1
|
Cruzado JM, Sola A, Pato ML, Manonelles A, Varela C, Setién FE, Quero-Dotor C, Heald JS, Piñeyro D, Amaya-Garrido A, Doladé N, Codina S, Couceiro C, Bolaños N, Gomà M, Vigués F, Merkel A, Romagnani P, Berdasco M. Severe ischemia-reperfusion injury induces epigenetic inactivation of LHX1 in kidney progenitor cells after kidney transplantation. Am J Transplant 2024:S1600-6135(24)00687-7. [PMID: 39521058 DOI: 10.1016/j.ajt.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Severe ischemia-reperfusion injury (IRI) causes acute and chronic kidney allograft damage. As therapeutic interventions to reduce damage are limited yet, research on how to promote kidney repair has gained significant interest. To address this question, we performed genome-wide transcriptome and epigenome profiling in progenitor cells isolated from the urine of deceased (severe IRI) and living (mild IRI) donor human kidney transplants and identified LIM homeobox-1 (LHX1) as an epigenetically regulated gene whose expression depends on the IRI severity. Using a mouse model of IRI, we observed a relationship between IRI severity, LHX1 promoter hypermethylation, and LHX1 gene expression. Using functional studies, we confirmed that LHX1 expression is involved in the proliferation of epithelial tubular cells and podocyte differentiation from kidney progenitor cells. Our results provide evidence that severe IRI may reduce intrinsic mechanisms of kidney repair through epigenetic signaling.
Collapse
Affiliation(s)
- Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain.
| | - Anna Sola
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Miguel L Pato
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Epigenetic Therapies Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Anna Manonelles
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Cristian Varela
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Fernando E Setién
- Cancer Epigenetics Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Carlos Quero-Dotor
- Cancer Epigenetics Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - James S Heald
- Epigenetic Therapies Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - David Piñeyro
- Cancer Epigenetics Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Ana Amaya-Garrido
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Núria Doladé
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Sergi Codina
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Carlos Couceiro
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Núria Bolaños
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Montserrat Gomà
- Department of Pathology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Francesc Vigués
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain; Department of Urology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Angelika Merkel
- Bioinformatics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Epigenetic Therapies Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
| |
Collapse
|
2
|
Tanzi A, Buono L, Grange C, Iampietro C, Brossa A, Arcolino FO, Arigoni M, Calogero R, Perin L, Deaglio S, Levtchenko E, Peruzzi L, Bussolati B. Urine-derived podocytes from steroid resistant nephrotic syndrome patients as a model for renal-progenitor derived extracellular vesicles effect and drug screening. J Transl Med 2024; 22:762. [PMID: 39143486 PMCID: PMC11323595 DOI: 10.1186/s12967-024-05575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Personalized disease models are crucial for evaluating how diseased cells respond to treatments, especially in case of innovative biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells (nKPCs). METHODS EVs were isolated from nKPCs derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport syndrome patient podocytes were characterized and used to assess albumin permeability in response to nKPC-EVs or various drugs. RNA sequencing was conducted to identify commonly modulated pathways after nKPC-EV treatment. siRNA transfection was used to demonstrate the involvement of SUMO1 and SENP2 in the modulation of permeability. RESULTS Treatment with the nKPC-EVs significantly reduced permeability across all the steroid-resistant patients-derived and Alport syndrome-derived podocytes. At variance, podocytes appeared unresponsive to standard pharmacological treatments, with the exception of one line, in alignment with the patient's clinical response at 48 months. By RNA sequencing, only two genes were commonly upregulated in nKPC-EV-treated genetically altered podocytes: small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2). SUMO1 and SENP2 downregulation increased podocyte permeability confirming the role of the SUMOylation pathway. CONCLUSIONS nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocytes with genetic dysfunction, through modulation of SUMOylation, an important pathway for the stability of podocyte slit diaphragm proteins. Our findings also suggest the feasibility of developing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.
Collapse
Affiliation(s)
- Adele Tanzi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Lola Buono
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Corinne Iampietro
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Alessia Brossa
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Fanny Oliveira Arcolino
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
- Emma Centrum of Personalized Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Laura Perin
- Department of Urology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elena Levtchenko
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Licia Peruzzi
- Pediatric Nephrology, ERKNet Center, Regina Margherita Children's Hospital, AOU Città della, Salute e della Scienza di Torino, Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, 10125, Italy.
| |
Collapse
|
3
|
Tanzi A, Buono L, Grange C, Iampietro C, Brossa A, Arcolino FO, Arigoni M, Calogero R, Perin L, Deaglio S, Levtchenko E, Peruzzi L, Bussolati B. Urine-derived podocytes from steroid resistant nephrotic syndrome patients as a model for renal-progenitor derived extracellular vesicles effect and drug screening. RESEARCH SQUARE 2024:rs.3.rs-3959549. [PMID: 38464119 PMCID: PMC10925474 DOI: 10.21203/rs.3.rs-3959549/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Personalized disease models are crucial for assessing the specific response of diseased cells to drugs, particularly novel biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells. Methods EVs were isolated from kidney progenitor cells (nKPCs) derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport patient podocytes were characterized and used to assess albumin permeability in response to various drugs or to nKPC-EVs. RNA sequencing was conducted to identify commonly modulated pathways. Results Podocytes appeared unresponsive to pharmacological treatments, except for a podocyte line demonstrating responsiveness, in alignment with the patient's clinical response at 48 months. At variance, treatment with the nKPC-EVs was able to significantly reduce permeability in all the steroid-resistant patients-derived podocytes as well as in the line of Alport-derived podocytes. RNA sequencing of nKPC-EV-treated podocytes revealed the common upregulation of two genes (small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2)) involved in the SUMOylation pathway, a process recently demonstrated to play a role in slit diaphragm stabilization. Gene ontology analysis on podocyte expression profile highlighted cell-to-cell adhesion as the primary upregulated biological activity in treated podocytes. Conclusions nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocyte dysfunction. Furthermore, our findings suggest the possibility of establishing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.
Collapse
Affiliation(s)
- Adele Tanzi
- University of Turin: Universita degli Studi di Torino
| | - Lola Buono
- University of Turin: Universita degli Studi di Torino
| | | | | | | | | | | | | | | | | | | | - Licia Peruzzi
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino: Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino
| | | |
Collapse
|
4
|
Slaats GG, Chen J, Levtchenko E, Verhaar MC, Arcolino FO. Advances and potential of regenerative medicine in pediatric nephrology. Pediatr Nephrol 2024; 39:383-395. [PMID: 37400705 PMCID: PMC10728238 DOI: 10.1007/s00467-023-06039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 07/05/2023]
Abstract
The endogenous capacity of the kidney to repair is limited, and generation of new nephrons after injury for adequate function recovery remains a need. Discovery of factors that promote the endogenous regenerative capacity of the injured kidney or generation of transplantable kidney tissue represent promising therapeutic strategies. While several encouraging results are obtained after administration of stem or progenitor cells, stem cell secretome, or extracellular vesicles in experimental kidney injury models, very little data exist in the clinical setting to make conclusions about their efficacy. In this review, we provide an overview of the cutting-edge knowledge on kidney regeneration, including pre-clinical methodologies used to elucidate regenerative pathways and describe the perspectives of regenerative medicine for kidney patients.
