1
|
Carty JS, Bessho R, Zuchowski Y, Trapani JB, Davidoff O, Kobayashi H, Roland JT, Watts JA, Terker AS, Bock F, Arroyo JP, Haase VH. Disruption of mitochondrial electron transport impairs urinary concentration via AMPK-dependent suppression of aquaporin 2. JCI Insight 2024; 9:e182087. [PMID: 39361429 PMCID: PMC11601893 DOI: 10.1172/jci.insight.182087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
Urinary concentration is an energy-dependent process that minimizes body water loss by increasing aquaporin 2 (AQP2) expression in collecting duct (CD) principal cells. To investigate the role of mitochondrial (mt) ATP production in renal water clearance, we disrupted mt electron transport in CD cells by targeting ubiquinone (Q) binding protein QPC (UQCRQ), a subunit of mt complex III essential for oxidative phosphorylation. QPC-deficient mice produced less concentrated urine than controls, both at baseline and after type 2 vasopressin receptor stimulation with desmopressin. Impaired urinary concentration in QPC-deficient mice was associated with reduced total AQP2 protein levels in CD tubules, while AQP2 phosphorylation and membrane trafficking remained unaffected. In cultured inner medullary CD cells treated with mt complex III inhibitor antimycin A, the reduction in AQP2 abundance was associated with activation of 5' adenosine monophosphate-activated protein kinase (AMPK) and was reversed by treatment with AMPK inhibitor SBI-0206965. In summary, our studies demonstrated that the physiological regulation of AQP2 abundance in principal CD cells was dependent on mt electron transport. Furthermore, our data suggested that oxidative phosphorylation in CD cells was dispensable for maintaining water homeostasis under baseline conditions, but necessary for maximal stimulation of AQP2 expression and urinary concentration.
Collapse
Affiliation(s)
- Joshua S. Carty
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ryoichi Bessho
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yvonne Zuchowski
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jonathan B. Trapani
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Olena Davidoff
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Research and Medical Services, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Hanako Kobayashi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Research and Medical Services, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Joseph T. Roland
- Section of Surgical Sciences, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jason A. Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Volker H. Haase
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Research and Medical Services, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Effect of Geumgwe-Sinkihwan on Renal Dysfunction in Ischemia/Reperfusion-Induced Acute Renal Failure Mice. Nutrients 2021; 13:nu13113859. [PMID: 34836115 PMCID: PMC8618572 DOI: 10.3390/nu13113859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is an important cause of acute renal failure (ARF). Geumgwe-sinkihwan (GSH) was recorded in a traditional Chines medical book named “Bangyakhappyeon” in 1884. GSH has been used for treatment for patients with diabetes and glomerulonephritis caused by deficiency of kidney yang and insufficiency of kidney gi. Here we investigate the effects of GSH in mice model of ischemic acute kidney injury. The mice groups are as follows; sham group: C57BL6 male mice, I/R group: C57BL6 male mice with I/R surgery, GSH low group: I/R + 100 mg/kg/day GSH, and GSH high group: I/R + 300 mg/kg/day GSH. Ischemia was induced by clamping both renal arteries and reperfusion. Mice were orally given GSH (100 and 300 mg/kg/day) during 3 days after surgery. Treatment with GSH significantly ameliorated creatinine clearance, creatinine, and blood urea nitrogen levels. Treatment with GSH reduced neutrophil gelatinase associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), specific renal injury markers. GSH also reduced the periodic acid–Schiff and picro sirius red staining intensity in kidney of I/R group. Western blot and real-time RT-qPCR analysis demonstrated that GSH decreased protein and mRNA expression levels of the inflammatory cytokines in I/R-induced ARF mice. Moreover, GSH inhibited protein and mRNA expression of inflammasome-related protein including NLRP3 (NOD-like receptor pyrin domain-containing protein 3, cryoprin), ASC (Apoptosis-associated speck-like protein containing a CARD), and caspase-1. These findings provided evidence that GSH ameliorates renal injury including metabolic dysfunction and inflammation via the inhibition of NLRP3-dependent inflammasome in I/R-induced ARF mice.
Collapse
|
3
|
Tubular Cell Dropout in Preimplantation Deceased Donor Biopsies as a Predictor of Delayed Graft Function. Transplant Direct 2021; 7:e716. [PMID: 34476295 PMCID: PMC8384397 DOI: 10.1097/txd.0000000000001168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background. Delayed graft function (DGF) affects over 25% of deceased donor kidney transplants (DDKTs) and is associated with increased cost, worsened graft outcomes, and mortality. While approaches to preventing DGF have focused on minimizing cold ischemia, donor factors such as acute tubular injury can influence risk. There are currently no pharmacologic therapies to modify DGF risk or promote repair, in part due to our incomplete understanding of the biology of preimplantation tubular injury. Methods. We collected intraoperative, preimplantation kidney biopsies from 11 high-risk deceased donors and 10 living donors and followed transplant recipients for graft function. We performed quantitative high-dimensional histopathologic analysis using imaging mass cytometry to determine the cellular signatures that distinguished deceased and living donor biopsies as well as deceased donor biopsies which either did or did not progress to DGF. Results. We noted decreased tubular cells (P < 0.0001) and increased macrophage infiltration (P = 0.0037) in high-risk DDKT compared with living donor biopsies. For those high-risk DDKTs that developed postimplant DGF (n = 6), quantitative imaging mass cytometry analysis showed a trend toward reduced tubular cells (P = 0.02) and increased stromal cells (P = 0.04) versus those that did not (n = 5). Notably, these differences were not identified by conventional histopathologic evaluation. Conclusions. The current study identifies donor tubular cell loss as a precursor of DGF pathogenesis and highlights an area for further investigation and potential therapeutic intervention.
Collapse
|
4
|
Effects of Ischemia-Reperfusion on Tubular Cell Membrane Transporters and Consequences in Kidney Transplantation. J Clin Med 2020; 9:jcm9082610. [PMID: 32806541 PMCID: PMC7464608 DOI: 10.3390/jcm9082610] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion (IR)-induced acute kidney injury (IRI) is an inevitable event in kidney transplantation. It is a complex pathophysiological process associated with numerous structural and metabolic changes that have a profound influence on the early and the late function of the transplanted kidney. Proximal tubular cells are particularly sensitive to IRI. These cells are involved in renal and whole-body homeostasis, detoxification processes and drugs elimination by a transporter-dependent, transcellular transport system involving Solute Carriers (SLCs) and ATP Binding Cassettes (ABCs) transporters. Numerous studies conducted mainly in animal models suggested that IRI causes decreased expression and activity of some major tubular transporters. This could favor uremic toxins accumulation and renal metabolic alterations or impact the pharmacokinetic/toxicity of drugs used in transplantation. It is of particular importance to understand the underlying mechanisms and effects of IR on tubular transporters in order to improve the mechanistic understanding of IRI pathophysiology, identify biomarkers of graft function or promote the design and development of novel and effective therapies. Modulation of transporters’ activity could thus be a new therapeutic opportunity to attenuate kidney injury during IR.
Collapse
|
5
|
Remote Ischemic Perconditioning Modulates Apelin Expression After Renal Ischemia-Reperfusion Injury. J Surg Res 2020; 247:429-437. [DOI: 10.1016/j.jss.2019.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023]
|
6
|
Milano S, Carmosino M, Gerbino A, Svelto M, Procino G. Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update. Int J Mol Sci 2017; 18:ijms18112385. [PMID: 29125546 PMCID: PMC5713354 DOI: 10.3390/ijms18112385] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Under physiological conditions, excessive loss of water through the urine is prevented by the release of the antidiuretic hormone arginine-vasopressin (AVP) from the posterior pituitary. In the kidney, AVP elicits a number of cellular responses, which converge on increasing the osmotic reabsorption of water in the collecting duct. One of the key events triggered by the binding of AVP to its type-2 receptor (AVPR2) is the exocytosis of the water channel aquaporin 2 (AQP2) at the apical membrane the principal cells of the collecting duct. Mutations of either AVPR2 or AQP2 result in a genetic disease known as nephrogenic diabetes insipidus, which is characterized by the lack of responsiveness of the collecting duct to the antidiuretic action of AVP. The affected subject, being incapable of concentrating the urine, presents marked polyuria and compensatory polydipsia and is constantly at risk of severe dehydration. The molecular bases of the disease are fully uncovered, as well as the genetic or clinical tests for a prompt diagnosis of the disease in newborns. A real cure for nephrogenic diabetes insipidus (NDI) is still missing, and the main symptoms of the disease are handled with s continuous supply of water, a restrictive diet, and nonspecific drugs. Unfortunately, the current therapeutic options are limited and only partially beneficial. Further investigation in vitro or using the available animal models of the disease, combined with clinical trials, will eventually lead to the identification of one or more targeted strategies that will improve or replace the current conventional therapy and grant NDI patients a better quality of life. Here we provide an updated overview of the genetic defects causing NDI, the most recent strategies under investigation for rescuing the activity of mutated AVPR2 or AQP2, or for bypassing defective AVPR2 signaling and restoring AQP2 plasma membrane expression.
Collapse
Affiliation(s)
- Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy.
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| |
Collapse
|
7
|
Fumarase activity: an in vivo and in vitro biomarker for acute kidney injury. Sci Rep 2017; 7:40812. [PMID: 28094329 PMCID: PMC5240145 DOI: 10.1038/srep40812] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/12/2016] [Indexed: 11/08/2022] Open
Abstract
Renal ischemia/reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), and at present, there is a lack of reliable biomarkers that can diagnose AKI and measure early progression because the commonly used methods cannot evaluate single-kidney IRI. Hyperpolarized [1,4-13C2]fumarate conversion to [1,4-13C2]malate by fumarase has been proposed as a measure of necrosis in rat tumor models and in chemically induced AKI rats. Here we show that the degradation of cell membranes in connection with necrosis leads to elevated fumarase activity in plasma and urine and secondly that hyperpolarized [1,4-13C2]malate production 24 h after reperfusion correlates with renal necrosis in a 40-min unilateral ischemic rat model. Fumarase activity screening on bio-fluids can detect injury severity, in bilateral as well as unilateral AKI models, differentiating moderate and severe AKI as well as short- and long-term AKI. Furthermore after verification of renal injury by bio-fluid analysis the precise injury location can be monitored by in vivo measurements of the fumarase activity non-invasively by hyperpolarized [1,4-13C]fumarate MR imaging. The combined in vitro and in vivo biomarker of AKI responds to the essential requirements for a new reliable biomarker of AKI.
