1
|
Cao M, Yang J, Ye H, Cui G, Li W, Zhang X. Leech granules inhibit ferroptosis and alleviate renal injury in mice with diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118995. [PMID: 39490713 DOI: 10.1016/j.jep.2024.118995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The underlying mechanisms of diabetic kidney disease (DKD) and effective treatment strategies remain unclear. DKD progression is closely associated with abnormal iron metabolism and ferroptosis in vivo. Leeches, used in traditional Chinese medicine for promoting blood circulation and resolving blood stasis, are utilized to treat diabetes and its associated complications. Leeches effectively antagonize oxidative stress injury and exert protective effects on renal function. However, whether leeches can inhibit ferroptosis by modulating oxidative stress and iron metabolism remains unclear. AIM OF THE STUDY To investigate the therapeutic potential of leech granules in DKD and, specifically, their effects on ferroptosis. MATERIALS AND METHODS We used a mouse model of DKD. The mice were treated with leech granules via gavage. Component identification and analysis of leech granules were performed using UPLC-MS, and efficacy was assessed by histopathology and analysis of blood glucose, lipids, and renal function. Additionally, the pharmacological mechanisms of leech granules were explored via proteomics, immunohistochemical staining, western blotting, and cell culture. RESULTS Proteomic analysis showed that iron metabolism was dysregulated and ferroptosis increased in DKD mice. Leech granules significantly reduced iron accumulation and renal pathological damage, decreased ROS levels, upregulated GSH levels, and inhibited ferroptosis in the kidneys of DKD mice. Furthermore, in vitro cellular experiments demonstrated that leech granules could inhibit erastin-induced ferroptosis and protect renal cells. CONCLUSIONS The regulation of renal iron metabolism and inhibition of ferroptosis mediates the therapeutic effect of leech granules on DKD. Leech granules represent a promising approach for DKD treatment.
Collapse
Affiliation(s)
- Minghui Cao
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China
| | - Jinxia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China
| | - Guanghui Cui
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China
| | - Weiwei Li
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China.
| | - Xuezhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China.
| |
Collapse
|
2
|
Liu Y, Zhang X, Yi R, Tian Q, Xu J, Yan X, Ma J, Wang S, Yang G. Exploring the nephrotoxicity and molecular mechanisms of Di-2-ethylhexyl phthalate: A comprehensive review. Chem Biol Interact 2025; 405:111310. [PMID: 39549904 DOI: 10.1016/j.cbi.2024.111310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP), a widely applied plasticizer in various products, can be absorbed into the human body through several channels and accumulate in the lungs, liver, testes, and kidneys, potentially impairing the function of these organs. Recently, the nephrotoxicity of DEHP has received heightened attention. Numerous epidemiologic findings have demonstrated that DEHP exposure may contribute to renal damage, leading to structural and functional abnormalities and exacerbating the progression of kidney disease. Recent research has discovered the mechanisms behind DEHP-induced nephrotoxicity may involve a variety of pathways, including apoptosis, autophagy, ferroptosis, oxidative stress, inflammation, DNA damage, and lipid metabolism disorders. This review discusses the impact of DEHP on kidney function and delves into the molecular mechanisms of nephrotoxicity mediated by DEHP in recent years. In addition, the review examines evidence for the antioxidant and anti-inflammatory capacities of lycopene, green tea polyphenols, and quercetin in ameliorating DEHP-induced renal injury is reviewed, providing a basis for further research.
Collapse
Affiliation(s)
- Yun Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Xu Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Ruhan Yi
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Qing Tian
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Jiawei Xu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Xinyu Yan
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Jiaxuan Ma
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
3
|
Yang S, Ye Z, Chen W, Wang P, Zhao S, Zhou X, Li W, Cheng F. BMAL1 alleviates sepsis-induced AKI by inhibiting ferroptosis. Int Immunopharmacol 2024; 142:113159. [PMID: 39303541 DOI: 10.1016/j.intimp.2024.113159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The role of BMAL1 in various diseases remains unclear, particularly its impact on sepsis-induced acute kidney injury (AKI). This study aims to investigate the role of BMAL1 in sepsis-induced AKI and its potential effects on cell ferroptosis. Initially, we assessed BMAL1 expression levels in mice treated with sepsis-induced AKI (via LPS injection) and in LPS-stimulated renal tubular epithelial cells. Subsequently, we explored the correlation between BMAL1 and ferroptosis using sequencing technology, validating our findings throughout experimental approaches. To further elucidate BMAL1's specific effects on AKI-related ferroptosis, we constructed BMAL1 overexpression models in mice and cells, analysing its impact on AKI and ferroptosis both in vivo and in vitro. Furthermore, using transcriptome sequencing technology, we identified key BMAL1-regulated genes and their associated biological pathways, validating these findings through in vivo and in vitro experiments. RESULTS Our findings indicate decreased BMAL1 expression in sepsis-induced AKI. BMAL1 overexpression effectively mitigated renal tubular injury by reducing ferroptosis levels in renal tubular epithelial cells. Using transcriptome sequencing and ChIP-qPCR technology, we identified YAP as a target of BMAL1. The overexpression of BMAL1 significantly reduced the transcriptional activity of YAP and inhibited the Hippo signalling pathway. Treatment with the Hippo inhibitor Verteporfin (VP) reversed the BMAL1-downregulation-induced damage. Additionally, our study revealed that YAP positively regulates ACSL4 gene expression and its downstream signalling pathways. CONCLUSION This study demonstrates that BMAL1 overexpression alleviates renal tubular epithelial cell injury and ferroptosis by inhibiting YAP expression and the Hippo pathway, thereby exerting protective effects in sepsis-induced AKI. These findings underscore the therapeutic potential of targeting BMAL1 in managing sepsis-induced AKI.
Collapse
Affiliation(s)
- Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peihan Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shen Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
4
|
Shi J, Li S, Yi L, Gao M, Cai J, Yang C, Ma Y, Mo Y, Wang Q. Levistolide a Attenuates Acute Kidney Injury in Mice by Inhibiting the TLR-4/NF-κB Pathway. Drug Des Devel Ther 2024; 18:5583-5597. [PMID: 39654604 PMCID: PMC11625643 DOI: 10.2147/dddt.s476548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Acute kidney injury (AKI) is characterized by a significant reduction in kidney function and the accumulation of metabolites such as Creatinine (CRE) and Blood Urea Nitrogen (BUN). Levistolide A (LA), an active component of Ligusticum chuanxiong, offers multiple therapeutic benefits, including cardiovascular and neuroprotection, antitumor and analgesic effects, as well as anti-inflammatory, antioxidant, antifibrotic, and proapoptotic actions. However, the underlying mechanism of LA in treating AKI has not been fully elucidated. Methods In this study, we established a glycerol-induced AKI model in mice to evaluate the protective effects of LA. Renal function was assessed by measuring levels of CRE and BUN. Histological analyses were performed to evaluate kidney tissue damage. Additionally, oxidative stress markers, apoptosis indicators, inflammatory cell infiltration, and inflammatory mediator levels were assessed. The involvement of the TLR-4/NF-κB signaling pathway was investigated through molecular assays. Results LA treatment significantly ameliorated glycerol-induced AKI in mice, evidenced by reduced levels of CRE and BUN. Histological examination revealed decreased renal tissue damage in LA-treated groups. LA exerted antioxidant effects by increasing the levels of Glutathione (GSH) and Superoxide Dismutase (SOD), while reducing Reactive Oxygen Species (ROS) accumulation. Apoptosis in renal tissues was attenuated, as indicated by decreased caspase-3 activation. Furthermore, LA reduced the infiltration of inflammatory cells and the release of inflammatory mediators such as TNF-α and IL-6. Mechanistically, LA suppressed the inflammatory response by inhibiting the TLR-4/NF-κB signaling pathway, as demonstrated by reduced NF-κB activation and decreased expression of TLR-4. Conclusion Levistolide A mitigates acute kidney injury through its antioxidative properties and modulation of the TLR-4/NF-κB signaling pathway. These findings provide valuable insights into the therapeutic potential of LA for AKI treatment and lay the groundwork for further mechanistic studies.
Collapse
Affiliation(s)
- Jiahui Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Shuangwei Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Langping Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jiaying Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Cong Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yousheng Mo
- Department of Hepatology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
Pan C, Zhao H, Cai X, Wu M, Qin B, Li J. The connection between autophagy and ferroptosis in AKI: recent advances regarding selective autophagy. Ren Fail 2024; 46:2379601. [PMID: 39099238 DOI: 10.1080/0886022x.2024.2379601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Acute kidney injury (AKI) is a significant issue in public health, displaying a high occurrence rate and mortality rate. Ferroptosis, a form of programmed cell death (PCD), is characterized by iron accumulation and intensified lipid peroxidation. Recent studies have demonstrated the pivotal significance of ferroptosis in AKI caused by diverse stimuli, including ischemia-reperfusion injury (IRI), sepsis and toxins. Autophagy, a multistep process that targets damaged organelles and macromolecules for degradation and recycling, also plays an essential role in AKI. Previous research has demonstrated that autophagy deletion in proximal tubules could aggravate tubular injury and renal function loss, indicating the protective function of autophagy in AKI. Consequently, finding ways to stimulate autophagy has become a crucial therapeutic strategy. The recent discovery of the role of selective autophagy in influencing ferroptosis has identified new therapeutic targets for AKI and has highlighted the importance of understanding the cross-talk between autophagy and ferroptosis. This study aims to provide an overview of the signaling pathways involved in ferroptosis and autophagy, focusing on the mechanisms and functions of selective autophagy and autophagy-dependent ferroptosis. We hope to establish a foundation for future investigations into the interaction between autophagy and ferroptosis in AKI as well as other diseases.
Collapse
Affiliation(s)
- Chunyu Pan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hairui Zhao
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Cai
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manyi Wu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Qin
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Fontecha-Barriuso M, Villar-Gomez N, Guerrero-Mauvecin J, Martinez-Moreno JM, Carrasco S, Martin-Sanchez D, Rodríguez-Laguna M, Gómez MJ, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB. Runt-related transcription factor 1 (RUNX1) is a mediator of acute kidney injury. J Pathol 2024; 264:396-410. [PMID: 39472111 DOI: 10.1002/path.6355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 11/09/2024]
Abstract
Treatment for acute kidney injury (AKI) is suboptimal. A better understanding of the pathogenesis of AKI may lead to new therapeutic approaches. Kidney transcriptomics of folic acid-induced AKI (FA-AKI) in mice identified Runx1 as the most upregulated RUNX family gene. We then examined the expression of RUNX1 in FA-AKI, in bacterial lipopolysaccharide (LPS)-induced cytokine storm-AKI (CS-AKI), and in human AKI. In cultured mouse tubule cells, we explored the expression and role of RUNX1 in response to the cytokine TWEAK or LPS. A chemical inhibitor of RUNX1 (Ro5-3335) was used in animal models of AKI to test its potential as a therapeutic target. RUNX1 overexpression in FA-AKI was validated at the mRNA and protein levels and localized mainly to tubule cell nuclei. CS-AKI also upregulated kidney RUNX1. Increased tubule and interstitial RUNX1 expression were also observed in human AKI. In cultured mouse tubule cells, the pro-inflammatory cytokine TWEAK and LPS increased RUNX1 and IL-6 expression. Mechanistically, RUNX1 bound to the Il6 gene promoter and RUNX1 targeting with the chemical inhibitor Ro5-3335, or a specific small interfering RNA (siRNA), prevented the TWEAK- and LPS-induced upregulation of IL6 through a RUNX1/NFκB1 p50 pathway. In vivo, preventive Ro5-3335 improved kidney function and reduced inflammation in FA-AKI and CS-AKI. However, Ro5-3335 administration after the insult only improved kidney function in CS-AKI. Kidney transcriptomics identified inflammatory genes and transcription factor mRNAs such as Yap1 and Trp53 as key targets of Ro5-3335 in CS-AKI. In conclusion, RUNX1 contributes to AKI by driving the expression of genes involved in inflammation and represents a novel therapeutic target in AKI. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Natalia Villar-Gomez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Juan Guerrero-Mauvecin
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Julio M Martinez-Moreno
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Susana Carrasco
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Diego Martin-Sanchez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | | | - Manuel J Gómez
- Unidad de Bioinformatica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María D Sanchez-Niño
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Pharmacology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- IRSIN, Madrid, Spain
| | - Ana B Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| |
Collapse
|
7
|
Yang Q, Su S, Luo N, Cao G. Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren Fail 2024; 46:2336128. [PMID: 38575340 PMCID: PMC10997364 DOI: 10.1080/0886022x.2024.2336128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.
