B-cell homeostasis, effector functions, and tolerance maintenance in transplants, but it has not been studied in kidney transplant recipients (KTRs). The aim was to analyze the changes in BAFF system expression in KTRs with/without acute rejection (AR/NAR). The BAFF system expression was analyzed by qPCR in 40 KTRs. A meta-analysis of BAFF system expression and histological renal damage was identified by the Chronic Allograft Damage Index (CADI) and performed from the GEO database. Proliferation-inducing ligand (APRIL) expression increased at three- and six-months post-KT (p = 0.014 and p < 0.001). B-cell maturation antigen (BCMA) expression increased at six-months post-KT (p = 0.038). BAFF expression remained stable in NAR-KTRs, but was increased in CADI concerning the No-CADI group at one year (p = 0.008). BCMA expression increased in the CADI group at one- (p = 0.001) and six-years post-KT (p = 0.024). At three months, the transmembrane activator and calcium modulator interactor (TACI) gene significantly elevated KTRs with DSAs (donor-specific antibody; p = 0.034). KTRs with DSAs significantly increase the B-cell activating factor receptor (R-BAFF; p = 0.021) and TACI (p = 0.018) between pre- and three-month post-KT. Changes in the expression of the BAFF system increase during post-KTR in the development of AR and chronic allograft damage, and could be an important pathological tool to detect and prevent kidney graft outcomes.
Collapse
Affiliation(s)
- Rafael Alfaro
- Immunology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (M.M.-P.); (A.M.)
| | - Santiago Lorente
- Nephrology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain;
| | - Víctor Jimenez-Coll
- Immunology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (M.M.-P.); (A.M.)
| | - Helios Martínez-Banaclocha
- Immunology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (M.M.-P.); (A.M.)
| | - José Antonio Galián
- Immunology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (M.M.-P.); (A.M.)
| | - Carmen Botella
- Immunology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (M.M.-P.); (A.M.)
| | - María Rosa Moya-Quiles
- Immunology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (M.M.-P.); (A.M.)
| | - Manuel Muro-Pérez
- Immunology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (M.M.-P.); (A.M.)
| | - Jesús de la Peña-Moral
- Pathology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain;
| | - Alfredo Minguela
- Immunology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (M.M.-P.); (A.M.)
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Faculty of Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
- Correspondence: (I.L.); (M.M.)
| | - Manuel Muro
- Immunology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (M.M.-P.); (A.M.)
- Correspondence: (I.L.); (M.M.)
| |
Collapse
|
43
|
Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection. Proteomes 2022; 10:proteomes10030024. [PMID: 35893765 PMCID: PMC9326686 DOI: 10.3390/proteomes10030024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Renal transplantation is currently the treatment of choice for end-stage kidney disease, enabling a quality of life superior to dialysis. Despite this, all transplanted patients are at risk of allograft rejection processes. The gold-standard diagnosis of graft rejection, based on histological analysis of kidney biopsy, is prone to sampling errors and carries high costs and risks associated with such invasive procedures. Furthermore, the routine clinical monitoring, based on urine volume, proteinuria, and serum creatinine, usually only detects alterations after graft histologic damage and does not differentiate between the diverse etiologies. Therefore, there is an urgent need for new biomarkers enabling to predict, with high sensitivity and specificity, the rejection processes and the underlying mechanisms obtained from minimally invasive procedures to be implemented in routine clinical surveillance. These new biomarkers should also detect the rejection processes as early as possible, ideally before the 78 clinical outputs, while enabling balanced immunotherapy in order to minimize rejections and reducing the high toxicities associated with these drugs. Proteomics of biofluids, collected through non-invasive or minimally invasive analysis, e.g., blood or urine, present inherent characteristics that may provide biomarker candidates. The current manuscript reviews biofluids proteomics toward biomarkers discovery that specifically identify subclinical, acute, and chronic immune rejection processes while allowing for the discrimination between cell-mediated or antibody-mediated processes. In time, these biomarkers will lead to patient risk stratification, monitoring, and personalized and more efficient immunotherapies toward higher graft survival and patient quality of life.