Collapse
|
8
|
Kristensen MLV, Kierulf-Lassen C, Nielsen PM, Krag S, Birn H, Nejsum LN, Nørregaard R. Remote ischemic perconditioning attenuates ischemia/reperfusion-induced downregulation of AQP2 in rat kidney. Physiol Rep 2016; 4:4/13/e12865. [PMID: 27405971 PMCID: PMC4945844 DOI: 10.14814/phy2.12865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 12/28/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) can lead to impaired urine concentration ability and increased fractional excretion of sodium (FeNa). Local ischemic preconditioning improves renal water and sodium handling after I/R injury. Here, we investigate whether remote ischemic perconditioning (rIPeC) prevents dysregulation of renal water and salt handling in response to I/R injury and mechanisms that may be involved. Rats were subjected to right nephrectomy and randomized into a sham group or an I/R group. In the I/R group, rats were subjected to 37 min of renal ischemia and 3 days of reperfusion. rIPeC was applied to the abdominal aorta. Blood and urine were collected on day 3 postoperatively for clearance studies. The expression of aquaporins (AQPs) and the sodium transporter Na-K-ATPase were analyzed using immunoblotting and immunohistochemistry. I/R injury resulted in polyuria, increased FeNa, and decreased urine osmolality compared to sham rats. rIPeC attenuated the increase in FeNa and the decrease in urine osmolality. Expression of AQP1, AQP2, phosphorylated AQP2 (pAQP2), and Na-K-ATPase was downregulated in I/R rats. rIPeC attenuated the reductions in AQP2 and pAQP2 expression. Immunohistochemistry revealed decreased labeling of Na-K-ATPase in the outer medulla in I/R kidneys compared to kidneys from sham and I/R + rIPeC rats. After renal ischemia, the expression of Na-K-ATPase was substantially reduced in the outer medullary thick ascending limb. In conclusion, our data suggest that rIPeC might prevent dysregulation of renal water and salt handling via regulation of AQP2 expression and phosphorylation as well as via regulation of Na-K-ATPase expression in I/R rat kidneys.
Collapse
Affiliation(s)
| | | | - Per Mose Nielsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Krag
- Department of Pathology, Aarhus University, Aarhus, Denmark
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Department of Renal Medicine, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Nielsen PM, Szocska Hansen ES, Nørlinger TS, Nørregaard R, Bonde Bertelsen L, Stødkilde Jørgensen H, Laustsen C. Renal ischemia and reperfusion assessment with three-dimensional hyperpolarized 13 C, 15 N2-urea. Magn Reson Med 2016; 76:1524-1530. [PMID: 27548739 DOI: 10.1002/mrm.26377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/25/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE The aim of this work was to investigate whether hyperpolarized 13 C,15 N2 -urea can be used as an imaging marker of renal injury in renal unilateral ischemic reperfusion injury (IRI), given that urea is correlated with the renal osmotic gradient, which describes the renal function. METHODS Hyperpolarized three-dimensional balanced steady-state 13 C magnetic resonance imaging (MRI) experiments alongside kidney function parameters and quantitative polymerase chain reaction measurements were performed in rats subjected to unilateral renal ischemia for 60-minute and 24-hour reperfusion. RESULTS We revealed a significant reduction in the intrarenal gradient in the ischemic kidney in agreement with cortical injury markers neutrophil gelatinase-associated lipocalin and kidney injury molecule 1, as well as functional kidney parameters. CONCLUSION Hyperpolarized functional 13 C,15 N2 urea MRI can be used to successfully detect changes in the intrarenal urea gradient post-IRI, thereby enabling in vivo monitoring of the intrarenal functional status in the rat kidney. Magn Reson Med 76:1524-1530, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Esben Søvsø Szocska Hansen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
10
|
Al-Bataineh MM, Li H, Ohmi K, Gong F, Marciszyn AL, Naveed S, Zhu X, Neumann D, Wu Q, Cheng L, Fenton RA, Pastor-Soler NM, Hallows KR. Activation of the metabolic sensor AMP-activated protein kinase inhibits aquaporin-2 function in kidney principal cells. Am J Physiol Renal Physiol 2016; 311:F890-F900. [PMID: 27534994 PMCID: PMC5130465 DOI: 10.1152/ajprenal.00308.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022] Open
Abstract
Aquaporin-2 (AQP2) is essential to maintain body water homeostasis. AQP2 traffics from intracellular vesicles to the apical membrane of kidney collecting duct principal cells in response to vasopressin [arginine vasopressin (AVP)], a hormone released with low intravascular volume, which causes decreased kidney perfusion. Decreased kidney perfusion activates AMP-activated kinase (AMPK), a metabolic sensor that inhibits the activity of several transport proteins. We hypothesized that AMPK activation also inhibits AQP2 function. These putative AMPK effects could protect interstitial ionic gradients required for urinary concentration during metabolic stress when low intravascular volume induces AVP release. Here we found that short-term AMPK activation by treatment with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR; 75 min) in kidney tissue prevented baseline AQP2 apical accumulation in principal cells, but did not prevent AQP2 apical accumulation in response to the AVP analog desmopressin (dDAVP). Prolonged AMPK activation prevented AQP2 cell membrane accumulation in response to forskolin in mouse collecting duct mpkCCDc14 cells. Moreover, AMPK inhibition accelerated hypotonic lysis of Xenopus oocytes expressing AQP2. We performed phosphorylation assays to elucidate the mechanism by which AMPK regulates AQP2. Although AMPK weakly phosphorylated immunoprecipitated AQP2 in vitro, no direct AMPK phosphorylation of the AQP2 COOH-terminus was detected by mass spectrometry. AMPK promoted Ser-261 phosphorylation and antagonized dDAVP-dependent phosphorylation of other AQP2 COOH-terminal sites in cells. Our findings suggest an increasing, time-dependent antagonism of AMPK on AQP2 regulation with AICAR-dependent inhibition of cAMP-dependent apical accumulation and AVP-dependent phosphorylation of AQP2. This inhibition likely occurs via a mechanism that does not involve direct AQP2 phosphorylation by AMPK.
Collapse
Affiliation(s)
- Mohammad M Al-Bataineh
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hui Li
- Department of Medicine, University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Kazuhiro Ohmi
- Department of Medicine, University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Fan Gong
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Allison L Marciszyn
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sajid Naveed
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiaoqing Zhu
- Department of Molecular Genetics, School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; and
| | - Dietbert Neumann
- Department of Molecular Genetics, School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; and
| | - Qi Wu
- Department of Biomedicine, InterPrET Center, Aarhus University, Aarhus, Denmark
| | - Lei Cheng
- Department of Biomedicine, InterPrET Center, Aarhus University, Aarhus, Denmark
| | - Robert A Fenton
- Department of Biomedicine, InterPrET Center, Aarhus University, Aarhus, Denmark
| | - Núria M Pastor-Soler
- Department of Medicine, University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Keck School of Medicine of University of Southern California, Los Angeles, California;
| | - Kenneth R Hallows
- Department of Medicine, University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Keck School of Medicine of University of Southern California, Los Angeles, California
| |
Collapse
|
11
|
Vallon V. Tubular Transport in Acute Kidney Injury: Relevance for Diagnosis, Prognosis and Intervention. Nephron Clin Pract 2016; 134:160-166. [PMID: 27238156 DOI: 10.1159/000446448] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/24/2016] [Indexed: 12/19/2022] Open
Abstract
The clinical diagnosis and recovery of acute kidney injury (AKI) are mainly based on the rapid decline of glomerular filtration rate (GFR) and its subsequent recovery. The factors that determine kidney recovery and reduce the risk of subsequent progression to chronic kidney disease (CKD), however, are poorly understood. Thus, there is a need to better define the magnitude and time pattern of changes in kidney function during AKI and its recovery that go beyond GFR. Tubular transport regulates body homeostasis and the associated transport work is a primary determinant of the kidneys' energy needs. The tubular system is at the center of the pathophysiology of AKI and its recovery. In particular, proximal tubules and thick ascending limbs have been proposed to act as sensors, effectors and injury recipients of AKI stimuli. Surprisingly little attention has been given to aspects of tubular transport function in AKI and the relevance for kidney recovery. This review aims to outline changes in tubular transport function in AKI, discusses their potential consequences and relevance for the diagnosis and prognosis of AKI and its recovery, including changes in GFR, and poses the question whether tubular transport provides an opportunity for intervention to rest the tubular system, which may have consequences for the progression to CKD. © 2016 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, Calif., USA
| |
Collapse
|
12
|
Marlar S, Arnspang EC, Koffman JS, Løcke EM, Christensen BM, Nejsum LN. Elevated cAMP increases aquaporin-3 plasma membrane diffusion. Am J Physiol Cell Physiol 2014; 306:C598-606. [PMID: 24452376 DOI: 10.1152/ajpcell.00132.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulated urine concentration takes place in the renal collecting duct upon arginine vasopressin (AVP) stimulation, where subapical vesicles containing aquaporin-2 (AQP2) are inserted into the apical membrane instantly increasing water reabsorption and urine concentration. The reabsorped water exits via basolateral AQP3 and AQP4. Upon long-term stimulation with AVP or during thirst, expression levels of both AQP2 and AQP3 are increased; however, there is so far no evidence for short-term AVP regulation of AQP3 or AQP4. To facilitate the increase in transepithelial water transport, AQP3 may be short-term regulated via changes in protein-protein interactions, incorporation into lipid rafts, and/or changes in steady-state turnover, which could result in changes in the diffusion behavior of AQP3. Thus we measured AQP3 diffusion coefficients upon stimulation with the AVP mimic forskolin to reveal if AQP3 could be short-term regulated by AVP. k-Space image correlation spectroscopy (kICS) analysis of time-lapse image sequences of basolateral enhanced green fluorescent protein-tagged AQP3 (AQP3-EGFP) revealed that the forskolin-mediated elevation of cAMP increased the diffusion coefficient by 58% from 0.0147 ± 0.0082 μm(2)/s (control) to 0.0232 ± 0.0085 μm(2)/s (forskolin, P < 0.05). Quantum dot-conjugated antibody labeling also revealed a significant increase in AQP3 diffusion upon forskolin treatment by 44% [0.0104 ± 0.0040 μm(2)/s (control) vs. 0.0150 ± 0.0016 μm(2)/s (forskolin, P < 0.05)]. Immunoelectron microscopy showed no obvious difference in AQP3-EGFP expression levels or localization in the plasma membrane upon forskolin stimulation. Thus AQP3-EGFP diffusion is altered upon increased cAMP, which may correspond to basolateral adaptations in response to the increased apical water readsorption.