Collapse
Affiliation(s)
- Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songya Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Li Y, Zhang J, Qiu X, Zhang Y, Wu J, Bi Q, Sun Z, Wang W. Diverse regulated cell death patterns and immune traits in kidney allograft with fibrosis: a prediction of renal allograft failure based on machine learning, single-nucleus RNA sequencing and molecular docking. Ren Fail 2024; 46:2435487. [PMID: 39632251 PMCID: PMC11619039 DOI: 10.1080/0886022x.2024.2435487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/02/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Objectives: Post-transplant allograft fibrosis remains a challenge in prolonging allograft survival. Regulated cell death has been widely implicated in various kidney diseases, including renal fibrosis. However, the role of different regulated cell death (RCD) pathways in post-transplant allograft fibrosis remains unclear. Methods and Results: Microarray transcriptome profiling and single-nuclei sequencing data of post-transplant fibrotic and normal grafts were obtained and used to identify RCD-related differentially expressed genes. The enrichment activity of nine RCD modalities in tissue and cells was examined using single-sample gene set enrichment analysis, and their relations with immune infiltration in renal allograft samples were also assessed. Parenchymal and non-parenchymal cells displayed heterogeneity in RCD activation. Additionally, cell-cell communication analysis was also conducted in fibrotic samples. Subsequently, weighted gene co-expression network analysis and seven machine learning algorithms were employed to identify RCD-related hub genes for renal fibrosis. A 9-gene signature, termed RCD risk score (RCDI), was constructed using the least absolute shrinkage and selection operator and multivariate Cox regression algorithms. This signature showed robust accuracy in predicting 1-, 2-, and 3-year allograft survival status (area under the curve for 1-, 2-, and 3-year were 0.900, 0.877, 0.858, respectively). Immune infiltration analysis showed a strong correlation with RCDI and the nine model genes. Finally, molecular docking simulation suggested rapamycin, tacrolimus and mycophenolate mofetil exhibit strong interactions with core RCD-related receptors. Conclusions: In summary, this study explored the activation of nine RCD pathways and their relationships with immune traits, identified potential RCD-related hub genes associated with renal fibrosis, and highlighted potential therapeutic targets for renal allograft fibrosis.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xuemeng Qiu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Yifei Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jiyue Wu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Qing Bi
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Zejia Sun
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Cai X, Xie Z, Zhao J, Lu W, Zhu Z, Chen M, Huang Z, Ying Y, Fu Y, Xu J, Zhu S. FGF20 promotes spinal cord injury repair by inhibiting the formation of necrotic corpuscle P-MLKL/P-RIP1/P-RIP3 in neurons. J Cell Mol Med 2024; 28:e70109. [PMID: 39676730 DOI: 10.1111/jcmm.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 12/17/2024] Open
Abstract
The disruption of the local microenvironment subsequent to spinal cord injury (SCI) leads to a substantial loss of neurons in the affected region, which is a major contributing factor to impaired motor function recovery in patients. Fibroblast growth factor 20 (FGF20) is a neurotrophic factor that plays a crucial role in neuronal development and homeostasis. In this study, the recombinant human FGF20 (rhFGF20) was found to mitigate the process of necroptosis in a mouse model of SCI, thereby reducing neural functional deficits and promoting SCI repair. FGF20 protein was injected into the SCI mice via intraperitoneal injection. Using the BMS scale and inclined plane test, we found that FGF20 significantly promoted the recovery of motor function. The Nissl staining revealed the level of neuronal survival within the region of injury. The expression changes of NeuN, GAP43, NF200 and GFAP indicated that FGF20 has the nerve repair ability to delay the formation of glial scar. Through fluorescence detection of Ace-Tubulin and Tyr-Tubulin, FGF20 was revealed to promote the polymerization of axon-regenerated microtubules. Furthermore, FGF20 was also found to reduce the expression levels of necroptosis induced by SCI. These data suggest that FGF20 may exert a neuroprotective effect by inhibiting injury-induced necroptosis, thereby facilitating functional recovery following SCI. Moreover, systemic administration of FGF20 holds promise as a potential therapeutic strategy for repairing the damaged spinal cord. The discovery paves the way for a novel avenue of growth factor research in the field of SCI.
Collapse
Affiliation(s)
- Xiong Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenwen Xie
- The First Clinical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Juan Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjie Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongwei Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiyang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yining Fu
- The First Clinical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Li Y, Qin K, Liang W, Yan W, Fragoulis A, Pufe T, Buhl EM, Zhao Q, Greven J. Kidney Injury in a Murine Hemorrhagic Shock/Resuscitation Model Is Alleviated by sulforaphane's Anti-Inflammatory and Antioxidant Action. Inflammation 2024; 47:2215-2227. [PMID: 39023831 DOI: 10.1007/s10753-024-02106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Hemorrhagic shock/resuscitation (HS/R) can lead to acute kidney injury, mainly manifested as oxidative stress and inflammatory injury in the renal tubular epithelial cells, as well as abnormal autophagy and apoptosis. Sulforaphane (SFN), an agonist of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling pathway, is involved in multiple biological activities, such as anti-inflammatory, antioxidant, autophagy, and apoptosis regulation. This study investigated the effect of SFN on acute kidney injury after HS/R in mice. Hemorrhagic shock was induced in mice by controlling the arterial blood pressure at a range of 35-45 mmHg for 90 min within arterial blood withdrawal. Fluid resuscitation was carried out by reintroducing withdrawn blood and 0.9% NaCl. We found that SFN suppressed the elevation of urea nitrogen and serum creatinine levels in the blood induced by HS/R. SFN mitigated pathological alterations including swollen renal tubules and renal casts in kidney tissue of HS/R mice. Inflammation levels and oxidative stress were significantly downregulated in mouse kidney tissue after SFN administration. In addition, the kidney tissue of HS/R mice showed high levels of autophagosomes as observed by electron microscopy. However, SFN can further enhance the formation of autophagosomes in the HS/R + SFN group. SFN also increased autophagy-related proteins Beclin1 expression and suppressed P62 expression, while increasing the ratio of microtubule-associated protein 1 light chain 3 (LC3)-II and LC3-I (LC3-II/LC3-I). SFN also effectively decreased cleaved caspase-3 level and enhanced the ratio of anti-apoptotic protein B cell lymphoma 2 and Bcl2-associated X protein (Bcl2/Bax). Collectively, SFN effectively inhibited inflammation and oxidative stress, enhanced autophagy, thereby reducing HS/R-induced kidney injury and apoptosis levels in mouse kidneys.
Collapse
Affiliation(s)
- You Li
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Kang Qin
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany.
- Department of Shoulder and Elbow Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| | - Weiqiang Liang
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Weining Yan
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Eva Miriam Buhl
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Electron Microscopy Facility, Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Qun Zhao
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Johannes Greven
- Department of Thoracic Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| |
Collapse
|
11
|
Shang Y, Wang Z, Yang F, Wang W, Tang Q, Guo X, Du X, Zhang X, Hao J, Lin H. FUT8 upregulates CD36 and its core fucosylation to accelerate pericyte-myofibroblast transition through the mitochondrial-dependent apoptosis pathway during AKI-CKD. Mol Med 2024; 30:222. [PMID: 39563263 PMCID: PMC11577590 DOI: 10.1186/s10020-024-00994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Activation of pericytes leads to renal interstitial fibrosis, but the regulatory mechanism of pericytes in the progression from AKI to CKD remains poorly understood. CD36 activation plays a role in the progression of CKD. However, the significance of CD36 during AKI-CKD, especially in pericyte, remains to be fully defined. METHODS GEO and DISCO database were used to analyze the expression of CD36 in pericyte during AKI-CKD; IRI to conduct AKI-CKD mouse model; Hypoxia/Reoxygenation (H/R) to induce the cell model; RT-qPCR and Western blotting to detect gene expression; IP and confocal-IF to determine the core fucosylation (CF) level of CD36. Flow cytometry (AV/PI staining) to detect the cell apoptosis and JC-1 staining to react to the change of mitochondrial membrane potential. RESULTS During AKI to CKD progression, CD36 expression in pericytes is higher and may be influenced by CF. Moreover, we confirmed the positive association of CD36 expression with pericyte-myofibroblast transition and the progression of AKI-CKD in an IRI mouse model and hypoxia/reoxygenation (H/R) pericytes. Notably, we discovered that FUT8 upregulates both CD36 expression and its CF level, contributing to the activation of the mitochondrial-dependent apoptosis signaling pathway in pericytes, ultimately leading to the progression of AKI-CKD. CONCLUSION These results further identify FUT8 and CD36 as potential targets for the treatment in the progression of AKI-CKD.
Collapse
Affiliation(s)
- Yaxi Shang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Ziran Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Fan Yang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Weidong Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Qingzhu Tang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Xianan Guo
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Xiangning Du
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Xu Zhang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Jiaojiao Hao
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China.
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China.
| |
Collapse
|
12
|
Bai L, Chen Q, Li Y, Wu F, Jin M, Chen Y, Teng X, Jin S, Fan H, Wu Y. Trimethylamine Induced Chronic Kidney Injury by Activating the ZBP1-NLRP3 Inflammasome Pathway. Physiol Res 2024; 73:779-789. [PMID: 39545792 PMCID: PMC11629947 DOI: 10.33549/physiolres.935378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/18/2024] [Indexed: 12/13/2024] Open
Abstract
Trimethylamine N-oxide (TMAO), a bioactive metabolite of gut microbes, plays a pivotal role in the pathogenesis of kidney diseases by activating programmed cell death (PCD) pathways. However, whether trimethylamine (TMA) contributes to chronic kidney injury and which kind of PCD is involved in TMA-induced chronic kidney injury has not been previously evaluated. To observe the effect of TMA, male C57BL/6J mice were randomly divided into two groups: the Control group and the TMA group. The mice in the TMA group were intraperitoneally injected with 100 micromol/kg/day TMA for three months, whereas the mice in the Control group were injected with normal saline for the same period. After three months, plasma creatinine and blood urea nitrogen levels, indicators of kidney function, increased significantly in the TMA group as compared with those in the Control group. Furthermore, Masson staining assay showed that TMA treatment led to a larger area of fibrosis than the Control group. TMA treatment did not change the Bax/Bcl-2 ratio, RIP1, RIP3 and MLKL phosphorylation, or iron and malondialdehyde levels in kidney tissues, indicating that apoptosis, ferroptosis and necroptosis were not involved in TMA-induced chronic kidney injury. However, compared with the Control group, TMA treatment significantly upregulated NLRP3, Caspase-1, IL-1beta, cleaved-Caspase 8, Caspase-8, and ZBP1 protein expression in kidney tissues. These results indicated that the ZBP1-NLRP3 inflammasome pathway was involved in TMA-induced chronic kidney injury. In conclusion, our studies revealed that the ZBP1-NLRP3 inflammasome may take part in the progression of TMA induced chronic kidney injury.