Collapse
|
44
|
Gassen RB, Borges TJ, Pérez-Sáez MJ, Zhang H, Al Jurdi A, Llinàs-Mallol L, Aoyama B, Lima M, Pascual J, Sage PT, Murakami N, Riella LV. T cell depletion increases humoral response by favoring T follicular helper cells expansion. Am J Transplant 2022; 22:1766-1778. [PMID: 35320600 PMCID: PMC9262847 DOI: 10.1111/ajt.17038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/27/2022] [Accepted: 03/19/2022] [Indexed: 01/25/2023]
Abstract
Antibody-mediated rejection is a major cause of long-term graft loss in kidney transplant patients. T follicular helper (Tfh) cells are crucial for assisting B cell differentiation and are required for an efficient antibody response. Anti-thymocyte globulin (ATG) is a widely used lymphocyte-depleting induction therapy. However, less is known about how ATG affects Tfh cell development and donor-specific antibody (DSA) formation. We observed an increase in circulating Tfh cells at 6 months after kidney transplant in patients who received ATG. Using an NP-OVA immunization model, we found that ATG-treated mice had a higher percentage of Tfh cells, germinal center B cells, and higher titers of antigen-specific antibodies compared to controls. ATG-treated animals had lower levels of IL-2, a known Bcl-6 repressor, but higher levels of IL-21, pSTAT3 and Bcl-6, favoring Tfh differentiation. In a mouse kidney transplant model, ATG-treated recipients showed an increase in Tfh cells, DSA and C4d staining in the allograft. Although ATG was effective in depleting T cells, it favored the expansion of Tfh cells following depletion. Concomitant use of IL-2, tacrolimus, or rapamycin with ATG was essential to control Tfh cell expansion. In summary, ATG depletion favors Tfh expansion, enhancing antibody-mediated response.
Collapse
Affiliation(s)
- Rodrigo Benedetti Gassen
- Center of Transplantation Science, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thiago J Borges
- Center of Transplantation Science, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - María José Pérez-Sáez
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Hengcheng Zhang
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ayman Al Jurdi
- Center of Transplantation Science, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Bruno Aoyama
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maurício Lima
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Peter T Sage
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Naoka Murakami
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonardo V. Riella
- Center of Transplantation Science, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, MA, USA
| |
Collapse
|
45
|
Anwar IJ, DeLaura IF, Gao Q, Ladowski J, Jackson AM, Kwun J, Knechtle SJ. Harnessing the B Cell Response in Kidney Transplantation - Current State and Future Directions. Front Immunol 2022; 13:903068. [PMID: 35757745 PMCID: PMC9223638 DOI: 10.3389/fimmu.2022.903068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 01/21/2023] Open
Abstract
Despite dramatic improvement in kidney transplantation outcomes over the last decades due to advent of modern immunosuppressive agents, long-term outcomes remain poor. Antibody-mediated rejection (ABMR), a B cell driven process, accounts for the majority of chronic graft failures. There are currently no FDA-approved regimens for ABMR; however, several clinical trials are currently on-going. In this review, we present current mechanisms of B cell response in kidney transplantation, the clinical impact of sensitization and ABMR, the B cell response under current immunosuppressive regimens, and ongoing clinical trials for ABMR and desensitization treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
46
|
Betjes MGH, Roelen DL, van Agteren M, Kal-van Gestel J. Causes of Kidney Graft Failure in a Cohort of Recipients With a Very Long-Time Follow-Up After Transplantation. Front Med (Lausanne) 2022; 9:842419. [PMID: 35733857 PMCID: PMC9207199 DOI: 10.3389/fmed.2022.842419] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/05/2022] [Indexed: 01/03/2023] Open
Abstract
Background Biopsy-proven causes of graft loss many years after kidney transplantation are scarcely documented. Methods Patients transplanted between 1995 and 2005 (n = 737) in a single center were followed on a regular basis until 2021. The recipients were divided according to age at transplantation into 3 groups; 18–39 years (young), 40–55 years (middle age), and older than 55 years (elderly). For cause biopsies of renal transplants were clustered into the categories, rejection, IFTA, return original disease, and diagnosis of de novo kidney disease. Results Rejection was the main cause of graft failure censored for death at every time period after transplantation. The incidence of T cell-mediated rejection (TCMR) became rare 6 years after transplantation while the cumulative incidence of antibody-mediated rejection (ABMR) increased over time (1.1% per year). ABMR was not diagnosed anymore beyond 15 years of follow-up in recipients without pre-transplant donor-specific antibodies (DSA). An episode of TCMR was associated with an increased incidence of ABMR diagnosis in the short-term but did not increase the overall incidence of AMBR not in the long-term. Death as a cause of graft failure was an important competitive risk factor long after transplantation and resulted in a significantly lower frequency of rejection-related graft loss in the elderly group (11 vs. 23% in the young group at 15 year follow-up). Conclusion Rejection is a major cause of graft loss but recipient’s age, time after transplantation, and the presence of DSA before transplantation determine the relative contribution to overall graft loss and the type of rejection involved.