Collapse
Affiliation(s)
- Saw Marlar
- Institute of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark; and
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Aquaporins are a group of proteins with high-selective permeability for water. A subgroup called aquaglyceroporins is also permeable to glycerol, urea and a few other solutes. Aquaporin function has mainly been studied in the brain, kidney, glands and skeletal muscle, while the information about aquaporins in the heart is still scarce. The current review explores the recent advances in this field, bringing aquaporins into focus in the context of myocardial ischemia, reperfusion, and blood osmolarity disturbances. Since the amount of data on aquaporins in the heart is still limited, examples and comparisons from better-studied areas of aquaporin biology have been used. The human heart expresses aquaporin-1, -3, -4 and -7 at the protein level. The potential roles of aquaporins in the heart are discussed, and some general phenomena that the myocardial aquaporins share with aquaporins in other organs are elaborated. Cardiac aquaporin-1 is mostly distributed in the microvasculature. Its main role is transcellular water flux across the endothelial membranes. Aquaporin-4 is expressed in myocytes, both in cardiac and in skeletal muscle. In addition to water flux, its function is connected to the calcium signaling machinery. It may play a role in ischemia-reperfusion injury. Aquaglyceroporins, especially aquaporin-7, may serve as a novel pathway for nutrient delivery into the heart. They also mediate toxicity of various poisons. Aquaporins cannot influence permeability by gating, therefore, their function is regulated by changes of expression-on the levels of transcription, translation (by microRNAs), post-translational modification, membrane trafficking, ubiquitination and subsequent degradation. Studies using mice genetically deficient for aquaporins have shown rather modest changes in the heart. However, they might still prove to be attractive targets for therapy directed to reduce myocardial edema and injury caused by ischemia and reperfusion.
Collapse
|
14
|
Optimization of liquid chromatography–multiple reaction monitoring cubed mass spectrometry assay for protein quantification: Application to aquaporin-2 water channel in human urine. J Chromatogr A 2013; 1301:122-30. [DOI: 10.1016/j.chroma.2013.05.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/13/2022]
|
15
|
Renoprotective effect of Alpiniae oxyphyllae Fructus on ischemia/reperfusion-induced acute renal failure. Arch Pharm Res 2013; 36:1004-12. [DOI: 10.1007/s12272-013-0117-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Moeller HB, Rittig S, Fenton RA. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev 2013; 34:278-301. [PMID: 23360744 PMCID: PMC3610677 DOI: 10.1210/er.2012-1044] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The water channel aquaporin-2 (AQP2), expressed in the kidney collecting ducts, plays a pivotal role in maintaining body water balance. The channel is regulated by the peptide hormone arginine vasopressin (AVP), which exerts its effects through the type 2 vasopressin receptor (AVPR2). Disrupted function or regulation of AQP2 or the AVPR2 results in nephrogenic diabetes insipidus (NDI), a common clinical condition of renal origin characterized by polydipsia and polyuria. Over several years, major research efforts have advanced our understanding of NDI at the genetic, cellular, molecular, and biological levels. NDI is commonly characterized as hereditary (congenital) NDI, arising from genetic mutations in the AVPR2 or AQP2; or acquired NDI, due to for exmple medical treatment or electrolyte disturbances. In this article, we provide a comprehensive overview of the genetic, cell biological, and pathophysiological causes of NDI, with emphasis on the congenital forms and the acquired forms arising from lithium and other drug therapies, acute and chronic renal failure, and disturbed levels of calcium and potassium. Additionally, we provide an overview of the exciting new treatment strategies that have been recently proposed for alleviating the symptoms of some forms of the disease and for bypassing G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Hanne B Moeller
- Department of Biomedicine, Aarhus University, and Department of Pediatrics, Aarhus University Hospital, Wilhelm Meyers Alle 3, Building 1234, Aarhus 8000, Denmark.
| | | | | |
Collapse
|
17
|
Rutkovskiy A, Bliksøen M, Hillestad V, Amin M, Czibik G, Valen G, Vaage J, Amiry-Moghaddam M, Stensløkken KO. Aquaporin-1 in cardiac endothelial cells is downregulated in ischemia, hypoxia and cardioplegia. J Mol Cell Cardiol 2012; 56:22-33. [PMID: 23238222 DOI: 10.1016/j.yjmcc.2012.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/08/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Aquaporin-1 (AQP1) is expressed in human and mouse hearts, but little is known about its cellular and subcellular localization and regulation. The aim of this study was to investigate the localization of AQP1 in the mouse heart and to determine the effects of ischemia and hypoxia on its expression. Mouse myocardial cells were freshly isolated and split into cardiomyocyte and non-cardiomyocyte fractions. Isolated, Langendorff-perfused C57Bl6 mouse hearts (n=46) were harvested with no intervention, subjected to 35min of ischemia or ischemia followed by 60min of reperfusion. Eleven mouse hearts were perfusion-fixed for electron microscopy. Forty C57Bl6 mice were exposed to normobaric hypoxia for one or two weeks (n=12). Needle biopsies of human left ventricular myocardium were sampled (n=30) during coronary artery bypass surgery before cardioplegia and after 30min of reperfusion. Human umbilical vein endothelial cells (HUVECs) were subjected to 4h of hypoxia with reoxygenation for either 4 or 24h. AQP1 expression was studied by electron microscopy with immunogold labeling, Western blot, and qPCR. Expression of miR-214 and miR-320 in HUVECs with hypoxia was studied with qPCR. HUVECs were then transfected with precursors and inhibitors of miR-214. AQP1 expression was confined to cardiac endothelial cells, with no signal in cardiomyocytes or cardiac fibroblasts. Immunogold electron microscopy showed AQP1 expression in endothelial caveolae with equal distribution along the basal and apical membranes. Ischemia and reperfusion tended to decrease AQP1 mRNA expression in mouse hearts by 37±9% (p=0.06), while glycosylated AQP1 protein was reduced by 16±9% (p=0.03). No difference in expression was found between ischemia alone and ischemia-reperfusion. In human left ventricles AQP1 mRNA expression was reduced following cardioplegia and reperfusion (p=0.008). Hypoxia in mice reduced AQP1 mRNA expression by 20±7% (p<0.0001), as well as both glycosylated (-47±10%, p=0.03) and glycan-free protein (-34±16%, p=0.05). Hypoxia and reoxygenation in HUVECs downregulated glycan-free AQP1 protein (-34±24%, p=0.04) and upregulated miR-214 (+287±52%, p<0.05). HUVECs transfected with anti-miR-214 had increased glycosylated (1.5 fold) and glycan-free (2 fold) AQP1. AQP1 in mouse hearts is localized to endothelial cell membranes and caveolae. Cardioplegia, ischemia and hypoxia decrease AQP1 mRNA as well as total protein expression and glycosylation, possibly regulated by miR-214.
Collapse
Affiliation(s)
- Arkady Rutkovskiy
- Department of Emergency and Intensive Care at the Institute of Clinical Medicine, University of Oslo, Postbox 1171 Blindern, 0318 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dalaklioglu S, Sahin P, Ordueri EG, Celik-Ozenci C, Tasatargil A. Potential role of poly(ADP-ribose) polymerase (PARP) activation in methotrexate-induced nephrotoxicity and tubular apoptosis. Int J Toxicol 2012; 31:430-40. [PMID: 22914891 DOI: 10.1177/1091581812457430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nephrotoxicity is one of the serious dose-limiting complications of methotrexate (MTX) when used in the treatment of various malignancies and nononcological diseases. The aim of this study was to investigate the role of poly(adenosine diphosphate ribose) polymerase (PARP) activity in MTX-induced nephrotoxicity. Rats were divided into 4 groups as control, MTX treated (MTX, 7 mg/kg per d, intraperitoneally [ip], once daily for 3 consecutive days), MTX plus 1,5-isoquinelinediol (ISO, a PARP inhibitor, 3 mg/kg per d, i.p.) treated, or ISO treated. Histopathology of kidneys was evaluated by light microscopy. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay was used to analyze apoptosis in kidney sections. Blood urea nitrogen (BUN), serum creatinine, and urinary N-acetyl-β-d-glucosaminidase (NAG) were used as biochemical markers of MTX-induced renal injury. Our results showed that MTX administration significantly increased BUN, serum creatinine, and urinary NAG levels. The PARP-1 and PAR (a product of PARP activity) expression and apoptotic cell death were also markedly increased in renal tubules after MTX administration. The ISO treatment attenuated MTX-induced renal injury, as indicated by BUN and serum creatinine levels, urinary NAG excretion, and renal histology. The PARP inhibitor treatment reduced PARP-1 and PAR expression to levels similar to that of controls. These results revealed that ISO may have a protective effect against the nephrotoxic effects of MTX by inhibiting PARP activation. This is the first study that demonstrates the role of PARP activation in MTX-induced nephrotoxicity and tubular apoptosis.