Collapse
Affiliation(s)
- L Bai
- Department of Physiology, Hebei Medical University, Shijiazhuang, China. ; Hebei Provincial Hospital of Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ji D, Zhang J, Liang J, Wang J, Li X, Huang ZS, Li D. New Therapeutic Method for Alleviating Damage of Acute Kidney Injury Through BCL-2 Gene Promoter I-Motif. Int J Mol Sci 2024; 25:12028. [PMID: 39596095 PMCID: PMC11593768 DOI: 10.3390/ijms252212028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Acute kidney injury (AKI) is a global public health problem with its pathogenesis not fully understood. Excessive apoptosis of renal tubular epithelial cells is an important feature of AKI patients, and therefore an anti-apoptotic approach could be used in the treatment for AKI. Up-regulation of B-cell lymphoma-2 (BCL-2) gene and protein has been found to be correlated with anti-apoptosis of cells. It has been found that the presence of the C-rich sequence on the upstream region of the BCL-2 gene promoter could form DNA secondary i-motif structure, and its stabilization by small molecules could up-regulate gene transcription and translation. In the present study, we constructed AKI models through folic acid (FA) induction. With these in vitro and in vivo models, we demonstrated that the acridone derivative A22 could up-regulate the expression of BCL-2 by targeting its gene promoter i-motif to reduce renal tubular epithelial cell apoptosis and improve renal function in many ways. A22 could alleviate FA-induced oxidative stress injury, inflammatory response, and endoplasmic reticulum stress in mouse kidneys. Our results provided a potentially new anti-apoptotic approach for the treatment of early stages of AKI. Our employed model focused on its short-term effect on AKI, while its long-term efficacy and safety, particularly regarding the regeneration of renal tubular epithelial cells, require further investigation before clinical application. This study further demonstrated that promoter i-motif could be targeted for up-regulating BCL-2 expression for the treatment of important diseases caused by excessive apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou 510006, China; (D.J.); (J.Z.); (J.L.); (J.W.); (X.L.); (Z.-S.H.)
| |
Collapse
|
14
|
He W, Ding C, Lin T, Wang B, Wang W, Deng Z, Jin T, Shang Y, Zheng D, Bai T, Zhang M, Li R, Jin J, He Q. An enzyme-mimicking reactive oxygen species scavenger targeting oxidative stress-inflammation cycle ameliorates IR-AKI by inhibiting pyruvate dehydrogenase kinase 4. Theranostics 2024; 14:7534-7553. [PMID: 39659578 PMCID: PMC11626943 DOI: 10.7150/thno.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/19/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Ischemia-reperfusion-induced acute kidney injury (IR-AKI), characterized by the abrupt decline in renal function, is distinguished by the intricate interplay between oxidative stress and inflammation. In this study, a reactive oxygen species (ROS) scavenger-CF@PDA was developed to effectively target antioxidant and anti-inflammatory pathways to disrupt the oxidative stress-inflammation cycle in IR-AKI. Methods: UV-vis absorption spectra, FTIR spectra, and TEM were employed to determine the successful construction of CF@P. ABTS, TMB, and NBT analyses were performed to detect the antioxidant ability and enzyme-mimicking ability of CF@P. In vitro and in vitro, the antioxidant/anti-inflammatory effect of CF@P was detected by MTT, qPCR, fluorescence, and flow cytometry. Multi-omics revealed the mechanism of CF@P in IR-AKI therapy, and molecular docking was further used to determine the mechanism. MRI and photoacoustic imaging were employed to explore the dual-mode imaging capacity of CF@P in IR-AKI management. Results: CF@P could disrupt the oxidative stress-inflammatory cascade by scavenging ROS, reducing pro-inflammatory cytokines, and modulation of macrophage polarization. Subsequent multi-omics indicated that the renal protective effects may be attributed to the inhibition of pyruvate dehydrogenase kinase 4 (PDK4). Metabolomics demonstrated that CF@P could improve the production of antioxidant compounds and reduce nephrotoxicity. Additionally, CF@P exhibited promising capabilities in T1-MRI and photoacoustic imaging for AKI management. Conclusions: Collectively, CF@P, possessing antioxidant/anti-inflammatory properties by inhibiting PDK4, as well as imaging capabilities and superior biocompatibility, holds promise as a therapeutic strategy for IR-AKI.
Collapse
Affiliation(s)
- Wenfang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ting Lin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Binqi Wang
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Wenjing Wang
- Department of Gastroenterology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325024, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Taian Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Yiwei Shang
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Danna Zheng
- Urology & Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310003, China
| | - Ting Bai
- Department of Cardiovascular Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
15
|
Zhang T, Widdop RE, Ricardo SD. Transition from acute kidney injury to chronic kidney disease: mechanisms, models, and biomarkers. Am J Physiol Renal Physiol 2024; 327:F788-F805. [PMID: 39298548 DOI: 10.1152/ajprenal.00184.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are increasingly recognized as interconnected conditions with overlapping pathophysiological mechanisms. This review examines the transition from AKI to CKD, focusing on the molecular mechanisms, animal models, and biomarkers essential for understanding and managing this progression. AKI often progresses to CKD due to maladaptive repair processes, persistent inflammation, and fibrosis, with both conditions sharing common pathways involving cell death, inflammation, and extracellular matrix (ECM) deposition. Current animal models, including ischemia-reperfusion injury (IRI) and nephrotoxic damage, help elucidate these mechanisms but have limitations in replicating the complexity of human disease. Emerging biomarkers such as kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and soluble tumor necrosis factor receptors (TNFRs) show promise in early detection and monitoring of disease progression. This review highlights the need for improved animal models and biomarker validation to better mimic human disease and enhance clinical translation. Advancing our understanding of the AKI-to-CKD transition through targeted therapies and refined research approaches holds the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Tingfang Zhang
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Giuliani KTK, Adams BC, Healy HG, Kassianos AJ. Regulated cell death in chronic kidney disease: current evidence and future clinical perspectives. Front Cell Dev Biol 2024; 12:1497460. [PMID: 39544363 PMCID: PMC11560912 DOI: 10.3389/fcell.2024.1497460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Chronic kidney disease (CKD) is the progressive loss of kidney function/structure over a period of at least 3 months. It is characterised histologically by the triad of cell loss, inflammation and fibrosis. This literature review focuses on the forms of cell death that trigger downstream inflammation and fibrosis, collectively called regulated cell death (RCD) pathways. Discrete forms of RCD have emerged as central mediators of CKD pathology. In particular, pathways of regulated necrosis - including mitochondrial permeability transition pore (mPTP)-mediated necrosis, necroptosis, ferroptosis and pyroptosis - have been shown to mediate kidney pathology directly or through the release of danger signals that trigger a pro-inflammatory response, further amplifying tissue injury in a cellular process called necroinflammation. Despite accumulating evidence in pre-clinical models, no clinical studies have yet targeted these RCD modes in human CKD. The review summarizes recent advances in our understanding of RCD pathways in CKD, looks at inter-relations between the pathways (with the emphasis on propagation of death signals) and the evidence for therapeutic targeting of molecules in the RCD pathways to prevent or treat CKD.
Collapse
Affiliation(s)
- Kurt T. K. Giuliani
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Benjamin C. Adams
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Helen G. Healy
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Seibt T, Wahida A, Hoeft K, Kemmner S, Linkermann A, Mishima E, Conrad M. The biology of ferroptosis in kidney disease. Nephrol Dial Transplant 2024; 39:1754-1761. [PMID: 38684468 DOI: 10.1093/ndt/gfae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/02/2024] Open
Abstract
Ferroptosis is a regulated cell death modality triggered by iron-dependent lipid peroxidation. Ferroptosis plays a causal role in the pathophysiology of various diseases, making it a promising therapeutic target. Unlike all other cell death modalities dependent on distinct signaling cues, ferroptosis occurs when cellular antioxidative defense mechanisms fail to suppress the oxidative destruction of cellular membranes, eventually leading to cell membrane rupture. Physiologically, only two such surveillance systems are known to efficiently prevent the lipid peroxidation chain reaction by reducing (phospho)lipid hydroperoxides to their corresponding alcohols or by reducing radicals in phospholipid bilayers, thus maintaining the integrity of lipid membranes. Mechanistically, these two systems are linked to the reducing capacity of glutathione peroxidase 4 (GPX4) by consuming glutathione (GSH) on one hand and ferroptosis suppressor protein 1 (FSP1, formerly AIFM2) on the other. Notably, the importance of ferroptosis suppression in physiological contexts has been linked to a particular vulnerability of renal tissue. In fact, early work has shown that mice genetically lacking Gpx4 rapidly succumb to acute renal failure with pathohistological features of acute tubular necrosis. Promising research attempting to implicate ferroptosis in various renal disease entities, particularly those with proximal tubular involvement, has generated a wealth of knowledge with widespread potential for clinical translation. Here, we provide a brief overview of the involvement of ferroptosis in nephrology. Our goal is to introduce this expanding field for clinically versed nephrologists in the hope of spurring future efforts to prevent ferroptosis in the pathophysiological processes of the kidney.
Collapse
Affiliation(s)
- Tobias Seibt
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Transplant Center, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Konrad Hoeft
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Stephan Kemmner
- Transplant Center, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Linkermann
- Division of Nephrology, Clinic of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
18
|
Huang Y, Zheng J, Yu M. Nanoparticle Transport in Proximal Tubules with Rhabdomyolysis-Induced Necrosis. Angew Chem Int Ed Engl 2024:e202417024. [PMID: 39423345 DOI: 10.1002/anie.202417024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Renal-clearable engineered nanoparticles are being explored for their potential to deliver therapeutic agents for kidney disease treatment. A fundamental understanding of how these nanoparticles accumulate in diseased kidneys at the cellular level is essential to enhance their effectiveness and minimize side effects on adjacent healthy tissues. Herein, we report that the accumulation of glutathione-coated, near-infrared emitting gold nanoparticles (GS-AuNPs) correlates strongly with the necrotic stages of injured proximal tubular cells. Using a rhabdomyolysis-induced acute kidney injury (AKI) mouse model, we observed that GS-AuNPs were significantly accumulated in the extracellular lumen of proximal tubular epithelial cells (PTECs) at advanced necrotic stage, where cellular debris and released intracellular contents impeded their clearance. In contrast, during early necrosis, GS-AuNPs were still cleared through the unobstructed lumen. Additionally, intracellular uptake of GS-AuNPs was significantly reduced across all necrotic stages. These findings underscore the need for new strategies to design nanoparticles that can effectively target and be taken up by the diseased tubular cells before extensive necrosis occurs; so that nanoparticle-mediated drug delivery for kidney disease treatment can be achieved with desired efficacy and precision.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 W. Campbell Rd., Richardson, TX 75080, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 W. Campbell Rd., Richardson, TX 75080, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 W. Campbell Rd., Richardson, TX 75080, USA
| |
Collapse
|
19
|
Wang N, Huang Z, Guan F, Wang J, Chen Y, Wang H, Jin L, Wang Y. HIF-1α induced FGF18 alleviates renal ischemia/reperfusion injury via YAP. FASEB J 2024; 38:e70092. [PMID: 39373977 DOI: 10.1096/fj.202401238r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Acute kidney injury (AKI) is a devastating clinical condition characterized by an abrupt loss of renal function. The pathophysiology of AKI involves diverse processes and elements, of which survival and regeneration have been established to be significant hallmarks. And early studies have confirmed the fundamental role of FGFs in the regulation of AKI pathology, although the association between FGF18 and AKI still remains elusive. Our study demonstrates a substantial up-regulation of FGF18 in the renal tubules of mice subjected to ischemia. Notably, targeted overexpression of FGF18 effectively mitigates the impairment of kidney function induced by AKI. Mechanistically, FGF18 facilitates cell proliferation and anti-apoptosis in RTECs by enhancing the expression of YAP and facilitating its translocation to the nucleus. Aside from that, we also discovered that the substantial expression of FGF18 under ischemic conditions is HIF-1α dependent. This study aims to uncover the inherent mechanism behind the beneficial effects of FGF18 in attenuating AKI. By doing so, it aims to offer novel insights into the development of therapeutic strategies for AKI.