Collapse
Affiliation(s)
- Gisela G Slaats
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Junyu Chen
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fanny Oliveira Arcolino
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium.
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Cirillo L, De Chiara L, Innocenti S, Errichiello C, Romagnani P, Becherucci F. Chronic kidney disease in children: an update. Clin Kidney J 2023; 16:1600-1611. [PMID: 37779846 PMCID: PMC10539214 DOI: 10.1093/ckj/sfad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 10/03/2023] Open
Abstract
Chronic kidney disease (CKD) is a major healthcare issue worldwide. However, the prevalence of pediatric CKD has never been systematically assessed and consistent information is lacking in this population. The current definition of CKD is based on glomerular filtration rate (GFR) and the extent of albuminuria. Given the physiological age-related modification of GFR in the first years of life, the definition of CKD is challenging per se in the pediatric population, resulting in high risk of underdiagnosis in this population, treatment delays and untailored clinical management. The advent and spreading of massive-parallel sequencing technology has prompted a profound revision of the epidemiology and the causes of CKD in children, supporting the hypothesis that CKD is much more frequent than currently reported in children and adolescents. This acquired knowledge will eventually converge in the identification of the molecular pathways and cellular response to damage, with new specific therapeutic targets to control disease progression and clinical features of children with CKD. In this review, we will focus on recent innovations in the field of pediatric CKD and in particular those where advances in knowledge have become available in the last years, with the aim of providing a new perspective on CKD in children and adolescents.
Collapse
Affiliation(s)
- Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia De Chiara
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Samantha Innocenti
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carmela Errichiello
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Pizzuti V, Donadei C, Balducelli E, Conte D, Gessaroli E, Paris F, Bini C, Demetri M, Di Nunzio M, Corradetti V, Alviano F, La Manna G, Comai G. Urine-Derived Renal Epithelial Cells (URECs) from Transplanted Kidneys as a Promising Immunomodulatory Cell Population. Cells 2023; 12:1630. [PMID: 37371100 DOI: 10.3390/cells12121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney transplantation is a lifesaving procedure for patients with end-stage kidney disease (ESKD). Organs derived from donation after cardiac death (DCD) are constantly increasing; however, DCD often leads to ischaemia-reperfusion (IR) and Acute Kidney Injury (AKI) events. These phenomena increase kidney cell turnover to replace damaged cells, which are voided in urine. Urine-derived renal epithelial cells (URECs) are rarely present in the urine of healthy subjects, and their loss has been associated with several kidney disorders. The present study aimed to characterize the phenotype and potential applications of URECs voided after transplant. The results indicate that URECs are highly proliferating cells, expressing several kidney markers, including markers of kidney epithelial progenitor cells. Since the regulation of the immune response is crucial in organ transplantation and new immunoregulatory strategies are needed, UREC immunomodulatory properties were investigated. Co-culture with peripheral blood mononuclear cells (PBMCs) revealed that URECs reduced PBMC apoptosis, inhibited lymphocyte proliferation, increased T regulatory (Treg) cells and reduced T helper 1 (Th1) cells. URECs from transplanted patients represent a promising cell source for the investigation of regenerative processes occurring in kidneys, and for cell-therapy applications based on the regulation of the immune response.
Collapse
Affiliation(s)
- Valeria Pizzuti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Chiara Donadei
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy
| | - Emma Balducelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Diletta Conte
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Elisa Gessaroli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Francesca Paris
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Claudia Bini
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy
| | - Marcello Demetri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Miriam Di Nunzio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Valeria Corradetti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Gaetano La Manna
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy
| | - Giorgia Comai
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy
| |
Collapse
|
7
|
Dasargyri A, González Rodríguez D, Rehrauer H, Reichmann E, Biedermann T, Moehrlen U. scRNA-Seq of Cultured Human Amniotic Fluid from Fetuses with Spina Bifida Reveals the Origin and Heterogeneity of the Cellular Content. Cells 2023; 12:1577. [PMID: 37371048 DOI: 10.3390/cells12121577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Amniotic fluid has been proposed as an easily available source of cells for numerous applications in regenerative medicine and tissue engineering. The use of amniotic fluid cells in biomedical applications necessitates their unequivocal characterization; however, the exact cellular composition of amniotic fluid and the precise tissue origins of these cells remain largely unclear. Using cells cultured from the human amniotic fluid of fetuses with spina bifida aperta and of a healthy fetus, we performed single-cell RNA sequencing to characterize the tissue origin and marker expression of cultured amniotic fluid cells at the single-cell level. Our analysis revealed nine different cell types of stromal, epithelial and immune cell phenotypes, and from various fetal tissue origins, demonstrating the heterogeneity of the cultured amniotic fluid cell population at a single-cell resolution. It also identified cell types of neural origin in amniotic fluid from fetuses with spina bifida aperta. Our data provide a comprehensive list of markers for the characterization of the various progenitor and terminally differentiated cell types in cultured amniotic fluid. This study highlights the relevance of single-cell analysis approaches for the characterization of amniotic fluid cells in order to harness their full potential in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Daymé González Rodríguez
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, 8006 Zurich, Switzerland
- Pediatric Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
8
|
Dickinson K, Hammond L, Akpa M, Chu LL, Lalonde CT, Goumba A, Goodyer P. WT1 regulates expression of DNA repair gene Neil3 during nephrogenesis. Am J Physiol Renal Physiol 2023; 324:F245-F255. [PMID: 36546838 DOI: 10.1152/ajprenal.00207.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian nephrons arise from a population of nephron progenitor cells (NPCs) expressing the master transcription factor Wilms tumor-1 (WT1), which is crucial for NPC proliferation, migration, and differentiation. In humans, biallelic loss of WT1 precludes nephrogenesis and leads to the formation of Wilms tumor precursor lesions. We hypothesize that WT1 normally primes the NPC for nephrogenesis by inducing expression of NPC-specific DNA repair genes that protect the genome. We analyzed transcript levels for a panel of DNA repair genes in embryonic day 17.5 (E17.5) versus adult mouse kidneys and noted seven genes that were increased >20-fold. We then isolated Cited1+ NPCs from E17.5 kidneys and found that only one gene, nei-like DNA glycosylase 3 (Neil3), was enriched. RNAscope in situ hybridization of E17.5 mouse kidneys showed increased Neil3 expression in the nephrogenic zone versus mature nephron structures. To determine whether Neil3 expression is WT1 dependent, we knocked down Wt1 in Cited1+ NPCs (60% knockdown efficiency) and noted a 58% reduction in Neil3 transcript levels. We showed that WT1 interacts with the Neil3 promoter and that activity of a Neil3 promoter-reporter vector was increased twofold in WT1+ versus WT1- cells. We propose that Neil3 is a WT1-dependent DNA repair gene expressed at high levels in Cited1+ NPCs, where it repairs mutational injury to the genome during nephrogenesis. NEIL3 is likely just one of many such lineage-specific repair mechanisms that respond to genomic injury during kidney development.NEW & NOTEWORTHY We studied the molecular events leading to Wilms tumors as a model for the repair of genomic injury. Specifically, we showed that WT1 activates DNA repair gene Neil3 in nephron progenitor cells. However, our observations offer a much broader principle, demonstrating that the embryonic kidney invests in lineage-specific expression of DNA repair enzymes. Thus, it is conceivable that failure of these mechanisms could lead to a variety of "sporadic" congenital renal malformations and human disease.