Collapse
Affiliation(s)
- Michiel G. H. Betjes
- Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam Transplantation Institute, Rotterdam, Netherlands
- *Correspondence: Michiel G. H. Betjes, ; orcid.org/0000-0001-9435-6208
| | - Dave L. Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Madelon van Agteren
- Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam Transplantation Institute, Rotterdam, Netherlands
| | - Judith Kal-van Gestel
- Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam Transplantation Institute, Rotterdam, Netherlands
| |
Collapse
|
47
|
Kant S, Brennan DC. Donor Derived Cell Free DNA in Kidney Transplantation: The Circa 2020–2021 Update. Transpl Int 2022; 35:10448. [PMID: 35721467 PMCID: PMC9198901 DOI: 10.3389/ti.2022.10448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
The routine surveillance of kidney transplant allografts has relied on imperfect non-invasive biomarkers such as creatinine and urinary indices, while the gold standard allograft biopsy is associated with risk of bleeding, organ injury and sampling errors. Donor derived cell free DNA (dd-cfDNA) is being employed as a biomarker that addresses limitations of these surveillance methods, albeit has inherent drawbacks. This review provides an update on the enhanced understanding of dd-cfDNA and its expanded use beyond the conventional indication of detecting allograft rejection.
Collapse
Affiliation(s)
- Sam Kant
- Division of Nephrology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Sam Kant,
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
48
|
Wang XH, Shao K, An HM, Zhai XH, Zhou PJ, Chen B. The pharmacokinetics of tacrolimus in peripheral blood mononuclear cells and limited sampling strategy for estimation of exposure in renal transplant recipients. Eur J Clin Pharmacol 2022; 78:1261-1272. [PMID: 35536394 DOI: 10.1007/s00228-021-03215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/05/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE Intracellular exposure of tacrolimus (TAC) may be a better marker of therapeutic effect than whole blood exposure. We aimed to evaluate the influence of genetic polymorphism on the pharmacokinetics of TAC in peripheral blood mononuclear cells (PBMCs) and develop limited sampling strategy (LSS) models to estimate the area under the curve (AUC0-12h) in the PBMC of Chinese renal transplant patients. METHODS Ten blood samples of each of the 23 renal transplant patients were collected 0-12h after 14 (10-18) days of TAC administration. PBMCs were separated and quantified. The TAC level in PBMCs was determined, and pharmacokinetic parameters were estimated by noncompartmental study. The AUC0-12h of TAC in whole blood was estimated by Bayesian approach based on a population pharmacokinetic model established in 65 renal transplant patients. The influence of CYP3A5 and ABCB1 genotypes on exposure was estimated. By applying multiple stepwise linear regression analysis, LSS equations for TAC AUC0-12h in the PMBC of renal transplant patients were established, and the bias and precision of various equations were identified and compared. RESULTS We found a modest correlation between TAC exposure in whole blood and PBMC (r2 = 0.5260). Patients with the CYP3A5 6986GG genotype had a higher AUC0-12h in PBMCs than those with the 6986 AA or GA genotype (P = 0.026). Conversely, patients with the ABCB1 3435TT genotype had a higher AUC0-12h in PBMC than those with the 3435 CC and CT genotypes (P = 0.046). LSS models with 1-4 blood time points were established (r2 = 0.570-0.989). The best model for predicting TAC AUC0-12h was C2-C4-C6-C10 (r2 = 0.989). The model with C0.5-C6 (r2 = 0.849) can be used for outpatients who need monitoring to be performed in a short period. CONCLUSIONS The CYP3A5 and ABCB1 genotypes impact TAC exposure in PBMCs, which may further alter the effects of TAC. The LSS model consisting of 2-4 time points is an effective approach for estimating full TAC AUC0-12h in Chinese renal transplant patients. This approach may provide convenience and the possibility for clinical monitoring of TAC intracellular exposure.
Collapse
Affiliation(s)
- Xi-Han Wang
- Department of Pharmacy, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kun Shao
- Center for Organ Transplantation, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, People's Republic of China
| | - Hui-Min An
- Center for Organ Transplantation, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, People's Republic of China
| | - Xiao-Hui Zhai
- Department of Pharmacy, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Pei-Jun Zhou
- Center for Organ Transplantation, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, People's Republic of China.