Collapse
Affiliation(s)
- Nan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
- Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhiyuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Fangqian Guan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yinyun Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Hong Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Ota E, Watanabe J, Suwa H, Hirai T, Suwa Y, Nakagawa K, Ozawa M, Ishibe A, Endo I. Preoperative risk factors for ileostomy-associated kidney injury in colorectal tumor surgery following ileostomy formation. Int J Colorectal Dis 2024; 39:160. [PMID: 39397177 PMCID: PMC11471691 DOI: 10.1007/s00384-024-04732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Diverting ileostomy is related to postoperative high-output stoma (HOS) leading to kidney injury. The purpose of our study was to clarify the risk factors for ileostomy-associated kidney injury, which is kidney injury starting after the first operation to ileostomy closure after colorectal tumor surgery with diverting ileostomy. METHODS Between January 2013 and December 2020, 442 patients who underwent colorectal tumor surgery (cancer, neuroendocrine tumor, and leiomyosarcoma) following diverting ileostomy formation were included. We used the KDIGO (Kidney Disease Improving Global Outcomes) guidelines, which defines the acute kidney injury (AKI) to classify patients with ileostomy-associated kidney injury. The definition of AKI was (i) serum creatinine (sCr) ≥ 0.3 mg/dL or (ii) sCr ≥1.5-fold the preoperative level. Multivariate analyses were performed to identify the independent risk factors for kidney injury. RESULTS Kidney injury developed in 99/442 eligible patients (22.4%). Patients in the kidney injury group were older age, male sex, high American Society of Anesthesiologists Physical Status Classification System (ASA-PS) score, hypertension, cardiovascular diseases, diabetes. The preoperative hemoglobin, albumin, prognostic nutritional index (PNI), and creatinine clearance (CCr) were lower, and the maximum wound length was more extended than the non-kidney injury group. The median highest daily stoma output was significantly higher in the kidney injury group. The postoperative white blood cell (WBC) and C-reactive protein (CRP) levels were also high in the kidney injury group. The univariate analysis showed older age, male sex, high ASA-PS score, hypertension, cardiovascular diseases, and diabetes were the risk factors for kidney injury. The multivariate analysis revealed that age 70 or older, ASA-PS III/IV, hypertension, and HOS ≥2000 ml/day were independent risk factors for kidney injury. CONCLUSIONS Surgeons should consider diverting colostomy creation for patients with risk factors such as age 70 or older, ASA-PS III/IV, and hypertension.
Collapse
Affiliation(s)
- Emi Ota
- Department of Surgery, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Jun Watanabe
- Department of Colorectal Surgery, Kansai Medical University, Hirakata, Japan.
- Department of Surgery, Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan.
| | - Hirokazu Suwa
- Department of Surgery, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Tomoya Hirai
- Department of Gastroenterological Surgery, Yokohama City University Graduate school of Medicine, Yokohama, Japan
| | - Yusuke Suwa
- Department of Surgery, Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Kazuya Nakagawa
- Department of Gastroenterological Surgery, Yokohama City University Graduate school of Medicine, Yokohama, Japan
| | - Mayumi Ozawa
- Department of Gastroenterological Surgery, Yokohama City University Graduate school of Medicine, Yokohama, Japan
| | - Atsushi Ishibe
- Department of Gastroenterological Surgery, Yokohama City University Graduate school of Medicine, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate school of Medicine, Yokohama, Japan
| |
Collapse
|
21
|
Zhu J, Xiang X, Shi L, Song Z, Dong Z. Identification of Differentially Expressed Genes in Cold Storage-associated Kidney Transplantation. Transplantation 2024; 108:2057-2071. [PMID: 38632678 PMCID: PMC11424274 DOI: 10.1097/tp.0000000000005016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Although it is acknowledged that ischemia-reperfusion injury is the primary pathology of cold storage-associated kidney transplantation, its underlying mechanism is not well elucidated. METHODS To extend the understanding of molecular events and mine hub genes posttransplantation, we performed bulk RNA sequencing at different time points (24 h, day 7, and day 14) on a murine kidney transplantation model with prolonged cold storage (10 h). RESULTS In the present study, we showed that genes related to the regulation of apoptotic process, DNA damage response, cell cycle/proliferation, and inflammatory response were steadily elevated at 24 h and day 7. The upregulated gene profiling delicately transformed to extracellular matrix organization and fibrosis at day 14. It is prominent that metabolism-associated genes persistently took the first place among downregulated genes. The gene ontology terms of particular note to enrich are fatty acid oxidation and mitochondria energy metabolism. Correspondingly, the key enzymes of the above processes were the products of hub genes as recognized. Moreover, we highlighted the proximal tubular cell-specific increased genes at 24 h by combining the data with public RNA-Seq performed on proximal tubules. We also focused on ferroptosis-related genes and fatty acid oxidation genes to show profound gene dysregulation in kidney transplantation. CONCLUSIONS The comprehensive characterization of transcriptomic analysis may help provide diagnostic biomarkers and therapeutic targets in kidney transplantation.
Collapse
Affiliation(s)
- Jiefu Zhu
- Department of Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs Medical Center, Augusta, GA
| | - Xiaohong Xiang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lang Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhixia Song
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs Medical Center, Augusta, GA
| |
Collapse
|
22
|
Yang Y, Du J, Gan J, Song X, Shu J, An C, Lu L, Wei H, Che J, Zhao X. Neutrophil-Mediated Nanozyme Delivery System for Acute Kidney Injury Therapy. Adv Healthc Mater 2024; 13:e2401198. [PMID: 38899383 DOI: 10.1002/adhm.202401198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Reactive oxygen species (ROS) scavenging of nanozymes toward acute kidney injury (AKI) is a current promising strategy, however, the glomerular filtration barrier (GFB) limits their application for treating kidney related diseases. Here, a neutrophil-mediated delivery system able to hijack neutrophil to transport nanozyme-loaded cRGD-liposomes to inflamed kidney for AKI treatment by cRGD targeting integrin αvβ1 is reported. The neutrophil-mediated nanozyme delivery system demonstrated great antioxidant and anti-apoptosis ability in HK-2 and NRK-52E cell lines. Moreover, in ischemia-reperfusion (I/R) induced AKI mice, a single dose of LM@cRGD-LPs 12 h post-ischemia significantly reduces renal function indicators, alleviates renal pathological changes, and inhibits apoptosis of renal tubular cells and the expression of renal tubular injured marker, thus remarkably reducing the damage of AKI. Mechanistically, the treatment of LM@cRGD-LPs markedly inhibits the process of Nrf2 to the nucleus and reduces the expression of the downstream HO-1, achieves a 99.51% increase in renal tissue Nrf2 levels, and an 86.31% decrease in HO-1 levels after LM@cRGD-LPs treatment. In short, the strategy of neutrophil-mediated nanozyme delivery system hold great promise as a potential therapy for AKI or other inflammatory diseases.
Collapse
Affiliation(s)
- Yu Yang
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Jiang Du
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jingjing Gan
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xiang Song
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Jiaxin Shu
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Chaoli An
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Li Lu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Junyi Che
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
23
|
Melchinger I, Guo K, Li X, Guo J, Cantley LG, Xu L. VCAM-1 mediates proximal tubule-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition. Am J Physiol Renal Physiol 2024; 327:F610-F622. [PMID: 39116349 PMCID: PMC11483080 DOI: 10.1152/ajprenal.00076.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Studies in animal models have suggested a linkage between the inflammatory response to injury and subsequent nephron loss during the acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Failure of normal repair during the CKD transition correlates with de novo expression of vascular cell adhesion protein-1 (VCAM-1) by a subset of injured proximal tubule cells. This study identified the role of VCAM-1 expression in promoting the failed repair state. Single-cell transcriptome analysis of patients with AKI and CKD and whole kidney RNA and protein analyses of mouse models of CKD confirmed a marked increase of VCAM-1 expression in the proximal tubules of injured kidneys. In immortalized mouse proximal tubular cells and primary cultured renal cells (PCRCs), VCAM-1 expression was induced by proinflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-1β. Analyses of bulk RNA sequencing of TNF-α-treated primary cultured renal cells or pseudo-bulk RNA sequencing of biopsies from Kidney Precision Medicine Project datasets indicated activation of NF-κB and an enrichment of inflammatory response and cell adhesion pathways in VCAM-1-positive cells. Pharmacological inhibition of NF-κB signaling or genetic deletion of myeloid differentiation factor 88 and TIR domain-containing adapter-inducing interferon-β suppressed TNF-α- and IL-1β-induced VCAM-1 expression in vitro. TNF-α stimulation or overexpression of VCAM-1 significantly increased splenocyte adhesion to the mouse proximal tubular monolayer in culture. These results demonstrate that persistence of proinflammatory cytokines after AKI can induce NF-κB-dependent VCAM-1 expression by proximal tubule cells, mediating increased immune cell adhesion to the tubule and thus promoting further tubule injury and greater risk of progression from AKI to CKD.NEW & NOTEWORTHY We demonstrated the induction of VCAM-1 and its biological function in proximal tubules. We found that proinflammatory cytokines (TNF-α and IL-1β) significantly induced VCAM-1 expression via NF-κB signaling pathway. TNF-α treatment or overexpression of VCAM-1 in immortalized MPT cells increased CD45+ splenocyte adhesion. Pharmacological inhibition of NF-κB or genetic deletion of Vcam1 suppressed TNF-α-induced splenocyte adhesion in vitro, suggesting that VCAM-1 mediates proximal tubular-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition.
Collapse
Affiliation(s)
- Isabel Melchinger
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Kailin Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Xiaoxu Li
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Jiankan Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Lloyd G Cantley
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Leyuan Xu
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
24
|
Zeng F, Qin Y, Nijiati S, Liu Y, Ye J, Shen H, Cai J, Xiong H, Shi C, Tang L, Yu C, Zhou Z. Ultrasmall Nanodots with Dual Anti-Ferropototic Effect for Acute Kidney Injury Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403305. [PMID: 39159052 PMCID: PMC11497046 DOI: 10.1002/advs.202403305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/28/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis is known to mediate the pathogenesis of chemotherapeutic drug-induced acute kidney injury (AKI); however, leveraging the benefits of ferroptosis-based treatments for nephroprotection remains challenging. Here, ultrasmall nanodots, denoted as FerroD, comprising the amphiphilic conjugate (tetraphenylethylene-L-serine-deferoxamine, TPE-lys-Ser-DFO (TSD)) and entrapped ferrostatin-1 are designed. After being internalized through kidney injury molecule-1-mediated endocytosis, FerroD can simultaneously remove the overloaded iron ions and eliminate the overproduction of lipid peroxides by the coordination-disassembly mechanisms, which collectively confer prominent inhibition efficiency of ferroptosis. In cisplatin (CDDP)-induced AKI mice, FerroD equipped with dual anti-ferroptotic ability can provide long-term nephroprotective effects. This study may shed new light on the design and clinical translation of therapeutics targeting ferroptosis for various ferroptosis-related kidney diseases.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Yatong Qin
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Sureya Nijiati
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Yangtengyu Liu
- Department of Rheumatology and ImmunologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Jinmin Ye
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Huaxiang Shen
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Jiayuan Cai
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Hehe Xiong
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Changrong Shi
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
| | | | - Chunyang Yu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| |
Collapse
|
25
|
He RB, Li W, Yao R, Xu MY, Dong W, Chen Y, Ni WJ, Xie SS, Sun ZH, Li C, Liu D, Li SJ, Ji ML, Ru YX, Zhao T, Zhu Q, Wen JG, Li J, Jin J, Yao RS, Meng XM. Aurantiamide mitigates acute kidney injury by suppressing renal necroptosis and inflammation via GRPR-dependent mechanism. Int Immunopharmacol 2024; 139:112745. [PMID: 39059099 DOI: 10.1016/j.intimp.2024.112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Acute kidney injury (AKI) manifests as a clinical syndrome characterised by the rapid accumulation of metabolic wastes, such as blood creatinine and urea nitrogen, leading to a sudden decline in renal function. Currently, there is a lack of specific therapeutic drugs for AKI. Previously, we identified gastrin-releasing peptide receptor (GRPR) as a pathogenic factor in AKI. In this study, we investigated the therapeutic potential of a novel Chinese medicine monomer, aurantiamide (AA), which exhibits structural similarities to our previously reported GRPR antagonist, RH-1402. We compared the therapeutic efficacy of AA with RH-1402 both in vitro and in vivo using various AKI models. Our results demonstrated that, in vitro, AA attenuated injury, necroptosis, and inflammatory responses in human renal tubular epithelial cells subjected to repeated hypoxia/reoxygenation and lipopolysaccharide stimulation. In vivo, AA ameliorated renal tubular injury and inflammation in mouse models of ischemia/reperfusion and cecum ligation puncture-induced AKI, surpassing the efficacy of RH-1402. Furthermore, molecular docking and cellular thermal shift assay confirmed GRPR as a direct target of AA, which was further validated in primary cells. Notably, in GRPR-silenced HK-2 cells and GRPR systemic knockout mice, AA failed to mitigate renal inflammation and injury, underscoring the importance of GRPR in AA's mechanism of action. In conclusion, our study has demonstrated that AA serve as a novel antagonist of GRPR and a promising clinical candidate for AKI treatment.