Collapse
Affiliation(s)
- Kyle Dickinson
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Leah Hammond
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Murielle Akpa
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Lee Lee Chu
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Caleb Tse Lalonde
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alexandre Goumba
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Paul Goodyer
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|
10
|
Arcolino FO, Hosgood S, Akalay S, Jordan N, Herman J, Elliott T, Veys K, Vermeire K, Sprangers B, Nicholson M, van den Heuvel L, Levtchenko E. De novo SIX2 activation in human kidneys treated with neonatal kidney stem/progenitor cells. Am J Transplant 2022; 22:2791-2803. [PMID: 35913414 PMCID: PMC10087644 DOI: 10.1111/ajt.17164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023]
Abstract
During development, nephron structures are derived from a SIX2+ stem cell population. After 36 weeks of gestation, these cells are exhausted, and no new nephrons are formed. We have previously described a non-invasive strategy to isolate and expand the native SIX2+ kidney stem cells from the urine of preterm neonates, named neonatal kidney stem/progenitor cells (nKSPC). Here, we investigated the safety and feasibility of administering nKSPC into human kidneys discarded for transplantation during normothermic machine perfusion (NMP) and evaluated the regenerative and immunomodulatory potential of nKSPC treatment. We found that nKSPC administration during NMP is safe and feasible. Interestingly, nKSPC induced the de novo expression of SIX2 in proximal tubular cells of the donor kidneys and upregulated regenerative markers such as SOX9 and VEGF. This is the first time that SIX2 re-expression is observed in adult human kidneys. Moreover, nKSPC administration significantly lowered levels of kidney injury biomarkers and reduced inflammatory cytokine levels via the tryptophan-IDO-kynurenine pathway. In conclusion, nKSPC is a novel cell type to be applied in kidney-targeted cell therapy, with the potential to induce an endogenous regenerative process and immunomodulation.
Collapse
Affiliation(s)
- Fanny Oliveira Arcolino
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Paediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Sarah Hosgood
- Department of Surgery, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Sara Akalay
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Paediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Nina Jordan
- Department of Surgery, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Jean Herman
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute,KU Leuven, Leuven, Belgium.,Interface Valorisation Platform (IVAP), KU Leuven, Leuven, Belgium.,Department of Paediatric Nephrology and Solid Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Tegwen Elliott
- Department of Surgery, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Koenraad Veys
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Paediatric Nephrology, KU Leuven, Leuven, Belgium.,Department of Paediatric Nephrology, University Hospitals Leuven, UZ Leuven, Leuven, Belgium
| | - Kurt Vermeire
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute,KU Leuven, Leuven, Belgium.,Interface Valorisation Platform (IVAP), KU Leuven, Leuven, Belgium.,Department of Internal Medicine, Division of Nephrology, University Hospitals Leuven, UZ Leuven, Leuven, Belgium
| | - Michael Nicholson
- Department of Surgery, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Lambertus van den Heuvel
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Paediatric Nephrology, KU Leuven, Leuven, Belgium.,Department of Paediatric Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Paediatric Nephrology, KU Leuven, Leuven, Belgium.,Department of Internal Medicine, Division of Nephrology, University Hospitals Leuven, UZ Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Veys K, Berlingerio SP, David D, Bondue T, Held K, Reda A, van den Broek M, Theunis K, Janssen M, Cornelissen E, Vriens J, Diomedi-Camassei F, Gijsbers R, van den Heuvel L, Arcolino FO, Levtchenko E. Urine-Derived Kidney Progenitor Cells in Cystinosis. Cells 2022; 11:cells11071245. [PMID: 35406807 PMCID: PMC8997687 DOI: 10.3390/cells11071245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/10/2022] Open
Abstract
Nephropathic cystinosis is an inherited lysosomal storage disorder caused by pathogenic variants in the cystinosin (CTNS) gene and is characterized by the excessive shedding of proximal tubular epithelial cells (PTECs) and podocytes into urine, development of the renal Fanconi syndrome and end-stage kidney disease (ESKD). We hypothesized that in compensation for epithelial cell losses, cystinosis kidneys undertake a regenerative effort, and searched for the presence of kidney progenitor cells (KPCs) in the urine of cystinosis patients. Urine was cultured in a specific progenitor medium to isolate undifferentiated cells. Of these, clones were characterized by qPCR, subjected to a differentiation protocol to PTECs and podocytes and assessed by qPCR, Western blot, immunostainings and functional assays. Cystinosis patients voided high numbers of undifferentiated cells in urine, of which various clonal cell lines showed a high capacity for self-renewal and expressed kidney progenitor markers, which therefore were assigned as cystinosis urine-derived KPCs (Cys-uKPCs). Cys-uKPC clones showed the capacity to differentiate between functional PTECs and/or podocytes. Gene addition with wild-type CTNS using lentiviral vector technology resulted in significant reductions in cystine levels. We conclude that KPCs present in the urine of cystinosis patients can be isolated, differentiated and complemented with CTNS in vitro, serving as a novel tool for disease modeling.
Collapse
Affiliation(s)
- Koenraad Veys
- Department of Pediatrics, University Hospitals Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium;
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Sante Princiero Berlingerio
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Dries David
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (D.D.); (R.G.)
| | - Tjessa Bondue
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Katharina Held
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine (LEERM), Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (K.H.); (J.V.)
| | - Ahmed Reda
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Martijn van den Broek
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
- Department of Pediatrics, Division of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Koen Theunis
- Department of Human Genetics, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium;
| | - Mirian Janssen
- Department of Internal Medicine, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Elisabeth Cornelissen
- Department of Pediatrics, Division of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine (LEERM), Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (K.H.); (J.V.)
| | - Francesca Diomedi-Camassei
- Unit of Pathology, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (D.D.); (R.G.)