Collapse
|
19
|
Wang W, Li C, Summer S, Falk S, Schrier RW. Interaction between vasopressin and angiotensin II in vivo and in vitro: effect on aquaporins and urine concentration. Am J Physiol Renal Physiol 2010; 299:F577-84. [PMID: 20576679 DOI: 10.1152/ajprenal.00168.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study was undertaken to examine the potential cross talk between vasopressin and angiotensin II (ANG II) intracellular signaling pathways. We investigated in vivo and in vitro whether vasopressin-induced water reabsorption could be attenuated by ANG II AT1 receptor blockade (losartan). On a low-sodium diet (0.5 meq/day) dDAVP-treated animals with or without losartan exhibited comparable renal function [creatinine clearance 1.2 +/- 0.1 in dDAVP+losartan (LSDL) vs. 1.1 +/- 0.1 ml.100 g(-1).day(-1) in dDAVP alone (LSD), P > 0.05] and renal blood flow (6.3 +/- 0.5 in LSDL vs. 6.8 +/- 0.5 ml/min in LSD, P > 0.05). The urine output, however, was significantly increased in LSDL (2.5 +/- 0.2 vs. 1.8 +/- 0.2 ml.100 g(-1).day(-1), P < 0.05) in association with decreased urine osmolality (2,600 +/- 83 vs. 3,256 +/- 110 mosmol/kgH(2)O, P < 0.001) compared with rats in LSD. Immunoblotting revealed significantly decreased expression of medullary AQP2 (146 +/- 6 vs. 176 +/- 10% in LSD, P < 0.01), p-AQP2 (177 +/- 13 vs. 214 +/- 12% in LSD, P < 0.05), and AQP3 (134 +/- 14 vs. 177 +/- 11% in LSD, P < 0.05) in LSDL compared with LSD. The expressions of AQP1, the alpha(1)- and gamma-subunits of Na-K-ATPase, and the Na-K-2Cl cotransporter were not different among groups. In vitro studies showed that ANG II or dDAVP treatment was associated with increased AQP2 expression and cAMP levels, which were potentiated by cotreatment with ANG II and dDAVP and were inhibited by AT1 blockade. In conclusion, ANG II AT1 receptor blockade in dDAVP-treated rats on a low-salt diet was associated with decreased urine concentration and decreased inner medullary AQP2, p-AQP2, and AQP3 expression, suggesting that AT1 receptor activation plays a significant role in regulating aquaporin expression and modulating urine concentration in vivo. Studies in collecting duct cells were confirmatory.
Collapse
Affiliation(s)
- Weidong Wang
- University of Colorado Denver, Aurora, 80045, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Water is the most abundant molecule in any cell. Specialized membrane channel, proteins called aquaporins, facilitate water transport across cell membranes. At least seven aquaporins (AQP): 1, 2, 3, 4, 6, 7, and 11 are expressed in the kidneys. Aquaporins play a role in both the short-term and long-term regulation of water balance as well as in the pathophysiology of water balance disorders. Aquaporin is composed of a single peptide chain consisting of approximately 270 amino acids. Inherited central and nephrogenic diabetes insipidus are primarily due to the decreased expression of AQP2 while mutation in the AQP2 molecule is responsible for inherited central diabetes insipidus. In acquired causes of nephrogenic diabetes insipidus, there is a downregulation of AQP2 expression in the inner medulla of the kidney. Nephrotic syndrome is characterized by excessive sodium and water reabsorption, although in spite of this, patients do not develop hyponatremia. There is a marked downregulation of both AQP2 and AQP3 expression, which could be a physiologic response to extracellular water reabsorption in patients with nephrotic syndrome. There are some conditions in which aquaporin expression has been found to increase such as experimentally induced heart failure, cirrhosis, and pregnancy. Some drugs such as cisplatin and cyclosporine, also alter the expression of aquaporins. The three-pore model of peritoneal transport depicts the importance of aquaporins. Thus, the understanding of renal water channels has solved the mystery behind many water balance disorders. Further insights into the molecular structure and biology of aquaporins will help to lay a foundation for the development of future drugs.
Collapse
Affiliation(s)
- S K Agarwal
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi - 110 029, India
| | | |
Collapse
|
21
|
Kang SW, Kim YW, Kim YH, Sohn HS, Joo H, Kim E. Study of the Association of -667 Aquaporin-2 (AQP-2) A/G Promoter Polymorphism with the Incidence and Clinical Course of Chronic Kidney Disease in Korea. Ren Fail 2009; 29:693-8. [PMID: 17763164 DOI: 10.1080/08860220701460079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Impaired urinary concentration is uniformly present with advanced disease in chronic renal failure. Aquaporin-2 (AQP-2) is known to be expressed in the renal collecting duct cells and participates in urinary concentration in response to vasopressin. Recently, the study of AQP expression in various forms of chronic kidney disease (CKD) demonstrated a reduction in AQP-2 expression associated with a loss of nephrons and the presence of chronic interstitial fibrosis. No information on aquaporin genetic variations in CKD is available to date. The aim of our study was to evaluate the possible impact of aquaporin-2 genotype on the development and clinical course of CKD. METHODS Blood samples from 259 patients with CKD and 106 ethnicity-, age-, and sex-matched healthy controls were collected, and genomic DNA was extracted. AQP-2 -667 genotype was assessed by PCR, followed by restriction fragment length polymorphism analysis. RESULTS There were no significant differences in genotype and allele frequencies between the patients and healthy controls (p = 0.3936, p = 0.2941, respectively). In all, 79 (30.5%) patients had the AQP-2 -667 wild-type A/A, 123 (47.5%) were heterozygous for the G allele, and 57 (22.0%) patients showed homozygosity. After subclassification of CKD according to underlying disease, no significant differences were observed between those patients and controls (p = 0.72 for diabetic nephropathy, p = 0.52 for hypertensive nephropathy, p = 0.27 for chronic glomerulonephritis, and p = 0.80 for unknown etiology). Genotype and allele frequencies of the AQP-2 gene polymorphism (rs3759126) of hypertensive patients in pre-ESRD did not show a noticeable difference compared with normal blood pressure patients in pre-ESRD (p = 0.50). No correlation was found to exist between the AQP-2 gene polymorphism (rs3759126) and serum electrolyte levels in pre-ESRD patients (p = 0.38 for serum sodium level and p = 0.44 for serum potassium level). CONCLUSION Our data indicate that no association exists between the -667 AQP-2 A/G polymorphism and susceptibility to CKD or its clinical course.
Collapse
Affiliation(s)
- Sun Woo Kang
- Department of Nephrology, Inje University, College of Medicine, Busan, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Olesen ETB, de Seigneux S, Wang G, Lütken SC, Frøkiaer J, Kwon TH, Nielsen S. Rapid and segmental specific dysregulation of AQP2, S256-pAQP2 and renal sodium transporters in rats with LPS-induced endotoxaemia. Nephrol Dial Transplant 2009; 24:2338-49. [PMID: 19193739 DOI: 10.1093/ndt/gfp011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Acute renal failure (ARF) is a frequent complication of sepsis. Characteristics of ARF in sepsis are impaired urinary concentration, increased natriuresis and decreased glomerular filtration rate (GFR), in which inducible nitric oxide synthase (iNOS) has been revealed to play a role. Aims. We aimed to investigate renal water and sodium excretion and in parallel the segmental regulation of renal AQP2 and major sodium transporters in rats with acute LPS-induced endotoxaemia. Next, we aimed to examine the changes of iNOS expression and activated macrophage infiltration in the kidney and the effects of iNOS inhibition on AQP2 and NKCC2 expression in LPS rats. METHODS Rats were treated with LPS (i.p.) or with LPS + iNOS inhibitor L-NIL, and 6 h later kidneys were subjected to semiquantitative immunoblotting and immunohistochemistry. RESULTS Polyuria and increased natriuresis were seen 6 h after LPS injection alongside downregulation of both AQP2 and S256-phosphorylated AQP2 in CTX/OSOM and ISOM but not in inner medulla (IM). Thick ascending limb sodium transporters NHE3 and NKCC2 were downregulated in ISOM and NaPi2 was decreased in CTX/OSOM, whereas NCC and ENaC were not consistently downregulated. Immunolabelling intensity of iNOS was increased in vascular structures and transitional epithelium, and an infiltration of activated macrophages was seen in CTX and ISOM. L-NIL co-treatment prevented the downregulation of NKCC2 but not AQP2 in LPS rats. CONCLUSIONS Early downregulation of AQP2 and sodium transporters takes place segmentally in the kidney after LPS administration. In addition, an infiltration of activated macrophages and increased iNOS expression may play a role in the urinary concentrating defect in acute LPS-induced entotoxaemia.
Collapse
Affiliation(s)
- Emma T B Olesen
- The Water and Salt Research Centre, Institute of Anatomy, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Tae-Hwan Kwon
- Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
24
|
Les aquaporines présentes dans le rein. Nephrol Ther 2008; 4:562-7. [DOI: 10.1016/j.nephro.2008.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 03/28/2008] [Accepted: 03/29/2008] [Indexed: 11/15/2022]
|
25
|
Di Giusto G, Anzai N, Endou H, Torres AM. Oat5 and NaDC1 protein abundance in kidney and urine after renal ischemic reperfusion injury. J Histochem Cytochem 2008; 57:17-27. [PMID: 18796410 DOI: 10.1369/jhc.2008.951582] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to evaluate the abundance of the organic anion transporter 5 (Oat5) and the sodium-dicarboxylate cotransporter 1 (NaDC1) in kidney and urine after renal ischemic reperfusion injury. Renal injury was induced in male Wistar rats by occlusion of both renal pedicles for 0 (Group Sham), 5 (Group I5R60), or 60 (Group I60R60) min. The studies were performed after 60 min of reperfusion. The expression of Oat5 and NaDC1 was evaluated by IHC and Western blotting. Oat5 and NaDC1 abundance and alkaline phosphatase activity (AP) were assayed in urine. A decreased expression in renal homogenates and apical membranes and an increase in urinary excretion of Oat5 and NaDC1 were observed in I60R60 rats, as well as alterations of other widely used parameters for renal dysfunction and injury (plasma creatinine, urinary AP activity, kidney weight, histological lesions). In contrast, in the I5R60 group, only an increase in urinary excretion of Oat5 and mild histopathological damage was detected. This is the first study on Oat5 and NaDC1 detection in urine. These results suggest that urinary excretion of Oat5 might be an early indicator of renal dysfunction, which is useful for detection of even minor alterations in renal structural and functional integrity.
Collapse
|
26
|
Boone M, Deen PMT. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch 2008; 456:1005-24. [PMID: 18431594 PMCID: PMC2518081 DOI: 10.1007/s00424-008-0498-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/13/2008] [Accepted: 03/16/2008] [Indexed: 01/06/2023]
Abstract
To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease.