| | - Bing Chen
- Department of Pharmacy, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
49
|
Noguchi H, Matsukuma Y, Nakagawa K, Ueki K, Tsuchimoto A, Nakano T, Sato Y, Kaku K, Okabe Y, Nakamura M. Treatment of chronic active T cell-mediated rejection after kidney transplantation: A retrospective cohort study of 37 transplants. Nephrology (Carlton) 2022; 27:632-638. [PMID: 35478476 DOI: 10.1111/nep.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 11/27/2022]
Abstract
AIM Data on the treatment of chronic active T cell-mediated rejection (CA-TCMR) are scarce, and therapeutical strategies for CA-TCMR have not been established. We retrospectively evaluated the outcomes and effects of treatment on pathological and clinical findings in patients with CA-TCMR. METHODS This study comprised 37 patients who underwent kidney transplantation at our institute who were diagnosed with CA-TCMR between January 2018 and December 2020. Patients were followed until October 2021. RESULTS Thirty-two of the 37 patients were treated. During the observation period, two patients died (5%), and five patients developed allograft loss (13%). A univariate Cox proportional hazards model showed that indication biopsy, higher spot urine protein/creatinine ratio (UPCR), and Banff ci/ct scores were risk factors for allograft loss. Of the treated patients, 23 underwent follow-up biopsies. The Wilcoxon signed-rank test showed significant improvement in the Baff scores for "ti", "i-IFTA", "t", and "t-IFTA" after treatment. On pathology, 13 (57%) of the patients who underwent follow-up biopsy improved to "no evidence of rejection" or "borderline change". Assuming that improvement in pathology to "borderline change" or "no evidence of rejection" on follow-up biopsy indicates response to treatment, multivariate logistic analysis showed that lower UPCR was a predictive factor for response to treatment. No specific effect of treatment type was observed. CONCLUSIONS Our results indicate that treatment could improve the pathological findings in CA-TCMR. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Matsukuma
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaneyasu Nakagawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Nephrology, Fukuoka Red Cross Hospital, Fukuoka, Japan
| | - Kenji Ueki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu Sato
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keizo Kaku
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Okabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
50
|
Halloran PF, Reeve J, Madill-Thomsen KS, Demko Z, Prewett A, Billings P. The Trifecta Study: Comparing Plasma Levels of Donor-derived Cell-Free DNA with the Molecular Phenotype of Kidney Transplant Biopsies. J Am Soc Nephrol 2022; 33:387-400. [PMID: 35058354 PMCID: PMC8819982 DOI: 10.1681/asn.2021091191] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The relationship between the donor-derived cell-free DNA fraction (dd-cfDNA[%]) in plasma in kidney transplant recipients at time of indication biopsy and gene expression in the biopsied allograft has not been defined. METHODS In the prospective, multicenter Trifecta study, we collected tissue from 300 biopsies from 289 kidney transplant recipients to compare genome-wide gene expression in biopsies with dd-cfDNA(%) in corresponding plasma samples drawn just before biopsy. Rejection was assessed with the microarray-based Molecular Microscope Diagnostic System using automatically assigned rejection archetypes and molecular report sign-outs, and histology assessments that followed Banff guidelines. RESULTS The median time of biopsy post-transplantation was 455 days (5 days to 32 years), with a case mix similar to that of previous studies: 180 (60%) no rejection, 89 (30%) antibody-mediated rejection (ABMR), and 31 (10%) T cell-mediated rejection (TCMR) and mixed. In genome-wide mRNA measurements, all 20 top probe sets correlating with dd-cfDNA(%) were previously annotated for association with ABMR and all types of rejection, either natural killer (NK) cell-expressed (e.g., GNLY, CCL4, TRDC, and S1PR5) or IFN-γ-inducible (e.g., PLA1A, IDO1, CXCL11, and WARS). Among gene set and classifier scores, dd-cfDNA(%) correlated very strongly with ABMR and all types of rejection, reasonably strongly with active TCMR, and weakly with inactive TCMR, kidney injury, and atrophy fibrosis. Active ABMR, mixed, and active TCMR had the highest dd-cfDNA(%), whereas dd-cfDNA(%) was lower in late-stage ABMR and less-active TCMR. By multivariate random forests and logistic regression, molecular rejection variables predicted dd-cfDNA(%) better than histologic variables. CONCLUSIONS The dd-cfDNA(%) at time of indication biopsy strongly correlates with active molecular rejection and has the potential to reduce unnecessary biopsies. CLINICAL TRIAL REGISTRATION NUMBER NCT04239703.
Collapse
Affiliation(s)
- Philip F. Halloran
- Alberta Transplant Applied Genomics Center, Edmonton, Canada,Department of Medicine, University of Alberta, Edmonton, Canada,Transcriptome Sciences Inc., Edmonton, Canada
| | - Jeff Reeve
- Alberta Transplant Applied Genomics Center, Edmonton, Canada
| | - Katelynn S. Madill-Thomsen
- Alberta Transplant Applied Genomics Center, Edmonton, Canada,Transcriptome Sciences Inc., Edmonton, Canada
| | | | | | | | | |
Collapse
|