- Leuven Viral Vector Core, KU Leuven, B-3000 Leuven, Belgium
| | - Lambertus van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
- Department of Pediatrics, Division of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Fanny O. Arcolino
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Elena Levtchenko
- Department of Pediatrics, University Hospitals Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium;
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
- Correspondence: ; Tel.: +32-16-34-13-62
| |
Collapse
|
12
|
Cwiek A, Suzuki M, deRonde K, Conaway M, Bennett KM, El Dahr S, Reidy KJ, Charlton JR. Premature differentiation of nephron progenitor cell and dysregulation of gene pathways critical to kidney development in a model of preterm birth. Sci Rep 2021; 11:21667. [PMID: 34737344 PMCID: PMC8569166 DOI: 10.1038/s41598-021-00489-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Preterm birth is a leading cause of neonatal morbidity. Survivors have a greater risk for kidney dysfunction and hypertension. Little is known about the molecular changes that occur in the kidney of individuals born preterm. Here, we demonstrate that mice delivered two days prior to full term gestation undergo premature cessation of nephrogenesis, resulting in a lower glomerular density. Kidneys from preterm and term groups exhibited differences in gene expression profiles at 20- and 27-days post-conception, including significant differences in the expression of fat-soluble vitamin-related genes. Kidneys of the preterm mice exhibited decreased proportions of endothelial cells and a lower expression of genes promoting angiogenesis compared to the term group. Kidneys from the preterm mice also had altered nephron progenitor subpopulations, early Six2 depletion, and altered Jag1 expression in the nephrogenic zone, consistent with premature differentiation of nephron progenitor cells. In conclusion, preterm birth alone was sufficient to shorten the duration of nephrogenesis and cause premature differentiation of nephron progenitor cells. These candidate genes and pathways may provide targets to improve kidney health in preterm infants.
Collapse
Affiliation(s)
- Aleksandra Cwiek
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
- Cell & Developmental Biology Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Kimberly deRonde
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
| | - Mark Conaway
- University of Virginia Health System, Charlottesville, VA, USA
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samir El Dahr
- Department of Pediatrics, Tulane University School of Medicine and Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Kimberly J Reidy
- Division of Nephrology, Department of Pediatrics, Children's Hospital at Montefiore, New York, NY, USA
| | - Jennifer R Charlton
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA.
| |
Collapse
|
13
|
Jin Y, Zhang M, Li M, Zhang H, Zhang F, Zhang H, Yin Z, Zhou M, Wan X, Li R, Cao C. Generation of Urine-Derived Induced Pluripotent Stem Cell Line from Patients with Acute Kidney Injury. Cell Reprogram 2021; 23:290-303. [PMID: 34648385 DOI: 10.1089/cell.2021.0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Acute kidney injury (AKI) is mainly characterized by rapid decline of renal function. Currently, the strategy of stem cells might be a therapy to treat AKI. The objective of this study was to obtain human urine-derived cells (HUCs) from patients with AKI, followed by establishing induced pluripotent stem (iPS) cell line. We isolated urine cells from patients with AKI and found that the cells could survive long term with epithelioid morphology and maintain a normal karyotype. The cell line had expression of renal-specific markers and renal development-related genes. After induction, the urine cells cotransfecting with TET-ON vectors were converted into iPS cells. The HUC-derived iPS (HUC-iPS) was positive for alkaline phosphatase staining, and had expression of pluripotency markers, consistent with human embryonic fibroblast-derived iPS cell. Notably, HUC-iPS could be induced to undergo directional kidney precursor cells (KPCs) differentiation under defined conditions, and transplantation of KPCs resulted in reducing kidney damage from ischemia-reperfusion injury in mice. Therefore, we successfully established HUC-iPS cell from patients with AKI and provided a novel stem cell resource for cell therapy in AKI.
Collapse
Affiliation(s)
- Yong Jin
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Ekulu PM, Adebayo OC, Decuypere JP, Bellucci L, Elmonem MA, Nkoy AB, Mekahli D, Bussolati B, van den Heuvel LP, Arcolino FO, Levtchenko EN. Novel Human Podocyte Cell Model Carrying G2/G2 APOL1 High-Risk Genotype. Cells 2021; 10:cells10081914. [PMID: 34440683 PMCID: PMC8391400 DOI: 10.3390/cells10081914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/01/2023] Open
Abstract
Apolipoprotein L1 (APOL1) high-risk genotypes (HRG), G1 and G2, increase the risk of various non-diabetic kidney diseases in the African population. To date, the precise mechanisms by which APOL1 risk variants induce injury on podocytes and other kidney cells remain unclear. Trying to unravel these mechanisms, most studies have used animal or cell models created by gene editing. We developed and characterised conditionally immortalised human podocyte cell lines derived from urine of a donor carrying APOL1 HRG G2/G2. Following induction of APOL1 expression by polyinosinic-polycytidylic acid (poly(I:C)), we assessed functional features of APOL1-induced podocyte dysfunction. As control, APOL1 wild type (G0/G0) podocyte cell line previously generated from a Caucasian donor was used. Upon exposure to poly(I:C), G2/G2 and G0/G0 podocytes upregulated APOL1 expression resulting in podocytes detachment, decreased cells viability and increased apoptosis rate in a genotype-independent manner. Nevertheless, G2/G2 podocyte cell lines exhibited altered features, including upregulation of CD2AP, alteration of cytoskeleton, reduction of autophagic flux and increased permeability in an in vitro model under continuous perfusion. The human APOL1 G2/G2 podocyte cell model is a useful tool for unravelling the mechanisms of APOL1-induced podocyte injury and the cellular functions of APOL1.
Collapse
Affiliation(s)
- Pepe M. Ekulu
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, Faculty of Medicine, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Oyindamola C. Adebayo
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jean-Paul Decuypere
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
| | - Linda Bellucci
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy; (L.B.); (B.B.)
| | - Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt;
| | - Agathe B. Nkoy
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, Faculty of Medicine, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Djalila Mekahli
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy; (L.B.); (B.B.)