Collapse
Affiliation(s)
- Ruo-Bing He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Yao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, China
| | - Meng-Ying Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Dong
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei-Jian Ni
- Department of Pharmacy, Centre for Leading Medicine and Advanced Technologies of IHM, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, 230001, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zheng-Hao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Dong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuang-Jian Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Xin Ru
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tian Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China.
| | - Ri-Sheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
26
|
Liu D, Tang F, Zhang L, Wan F, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Anisodamine (654-1/654-2) ameliorates septic kidney injury in rats by inhibiting inflammation and apoptosis. Front Pharmacol 2024; 15:1421551. [PMID: 39399464 PMCID: PMC11467892 DOI: 10.3389/fphar.2024.1421551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction To investigate the protective effects of anisodamine (654-1/654-2) against acute kidney injury (AKI) in LPS-induced septic shock rats and explore its molecular mechanisms. Methods 56 rats were randomly divided into 8 groups: control, LPS, LPS + 654-1, and LPS + 654-2 (1.25, 2.5 and 5 mg/kg). The model was evaluated by monitoring MAP, HR, and plasma LD levels. ELISA and biochemical assay kits were used to measure the levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and kidney injury markers (BUN and CRE). Additionally, RNA-seq and bioinformatic analysis were performed to explore the mechanism of action of 654-1/654-2, and verification was conducted by western blotting and RT-PCR. Results 654-1/654-2 significantly restored the levels of MAP, HR, and plasma LD in septic shock rats. Furthermore, 654-1/654-2 (5 mg/kg) effectively ameliorated LPS-induced kidney structural damage and exhibited a dose-dependent reduction in levels of inflammatory cytokines and kidney injury markers. In addition, RNA-seq, WB, and RT-PCR analyses revealed that 654-1/654-2 exerted its effects by inhibiting the expressions of the NF-κB and MAPK pathways and activating the Pi3K/Akt/Bcl-2 signaling pathway, thereby mitigating AKI. Discussion This study suggested that 654-1/654-2 could alleviate AKI in septic shock rats by improving inflammation invasion and cell apoptosis. Notably, 654-1/654-2 collectively suppressed inflammation response through the p38/JNK/AP-1/NF-κB pathway. Additionally, 654-1 promotes survival signaling via the Pi3K/Akt/Bcl-2 pathway, whereas 654-2 reduces apoptosis through the P53/Bax pathway. These findings provided a theoretical basis for the clinical application of 654-1/654-2 in treating organ damage caused by septic shock.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wan
- Chengdu No. 1 Pharmaceutical Co. Ltd., Pengzhou, Sichuan, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Maremonti F, Tonnus W, Gavali S, Bornstein S, Shah A, Giacca M, Linkermann A. Ferroptosis-based advanced therapies as treatment approaches for metabolic and cardiovascular diseases. Cell Death Differ 2024; 31:1104-1112. [PMID: 39068204 PMCID: PMC11369293 DOI: 10.1038/s41418-024-01350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Ferroptosis has attracted attention throughout the last decade because of its tremendous clinical importance. Here, we review the rapidly growing body of literature on how inhibition of ferroptosis may be harnessed for the treatment of common diseases, and we focus on metabolic and cardiovascular unmet medical needs. We introduce four classes of preclinically established ferroptosis inhibitors (ferrostatins) such as iron chelators, radical trapping agents that function in the cytoplasmic compartment, lipophilic radical trapping antioxidants and ninjurin-1 (NINJ1) specific monoclonal antibodies. In contrast to ferroptosis inducers that cause serious untoward effects such as acute kidney tubular necrosis, the side effect profile of ferrostatins appears to be limited. We also consider ferroptosis as a potential side effect itself when several advanced therapies harnessing small-interfering RNA (siRNA)-based treatment approaches are tested. Importantly, clinical trial design is impeded by the lack of an appropriate biomarker for ferroptosis detection in serum samples or tissue biopsies. However, we discuss favorable clinical scenarios suited for the design of anti-ferroptosis clinical trials to test such first-in-class compounds. We conclude that targeting ferroptosis exhibits outstanding treatment options for metabolic and cardiovascular diseases, but we have only begun to translate this knowledge into clinically relevant applications.
Collapse
Affiliation(s)
- Francesca Maremonti
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Wulf Tonnus
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Shubhangi Gavali
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan Bornstein
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
| | - Ajay Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Mauro Giacca
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Andreas Linkermann
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany.
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
28
|
Zhang XL, Li JP, Wu MZ, Wu JK, He SY, Lu Y, Ding QH, Wen Y, Long LZ, Fu CG, Farman A, Shen AL, Peng J. Quercetin Protects Against Hypertensive Renal Injury by Attenuating Apoptosis: An Integrated Approach Using Network Pharmacology and RNA Sequencing. J Cardiovasc Pharmacol 2024; 84:370-382. [PMID: 39027976 DOI: 10.1097/fjc.0000000000001598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/14/2024] [Indexed: 07/20/2024]
Abstract
ABSTRACT Quercetin is known for its antihypertensive effects. However, its role on hypertensive renal injury has not been fully elucidated. In this study, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and Annexin V staining were used to assess the pathological changes and cell apoptosis in the renal tissues of angiotensin II (Ang II)-infused mice and Ang II-stimulated renal tubular epithelial cell line (NRK-52E). A variety of technologies, including network pharmacology, RNA-sequencing, immunohistochemistry, and Western blotting, were performed to investigate its underlying mechanisms. Network pharmacology analysis identified multiple potential candidate targets (including TP53, Bcl-2, and Bax) and enriched signaling pathways (including apoptosis and p53 signaling pathway). Quercetin treatment significantly alleviated the pathological changes in renal tissues of Ang II-infused mice and reversed 464 differentially expressed transcripts, as well as enriched several signaling pathways, including those related apoptosis and p53 pathway. Furthermore, quercetin treatment significantly inhibited the cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells. In addition, quercetin treatment inhibited the upregulation of p53, Bax, cleaved-caspase-9, and cleaved-caspase-3 protein expression and the downregulation of Bcl-2 protein expression in both renal tissue of Ang II-infused mice and Ang II-stimulated NRK-52E cells. Moreover, the molecular docking results indicated a potential binding interaction between quercetin and TP53. Quercetin treatment significantly attenuated hypertensive renal injury and cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells and by targeting p53 may be one of the potential underlying mechanisms.
Collapse
Affiliation(s)
- Xiu-Li Zhang
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Jia-Peng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Mei-Zhu Wu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Jin-Kong Wu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Shu-Yu He
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Yao Lu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Qi-Hang Ding
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Ying Wen
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Lin-Zi Long
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang-Geng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China ; and
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ali Farman
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - A-Ling Shen
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China ; and
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Peng
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| |
Collapse
|
29
|
Li ZL, Li XY, Zhou Y, Wang B, Lv LL, Liu BC. Renal tubular epithelial cells response to injury in acute kidney injury. EBioMedicine 2024; 107:105294. [PMID: 39178744 PMCID: PMC11388183 DOI: 10.1016/j.ebiom.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery. Conversely, when injury is severe or persistent, it allows the TECs to undergo pathological responses, abnormal adaptive repair and phenotypic transformation, which will lead to the development of renal fibrosis. Given the implications of TECs fate after injury in renal outcomes, a deeper understanding of these mechanisms is necessary to identify promising therapeutic targets and biomarkers of the repair process in the human kidney.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xin-Yan Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Mishima E. Targeting ferroptosis for treating kidney disease. Clin Exp Nephrol 2024; 28:866-873. [PMID: 38644406 PMCID: PMC11341772 DOI: 10.1007/s10157-024-02491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Ferroptosis is a type of regulated cell death hallmarked by iron-mediated excessive lipid oxidation. Over the past decade since the coining of the term ferroptosis, advances in research have led to the identification of intracellular processes that regulate ferroptosis such as GSH-GPX4 pathway and FSP1-coenzyme Q10/vitamin K pathway. From a disease perspective, the involvement of ferroptosis in pathological conditions including kidney disease has attracted attention. In terms of renal pathophysiology, ferroptosis has been widely investigated for its involvement in ischemia-reperfusion injury, nephrotoxin-induced kidney damage and other renal diseases. Therefore, therapeutic interventions targeting ferroptosis are expected to become a new therapeutic approach for these diseases. However, when considering cell death as a therapeutic target, careful consideration must be given to (i) in which type of cells, (ii) which type of cell death mode, and (iii) in which stage or temporal window of the disease. In the next decade, elucidation of the true involvement of ferroptosis in kidney disease setting in human, and development of clinically applicable and effective therapeutic drugs that target ferroptosis are warranted.
Collapse
Affiliation(s)
- Eikan Mishima
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
31
|
Jiang M, Wu S, Xie K, Zhou G, Zhou W, Bao P. The significance of ferroptosis in renal diseases and its therapeutic potential. Heliyon 2024; 10:e35882. [PMID: 39220983 PMCID: PMC11363859 DOI: 10.1016/j.heliyon.2024.e35882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Kidney diseases are significant global public health concern, with increasing prevalence and substantial economic impact. Developing novel therapeutic approaches are essential for delaying disease progression and improving patient quality of life. Cell death signifying the termination of cellular life, could facilitate appropriate bodily development and internal homeostasis. Recently, regulated cell death (RCD) forms such as ferroptosis, characterized by iron-dependent lipid peroxidation, has garnered attention in diverse renal diseases and other pathological conditions. This review offers a comprehensive examination of ferroptosis, encompassing an analysis of the involvement of iron and lipid metabolism, the System Xc - /glutathione/glutathione peroxidase 4 signaling, and additional associated pathways. Meanwhile, the review delves into the potential of targeting ferroptosis as a therapeutic approach in the management of acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy, and renal tumors. Furthermore, it emphasizes the significance of ferroptosis in the transition from AKI to CKD and further accentuates the potential for repurposing drug and utilizing traditional medicine in targeting ferroptosis-related pathways for clinical applications. The integrated review provides valuable insights into the role of ferroptosis in kidney diseases and highlights the potential for targeting ferroptosis as a therapeutic strategy.
Collapse
Affiliation(s)
- Mingzhu Jiang
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shujun Wu
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
| | - Kun Xie
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Gang Zhou
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Wei Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ping Bao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Wang X, Xie X, Ni JY, Li JY, Sun XA, Xie HY, Yang NH, Guo HJ, Lu L, Ning M, Zhou L, Liu J, Xu C, Zhang W, Wen Y, Shen Q, Xu H, Lu LM. USP11 promotes renal tubular cell pyroptosis and fibrosis in UUO mice via inhibiting KLF4 ubiquitin degradation. Acta Pharmacol Sin 2024:10.1038/s41401-024-01363-z. [PMID: 39147900 DOI: 10.1038/s41401-024-01363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
The pyroptosis of renal tubular epithelial cells leads to tubular loss and inflammation and then promotes renal fibrosis. The transcription factor Krüppel-like factor 4 (KLF4) can bidirectionally regulate the transcription of target genes. Our previous study revealed that sustained elevation of KLF4 is responsible for the transition of acute kidney injury (AKI) into chronic kidney disease (CKD) and renal fibrosis. In this study, we explored the upstream mechanisms of renal tubular epithelial cell pyroptosis from the perspective of posttranslational regulation and focused on the transcription factor KLF4. Mice were subjected to unilateral ureteral obstruction (UUO) surgery and euthanized on D7 or D14 for renal tissue harvesting. We showed that the pyroptosis of renal tubular epithelial cells mediated by both the Caspase-1/GSDMD and Caspase-3/GSDME pathways was time-dependently increased in UUO mouse kidneys. Furthermore, we found that the expression of the transcription factor KLF4 was also upregulated in a time-dependent manner in UUO mouse kidneys. Tubular epithelial cell-specific Klf4 knockout alleviated UUO-induced pyroptosis and renal fibrosis. In Ang II-treated mouse renal proximal tubular epithelial cells (MTECs), we demonstrated that KLF4 bound to the promoter regions of Caspase-3 and Caspase-1 and directly increased their transcription. In addition, we found that ubiquitin-specific protease 11 (USP11) was increased in UUO mouse kidneys. USP11 deubiquitinated KLF4. Knockout of Usp11 or pretreatment with the USP11 inhibitor mitoxantrone (3 mg/kg, i.p., twice a week for two weeks before UUO surgery) significantly alleviated the increases in KLF4 expression, pyroptosis and renal fibrosis. These results demonstrated that the increased expression of USP11 in renal tubular cells prevents the ubiquitin degradation of KLF4 and that elevated KLF4 promotes inflammation and renal fibrosis by initiating tubular cell pyroptosis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, 201103, China
| | - Xin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jia-Yun Ni
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing-Yao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xi-Ang Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hong-Yan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ning-Hao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Heng-Jiang Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ming Ning
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yi Wen
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210044, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, 201103, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, 201103, China.