Collapse
Affiliation(s)
- Michelle Boone
- Department of Physiology (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
27
|
Han KH, Kim HY, Croker BP, Reungjui S, Lee SY, Kim J, Handlogten ME, Adin CA, Weiner ID. Effects of ischemia-reperfusion injury on renal ammonia metabolism and the collecting duct. Am J Physiol Renal Physiol 2007; 293:F1342-54. [PMID: 17686949 DOI: 10.1152/ajprenal.00437.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute renal injury induces metabolic acidosis, but its specific effects on the collecting duct, the primary site for urinary ammonia secretion, the primary component of net acid excretion, are incompletely understood. We induced ischemia-reperfusion (I/R) acute renal injury in Sprague-Dawley rats by clamping the renal pedicles bilaterally for 30 min followed by reperfusion for 6 h. Control rats underwent sham surgery without renal pedicle clamping. I/R injury decreased urinary ammonia excretion significantly but did not persistently alter urine volume, Na+, K+, or bicarbonate excretion. Histological examination demonstrated cellular damage in the outer and inner medullary collecting duct, as well as in the proximal tubule and the thick ascending limb of the loop of Henle. A subset of collecting duct cells were damaged and/or detached from the basement membrane; these cells were present predominantly in the outer medulla and were less frequent in the inner medulla. Immunohistochemistry identified that the damaged/detached cells were A-type intercalated cells, not principal cells. Both TdT-mediated dUTP nick-end labeling (TUNEL) staining and transmission electron microscopic examination demonstrated apoptosis but not necrosis. However, immunoreactivity for caspase-3 was observed in the proximal tubule, but not in collecting duct intercalated cells, suggesting that mechanism(s) of collecting duct intercalated cell apoptosis differ from those operative in the proximal tubule. We conclude that I/R injury decreases renal ammonia excretion and is associated with intercalated cell-specific detachment and apoptosis in the outer and inner medullary collecting duct. These effects likely contribute to the metabolic acidosis frequently observed in acute renal injury.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schmidt C, Höcherl K, Schweda F, Kurtz A, Bucher M. Regulation of renal sodium transporters during severe inflammation. J Am Soc Nephrol 2007; 18:1072-83. [PMID: 17314327 DOI: 10.1681/asn.2006050454] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sepsis-associated acute renal failure is characterized by decreased GFR and tubular dysfunction. The pathogenesis of endotoxemic tubular dysfunction with failure in urine concentration and increased fractional sodium excretion is poorly understood. This study investigated the regulation of renal sodium transporters during severe inflammation in vivo and in vitro. Injection of high-dosage LPS reduced BP and GFR, increased fractional sodium excretion, and strongly decreased the expression of Na(+)/H(+)-exchanger, renal outer medullary potassium channel, Na(+)-K(+)-2Cl(-) co-transporter, epithelial sodium channel, and Na(+)/K(+)-ATPase in mice. Also, injection of TNF-alpha, IL-1beta, or IFN-gamma decreased renal function and expression of renal sodium transporters. LPS-induced downregulation of sodium transporters was not affected in cytokine-knockout mice. However, supplementary glucocorticoid treatment, which inhibited LPS-induced increase of tissue cytokine concentrations, attenuated LPS-induced renal dysfunction and downregulation of tubular sodium transporters. Injection of low-dosage LPS increased renal tissue cytokines and downregulated renal sodium transporters without arterial hypotension. In vitro, in cortical collecting duct cells, cytokines also decreased expression of renal outer medullary potassium channel, epithelial sodium channel, and Na(+)/K(+)-ATPase. Renal hypoperfusion by renal artery clipping did not influence renal sodium transporter expression, in contrast to renal ischemia-reperfusion injury, which depressed transporter expression. These findings demonstrate downregulation of renal sodium transporters that likely accounts for tubular dysfunction during inflammation. These data suggest that alteration of renal sodium transporters during LPS-induced acute renal failure is mediated by cytokines rather than renal ischemia. However, in a complex in vivo model of severe inflammation, the possible presence and influence of renal hypoperfusion and reperfusion on the expression of renal sodium transporters cannot be completely excluded.
Collapse
Affiliation(s)
- Christoph Schmidt
- Department of Anesthesiology, Regensburg University, 93042 Regensburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Abstract
The discovery of aquaporin-1 (AQP1) explained the long-standing biophysical question of how water specifically crosses biological membranes. These studies led to the identification of a whole new family of membrane proteins, the aquaporin water channels. At present, at least eight aquaporins are expressed at distinct sites in the kidney and four members of this family (AQP1-4) have been demonstrated to play pivotal roles in the physiology and pathophysiology for renal regulation of body water balance. In the present review, a number of inherited and acquired conditions characterized by urinary concentration defects as well as common diseases associated with severe water retention are discussed with relation to the role of aquaporins in regulation and dysregulation of renal water transport.
Collapse
Affiliation(s)
- S Nielsen
- The Water and Salt Research Center, University of Aarhus, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
30
|
de Seigneux S, Malte H, Dimke H, Frøkiaer J, Nielsen S, Frische S. Renal compensation to chronic hypoxic hypercapnia: downregulation of pendrin and adaptation of the proximal tubule. Am J Physiol Renal Physiol 2006; 292:F1256-66. [PMID: 17182533 DOI: 10.1152/ajprenal.00220.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular basis for the renal compensation to respiratory acidosis and specifically the role of pendrin in this condition are unclear. Therefore, we studied the adaptation of the proximal tubule and the collecting duct to respiratory acidosis. Male Wistar-Hannover rats were exposed to either hypercapnia and hypoxia [8% CO(2) and 13% O(2) (hypercapnic, n = 6) or normal air (controls, n = 6)] in an environmental chamber for 10 days and were killed under the same atmosphere. In hypercapnic rats, arterial pH was lower than controls (7.31 +/- 0.01 vs. 7.39 +/- 0.01, P = 0.03), blood HCO(3)(-) concentration was increased (42 +/- 0.9 vs. 32 +/- 0.24 mM, P < 0.001), arterial Pco(2) was increased (10.76 +/- 0.4 vs. 7.20 +/- 0.4 kPa, P < 0.001), and plasma chloride concentration was decreased (92.2 +/- 0.7 vs. 97.2 +/- 0.5 mM, P < 0.001). Plasma aldosterone levels were unchanged. In the proximal tubule, immunoblotting showed an increased expression of sodium/bicarbonate exchanger protein (188 +/- 22 vs. 100 +/- 11%, P = 0.005), confirmed by immunohistochemistry. Total Na/H exchanger protein expression in the cortex was unchanged by immunoblotting (119 +/- 10 vs. 100 +/- 11%, P = 0.27) and immunohistochemistry. In the cortex, the abundance of pendrin was decreased (51 +/- 9 vs. 100 +/- 7%, P = 0.003) by immunoblotting. Immunohistochemistry revealed that this decrease was clear in both cortical collecting ducts (CCDs) and connecting tubules (CNTs). This demonstrates that pendrin expression can be regulated in acidotic animals with no changes in aldosterone levels and no external chloride load. This reduction of pendrin expression may help in redirecting the CNT and CCD toward chloride excretion and bicarbonate reabsorption, contributing to the increased plasma bicarbonate and decreased plasma chloride of chronic respiratory acidosis.
Collapse
Affiliation(s)
- Sophie de Seigneux
- The Water and Salt Research Center, Institute of Anatomy, Bldg. 1234, Univ. of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Schrier RW. Body water homeostasis: clinical disorders of urinary dilution and concentration. J Am Soc Nephrol 2006; 17:1820-32. [PMID: 16738014 DOI: 10.1681/asn.2006030240] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Robert W Schrier
- Department of Medicine, University of Colorado School of Medicine, Denver, CO 80262, USA.
| |
Collapse
|
32
|
Lee J, Yoo K, Kim SW, Jung KH, Ma SK, Lee YK, Kim WY, Kim J, Choi KC. Decreased expression of aquaporin water channels in denervated rat kidney. Nephron Clin Pract 2006; 103:p170-8. [PMID: 16636595 DOI: 10.1159/000092918] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 01/01/2006] [Indexed: 11/19/2022] Open
Abstract
AIMS A neural mechanism regulating aquaporin (AQP) water channels in the kidney was investigated. METHODS Male Sprague-Dawley rats were used. Renal denervation was induced by painting the renal vessels with 10% phenol. The expression of AQP1-4 proteins was determined in the denervated and contralateral kidneys. The expression was also examined in rats which were renally denervated and subjected to water restriction or deoxycorticosterone acetate (DOCA)-salt treatment. RESULTS Following the unilateral denervation, tissue contents of norepinephrine were significantly decreased in the denervated kidney, while increased in the contralateral kidney. Accordingly, the expression of AQP1-4 proteins was decreased by 15-40% in the denervated kidney, and increased by 30-50% in the contralateral kidney. Immunohistochemistry of AQP2 confirmed its decreases in the denervated kidney and increases in the contralateral kidney. In bilaterally denervated rats, the urine flow increased along with decreased osmolarity. The water restriction increased the expression of AQP channels, however, the magnitude of which was lower in the denervated than in the contralateral kidney. Renal denervation decreased the degree of DOCA-salt hypertension, along with lower expression of AQP channels. CONCLUSION It is suggested that the sympathetic nerve should play a specific excitatory role in the regulation of AQP channels in the kidney.