| | - Lambertus P. van den Heuvel
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatric Nephrology, Radboud University Medical Centre, 6500 Nijmegen, The Netherlands
| | - Fanny O. Arcolino
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Correspondence: ; Tel.: +32-16372647
| | - Elena N. Levtchenko
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Codina S, Manonelles A, Tormo M, Sola A, Cruzado JM. Chronic Kidney Allograft Disease: New Concepts and Opportunities. Front Med (Lausanne) 2021; 8:660334. [PMID: 34336878 PMCID: PMC8316649 DOI: 10.3389/fmed.2021.660334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is increasing in most countries and kidney transplantation is the best option for those patients requiring renal replacement therapy. Therefore, there is a significant number of patients living with a functioning kidney allograft. However, progressive kidney allograft functional deterioration remains unchanged despite of major advances in the field. After the first post-transplant year, it has been estimated that this chronic allograft damage may cause a 5% graft loss per year. Most studies focused on mechanisms of kidney graft damage, especially on ischemia-reperfusion injury, alloimmunity, nephrotoxicity, infection and disease recurrence. Thus, therapeutic interventions focus on those modifiable factors associated with chronic kidney allograft disease (CKaD). There are strategies to reduce ischemia-reperfusion injury, to improve the immunologic risk stratification and monitoring, to reduce calcineurin-inhibitor exposure and to identify recurrence of primary renal disease early. On the other hand, control of risk factors for chronic disease progression are particularly relevant as kidney transplantation is inherently associated with renal mass reduction. However, despite progress in pathophysiology and interventions, clinical advances in terms of long-term kidney allograft survival have been subtle. New approaches are needed and probably a holistic view can help. Chronic kidney allograft deterioration is probably the consequence of damage from various etiologies but can be attenuated by kidney repair mechanisms. Thus, besides immunological and other mechanisms of damage, the intrinsic repair kidney graft capacity should be considered to generate new hypothesis and potential therapeutic targets. In this review, the critical risk factors that define CKaD will be discussed but also how the renal mechanisms of regeneration could contribute to a change chronic kidney allograft disease paradigm.
Collapse
Affiliation(s)
- Sergi Codina
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Manonelles
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Maria Tormo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Sola
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M. Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Bondue T, Arcolino FO, Veys KRP, Adebayo OC, Levtchenko E, van den Heuvel LP, Elmonem MA. Urine-Derived Epithelial Cells as Models for Genetic Kidney Diseases. Cells 2021; 10:cells10061413. [PMID: 34204173 PMCID: PMC8230018 DOI: 10.3390/cells10061413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial cells exfoliated in human urine can include cells anywhere from the urinary tract and kidneys; however, podocytes and proximal tubular epithelial cells (PTECs) are by far the most relevant cell types for the study of genetic kidney diseases. When maintained in vitro, they have been proven extremely valuable for discovering disease mechanisms and for the development of new therapies. Furthermore, cultured patient cells can individually represent their human sources and their specific variants for personalized medicine studies, which are recently gaining much interest. In this review, we summarize the methodology for establishing human podocyte and PTEC cell lines from urine and highlight their importance as kidney disease cell models. We explore the well-established and recent techniques of cell isolation, quantification, immortalization and characterization, and we describe their current and future applications.
Collapse
Affiliation(s)
- Tjessa Bondue
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
| | - Fanny O. Arcolino
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
| | - Koenraad R. P. Veys
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Oyindamola C. Adebayo
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Elena Levtchenko
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lambertus P. van den Heuvel
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatric Nephrology, Radboud University Medical Center, 6500 Nijmegen, The Netherlands
| | - Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt
- Correspondence:
| |
Collapse
|
17
|
Hickson LJ, Herrmann SM, McNicholas BA, Griffin MD. Progress toward the Clinical Application of Mesenchymal Stromal Cells and Other Disease-Modulating Regenerative Therapies: Examples from the Field of Nephrology. KIDNEY360 2021; 2:542-557. [PMID: 34316720 PMCID: PMC8312727 DOI: 10.34067/kid.0005692020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Drawing from basic knowledge of stem-cell biology, embryonic development, wound healing, and aging, regenerative medicine seeks to develop therapeutic strategies that complement or replace conventional treatments by actively repairing diseased tissue or generating new organs and tissues. Among the various clinical-translational strategies within the field of regenerative medicine, several can be broadly described as promoting disease resolution indirectly through local or systemic interactions with a patient's cells, without permanently integrating or directly forming new primary tissue. In this review, we focus on such therapies, which we term disease-modulating regenerative therapies (DMRT), and on the extent to which they have been translated into the clinical arena in four distinct areas of nephrology: renovascular disease (RVD), sepsis-associated AKI (SA-AKI), diabetic kidney disease (DKD), and kidney transplantation (KTx). As we describe, the DMRT that has most consistently progressed to human clinical trials for these indications is mesenchymal stem/stromal cells (MSCs), which potently modulate ischemic, inflammatory, profibrotic, and immune-mediated tissue injury through diverse paracrine mechanisms. In KTx, several early-phase clinical trials have also tested the potential for ex vivo-expanded regulatory immune cell therapies to promote donor-specific tolerance and prevent or resolve allograft injury. Other promising DMRT, including adult stem/progenitor cells, stem cell-derived extracellular vesicles, and implantable hydrogels/biomaterials remain at varying preclinical stages of translation for these renal conditions. To date (2021), no DMRT has gained market approval for use in patients with RVD, SA-AKI, DKD, or KTx, and clinical trials demonstrating definitive, cost-effective patient benefits are needed. Nonetheless, exciting progress in understanding the disease-specific mechanisms of action of MSCs and other DMRT, coupled with increasing knowledge of the pathophysiologic basis for renal-tissue injury and the experience gained from pioneering early-phase clinical trials provide optimism that influential, regenerative treatments for diverse kidney diseases will emerge in the years ahead.
Collapse
Affiliation(s)
- LaTonya J. Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bairbre A. McNicholas
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
- Critical Care Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| |
Collapse
|
18
|
Selection of candidates for foetal intervention in congenital lower urinary tract obstruction. Curr Opin Obstet Gynecol 2021; 33:123-128. [PMID: 33620890 DOI: 10.1097/gco.0000000000000693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Congenital lower urinary tract obstruction (LUTO) is a rare group of conditions characterized by high perinatal morbidity and mortality if associated with oligohydramnios or anhydramnios in early pregnancy. Although foetal intervention has the potential to improve perinatal survival in a select group of foetuses with LUTO, the actual selection of those candidates most likely to benefit from intervention remains challenging. RECENT FINDINGS Foetuses with LUTO who are potential candidates for prenatal intervention should undergo detailed multidisciplinary evaluation to ensure proper assessment and counselling. Using a combination of multiple ultrasound-based renal parameters, including measurement of foetal bladder volumes before and after vesicocentesis and kidney size and morphology, combined with repeated foetal urine biochemistry may allow for better selection than any single test. SUMMARY Foetal intervention should be offered to women carrying a foetus with LUTO only after appropriate evaluation and counselling. A combined approach utilizing ultrasound and biochemical measurements of foetal renal function appears best. Research focusing on the development of more accurate markers is needed.