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Li-Min Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, 201103, China.
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, 201102, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
33
|
Li X, Yuan F, Xiong Y, Tang Y, Li Z, Ai J, Miao J, Ye W, Zhou S, Wu Q, Wang X, Xu D, Li J, Huang J, Chen Q, Shen W, Liu Y, Hou FF, Zhou L. FAM3A plays a key role in protecting against tubular cell pyroptosis and acute kidney injury. Redox Biol 2024; 74:103225. [PMID: 38875957 PMCID: PMC11226986 DOI: 10.1016/j.redox.2024.103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Acute kidney injury (AKI) is in high prevalence worldwide but with no therapeutic strategies. Programmed cell death in tubular epithelial cells has been reported to accelerate a variety of AKI, but the major pathways and underlying mechanisms are not defined. Herein, we identified that pyroptosis was responsible for AKI progression and related to ATP depletion in renal tubular cells. We found that FAM3A, a mitochondrial protein that assists ATP synthesis, was decreased and negatively correlated with tubular cell injury and pyroptosis in both mice and patients with AKI. Knockout of FAM3A worsened kidney function decline, increased macrophage and neutrophil cell infiltration, and facilitated tubular cell pyroptosis in ischemia/reperfusion injury model. Conversely, FAM3A overexpression alleviated tubular cell pyroptosis, and inhibited kidney injury in ischemic AKI. Mechanistically, FAM3A promoted PI3K/AKT/NRF2 signaling, thus blocking mitochondrial reactive oxygen species (mt-ROS) accumulation. NLRP3 inflammasome sensed the overload of mt-ROS and then activated Caspase-1, which cleaved GSDMD, pro-IL-1β, and pro-IL-18 into their mature forms to mediate pyroptosis. Of interest, NRF2 activator alleviated the pro-pyroptotic effects of FAM3A depletion, whereas the deletion of NRF2 blocked the anti-pyroptotic function of FAM3A. Thus, our study provides new mechanisms for AKI progression and demonstrates that FAM3A is a potential therapeutic target for treating AKI.
Collapse
Affiliation(s)
- Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feifei Yuan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yabing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhiru Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ai
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenting Ye
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiurong Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Guo S, Zhou L, Liu X, Gao L, Li Y, Wu Y. Baicalein alleviates cisplatin-induced acute kidney injury by inhibiting ALOX12-dependent ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155757. [PMID: 38805781 DOI: 10.1016/j.phymed.2024.155757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/07/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND In acute kidney injury (AKI), ferroptosis is the main mechanism of cell death in the renal tubular epithelium. Baicalein, a traditional Chinese medicine monomer, plays a protective role in various kidney diseases; however, the effect of baicalein on ferroptosis in AKI still needs further exploration. PURPOSE In this study, we explored the role of baicalein and its specific mechanism in mediating ferroptosis in cisplatin-induced AKI. METHODS We used a cisplatin-induced AKI model to study the effects of baicalein on renal tissue and tubular epithelial cell injury. The effects of baicalein on tubular epithelial cell ferroptosis were detected in cisplatin-induced AKI and further verified by folic acid-induced AKI. The Swiss Target Prediction online database was used to predict the possible mechanism by which baicalein regulates ferroptosis, and the specific target proteins were further verified. Molecular docking and SPR were used to further determine the binding potential of baicalein to the target protein. Finally, RNA interference (RNAi) technology and enzymatic inhibition were used to determine whether baicalein regulates ferroptosis through target proteins. RESULTS Baicalein alleviated cisplatin- and folic acid-induced renal dysfunction and pathological damage and improved cisplatin-induced HK2 cell injury. Mechanistically, baicalein reduced the expression of 12-lipoxygenase (ALOX12), which inhibits phospholipid peroxidation and ferroptosis in AKI. Molecular docking and SPR demonstrated direct binding between baicalein and ALOX12. Finally, we found that silencing ALOX12 had a regulatory effect similar to that of baicalein. Comparable results were also obtained with the ALOX12 inhibitor ML355. CONCLUSION This was the first study to confirm that baicalein regulates ferroptosis both in vitro and in vivo in cisplatin-induced AKI and to verify the regulatory effect of baicalein in folic acid-induced AKI. Our results reveal the critical role of ALOX12 in kidney damage and ferroptosis caused by cisplatin and emphasize the regulatory effect of baicalein on renal tubular epithelial cell ferroptosis mediated by ALOX12. Baicalein is an effective drug for treating AKI, and ALOX12 is a potential drug target.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Lang Zhou
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuanyuan Li
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
35
|
Li H, Ren Q, Hu Y, Guo F, Huang R, Lin L, Tan Z, Ma L, Fu P. SKLB023 protects against inflammation and apoptosis in sepsis-associated acute kidney injury via the inhibition of toll-like receptor 4 signaling. Int Immunopharmacol 2024; 139:112668. [PMID: 39008938 DOI: 10.1016/j.intimp.2024.112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is one of common critical illnesses with high morbidity and mortality. At present, effective therapeutic drugs for SA-AKI are remain lacking. SKLB023 is a synthetic small-molecule compound which exerts potent anti-inflammatory effects in our previous studies. Here, this study aimed to characterize the protective effect of SKLB023 on SA-AKI and explore its underlying mechanism. The SA-AKI experimental models have been established by cecum ligation/puncture (CLP) and lipopolysaccharide (LPS) injection in male C57BL/6J mice. SKLB023 was administered by gavage (50 or 25 mg/kg in CLP model and 50 mg/kg in LPS model) daily 3 days in advance and 30 min earlier on the day of modeling. Our results confirmed SKLB023 treatment could improve the survival of SA-AKI mice and ameliorate renal pathological injury, inflammation, and apoptosis in the two types of septic AKI mice. Mechanically, SKLB023 deceased the expression of TLR4 in LPS-triggered renal tubular epithelial cells, and inhibited the activation of downstream pathways including NF-κB and MAPK pathways. Our study suggested that SKLB023 is expected to be a potential drug for the prevention and treatment of septic AKI.
Collapse
Affiliation(s)
- Hui Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Qian Ren
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Yao Hu
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610041, PR China
| | - Fan Guo
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Rongshuang Huang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Lin Lin
- West-district Outpatient Department, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Zhouke Tan
- Department of Nephrology, Organ Transplant Center, Guizhou Province Key Laboratory of Cell Engineering, Affiliated Hospital of ZunYi Medical University, ZunYi 563003, PR China.
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, PR China.
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
36
|
Cheval L, Poindessous V, Sampaio JL, Crambert G, Pallet N. Lipidomic Profiling of Kidney Cortical Tubule Segments Identifies Lipotypes with Physiological Implications. FUNCTION 2024; 5:zqae016. [PMID: 38985001 PMCID: PMC11237892 DOI: 10.1093/function/zqae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 07/11/2024] Open
Abstract
A detailed knowledge of the lipid composition of components of nephrons is crucial for understanding physiological processes and the development of kidney diseases. However, the lipidomic composition of kidney tubular segments is unknown. We manually isolated the proximal convoluted tubule (PCT), the cortical thick ascending limb of Henle's loop, and the cortical collecting duct from 5 lean and obese mice and subjected the samples to shotgun lipidomics analysis by high-resolution mass spectrometry acquisition. Across all samples, more than 500 lipid species were identified, quantified, and compared. We observed significant compositional differences among the 3 tubular segments, which serve as true signatures. These intrinsic lipidomic features are associated with a distinct proteomic program that regulates highly specific physiological functions. The distinctive lipidomic features of each of the 3 segments are mostly based on the relative composition of neutral lipids, long-chain polyunsaturated fatty acids, sphingolipids, and ether phospholipids. These features support the hypothesis of a lipotype assigned to specific tubular segments. Obesity profoundly impacts the lipotype of PCT. In conclusion, we present a comprehensive lipidomic analysis of 3 cortical segments of mouse kidney tubules. This valuable resource provides unparalleled detail that enhances our understanding of tubular physiology and the potential impact of pathological conditions.
Collapse
Affiliation(s)
- Lydie Cheval
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- CNRS EMR 8228-Unité Métabolisme et Physiologie Rénale, 75006 Paris, France
| | - Virginie Poindessous
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, 75015, Paris, France
| | - Julio L Sampaio
- CurieCoreTech Metabolomics and Lipidomics Technology Platform, Institut Curie, 75005, Paris, France
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- CNRS EMR 8228-Unité Métabolisme et Physiologie Rénale, 75006 Paris, France
| | - Nicolas Pallet
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, 75015, Paris, France
- Department of Clinical Chemistry, Assistance Publique Hôpitaux de Paris, Georges Pompidou European Hospital, 75015, Paris, France
| |
Collapse
|
37
|
Belavgeni A, Maremonti F, Linkermann A. Protocol for isolating murine kidney tubules and ex vivo cell death assays. STAR Protoc 2024; 5:103005. [PMID: 38613777 PMCID: PMC11021354 DOI: 10.1016/j.xpro.2024.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024] Open
Abstract
Isolating kidney tubules offers insights into their biological function without stroma, vascular cells, and immune system interference. Our murine tubule isolation protocol focuses on ex vivo cell death assays. We describe steps for solution preparation; kidney extraction, decapsulation, and slicing; and tubule isolation. We also outline assays like western blotting, lactate dehydrogenase release assay, and live-cell imaging of vital dyes during experimental acute tubular necrosis. This adaptable protocol allows the generation of outgrown primary tubular cells that maintain the features of tubular cells.
Collapse
Affiliation(s)
- Alexia Belavgeni
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Francesca Maremonti
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
38
|
Poindessous V, Lazareth H, Crambert G, Cheval L, Sampaio JL, Pallet N. STAT3 drives the expression of ACSL4 in acute kidney injury. iScience 2024; 27:109737. [PMID: 38799564 PMCID: PMC11126884 DOI: 10.1016/j.isci.2024.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
Long-chain acyl-CoA synthetase family 4 (ACSL4) metabolizes long-chain polyunsaturated fatty acids (PUFAs), enriching cell membranes with phospholipids susceptible to peroxidation and drive ferroptosis. The role of ACSL4 and ferroptosis upon endoplasmic-reticulum (ER)-stress-induced acute kidney injury (AKI) is unknown. We used lipidomic, molecular, and cellular biology approaches along with a mouse model of AKI induced by ER stress to investigate the role of ACSL4 regulation in membrane lipidome remodeling in the injured tubular epithelium. Tubular epithelial cells (TECs) activate ACSL4 in response to STAT3 signaling. In this context, TEC membrane lipidome is remodeled toward PUFA-enriched triglycerides instead of PUFA-bearing phospholipids. TECs expressing ACSL4 in this setting are not vulnerable to ferroptosis. Thus, ACSL4 activity in TECs is driven by STAT3 signaling, but ACSL4 alone is not enough to sensitize ferroptosis, highlighting the significance of the biological context associated with the study model.
