1
|
Moyá Amengual A, Serrano-Cumplido A. [Lp(a): What we know, what we don't know and what we hope for]. Semergen 2025; 51:102451. [PMID: 39922183 DOI: 10.1016/j.semerg.2025.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 02/10/2025]
Abstract
There is no doubt that lipoprotein(a) [Lp(a)] is a structurally complex molecule with unique biological functions. It plays an important role in the inflammatory process through multiple mechanisms, contributes to endothelial dysfunction, activation of monocytes, macrophages and proliferation of smooth muscle cells, and promotes the development of atherosclerotic cardiovascular disease (ASCVD). It is important to point out the complex bidirectional relationship between Lp(a) and inflammation, influencing one another and even exerting anti-inflammatory effects in certain situations. Likewise, Lp(a) can favor the development of heart valve disease, especially of the aortic valve. Numerous publications emphasize the need to determine Lp(a) levels in the population at least once in life and possible strategies to mitigate the risk of ASCVD generated by high Lp(a) levels. However, doubts or lack of knowledge persist about the need to measure this parameter, either due to the uncertainty of how to manage patients with high levels of Lp(a), due to insufficient knowledge about its physiological function or because its levels persist unchanged, to a large extent, throughout life as the genetic character of this molecule takes precedence. On the other hand, there are still no specific approved therapies that reduce its levels and arouse sufficient interest for its management. However, many societies, such as the European Society of Cardiology (SEC) or the Spanish Society of Atherosclerosis (SEA), raise the need to determine Lp(a) and intensive management of cardiovascular risk factors in patients with high Lp(a) levels along with therapies that mitigate the associated ASCVD risk. Likewise, the identification of high levels of Lp(a) offers the opportunity to screen family members, better control of cardiovascular risk and the possibility of developing clinical trials that profile individual and population risk that allow for more personalized actions.
Collapse
Affiliation(s)
- A Moyá Amengual
- Servei de Salut de les Illes Balears, Palma de Mallorca, España
| | | |
Collapse
|
2
|
Bay Simony S, Rørbæk Kamstrup P, Bødtker Mortensen M, Afzal S, Grønne Nordestgaard B, Langsted A. High Lipoprotein(a) as a Cause of Kidney Disease: A Population-Based Mendelian Randomization Study. J Am Coll Cardiol 2024; 84:2407-2410. [PMID: 39387759 DOI: 10.1016/j.jacc.2024.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Sofie Bay Simony
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Rørbæk Kamstrup
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Bødtker Mortensen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Zhu Y, Chen S, Chen Z, Wang Y, Fu G, Zhang W. Causal effect of lipoprotein(a) level on chronic kidney disease of European ancestry: a two-sample Mendelian randomization study. Ren Fail 2024; 46:2383727. [PMID: 39082753 PMCID: PMC11293262 DOI: 10.1080/0886022x.2024.2383727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024] Open
Abstract
INTRODUCTION Chronic kidney disease is a growing health issue, and the options of prevention and therapy remain limited. Although a number of observational studies have linked higher Lp(a) [lipoprotein(a)] levels to the kidney impairment, the causal relationship remains to be determined. The purpose of this study was to assess the causal association between Lp(a) levels and CKD. METHODS We selected eight single-nucleotide polymorphisms (SNPs) significantly associated with Lp(a) levels as instrumental variables. Genome-wide association study (GWAS) from CKDGen consortium yielded the summary data information for CKD. We designed the bidirectional two-sample Mendelian randomization (MR) analyses. The estimates were computed using inverse-variance weighted (IVW), simple median, weighted median, and maximum likelihood. MR-Egger regression was used to detect pleiotropy. RESULTS Fixed-effect IVW analysis indicated that genetically predicted Lp(a) levels were associated with CKD significantly (odds ratio, 1.039; 95% CI, 1.009-1.069; p = 0.010). The SNPs showed no pleiotropy according to result of MR-Egger test. Results from sensitivity analyses were consistent. In the inverse MR analysis, random-effect IVW method showed CKD had no causal effect on the elevated Lp(a) (odds ratio, 1.154; 95% CI, 0.845-1.576; p = 0.367). CONCLUSION In this bidirectional two-sample MR analysis, the causal deteriorating effects of genetically predicted plasma Lp(a) levels on the risk of CKD were identified. On the contrary, there is no evidence to support a causal effect of CKD on Lp(a) levels.