Collapse
|
19
|
The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2 + Urine Derived Renal Progenitor Cells. Sci Rep 2020; 10:739. [PMID: 31959818 PMCID: PMC6970988 DOI: 10.1038/s41598-020-57723-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Human urine is a non-invasive source of renal stem cells with regeneration potential. Urine-derived renal progenitor cells were isolated from 10 individuals of both genders and distinct ages. These renal progenitors express pluripotency-associated proteins- TRA-1-60, TRA-1-81, SSEA4, C-KIT and CD133, as well as the renal stem cell markers -SIX2, CITED1, WT1, CD24 and CD106. The transcriptomes of all SIX2+ renal progenitors clustered together, and distinct from the human kidney biopsy-derived epithelial proximal cells (hREPCs). Stimulation of the urine-derived renal progenitor cells (UdRPCs) with the GSK3β-inhibitor (CHIR99021) induced differentiation. Transcriptome and KEGG pathway analysis revealed upregulation of WNT-associated genes- AXIN2, JUN and NKD1. Protein interaction network identified JUN- a downstream target of the WNT pathway in association with STAT3, ATF2 and MAPK1 as a putative negative regulator of self-renewal. Furthermore, like pluripotent stem cells, self-renewal is maintained by FGF2-driven TGFβ-SMAD2/3 pathway. The urine-derived renal progenitor cells and the data presented should lay the foundation for studying nephrogenesis in human.
Collapse
|
20
|
Nephrotic syndrome in a dish: recent developments in modeling in vitro. Pediatr Nephrol 2020; 35:1363-1372. [PMID: 30820702 PMCID: PMC7316697 DOI: 10.1007/s00467-019-4203-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
Abstract
Nephrotic syndrome is a heterogeneous disease, and one of the most frequent glomerular disorders among children. Depending on the etiology, it may result in end-stage renal disease and the need for renal replacement therapy. A dysfunctional glomerular filtration barrier, comprising of endothelial cells, the glomerular basement membrane and podocytes, characterizes nephrotic syndrome. Podocytes are often the primary target cells in the pathogenesis, in which not only the podocyte function but also their crosstalk with other glomerular cell types can be disturbed due to a myriad of factors. The pathophysiology of nephrotic syndrome is highly complex and studying molecular mechanisms in vitro requires state-of-the-art cell-based models resembling the in vivo situation and preferably a fully functional glomerular filtration barrier. Current advances in stem cell biology and microfluidic platforms have heralded a new era of three-dimensional (3D) cultures that might have the potential to recapitulate the glomerular filtration barrier in vitro. Here, we highlight the molecular basis of nephrotic syndrome and discuss requirements to accurately study nephrotic syndrome in vitro, including an overview of specific podocyte markers, cutting-edge stem cell organoids, and the implementation of microfluidic platforms. The development of (patho) physiologically relevant glomerular models will accelerate the identification of molecular targets involved in nephrotic syndrome and may be the harbinger of a new era of therapeutic avenues.
Collapse
|
21
|
Woolf AS. Growing a new human kidney. Kidney Int 2019; 96:871-882. [PMID: 31399199 PMCID: PMC6856720 DOI: 10.1016/j.kint.2019.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
There are 3 reasons to generate a new human kidney. The first is to learn more about the biology of the developing and mature organ. The second is to generate tissues with which to model congenital and acquired kidney diseases. In particular, growing human kidneys in this manner ultimately should help us understand the mechanisms of common chronic kidney diseases such as diabetic nephropathy and others featuring fibrosis, as well as nephrotoxicity. The third reason is to provide functional kidney tissues that can be used directly in regenerative medicine therapies. The second and third reasons to grow new human kidneys are especially compelling given the millions of persons worldwide whose lives depend on a functioning kidney transplant or long-term dialysis, as well as those with end-stage renal disease who die prematurely because they are unable to access these treatments. As shown in this review, the aim to create healthy human kidney tissues has been partially realized. Moreover, the technology shows promise in terms of modeling genetic disease. In contrast, barely the first steps have been taken toward modeling nongenetic chronic kidney diseases or using newly grown human kidney tissue for regenerative medicine therapies.
Collapse
Affiliation(s)
- Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, United Kingdom; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| |
Collapse
|
22
|
Manonelles A, Guiteras R, Melilli E, Lazzeri E, Goma M, Crespo E, Bestard O, Sola A, Romagnani P, Cruzado JM. The Presence of Urinary Renal Progenitor Cells in Stable Kidney Transplant Recipients Anticipates Allograft Deterioration. Front Physiol 2018; 9:1412. [PMID: 30364198 PMCID: PMC6191504 DOI: 10.3389/fphys.2018.01412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Long-term kidney transplant outcomes have reached mild improvements recently. Parietal epithelial cells (PECs) are progenitor cells located along the Bowman’s capsule that can be isolated in urine, and display the capability to replace podocytes, but in certain situations cause glomerulosclerosis. In this study, a cohort of stable kidney transplant recipients with 6 months protocol biopsy was divided in two groups depending on the presence (uPEC+; n = 41) or absence (uPEC-; n = 25) of PECs in urine and followed for 2 years. No differences were found between groups at 6 months after transplantation considering clinical variables, alloimmune response, renal function, albuminuria and graft pathology. However, uPEC+ group showed increased podocyturia and a higher rate of proliferating PECs along the Bowman’s capsule, without concomitant enhancement of the CD44 pro-sclerotic activation marker. Accordingly, 2 years follow up evidenced poorer outcomes in the uPEC+ group with worse renal function, increased albuminuria, wider mesangial expansion and more severe IFTA. In summary, chronic allograft damage can progress in certain stable-supposed grafts by podocyte detachment and reactive PECs proliferation, being the uPEC presence a biomarker of this process. This damage-response regenerative process, if sustained in time, might fail in preserve the allograft function and histology. Our study raises new prospects to overcome current limits on long-term allograft results.