Collapse
Affiliation(s)
- Virginie Poindessous
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Paris, France
| | - Helene Lazareth
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Paris, France
- Université Paris-Cité, Paris, France
- Laboratory of Renal Physiology and Tubulopathies, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Gilles Crambert
- EMR 8228 Metabolism and Renal Physiology Unit, CNRS, Paris, France
- CurieCoreTech Metabolomics and Lipidomics Technology Platform, Institut Curie, Paris, France
| | - Lydie Cheval
- EMR 8228 Metabolism and Renal Physiology Unit, CNRS, Paris, France
- CurieCoreTech Metabolomics and Lipidomics Technology Platform, Institut Curie, Paris, France
| | - Julio L. Sampaio
- CurieCoreTech Metabolomics and Lipidomics Technology Platform, Institut Curie, Paris, France
| | - Nicolas Pallet
- Laboratory of Renal Physiology and Tubulopathies, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
- Department of Clinical Chemistry, Assistance Publique Hôpitaux de Paris, Georges Pompidou European Hospital, Paris, France
| |
Collapse
|
39
|
Li J, Yang J, Xian Q, Su H, Ni Y, Wang L. Kaempferitrin attenuates unilateral ureteral obstruction-induced renal inflammation and fibrosis in mice by inhibiting NOX4-mediated tubular ferroptosis. Phytother Res 2024; 38:2656-2668. [PMID: 38487990 DOI: 10.1002/ptr.8191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 06/13/2024]
Abstract
Tubular ferroptosis significantly contributes to renal inflammation and fibrosis, critical factors in chronic kidney disease (CKD). This study aims to investigate Kaempferitrin, a potent flavonoid glycoside from Bauhinia forficata leaves, renowned for its anti-inflammatory and antitumor effects, and to elucidate its potential mechanisms in mitigating inflammation and fibrosis induced by tubular ferroptosis. The study investigated Kaempferitrin's impact on tubular ferroptosis using a unilateral ureteral obstruction (UUO) model-induced renal inflammation and fibrosis. In vitro, erastin-induced ferroptosis in primary tubular epithelial cells (TECs) was utilized to further explore Kaempferitrin's effects. Additionally, NADPH oxidase 4 (NOX4) transfection in TECs and cellular thermal shift assay (CETSA) were conducted to identify Kaempferitrin's target protein. Kaempferitrin effectively improved renal function, indicated by reduced serum creatinine and blood urea nitrogen levels. In the UUO model, it significantly reduced tubular necrosis, inflammation, and fibrosis. Its renoprotective effects were linked to ferroptosis inhibition, evidenced by decreased iron, 4-hydroxynonenal (4-HNE), and malondialdehyde (MDA) levels, and increased glutathione (GSH). Kaempferitrin also normalized glutathione peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11(SLC7A11) expression, critical ferroptosis mediators. In vitro, it protected TECs from ferroptosis and consistently suppressed NOX4 expression. NOX4 transfection negated Kaempferitrin's antiferroptosis effects, while CETSA confirmed Kaempferitrin-NOX4 interaction. Kaempferitrin shows promise as a nephroprotective agent by inhibiting NOX4-mediated ferroptosis in tubular cells, offering potential therapeutic value for CKD.
Collapse
Affiliation(s)
- Jianchun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jieke Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Qianwen Xian
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongwei Su
- Department of Urology, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yufang Ni
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
40
|
Iba T, Helms J, Maier CL, Levi M, Scarlatescu E, Levy JH. The role of thromboinflammation in acute kidney injury among patients with septic coagulopathy. J Thromb Haemost 2024; 22:1530-1540. [PMID: 38382739 DOI: 10.1016/j.jtha.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Inflammation and coagulation are critical self-defense mechanisms for mitigating infection that can nonetheless induce tissue injury and organ dysfunction. In severe cases, like sepsis, a dysregulated thromboinflammatory response may result in multiorgan dysfunction. Sepsis-associated acute kidney injury (AKI) is a significant contributor to patient morbidity and mortality. The connection between AKI and thromboinflammation is largely due to unique aspects of the renal vasculature. Specifically, the interaction between blood cells with the endothelial, glomerular, and peritubular capillary systems during thromboinflammation reduces oxygen supply to tubular epithelial cells. Previous studies have focused on tubular epithelial cell damage due to hypoxia, oxidative stress, and nephrotoxins. Although these factors are pivotal in acute tubular injury or necrosis, recent studies have demonstrated that AKI in sepsis encompasses a mixture of tubular and glomerular damage subtypes. In cases of sepsis-induced coagulopathy, thromboinflammation within the glomerulus and peritubular capillaries is an important pathogenic mechanism for AKI. Unfortunately, and despite the use of renal replacement therapy, the development of AKI in sepsis continues to be associated with high morbidity, mortality, and clinical challenges requiring alternative approaches. This review introduces the important role of thromboinflammation in AKI pathogenesis and details innovative vascular-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Julie Helms
- French National Institute of Health and Medical Research, United Medical Resources 1260, Regenerative Nanomedicine, Federation de Medicine Translationnelle de Strasbourg, Strasbourg University Hospital, Medical Intensive Care Unit - NHC, Strasbourg University, Strasbourg, France
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands; Department of Medicine, University College London Hospitals National Health Service Foundation Trust, Cardio-metabolic Programme-National Institute for Health and Care Research University College London Hospitals/University College London Biomedical Research Centre, London, United Kingdom
| | - Ecaterina Scarlatescu
- University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania; Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
41
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
42
|
Cheng R, Wang X, Huang L, Lu Z, Wu A, Guo S, Li C, Mao W, Xie Y, Xu P, Tian R. Novel insights into the protective effects of leonurine against acute kidney injury: Inhibition of ER stress-associated ferroptosis via regulating ATF4/CHOP/ACSL4 pathway. Chem Biol Interact 2024; 395:111016. [PMID: 38670420 DOI: 10.1016/j.cbi.2024.111016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Acute kidney injury (AKI) is a common and serious global health problem with high risks of mortality and the development of chronic kidney diseases. Leonurine is a unique bioactive component from Leonurus japonicus Houtt. and exerts antioxidant, antiapoptotic or anti-inflammatory properties. This study aimed to explore the benefits of leonurine on AKI and the possible mechanisms involved, with a particular foc on the regulation of ferroptosis and endoplasmic reticulum (ER) stress. Our results showed that leonurine exhibited prominent protective effects against AKI, as evidenced by the amelioration of histopathological alterations and reduction of renal dysfunction. In addition, leonurine significantly suppressed ferroptosis in AKI both in vivo and in vitro by effectively restoring ultrastructural abnormalities in mitochondria, decreasing ASCL4 and 4-HNE levels, scavenging reactive oxygen species (ROS), as well as increasing GPX4 and GSH levels. In parallel, leonurine also markedly mitigated ER stress via down-regulating PERK, eIF-2α, ATF4, CHOP and CHAC1. Further studies suggested that ER stress was closely involved in erastin-induced ferroptosis, and leonurine protected tubular epithelial cells in vitro by inhibiting ER stress-associated ferroptosis via regulating ATF4/CHOP/ASCL4 signalling pathway. Mechanistically, ATF4 silencing in vitro regulated CHOP and ACSL4 expressions, ultimately weakening both ER stress and ferroptosis. Notably, analyses of single-cell RNA sequencing data revealed that ATF4, CHOP and ASCL4 in renal tubular cells were all abnormally upregulated in patients with AKI compared to healthy controls, suggesting their contributions to the pathogenesis of AKI. Altogether, these findings suggest that leonurine alleviates AKI by inhibiting ER stress-associated ferroptosis via regulating ATF4/CHOP/ASCL4 signalling pathway, thus providing novel mechanisms for AKI treatment.
Collapse
Affiliation(s)
- Ran Cheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaowan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Lihua Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhisheng Lu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Aijun Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shan Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuang Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510120, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Ying Xie
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510120, China.
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510120, China; State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
43
|
Li T, Yang K, Tong Y, Guo S, Gao W, Zou X. Targeted Drug Therapy for Senescent Cells Alleviates Unilateral Ureteral Obstruction-Induced Renal Injury in Rats. Pharmaceutics 2024; 16:695. [PMID: 38931822 PMCID: PMC11206309 DOI: 10.3390/pharmaceutics16060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Hydronephrosis resulting from unilateral ureteral obstruction (UUO) is a common cause of renal injury, often progressing to late-stage renal fibrosis or even potential renal failure. Renal injury and repair processes are accompanied by changes in cellular senescence phenotypes. However, the mechanism is poorly understood. The purpose of this study is to clarify the changes in senescence phenotype at different time points in renal disease caused by UUO and to further investigate whether eliminating senescent cells using the anti-senescence drug ABT263 could attenuate UUO-induced renal disease. Specifically, renal tissues were collected from established UUO rat models on days 1, 2, 7, and 14. The extent of renal tissue injury and fibrosis in rats was assessed using histological examination, serum creatinine, and blood urea nitrogen levels. The apoptotic and proliferative capacities of renal tissues and phenotypic changes in cellular senescence were evaluated. After the intervention of the anti-senescence drug ABT263, the cellular senescence as well as tissue damage changes were re-assessed. We found that before the drug intervention, the UUO rats showed significantly declined renal function, accompanied by renal tubular injury, increased inflammatory response, and oxidative stress, alongside aggravated cellular senescence. Meanwhile, after the treatment with ABT263, the rats had a significantly lower number of senescent cells, attenuated renal tubular injury and apoptosis, enhanced proliferation, reduced oxidative stress and inflammation, improved renal function, and markedly inhibited fibrosis. This suggests that the use of the anti-senescence drug ABT263 to eliminate senescent cells can effectively attenuate UUO-induced renal injury. This highlights the critical role of cellular senescence in the transformation of acute injury into chronic fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Wei Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China; (T.L.); (K.Y.); (Y.T.); (S.G.)
| | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China; (T.L.); (K.Y.); (Y.T.); (S.G.)
| |
Collapse
|
44
|
Wang X, Kim CS, Adams BC, Wilkinson R, Hill MM, Shah AK, Mohamed A, Dutt M, Ng MSY, Ungerer JPJ, Healy HG, Kassianos AJ. Human proximal tubular epithelial cell-derived small extracellular vesicles mediate synchronized tubular ferroptosis in hypoxic kidney injury. Redox Biol 2024; 70:103042. [PMID: 38244399 PMCID: PMC10831315 DOI: 10.1016/j.redox.2024.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Hypoxia is the key pathobiological trigger of tubular oxidative stress and cell death that drives the transition of acute kidney injury (AKI) to chronic kidney disease (CKD). The mitochondrial-rich proximal tubular epithelial cells (PTEC) are uniquely sensitive to hypoxia and thus, are pivotal in propagating the sustained tubular loss of AKI-to-CKD transition. Here, we examined the role of PTEC-derived small extracellular vesicles (sEV) in propagating the 'wave of tubular death'. Ex vivo patient-derived PTEC were cultured under normoxia (21 % O2) and hypoxia (1 % O2) on Transwell inserts for isolation and analysis of sEV secreted from apical versus basolateral PTEC surfaces. Increased numbers of sEV were secreted from the apical surface of hypoxic PTEC compared with normoxic PTEC. No differences in basolateral sEV numbers were observed between culture conditions. Biological pathway analysis of hypoxic-apical sEV cargo identified distinct miRNAs linked with cellular injury pathways. In functional assays, hypoxic-apical sEV selectively induced ferroptotic cell death (↓glutathione peroxidase-4, ↑lipid peroxidation) in autologous PTEC compared with normoxic-apical sEV. The addition of ferroptosis inhibitors, ferrostatin-1 and baicalein, attenuated PTEC ferroptosis. RNAse A pretreatment of hypoxic-apical sEV also abrogated PTEC ferroptosis, demonstrating a role for sEV RNA in ferroptotic 'wave of death' signalling. In line with these in vitro findings, in situ immunolabelling of diagnostic kidney biopsies from AKI patients with clinical progression to CKD (AKI-to-CKD transition) showed evidence of ferroptosis propagation (increased numbers of ACSL4+ PTEC), while urine-derived sEV (usEV) from these 'AKI-to-CKD transition' patients triggered PTEC ferroptosis (↑lipid peroxidation) in functional studies. Our data establish PTEC-derived apical sEV and their intravesicular RNA as mediators of tubular lipid peroxidation and ferroptosis in hypoxic kidney injury. This concept of how tubular pathology is propagated from the initiating insult into a 'wave of death' provides novel therapeutic check-points for targeting AKI-to-CKD transition.