Collapse
Affiliation(s)
- JongUn Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kang DG, Sohn EJ, Moon MK, Mun YJ, Woo WH, Kim MK, Lee HS. Yukmijihwang-tang ameliorates ischemia/reperfusion-induced renal injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2006; 104:47-53. [PMID: 16183223 DOI: 10.1016/j.jep.2005.08.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 07/29/2005] [Accepted: 08/15/2005] [Indexed: 05/04/2023]
Abstract
The present study was designed to examine whether Yukmijihwang-tang (YJT), which is a Korean decoction for the treatment of renal disease, has an effect on renal functional parameters in association with the expression of aquaporin 2 (AQP 2), Na,K-ATPase, heme oxygenase-1 (HO-1) in rats with ischemia/reperfusion-induced acute renal failure (ARF). Polyuria caused by down-regulation of renal AQP 2 in the ischemia/reperfusion-induced ARF rats was markedly restored by administration of YJT (100 or 200 mg/kg, p.o.) with restoring expression of AQP 2 in the kidney. The expressions of Na,K-ATPase alpha1 and beta1 subunits in the renal medulla and cortex of the ARF rats were also restored in them by the administration of YJT. Administration of YJT lowered the expression of renal HO-1, which was up-regulated in rats with ischemia/reperfusion-induced ARF. The renal functional parameters including creatinine clearance, urinary sodium excretion, urinary osmolality, and solute-free reabsorption were also markedly restored in ischemia-ARF rats by administration of YJT. Histological study also showed that renal damages in the ARF rats were abrogated by administration of YJT. Taken together, these data indicate that YJT ameliorates renal defects in rats with ischemia/reperfusion-induced ARF.
Collapse
Affiliation(s)
- Dae Gill Kang
- Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Kang DG, Sohn EJ, Moon MK, Lee YM, Lee HS. Rehmannia glutinose Ameliorates Renal Function in the Ischemia/Reperfusion-Induced Acute Renal Failure Rats. Biol Pharm Bull 2005; 28:1662-7. [PMID: 16141536 DOI: 10.1248/bpb.28.1662] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to examine whether aqueous extract of steamed root of Rehmannia glutinose (ARR) has an ameliorative effect on renal functional parameters in association with the expressions of aquaporin 2 (AQP 2), Na,K-ATPase, and heme oxygenase-1 (HO-1) in the ischemia-reperfusion induced acute renal failure (ARF) rats. Polyuria caused by down-regulation of renal AQP 2 in the ischemia-induced ARF rats was markedly restored by administration of ARR (200 mg/kg, p.o.) with restoring expression of AQP 2 in the kidney. The expressions of Na,K-ATPase alpha1 and beta1 subunits in the renal medullar and cortex of the ARF rats were also restored in the ARF rats by administration of ARR. On the other hand, administration of ARR lowered the renal expression of HO-1 up-regulated in rats with ischemia-induced ARF. The renal functional parameters including creatinine clearance, urinary sodium excretion, urinary osmolality, and solute-free reabsorption were also markedly restored in ischemia-ARF rats by administration of ARR. Taken together, these data indicate that RSR ameliorates renal defects in rats with ischemia-induced ARF.
Collapse
Affiliation(s)
- Dae Gill Kang
- Professional Graduate School of Oriental Medicine and Medicinal Resources Research Institute (MeRRI), Wonkwang University, Jeonbuk, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Gong H, Wang W, Kwon TH, Jonassen T, Li C, Ring T, FrøkiAEr J, Nielsen S. EPO and α-MSH prevent ischemia/reperfusion-induced down-regulation of AQPs and sodium transporters in rat kidney. Kidney Int 2004; 66:683-95. [PMID: 15253723 DOI: 10.1111/j.1523-1755.2004.00791.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ischemia-induced acute renal failure (ARF) is known to be associated with significant impairment of urinary concentrating ability and down-regulation of renal aquaporins (AQPs) and sodium transporters in rats. We tested whether treatment with erythropoietin (EPO) or alpha-melanocyte-stimulating hormone (alpha-MSH) in combination with EPO reduces the renal ischemia/reperfusion (I/R) injury and prevents the down-regulation of renal AQPs and major sodium transporters. METHODS I/R-induced ARF was established in rats by 40-minute temporary bilateral obstruction of renal arteries, and rats were kept in metabolic cages for urine measurements. After 2 or 4 days following EPO and/or alpha-MSH treatment, kidneys were removed to determine the expression levels of AQPs and sodium transporters by semiquantitative immunoblotting. RESULTS Rats with ARF showed significant renal insufficiency, increased urine output, and high fractional excretion of urinary sodium. Consistent with this, immunoblotting and immunocytochemistry revealed that the kidney expression of AQPs (AQP-1, -2 and -3) and sodium transporters [Na,K-ATPase, rat type 1 bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1), Na/H exchanger type 3 (NHE3), and thiazide-sensitive sodium chloride cotransporter (TSC)] in ARF rats was significantly decreased compared to sham-operated control rats. In contrast, EPO treatment at the time of ischemia of rats with ARF significantly prevented the ischemia-induced down-regulation of renal AQPs and sodium transporters and in parallel improved the urinary concentrating capability and renal sodium reabsorption. Importantly, similar effects were observed following the initiation of EPO or alpha-MSH treatment 4 hours after the onset of ischemia injury. Moreover, the combination of EPO with alpha-MSH potentiated the beneficial effects of single compound treatment. CONCLUSION EPO and/or alpha-MSH treatment significantly prevent I/R-induced injuries such as urinary-concentrating defects and down-regulation of renal AQPs and sodium transporters.
Collapse
Affiliation(s)
- Hong Gong
- The Water and Salt Research Center, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sohn EJ, Kang DG, Lee HS. Protective effects of glycyrrhizin on gentamicin-induced acute renal failure in rats. PHARMACOLOGY & TOXICOLOGY 2003; 93:116-22. [PMID: 12969435 DOI: 10.1034/j.1600-0773.2003.930302.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the effects of glycyrrhizin (200 mg/kg/day) on renal function in association with the regulation of aquaporin 2 water channel in rats with gentamicin (100 mg/kg/day)-induced acute renal failure. Polyuria in rats with gentamicin-induced acute renal failure was associated with down-regulation of renal aquaporin 2 in the inner and outer renal medulla, and cortex. Glycyrrhizin administration restored the expression of aquaporin 2 with paralleled changes in urine output. Changes in renal functional parameters, such as creatinine clearance, urinary osmolality, and solute-free reabsorption, accompanying acute renal failure were also partially restored after administration of glycyrrhizin. Histological changes in rats with gentamicin-induced acute renal failure were also abrogated by glycyrrhizin treatment. The above results suggest that glycyrrhizin treatment could ameliorate renal defects in rats with acute renal failure induced by gentamicin.
Collapse
Affiliation(s)
- Eun-Jin Sohn
- Professional Graduate School of Oriental Medicine and Medicinal Resources Research Center, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | | | | |
Collapse
|
37
|
Schrier RW, Cadnapaphornchai MA. Renal aquaporin water channels: from molecules to human disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 81:117-31. [PMID: 12565698 DOI: 10.1016/s0079-6107(02)00049-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Following the discovery of the aquaporin-1 water channel in 1991, molecular techniques have been developed to examine the roles of renal aquaporins-1, -2, -3, and -4 in disorders of water balance. This article reviews current knowledge regarding aquaporin function and dysfunction in water-losing and water-retaining states.
Collapse
Affiliation(s)
- Robert W Schrier
- Department of Medicine, University of Colorado School of Medicine, 4200 East Ninth Avenue, Box B178, Denver, CO 80262, USA.
| | | |
Collapse
|
38
|
Kang DG, Sohn EJ, Mun YJ, Woo WH, Lee HS. Glycyrrhizin ameliorates renal function defects in the early-phase of ischemia-induced acute renal failure. Phytother Res 2003; 17:947-51. [PMID: 13680831 DOI: 10.1002/ptr.1270] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to investigate the effect of glycyrrhizin administration (200 mg/kg/day) on renal function parameters in the early-phase of ischaemia-reperfusion induced acute renal failure (ARF) in rats. The present study showed that the urinary fl ow rate in ischaemia-ARF was significantly increased in association with decreases in water balance, urinary sodium excretion and urine osomolality, which were partially restored by administration of glycyrrhizin. Both solute-free water reabsorption (T(c)H2O) and creatinine clearance (Ccr) were significantly decreased in rats subjected to ischaemia-reperfusion for 72 h compared with the control. Histopathological examination of the kidneys from ARF rats at 72 h after release of the bilateral renal artery clamping, showed that the glomerulus, proximal tubules and distal tubules were severely disrupted and left a denuded basement membrane. When glycyrrhizin was administered in rat ARF for 72 h, Ccr reached almost 96% compared with that of the sham-operated control rats and T(c)H2O was improved by 47% compared with that of the ischaemia-ARF rats. The lesions in the glomerulus, proximal and distal tubule of the renal cortex were also restored by the administration of glycyrrhizin. Taken together, glycyrrhizin administration ameliorates both renal function defects, especially the renal concentrating ability, and structural lesions in renal tissues in rats in the early-phase of ischaemia-ARF.
Collapse
Affiliation(s)
- Dae-Gill Kang
- Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | | | | | | | | |
Collapse
|
39
|
Jonassen TEN, Graebe M, Promeneur D, Nielsen S, Christensen S, Olsen NV. Lipopolysaccharide-induced acute renal failure in conscious rats: effects of specific phosphodiesterase type 3 and 4 inhibition. J Pharmacol Exp Ther 2002; 303:364-74. [PMID: 12235272 DOI: 10.1124/jpet.102.036194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In conscious, chronically instrumented rats we examined 1) renal tubular functional changes involved in lipopolysaccharide (LPS)-induced acute renal failure; 2) the effects of LPS on the expression of selected renal tubular water and sodium transporters; and 3) effects of milrinone, a phosphodiesterase type 3 (PDE3) inhibitor, and Ro-20-1724, a PDE4 inhibitor, on LPS-induced changes in renal function. Intravenous infusion of LPS (4 mg/kg b.wt. over 1 h) caused an immediate decrease in glomerular filtration rate (GFR) and proximal tubular outflow without changes in mean arterial pressure (MAP). LPS-induced fall in GFR and proximal tubular outflow were sustained on day 2. Furthermore, LPS-treated rats showed a marked increase in fractional distal water excretion, despite significantly elevated levels of plasma vasopressin (AVP). Semiquantitative immunoblotting showed that LPS increased the expression of the Na(+),K(+),2Cl(-)-cotransporter (BSC1) in the thick ascending limb, whereas the expression of the AVP-regulated water channel aquaporin-2 in the collecting duct (CD) was unchanged. Pretreatment with milrinone or Ro-20-1724 enhanced LPS-induced increases in plasma tumor necrosis factor-alpha and lactate, inhibited the LPS-induced tachycardia, and exacerbated the acute LPS-induced fall in GFR. Furthermore, Ro-20-1724-treated rats were unable to maintain MAP. We conclude 1) PDE3 or PDE4 inhibition exacerbates LPS-induced renal failure in conscious rats; and 2) LPS treated rats develop an escape from AVP in the CDs, which could be aimed to protect against water intoxication in septic conditions associated with decreased GFR and high levels of AVP.