Collapse
Affiliation(s)
- Yunhui Zhu
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Songzan Chen
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhebin Chen
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yao Wang
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Guosheng Fu
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Wenbin Zhang
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
4
|
Ma Z, Zhong J, Tu W, Li S, Chen J. The functions of apolipoproteins and lipoproteins in health and disease. MOLECULAR BIOMEDICINE 2024; 5:53. [PMID: 39465476 PMCID: PMC11513782 DOI: 10.1186/s43556-024-00218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Lipoproteins and apolipoproteins are crucial in lipid metabolism, functioning as essential mediators in the transport of cholesterol and triglycerides and being closely related to the pathogenesis of multiple systems, including cardiovascular. Lipoproteins a (Lp(a)), as a unique subclass of lipoproteins, is a low-density lipoprotein(LDL)-like particle with pro-atherosclerotic and pro-inflammatory properties, displaying high heritability. More and more strong evidence points to a possible link between high amounts of Lp(a) and cardiac conditions like atherosclerotic cardiovascular disease (ASCVD) and aortic stenosis (AS), making it a risk factor for heart diseases. In recent years, Lp(a)'s role in other diseases, including neurological disorders and cancer, has been increasingly recognized. Although therapies aimed at low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) have achieved significant success, elevated Lp(a) levels remain a significant clinical management problem. Despite the limited efficacy of current lipid-lowering therapies, major clinical advances in new Lp(a)-lowering therapies have significantly advanced the field. This review, grounded in the pathophysiology of lipoproteins, seeks to summarize the wide-ranging connections between lipoproteins (such as LDL-C and HDL-C) and various diseases, alongside the latest clinical developments, special emphasis is placed on the pivotal role of Lp(a) in cardiovascular disease, while also examining its future potential and mechanisms in other conditions. Furthermore, this review discusses Lp(a)-lowering therapies and highlights significant recent advances in emerging treatments, advocates for further exploration into Lp(a)'s pathogenic mechanisms and its potential as a therapeutic target, proposing new secondary prevention strategies for high-risk individuals.
Collapse
Affiliation(s)
- Zijun Ma
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wei Tu
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiliang Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
5
|
Zeng G, Zhu P, Yuan D, Wang P, Li T, Li Q, Xu J, Tang X, Song Y, Chen Y, Zhang C, Jia S, Liu R, Jiang L, Song L, Gao R, Yang Y, Zhao X, Yuan J. Renal function alters the association of lipoprotein(a) with cardiovascular outcomes in patients undergoing percutaneous coronary intervention: a prospective cohort study. Clin Kidney J 2024; 17:sfae032. [PMID: 38435350 PMCID: PMC10906361 DOI: 10.1093/ckj/sfae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Indexed: 03/05/2024] Open
Abstract
Background and hypothesis Lipoprotein(a) [Lp(a)] and renal dysfunction are both independent risk factors for cardiovascular disease. However, it remains unclear whether renal function mediates the association between Lp(a) and cardiovascular outcomes in patients undergoing percutaneous coronary intervention (PCI). Methods From a large prospective cohort study, 10 435 eligible patients undergoing PCI from January 2013 to December 2013 were included in our analysis. Patients were stratified into three renal function groups according to their baseline estimated glomerular filtration rate (eGFR) (<60; 60-90; ≥90 ml/min/1.73 m2). The primary endpoint was a composite of all-cause death, nonfatal MI, ischemic stroke, and unplanned revascularization [major adverse cardiac and cerebrovascular events (MACCE)]. Results Over a median follow-up of 5.1 years, a total of 2144 MACCE events occurred. After multivariable adjustment, either eGFR <60 ml/min/1.73 m2 or elevated Lp(a) conferred a significantly higher MACCE risk. Higher Lp(a) was significantly associated with an increased risk of MACCE in patients with eGFR <60 ml/min/1.73 m2. However, this association was weakened in subjects with only mild renal impairment and diminished in those with normal renal function. A significant interaction for MACCE between renal categories and Lp(a) was observed (P = 0.026). Patients with concomitant Lp(a) ≥30 mg/dl and eGFR <60 ml/min/1.73 m2 experienced worse cardiovascular outcomes compared with those without. Conclusion The significant association between Lp(a) and cardiovascular outcomes was mediated by renal function in patients undergoing PCI. Lp(a)-associated risk was more pronounced in patients with worse renal function, suggesting close monitoring and aggressive management are needed in this population.