Collapse
Affiliation(s)
- Anna Manonelles
- Nephrology Department, L'Hospitalet de Llobregat, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Roser Guiteras
- Experimental Nephrology, Department of Ciències Clíniques, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Edoardo Melilli
- Nephrology Department, L'Hospitalet de Llobregat, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Montse Goma
- Pathology Department, L'Hospitalet de Llobregat, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Elena Crespo
- Experimental Nephrology, Department of Ciències Clíniques, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Oriol Bestard
- Nephrology Department, L'Hospitalet de Llobregat, Hospital Universitari de Bellvitge, Barcelona, Spain.,Experimental Nephrology, Department of Ciències Clíniques, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Anna Sola
- Experimental Nephrology, Department of Ciències Clíniques, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Josep M Cruzado
- Nephrology Department, L'Hospitalet de Llobregat, Hospital Universitari de Bellvitge, Barcelona, Spain.,Experimental Nephrology, Department of Ciències Clíniques, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Marcheque J, Bussolati B, Csete M, Perin L. Concise Reviews: Stem Cells and Kidney Regeneration: An Update. Stem Cells Transl Med 2018; 8:82-92. [PMID: 30302937 PMCID: PMC6312445 DOI: 10.1002/sctm.18-0115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Significant progress has been made to advance stem cell products as potential therapies for kidney diseases: various kinds of stem cells can restore renal function in preclinical models of acute and chronic kidney injury. Nonetheless this literature contains contradictory results, and for this reason, we focus this review on reasons for apparent discrepancies in the literature, because they contribute to difficulty in translating renal regenerative therapies. Differences in methodologies used to derive and culture stem cells, even those from the same source, in addition to the lack of standardized renal disease animal models (both acute and chronic), are important considerations underlying contradictory results in the literature. We propose that harmonized rigorous protocols for characterization, handling, and delivery of stem cells in vivo could significantly advance the field, and present details of some suggested approaches to foster translation in the field of renal regeneration. Our goal is to encourage coordination of methodologies (standardization) and long‐lasting collaborations to improve protocols and models to lead to reproducible, interpretable, high‐quality preclinical data. This approach will certainly increase our chance to 1 day offer stem cell therapeutic options for patients with all‐too‐common renal diseases. Stem Cells Translational Medicine2019;8:82–92
Collapse
Affiliation(s)
- Julia Marcheque
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, California
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Marie Csete
- Medical Engineering, California Institute of Technology, Los Angeles, California.,Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, California
| |
Collapse
|
24
|
Becherucci F, Mazzinghi B, Allinovi M, Angelotti ML, Romagnani P. Regenerating the kidney using human pluripotent stem cells and renal progenitors. Expert Opin Biol Ther 2018; 18:795-806. [PMID: 29939787 DOI: 10.1080/14712598.2018.1492546] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chronic kidney disease is a major health-care problem worldwide and its cost is becoming no longer affordable. Indeed, restoring damaged renal structures or building a new kidney represents an ambitious and ideal alternative to renal replacement therapy. Streams of research have explored the possible application of pluripotent stem cells (SCs) (embryonic SCs and induced pluripotent SCs) in different strategies aimed at regenerate functioning nephrons and at understanding the mechanisms of kidney regeneration. AREAS COVERED In this review, we will focus on the main potential applications of human pluripotent SCs to kidney regeneration, including those leading to rebuilding new kidneys or part of them (organoids, scaffolds, biological microdevices) as well as those aimed at understanding the pathophysiological mechanisms of renal disease and regenerative processes (modeling of kidney disease, genome editing). Moreover, we will discuss the role of endogenous renal progenitors cells in order to understand and promote kidney regeneration, as an attractive alternative to pluripotent SCs. EXPERT OPINION Opportunities and pitfalls of all these strategies will be underlined, finally leading to the conclusion that a deeper knowledge of the biology of pluripotent SCs is mandatory, in order to allow us to hypothesize their clinical application.
Collapse
Affiliation(s)
- Francesca Becherucci
- a Nephrology and Dialysis Unit , Meyer Children's University Hospital , Florence , Italy
| | - Benedetta Mazzinghi
- a Nephrology and Dialysis Unit , Meyer Children's University Hospital , Florence , Italy
| | - Marco Allinovi
- b Department of Biomedical Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Maria Lucia Angelotti
- b Department of Biomedical Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Paola Romagnani
- a Nephrology and Dialysis Unit , Meyer Children's University Hospital , Florence , Italy.,b Department of Biomedical Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| |
Collapse
|
25
|
Rahman MS, Spitzhorn LS, Wruck W, Hagenbeck C, Balan P, Graffmann N, Bohndorf M, Ncube A, Guillot PV, Fehm T, Adjaye J. The presence of human mesenchymal stem cells of renal origin in amniotic fluid increases with gestational time. Stem Cell Res Ther 2018; 9:113. [PMID: 29695308 PMCID: PMC5918774 DOI: 10.1186/s13287-018-0864-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Established therapies for managing kidney dysfunction such as kidney dialysis and transplantation are limited due to the shortage of compatible donated organs and high costs. Stem cell-based therapies are currently under investigation as an alternative treatment option. As amniotic fluid is composed of fetal urine harboring mesenchymal stem cells (AF-MSCs), we hypothesized that third-trimester amniotic fluid could be a novel source of renal progenitor and differentiated cells. Methods Human third-trimester amniotic fluid cells (AFCs) were isolated and cultured in distinct media. These cells were characterized as renal progenitor cells with respect to cell morphology, cell surface marker expression, transcriptome and differentiation into chondrocytes, osteoblasts and adipocytes. To test for renal function, a comparative albumin endocytosis assay was performed using AF-MSCs and commercially available renal cells derived from kidney biopsies. Comparative transcriptome analyses of first, second and third trimester-derived AF-MSCs were conducted to monitor expression of renal-related genes. Results Regardless of the media used, AFCs showed expression of pluripotency-associated markers such as SSEA4, TRA-1-60, TRA-1-81 and C-Kit. They also express the mesenchymal marker Vimentin. Immunophenotyping confirmed that third-trimester AFCs are bona fide MSCs. AF-MSCs expressed the master renal progenitor markers SIX2 and CITED1, in addition to typical renal proteins such as PODXL, LHX1, BRN1 and PAX8. Albumin endocytosis assays demonstrated the functionality of AF-MSCs as renal cells. Additionally, upregulated expression of BMP7 and downregulation of WT1, CD133, SIX2 and C-Kit were observed upon activation of WNT signaling by treatment with the GSK-3 inhibitor CHIR99201. Transcriptome analysis and semiquantitative PCR revealed increasing expression levels of renal-specific genes (e.g., SALL1, HNF4B, SIX2) with gestational time. Moreover, AF-MSCs shared more genes with human kidney cells than with native MSCs and gene ontology terms revealed involvement of biological processes associated with kidney morphogenesis. Conclusions Third-trimester amniotic fluid contains AF-MSCs of renal origin and this novel source of kidney progenitors may have enormous future potentials for disease modeling, renal repair and drug screening. Electronic supplementary material The online version of this article (10.1186/s13287-018-0864-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Lucas-Sebastian Spitzhorn
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Carsten Hagenbeck
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Percy Balan
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Audrey Ncube
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Pascale V Guillot
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London, London, WC1E 6HX, UK
| | - Tanja Fehm
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
26
|
Li Z, Wu H. [Effects of human urine-derived stem cells combined with chondroitinase ABC on the expressions of nerve growth factor and brain-derived neurotrophic factor in the spinal cord injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1377-1383. [PMID: 29798595 PMCID: PMC8632575 DOI: 10.7507/1002-1892.201706082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/24/2017] [Indexed: 11/03/2022]
Abstract
Objective To explore the effects of human urine-derived stem cells (hUSCs) and hUSCs combined with chondroitinase ABC (chABC) on the expressions of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the spinal cord injury (SCI) of rats, and to investigate the underlying mechanism. Methods hUSCs were cultured from human urine, and their phenotypes were detected by flow cytometry. The SCI model of rats were made via Allen method. Sixty Sprague Dawley rats were divided into 5 groups ( n=12): the sham operation group (group A), SCI group (group B), SCI+hUSCs group (group C), SCI+chABC group (group D), and SCI+hUSCs+chABC group (group E). Basso, Beattie, Bresnahan (BBB) score was used to measure the lower extremity motor function of rats in each group at 10, 20, and 30 days after operation. Real-time fluorescent quantitative PCR was used to detect the relative mRNA expressions of NGF and BDNF at 30 days. Meanwhile, the protein expression of NGF and BDNF were confirmed by immunohistochemistry staining. The relative protein expressions of Bax and Bcl-2 were detected by Western blot. Results The hUSCs were identified to have multipotential differentiation potential. At 10, 20, and 30 days, BBB score was significantly lower in group B than in groups A, C, D, and E, in groups C, D, and E than in group A, in groups C and D than in group E ( P<0.05). Real-time fluorescent quantitative PCR and immunohistochemistry staining demonstrated that the expressions of NGF and BDNF were significantly lower in group B than in groups A, C, D, and E, in groups C, D, and E than in group A, in groups C and D than in group E ( P<0.05); but there was no significant difference between groups C and D ( P>0.05). Western blot results indicated that the protein expression of Bax was significantly higher in group B than in groups A, C, D, and E, in groups C, D, and E than in group A, in groups C and D than in group E ( P<0.05). Meanwhile, the protein expression of Bcl-2 was significantly lower in group B than in groups A, C, D, and E, in groups C, D, and E than in group A, in groups C and D than in group E ( P<0.05). Conclusion hUSCs can protect SCI and this positive effect can be enhanced by chABC; this neuro-protective effect may depend on promoting the expressions of NGF and BDNF, and suppressing the neuronal apoptosis.