Collapse
Affiliation(s)
- Thomas E N Jonassen
- Department of Pharmacology, The Panum Institute, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
40
|
Nielsen S, Frøkiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 2002; 82:205-44. [PMID: 11773613 DOI: 10.1152/physrev.00024.2001] [Citation(s) in RCA: 853] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of aquaporin-1 (AQP1) answered the long-standing biophysical question of how water specifically crosses biological membranes. In the kidney, at least seven aquaporins are expressed at distinct sites. AQP1 is extremely abundant in the proximal tubule and descending thin limb and is essential for urinary concentration. AQP2 is exclusively expressed in the principal cells of the connecting tubule and collecting duct and is the predominant vasopressin-regulated water channel. AQP3 and AQP4 are both present in the basolateral plasma membrane of collecting duct principal cells and represent exit pathways for water reabsorbed apically via AQP2. Studies in patients and transgenic mice have demonstrated that both AQP2 and AQP3 are essential for urinary concentration. Three additional aquaporins are present in the kidney. AQP6 is present in intracellular vesicles in collecting duct intercalated cells, and AQP8 is present intracellularly at low abundance in proximal tubules and collecting duct principal cells, but the physiological function of these two channels remains undefined. AQP7 is abundant in the brush border of proximal tubule cells and is likely to be involved in proximal tubule water reabsorption. Body water balance is tightly regulated by vasopressin, and multiple studies now have underscored the essential roles of AQP2 in this. Vasopressin regulates acutely the water permeability of the kidney collecting duct by trafficking of AQP2 from intracellular vesicles to the apical plasma membrane. The long-term adaptational changes in body water balance are controlled in part by regulated changes in AQP2 and AQP3 expression levels. Lack of functional AQP2 is seen in primary forms of diabetes insipidus, and reduced expression and targeting are seen in several diseases associated with urinary concentrating defects such as acquired nephrogenic diabetes insipidus, postobstructive polyuria, as well as acute and chronic renal failure. In contrast, in conditions with water retention such as severe congestive heart failure, pregnancy, and syndrome of inappropriate antidiuretic hormone secretion, both AQP2 expression levels and apical plasma membrane targetting are increased, suggesting a role for AQP2 in the development of water retention. Continued analysis of the aquaporins is providing detailed molecular insight into the fundamental physiology and pathophysiology of water balance and water balance disorders.
Collapse
Affiliation(s)
- Søren Nielsen
- The Water and Salt Research Center, Institute of Anatomy, and Institute of Experimental Clinical Research, University of Aarhus, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
41
|
Basile DP, Donohoe D, Roethe K, Osborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 2001. [DOI: 10.1152/ajprenal.00050.2001] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
First published August 9, 2001; 10.1152/ajprenal.00050.2001.—Acute episodes of severe renal ischemia result in acute renal failure (ARF). These episodes are followed by a characteristic recovery and repair response, whereby tubular morphology and renal function appear completely restored within ∼1 mo. However, the chronic effects of such an injury have not been well studied. Male rats were subjected to 60-min bilateral ischemia followed by reperfusion, yielding a characteristic injury. Postischemic animals manifested severe diuresis, peaking at 1 wk postinjury (volume: >45 ml/day, ARF vs. 18 ml/day, sham; P < 0.05). Urine flow subsequently declined but remained significantly elevated vs. sham animals for a 40-wk period. The prolonged alteration in urinary concentrating ability was attributable, in part, to a diminished capacity to generate a hypertonic medullary interstitium. By week 16, proteinuria developed in the post-ARF group and progressed for the duration of the study. Histological examination revealed essentially normal tubular morphology at 4 and 8 wk postinjury but the development of tubulointerstitial fibrosis at 40 wk. Transforming growth factor (TGF)-β1 expression was elevated at 40 wk, but not at 4 and 8 wk postinjury. Microfil analysis revealed an ∼30–50% reduction in peritubular capillary density in the inner stripe of the outer medulla at 4, 8, and 40 wk in post-ARF groups vs. sham animals. In addition, post-ARF rats manifested a significant pressor response to a low dose of ANG II (15 ng · kg−1· min−1). We hypothesize that severe ischemic injury results in a permanent alteration of renal capillary density, contributing to a urinary concentrating defect and the predisposition toward the development of renal fibrosis.
Collapse
Affiliation(s)
- David P. Basile
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Deborah Donohoe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Kelly Roethe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jeffrey L. Osborn
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
42
|
Basile DP, Donohoe D, Roethe K, Osborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 2001; 281:F887-99. [PMID: 11592947 DOI: 10.1152/ajprenal.2001.281.5.f887] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute episodes of severe renal ischemia result in acute renal failure (ARF). These episodes are followed by a characteristic recovery and repair response, whereby tubular morphology and renal function appear completely restored within approximately 1 mo. However, the chronic effects of such an injury have not been well studied. Male rats were subjected to 60-min bilateral ischemia followed by reperfusion, yielding a characteristic injury. Postischemic animals manifested severe diuresis, peaking at 1 wk postinjury (volume: >45 ml/day, ARF vs. 18 ml/day, sham; P < 0.05). Urine flow subsequently declined but remained significantly elevated vs. sham animals for a 40-wk period. The prolonged alteration in urinary concentrating ability was attributable, in part, to a diminished capacity to generate a hypertonic medullary interstitium. By week 16, proteinuria developed in the post-ARF group and progressed for the duration of the study. Histological examination revealed essentially normal tubular morphology at 4 and 8 wk postinjury but the development of tubulointerstitial fibrosis at 40 wk. Transforming growth factor (TGF)-beta1 expression was elevated at 40 wk, but not at 4 and 8 wk postinjury. Microfil analysis revealed an approximately 30-50% reduction in peritubular capillary density in the inner stripe of the outer medulla at 4, 8, and 40 wk in post-ARF groups vs. sham animals. In addition, post-ARF rats manifested a significant pressor response to a low dose of ANG II (15 ng x kg(-1) x min(-1)). We hypothesize that severe ischemic injury results in a permanent alteration of renal capillary density, contributing to a urinary concentrating defect and the predisposition toward the development of renal fibrosis.
Collapse
Affiliation(s)
- D P Basile
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
43
|
Boyd-White J, Srirangam A, Goheen MP, Wagner MC. Ischemia disrupts myosin I beta in renal tubules. Am J Physiol Cell Physiol 2001; 281:C1326-35. [PMID: 11546671 DOI: 10.1152/ajpcell.2001.281.4.c1326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In these studies we have examined rat kidneys biochemically and microscopically to determine where myosin I beta is located before, during, and after an acute ischemic injury. Myosin I beta is present in multiple tubule segments including the brush border (BB) of the proximal tubule cell (PTC). Its distribution is severely altered by a 15-min renal artery clamp. Myosin I beta is present in the urine during reflow and is found in the numerous cellular blebs arising from the damaged PTC and other tubules. Two hours of reflow result in a decrease in BB myosin I beta staining and an increase in its cytoplasmic staining. Interestingly, the return of the F-actin in the BB precedes the return of the myosin I beta, suggesting that this myosin I isoform may not play a role in rebuilding the microvilli after an ischemic injury. A nonstructural role for this myosin, such as transport or channel regulation, is supported by its presence in many tubule segments, all of which have transport and channel requirements but do not all contain microvilli.
Collapse
Affiliation(s)
- J Boyd-White
- Renal Epithelial Biology Experimental Laboratories, Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
44
|
Schwiebert EM, Kishore BK. Extracellular nucleotide signaling along the renal epithelium. Am J Physiol Renal Physiol 2001; 280:F945-63. [PMID: 11352834 DOI: 10.1152/ajprenal.2001.280.6.f945] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During the past two decades, several cell membrane receptors, which preferentially bind extracellular nucleotides, and their analogs have been identified. These receptors, collectively known as nucleotide receptors or "purinergic" receptors, have been characterized and classified on the basis of their biological actions, their pharmacology, their molecular biology, and their tissue and cell distribution. For these receptors to have biological and physiological relevance, nucleotides must be released from cells. The field of extracellular ATP release and signaling is exploding, as assays to detect this biological process increase in number and ingenuity. Studies of ATP release have revealed a myriad of roles in local regulatory (autocrine or paracrine) processes in almost every tissue in the body. The regulatory mechanisms that these receptors control or modulate have physiological and pathophysiological roles and potential therapeutic applications. Only recently, however, have ATP release and nucleotide receptors been identified along the renal epithelium of the nephron. This work has set the stage for the study of their physiological and pathophysiological roles in the kidney. This review provides a comprehensive presentation of these issues, with a focus on the renal epithelium.