Collapse
Affiliation(s)
- Xiangju Wang
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Chang Seong Kim
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Benjamin C Adams
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Ray Wilkinson
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alok K Shah
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mriga Dutt
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Monica S Y Ng
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jacobus P J Ungerer
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Helen G Healy
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
45
|
Wang Q, Liu Y, Zhang Y, Zhang S, Zhao M, Peng Z, Xu H, Huang H. Characterization of macrophages in ischemia-reperfusion injury-induced acute kidney injury based on single-cell RNA-Seq and bulk RNA-Seq analysis. Int Immunopharmacol 2024; 130:111754. [PMID: 38428147 DOI: 10.1016/j.intimp.2024.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Acute kidney injury (AKI) is a complex disease, with macrophages playing a vital role in its progression. However, the mechanism of macrophage function remains unclear and strategies targeting macrophages in AKI are controversial. To address this issue, we used single-cell RNA-seq analysis to identify macrophage sub-types involved in ischemia-reperfusion-induced AKI, and then screened for associated hub genes using intersecting bulk RNA-seq data. The single-cell and bulk RNA-seq datasets were obtained from the Gene Expression Omnibus (GEO) database. Screening of differentially-expressed genes (DEGs) and pseudo-bulk DEG analyses were used to identify common hub genes. Pseudotime and trajectory analyses were performed to investigate the progression of cell differentiation. CellChat analysis was performed to reveal the crosstalk between cell clusters. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to identify enriched pathways in the cell clusters. Immunofluorescence and RT-PCR were preformed to validate the expression of the identified hub genes. Four hub genes, Vim, S100a6, Ier3, and Ccr1, were identified in the infiltrated macrophages between normal samples and those 3 days after ischemia-reperfusion renal injury (IRI); all were associated with the progression of IRI-induced AKI. Increased expression of Vim, S100a6, Ier3, and Ccr1 in infiltrated macrophages may be associated with inflammatory responses and may mediate crosstalk between macrophages and renal tubular epithelial cells under IRI conditions. Our results reveal that Ier3 may be critical in AKI, and that Vim, S100a6, Ier3, and Ccr1 may act as novel biomarkers and potential therapeutic targets for IRI-induced AKI.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuxing Liu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Siyuan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meifang Zhao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| |
Collapse
|
46
|
von Mässenhausen A, Schlecht MN, Beer K, Maremonti F, Tonnus W, Belavgeni A, Gavali S, Flade K, Riley JS, Zamora Gonzalez N, Brucker A, Becker JN, Tmava M, Meyer C, Peitzsch M, Hugo C, Gembardt F, Angeli JPF, Bornstein SR, Tait SWG, Linkermann A. Treatment with siRNAs is commonly associated with GPX4 up-regulation and target knockdown-independent sensitization to ferroptosis. SCIENCE ADVANCES 2024; 10:eadk7329. [PMID: 38489367 PMCID: PMC10942120 DOI: 10.1126/sciadv.adk7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Small interfering RNAs (siRNAs) are widely used in biomedical research and in clinical trials. Here, we demonstrate that siRNA treatment is commonly associated with significant sensitization to ferroptosis, independently of the target protein knockdown. Genetically targeting mitochondrial antiviral-signaling protein (MAVS) reversed the siRNA-mediated sensitizing effect, but no activation of canonical MAVS signaling, which involves phosphorylation of IkBα and interferon regulatory transcription factor 3 (IRF3), was observed. In contrast, MAVS mediated a noncanonical signal resulting in a prominent increase in mitochondrial ROS levels, and increase in the BACH1/pNRF2 transcription factor ratio and GPX4 up-regulation, which was associated with a 50% decrease in intracellular glutathione levels. We conclude that siRNAs commonly sensitize to ferroptosis and may severely compromise the conclusions drawn from silencing approaches in biomedical research. Finally, as ferroptosis contributes to a variety of pathophysiological processes, we cannot exclude side effects in human siRNA-based therapeutical concepts that should be clinically tested.
Collapse
Affiliation(s)
- Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marlena Nastassja Schlecht
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Kristina Beer
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Francesca Maremonti
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexia Belavgeni
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Shubhangi Gavali
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Karolin Flade
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Joel S. Riley
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
- Biocenter Innsbruck (CCB), Medical University Innsbruck, Division of Developmental Immunology, Innrain 80, 6020 Innsbruck, Austria
| | - Nadia Zamora Gonzalez
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Anne Brucker
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Jorunn Naila Becker
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Mirela Tmava
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Claudia Meyer
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Florian Gembardt
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Jose Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Stephen W. G. Tait
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
47
|
Yan Y, Yuan N, Chen Y, Ma Y, Chen A, Wang F, Yan S, He Z, He J, Zhang C, Wang H, Wang M, Diao J, Xiao W. SKP alleviates the ferroptosis in diabetic kidney disease through suppression of HIF-1α/HO-1 pathway based on network pharmacology analysis and experimental validation. Chin Med 2024; 19:31. [PMID: 38403669 PMCID: PMC10894492 DOI: 10.1186/s13020-024-00901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) represents a microvascular complication of diabetes mellitus. Shenkang Pills (SKP), a traditional Chinese medicine formula, has been widely used in the treatment of DKD and has obvious antioxidant effect. Ferroptosis, a novel mode of cell death due to iron overload, has been shown to be associated with DKD. Nevertheless, the precise effects and underlying mechanisms of SKP on ferroptosis in diabetic kidney disease remain unclear. METHODS The active components of SKP were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Protein-protein interaction (PPI) network and Herb-ingredient-targets gene network were constructed using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted utilizing the Metascape system database. Additionally, an in vivo model of DKD induced by Streptozotocin (STZ) was established to further investigate and validate the possible mechanisms underlying the effectiveness of SKP. RESULTS We retrieved 56 compounds and identified 223 targets of SKP through the TCMSP database. Key targets were ascertained using PPI network analysis. By constructing a Herb-Ingredient-Targets gene network, we isolated the primary active components in SKP that potentially counteract ferroptosis in diabetic kidney disease. KEGG pathway enrichment analysis suggested that SKP has the potential to alleviate ferroptosis through HIF signaling pathway, thereby mitigating renal injury in DKD. In animal experiments, fasting blood glucose, 24 h urine protein, urea nitrogen and serum creatine were measured. The results showed that SKP could improve DKD. Results from animal experiments were also confirmed the efficacy of SKP in alleviating renal fibrosis, oxidative stress and ferroptosis in DKD mice. These effects were accompanied by the significant reductions in renal tissue expression of HIF-1α and HO-1 proteins. The mRNA and immunohistochemistry results were the same as above. CONCLUSIONS SKP potentially mitigating renal injury in DKD by subduing ferroptosis through the intricacies of the HIF-1α/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yangtian Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ningning Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuchi Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun Ma
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ali Chen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Fujing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shihua Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuo'en He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinyue He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chi Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jianxin Diao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| |
Collapse
|
48
|
Yamanaga S, Hidaka Y, Kawabata C, Toyoda M, Tanaka K, Yamamoto Y, Inadome A, Takeda A, Yokomizo H. Water intake, baseline biopsy, and graft function after living donor kidney transplantation. Sci Rep 2024; 14:3715. [PMID: 38355944 PMCID: PMC10866883 DOI: 10.1038/s41598-024-54163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Increased water intake is recommended for kidney transplant recipients; however, its efficacy remains controversial. We hypothesized that pre-existing histological findings of the allograft might modulate the impact of water intake. We retrospectively analyzed 167 adults with living-donor kidney transplants (April 2011-May 2020; median observation period, 77 months) whose baseline biopsy data were available. We compared the chronic-change group (n = 38) with the control group (n = 129) to assess the impact of self-reported daily water intake on the estimated glomerular filtration rate (eGFR). The range distribution of water intake was as follows: - 1000 ml (n = 4), 1000-1500 ml (n = 23), 1500-2000 ml (n = 64), 2000-2500 ml (n = 57), 2500-3000 ml (n = 16), and 3000 - ml (n = 3). Donor age was significantly higher in the chronic-change group. In the control group, the ΔeGFR/year increase was correlated with water intake. However, the increase in the water intake of the chronic-change group significantly decreased ΔeGFR/year (1000-1500 ml: + 1.95 ml/min/1.73 m2 and > 2000 ml: - 1.92 ml/min/1.73 m2, p = 0.014). This study suggested a potential influence of increased water intake on recipients with marginal grafts in living donor kidney transplantation.
Collapse
Affiliation(s)
- Shigeyoshi Yamanaga
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine Minami, Higashi-ku, Kumamoto, 861-8520, Japan.
| | - Yuji Hidaka
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine Minami, Higashi-ku, Kumamoto, 861-8520, Japan
| | - Chiaki Kawabata
- Department of Nephrology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Mariko Toyoda
- Department of Nephrology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Kosuke Tanaka
- Department of Surgery, Kyoto University, Kyoto, Japan
| | - Yasuhiro Yamamoto
- Department of Urology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Akito Inadome
- Department of Urology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Asami Takeda
- Department of Nephrology, Japanese Red Cross Nagoya Daini Hospital, Aichi, Japan
| | - Hiroshi Yokomizo
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine Minami, Higashi-ku, Kumamoto, 861-8520, Japan
| |
Collapse
|
49
|
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 2024; 20:101-119. [PMID: 37857763 DOI: 10.1038/s41581-023-00775-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
50
|
Brezgunova AA, Andrianova NV, Saidova AA, Potashnikova DM, Abramicheva PA, Manskikh VN, Mariasina SS, Pevzner IB, Zorova LD, Manzhulo IV, Zorov DB, Plotnikov EY. Anti-Inflammatory Effect of Synaptamide in Ischemic Acute Kidney Injury and the Role of G-Protein-Coupled Receptor 110. Int J Mol Sci 2024; 25:1500. [PMID: 38338779 PMCID: PMC10855239 DOI: 10.3390/ijms25031500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The development of drugs for the treatment of acute kidney injury (AKI) that could suppress the excessive inflammatory response in damaged kidneys is an important clinical challenge. Recently, synaptamide (N-docosahexaenoylethanolamine) has been shown to exert anti-inflammatory and neurogenic properties. The aim of this study was to investigate the anti-inflammatory effect of synaptamide in ischemic AKI. For this purpose, we analyzed the expression of inflammatory mediators and the infiltration of different leukocyte populations into the kidney after injury, evaluated the expression of the putative synaptamide receptor G-protein-coupled receptor 110 (GPR110), and isolated a population of CD11b/c+ cells mainly representing neutrophils and macrophages using cell sorting. We also evaluated the severity of AKI during synaptamide therapy and the serum metabolic profile. We demonstrated that synaptamide reduced the level of pro-inflammatory interleukins and the expression of integrin CD11a in kidney tissue after injury. We found that the administration of synaptamide increased the expression of its receptor GPR110 in both total kidney tissue and renal CD11b/c+ cells that was associated with the reduced production of pro-inflammatory interleukins in these cells. Thus, we demonstrated that synaptamide therapy mitigates the inflammatory response in kidney tissue during ischemic AKI, which can be achieved through GPR110 signaling in neutrophils and a reduction in these cells' pro-inflammatory interleukin production.
Collapse
Affiliation(s)
- Anna A. Brezgunova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
| | - Aleena A. Saidova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.S.); (D.M.P.)
| | - Daria M. Potashnikova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.S.); (D.M.P.)
| | - Polina A. Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
| | - Vasily N. Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
| | - Sofia S. Mariasina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Research and Educational Resource Center “Pharmacy”, RUDN University, 117198 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Igor V. Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia;
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.B.); (N.V.A.); (P.A.A.); (V.N.M.); (I.B.P.); (L.D.Z.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| |
Collapse
|