Collapse
Affiliation(s)
- Zhi Li
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, 201700, P.R.China
| | - Haihui Wu
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, 201700,
| |
Collapse
|
27
|
Towards a Bioengineered Kidney: Recellularization Strategies for Decellularized Native Kidney Scaffolds. Int J Artif Organs 2017; 40:150-158. [DOI: 10.5301/ijao.5000564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
Patients with end-stage renal disease often undergo dialysis as a partial substitute for kidney function while waiting for their only treatment option: a kidney transplant. Several research directions emerged for alternatives in support of the ever-growing numbers of patients. Recent years brought big steps forward in the field, with researchers questioning and improving the current dialysis devices as well as moving towards the design of a bioengineered kidney. Whole-organ engineering is also being explored as a possibility, making use of animal or human kidney scaffolds for engineering a transplantable organ. While this is not a new strategy, having been applied so far for thin tissues, it is a novel approach for complex organs such as the kidneys. Kidneys can be decellularized and the remaining scaffold consisting of an extracellular matrix can be repopulated with (autologous) cells, aiming at growing ex vivo a fully transplantable organ. In a broader view, such organs might also be used for a better understanding of fundamental biological concepts and disease mechanisms, drug screening and toxicological investigations, opening new pathways in the treatment of kidney disease. Decellularization of whole organs has been widely explored and described; therefore, this manuscript only briefly reviews some important considerations with an emphasis on scaffold decontamination, but focuses further on recellularization strategies. Critical aspects, including cell types and sources that can be used for recellularization, seeding strategies and possible applications beyond renal replacement are discussed.
Collapse
|
28
|
Chevalier RL. Evolutionary Nephrology. Kidney Int Rep 2017; 2:302-317. [PMID: 28845468 PMCID: PMC5568830 DOI: 10.1016/j.ekir.2017.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 01/05/2023] Open
Abstract
Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Robert L. Chevalier
- Department of Pediatrics, The University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
29
|
Da Sacco S, Thornton ME, Petrosyan A, Lavarreda‐Pearce M, Sedrakyan S, Grubbs BH, De Filippo RE, Perin L. Direct Isolation and Characterization of Human Nephron Progenitors. Stem Cells Transl Med 2016; 6:419-433. [PMID: 28191781 PMCID: PMC5442819 DOI: 10.5966/sctm.2015-0429] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023] Open
Abstract
Mature nephrons originate from a small population of uninduced nephrogenic progenitor cells (NPs) within the cap mesenchyme. These cells are characterized by the coexpression of SIX2 and CITED1. Many studies on mouse models as well as on human pluripotent stem cells have advanced our knowledge of NPs, but very little is known about this population in humans, since it is exhausted before birth and strategies for its direct isolation are still limited. Here we report an efficient protocol for direct isolation of human NPs without genetic manipulation or stepwise induction procedures. With the use of RNA‐labeling probes, we isolated SIX2+CITED1+ cells from human fetal kidney for the first time. We confirmed their nephrogenic state by gene profiling and evaluated their nephrogenic capabilities in giving rise to mature renal cells. We also evaluated the ability to culture these cells without complete loss of SIX2 and CITED1 expression over time. In addition to defining the gene profile of human NPs, this in vitro system facilitates studies of human renal development and provides a novel tool for renal regeneration and bioengineering purposes. Stem Cells Translational Medicine2017;6:419–433
Collapse
Affiliation(s)
- Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Matthew E. Thornton
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Maria Lavarreda‐Pearce
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Brendan H. Grubbs
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Roger E. De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
30
|
Chevalier RL. The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol 2016; 311:F145-61. [PMID: 27194714 PMCID: PMC4967168 DOI: 10.1152/ajprenal.00164.2016] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/03/2016] [Indexed: 12/16/2022] Open
Abstract
There is an alarming global increase in the incidence of end-stage kidney disease, for which early biomarkers and effective treatment options are lacking. Largely based on the histology of the end-stage kidney and on the model of unilateral ureteral obstruction, current investigation is focused on the pathogenesis of renal interstitial fibrosis as a central mechanism in the progression of chronic kidney disease (CKD). It is now recognized that cumulative episodes of acute kidney injury (AKI) can lead to CKD, and, conversely, CKD is a risk factor for AKI. Based on recent and historic studies, this review shifts attention from the glomerulus and interstitium to the proximal tubule as the primary sensor and effector in the progression of CKD as well as AKI. Packed with mitochondria and dependent on oxidative phosphorylation, the proximal tubule is particularly vulnerable to injury (obstructive, ischemic, hypoxic, oxidative, metabolic), resulting in cell death and ultimately in the formation of atubular glomeruli. Animal models of human glomerular and tubular disorders have provided evidence for a broad repertoire of morphological and functional responses of the proximal tubule, revealing processes of degeneration and repair that may lead to new therapeutic strategies. Most promising are studies that encompass the entire life cycle from fetus to senescence, recognizing epigenetic factors. The application of techniques in molecular characterization of tubule segments and the development of human kidney organoids may provide new insights into the mammalian kidney subjected to stress or injury, leading to biomarkers of early CKD and new therapies.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
31
|
Regeneration: Functional kidney progenitors can be isolated from preterm urine. Nat Rev Urol 2016; 13:239. [PMID: 27001014 DOI: 10.1038/nrurol.2016.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|