Collapse
Affiliation(s)
- E M Schwiebert
- Departments of Physiology and Biophysics and of Cell Biology, University of Alabama at Birmingham, 35294-0005, USA.
| | | |
Collapse
|
45
|
Nielsen S, Kwon TH, Hager H, Knepper MA, Marples D, Frøkiaer J. Chapter 4 Pathophysiology of renal aquaporins. CURRENT TOPICS IN MEMBRANES 2001. [DOI: 10.1016/s1063-5823(01)51006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
|
47
|
Sun DF, Fujigaki Y, Fujimoto T, Yonemura K, Hishida A. Possible involvement of myofibroblasts in cellular recovery of uranyl acetate-induced acute renal failure in rats. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1321-35. [PMID: 11021836 PMCID: PMC1850176 DOI: 10.1016/s0002-9440(10)64647-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular recovery in acute renal failure is a form of wound healing. Fibroblast-like cells or myofibroblasts are involved in wound healing. We examined the serial changes in tubular damage and origin and kinetics of regenerating cells in uranyl acetate-induced acute renal failure, with a special emphasis on interstitial myofibroblasts. Acute renal failure was induced in rats by intravenous injection of uranyl acetate (5 mg/kg). All rats received bromodeoxyuridine intraperitoneally 1 hour before sacrifice. Serial changes in the distribution of tubular necrosis and bromodeoxyuridine-incorporated or vimentin-positive regenerating cells, and their spatial and temporal relation to alpha-smooth muscle actin-positive myofibroblasts as well as ED 1-positive monocytes/macrophages were examined. Necrotic tubules initially appeared around the corticomedullary junction after uranyl acetate injection, then spread both downstream and upstream of proximal tubules. Peritubular alpha-smooth muscle actin-positive myofibroblasts appeared and extended along the denuded tubular basement membrane, establishing network formation throughout the cortex and the outer stripe of outer medulla at days 4 to 5. Tubular regeneration originated in nonlethally injured cells in the distal end of S3 segments, which was confirmed by lectin and immunohistochemical staining using markers for tubular segment. Subsequently, upstream proliferation was noted along the tubular basement membrane firmly attached by myofibroblasts. During cellular recovery, no entry of myofibroblasts into the tubular lumen across the tubular basement membrane was noted and only a few myofibroblasts showed bromodeoxyuridine positivity. The fractional area of alpha-smooth muscle actin-positive interstitium reached a peak level at day 7 in the cortex and outer stripe of outer medulla, then gradually disappeared by day 15 and remained only around dilated tubules and in the expanded interstitium at day 21. ED 1-positive monocytes/macrophages were transiently infiltrated mainly into the region of injury. They did not show specific association with initially necrotic tubules, but some of them located in close proximity to regenerating tubules. Nonlethally injured cells at the distal end of proximal tubules are likely to be the main source of tubular regeneration, and the transient appearance of interstitial myofibroblasts attached to the tubular basement membrane immediately after tubular necrosis might play a role in promoting cellular recovery in possible association with monocytes/macrophages in uranyl acetate-induced acute renal failure.
Collapse
Affiliation(s)
- D F Sun
- First Department of Medicine and the Hemodialysis Unit, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
48
|
Murakami H, Liotta L, Star RA. IF-LCM: laser capture microdissection of immunofluorescently defined cells for mRNA analysis rapid communication. Kidney Int 2000; 58:1346-53. [PMID: 10972700 DOI: 10.1046/j.1523-1755.2000.00295.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The next phase of the molecular revolution will bring functional genomics down to the level of individual cells in a tissue. Laser capture microdissection (LCM) coupled with reverse transcription-polymerase chain reaction (RT-PCR) can measure gene expression in normal, cancerous, injured, or fibrotic tissue. Nevertheless, targeting of specific cells may be difficult using routine morphologic stains. Immunohistochemistry can identify cells with specific antigens; however, exposure to aqueous solutions destroys 99% of the mRNA. Consequently, there is an overwhelming need to identify specific tissue cells for LCM without mRNA loss. We report on a rapid immunofluorescent LCM (IF-LCM) procedure that allows targeted analysis of gene expression. METHODS A LCM microscope was outfitted for epifluorescence and light level video microscopy. Heat filters were added to shield the image intensifier from the laser. Frozen sections were fluorescently labeled by a rapid one minute incubation with anti-Tamm-Horsfall antibody and an ALEXA-linked secondary antibody. Fluorescently labeled thick ascending limb (TAL) cells were detected by low light level video microscopy, captured by LCM, and mRNA was analyzed by RT-PCR for basic amino acid transporter, Tamm-Horsfall protein, and aquaporin-2. RESULTS The immunofluorescently identified TAL could be cleanly microdissected without contamination from surrounding tubules. The recovery of RNA following rapid immunofluorescence staining was similar to that obtained following hematoxylin and eosin staining, as assessed by RT-PCR for malate dehydrogenase. CONCLUSIONS We conclude that the new apparatus and method for the immunofluorescent labeling of tissue cells targeted for LCM can isolate pure populations of targeted cells from a sea of surrounding cells with highly acceptable preservation of mRNA. Since the TAL is minimally injured following ischemia, identification of the different responses between TAL and surrounding tissue in damaged kidneys may provide new therapeutic targets or agents for the treatment of acute renal failure.
Collapse
Affiliation(s)
- H Murakami
- Renal Diagnostics and Therapeutics Unit, and Laboratory of Pathology, National Institutes of Health, Bethesda, Maryland 20892-1268, USA
| | | | | |
Collapse
|
49
|
Kwon TH, Laursen UH, Marples D, Maunsbach AB, Knepper MA, Frokiaer J, Nielsen S. Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol 2000; 279:F552-64. [PMID: 10966935 DOI: 10.1152/ajprenal.2000.279.3.f552] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lithium (Li) treatment is often associated with nephrogenic diabetes insipidus (NDI). The changes in whole kidney expression of aquaporin-1 (AQP1), -2, and -3 as well as Na-K-ATPase, type 3 Na/H exchanger (NHE3), type 2 Na-Pi cotransporter (NaPi-2), type 1 bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1), and thiazide-sensitive Na-Cl cotransporter (TSC) were examined in rats treated with Li orally for 4 wk: protocol 1, high doses of Li (high Na(+) intake), and protocol 2, low doses of Li (identical food and normal Na(+) intake in Li-treated and control rats). Both protocols resulted in severe polyuria. Semiquantitative immunoblotting revealed that whole kidney abundance of AQP2 was dramatically reduced to 6% (protocol 1) and 27% (protocol 2) of control levels. In contrast, the abundance of AQP1 was not decreased. Immunoelectron microscopy confirmed the dramatic downregulation of AQP2 and AQP3, whereas AQP4 labeling was not reduced. Li-treated rats had a marked increase in urinary Na(+) excretion in both protocols. However, the expression of several major Na(+) transporters in the proximal tubule, loop of Henle, and distal convoluted tubule was unchanged in protocol 2, whereas in protocol 1 significantly increased NHE3 and BSC-1 expression or reduced NaPi-2 expression was associated with chronic Li treatment. In conclusion, severe downregulation of AQP2 and AQP3 appears to be important for the development of Li-induced polyuria. In contrast, the increased or unchanged expression of NHE3, BSC-1, Na-K-ATPase, and TSC indicates that these Na(+) transporters do not participate in the development of Li-induced polyuria.
Collapse
MESH Headings
- Animals
- Aquaporin 1
- Aquaporin 2
- Aquaporin 3
- Aquaporin 6
- Aquaporins/biosynthesis
- Aquaporins/metabolism
- Blotting, Western
- Carrier Proteins/biosynthesis
- Carrier Proteins/metabolism
- Diabetes Insipidus/chemically induced
- Diabetes Insipidus/metabolism
- Diabetic Nephropathies/chemically induced
- Diabetic Nephropathies/metabolism
- Diuresis/physiology
- Kidney/drug effects
- Kidney/metabolism
- Kidney Concentrating Ability/drug effects
- Kidney Concentrating Ability/physiology
- Kidney Medulla/metabolism
- Kidney Medulla/ultrastructure
- Kidney Tubules, Collecting/metabolism
- Kidney Tubules, Collecting/ultrastructure
- Lithium/adverse effects
- Male
- Microscopy, Immunoelectron
- Rats
- Rats, Wistar
- Receptors, Drug/biosynthesis
- Receptors, Drug/metabolism
- Sodium/metabolism
- Sodium Chloride Symporters
- Sodium-Hydrogen Exchanger 3
- Sodium-Hydrogen Exchangers/biosynthesis
- Sodium-Hydrogen Exchangers/metabolism
- Sodium-Phosphate Cotransporter Proteins
- Sodium-Phosphate Cotransporter Proteins, Type I
- Sodium-Phosphate Cotransporter Proteins, Type II
- Sodium-Potassium-Chloride Symporters
- Sodium-Potassium-Exchanging ATPase/biosynthesis
- Sodium-Potassium-Exchanging ATPase/metabolism
- Solute Carrier Family 12, Member 3
- Symporters
- Water/metabolism
Collapse
Affiliation(s)
- T H Kwon
- Department of Cell Biology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
50
|
Kishore BK, Krane CM, Di Iulio D, Menon AG, Cacini W. Expression of renal aquaporins 1, 2, and 3 in a rat model of cisplatin-induced polyuria. Kidney Int 2000; 58:701-11. [PMID: 10916093 DOI: 10.1046/j.1523-1755.2000.00216.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cisplatin (CP)-induced polyuria in rats is attributed to decreased medullary hypertonicity and/or an end-organ resistance to vasopressin. However, the roles of renal aquaporins (AQPs) have not yet been explored. METHODS Male Sprague-Dawley rats (230 to 245 g) received either a single injection of CP (5 mg/kg, N = 4) or saline (N = 4) intraperitoneally five days before sacrifice. Urine, blood, and kidney samples were analyzed. RESULTS Platinum accumulated in the cortex and outer medulla of CP-treated rats (39.05 +/- 7.50 and 36.48 +/- 12.44 microg/g vs. 2.52 +/- 0.43 and 1.87 +/- 0.84 microg/g dry tissue in controls, respectively). Histologically, tubular damage and decreased AQP1 immunolabeling were detected in the S3 segment of proximal tubules. CP treatment caused 4.4- and 4.8-fold increases, respectively, in blood urea nitrogen and urine volume, and a 4. 4-fold decrease in urine osmolality. Immunoblots showed that AQP2 and AQP3 were significantly reduced to 33 +/- 10% (P < 0.001) and 69 +/- 11% (P < 0.05), respectively, in the inner medulla of CP-treated rats. Immunocytochemical analysis showed a decrease in AQP2 labeling in the inner medulla of CP-treated rats. Northern hybridization revealed a 33 +/- 11% (P < 0.002) decrease in AQP2 mRNA expression in the inner medulla of CP-treated rats. AQP1 protein expression levels were modestly (67 +/- 7%, P = 0.057) and significantly (53 +/- 13%, P < 0.007) decreased in outer and inner medullae, respectively, of CP-treated rats. CONCLUSIONS CP-induced polyuria in rats is associated with a significant decrease in the expression of collecting duct (AQP2 and AQP3) and proximal nephron and microvascular (AQP1) water channels in the inner medulla.
Collapse
Affiliation(s)
- B K Kishore
- Departments of Internal Medicine, Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Ohio 45267-0585, USA.
| | | | | | | | | |
Collapse
|