Collapse
Affiliation(s)
- Guyu Zeng
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Zhu
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deshan Yuan
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peizhi Wang
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinxue Li
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Xu
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofang Tang
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Song
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Chen
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ce Zhang
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sida Jia
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ru Liu
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Jiang
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runlin Gao
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueyan Zhao
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinqing Yuan
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Wang L, Liu L, Zhao Y, Chu M, Teng J. Lipoprotein(a) and residual vascular risk in statin-treated patients with first acute ischemic stroke: A prospective cohort study. Front Neurol 2022; 13:1004264. [PMID: 36408516 PMCID: PMC9671150 DOI: 10.3389/fneur.2022.1004264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/17/2022] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVES Statins either barely affect or increase lipoprotein(a) [Lp(a)] levels. This study aimed to explore the factors correlated to the change of Lp(a) levels as well as the relationship between Lp(a) and the recurrent vascular events in statin-treated patients with first acute ischemic stroke (AIS). METHODS Patients who were admitted to the hospital with first AIS from October 2018 to September 2020 were eligible for inclusion. Correlation between the change of Lp(a) levels and potential influencing factors was assessed by linear regression analysis. Cox proportional regression models were used to estimate the association between Lp(a) and recurrent vascular events including AIS, transient ischemic attack, myocardial infarction and coronary revascularization. RESULTS In total, 303 patients, 69.6% males with mean age 64.26 ± 11.38 years, completed the follow-up. During the follow-up period, Lp(a) levels increased in 50.5% of statin-treated patients and the mean percent change of Lp(a) levels were 14.48% (95% CI 6.35-22.61%). Creatinine (β = 0.152, 95% CI 0.125-0.791, P = 0.007) and aspartate aminotransferase (AST) (β = 0.160, 95% CI 0.175-0.949, P = 0.005) were positively associated with the percent change of Lp(a) levels. During a median follow-up of 26 months, 66 (21.8%) patients had a recurrent vascular event. The median time period between AIS onset and vascular events recurrence was 9.5 months (IQR 2.0-16.3 months). The on-statin Lp(a) level ≥70 mg/dL (HR 2.539, 95% CI 1.076-5.990, P = 0.033) and the change of Lp(a) levels (HR 1.003, 95% CI 1.000-1.005, P = 0.033) were associated with the recurrent vascular events in statin-treated patients with first AIS. Furthermore, the on-statin Lp(a) levels ≥70 mg/dL (HR 3.612, 95% CI 1.018-12.815, P = 0.047) increased the risk of recurrent vascular events in patients with low-density lipoprotein cholesterol (LDL-C) levels < 1.8 mmol/L. CONCLUSIONS Lp(a) levels increased in half of statin-treated patients with first AIS. Creatinine and AST were positively associated with the percent change of Lp(a) levels. Lp(a) is a determinant of residual vascular risk and the change of Lp(a) is positively associated with the risk of recurrent vascular events in these patients.
Collapse
Affiliation(s)
- Lanjing Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lijun Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yanhong Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Min Chu
- Department of Neurology, Minhang Hospital, Fudan University, Qingdao, China
| | - Jijun Teng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Deshotels MR, Sun C, Nambi V, Virani SS, Matsushita K, Yu B, Ballantyne CM, Hoogeveen RC. Temporal Trends in Lipoprotein(a) Concentrations: The Atherosclerosis Risk in Communities Study. J Am Heart Assoc 2022; 11:e026762. [DOI: 10.1161/jaha.122.026762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Plasma lipoprotein(a) (Lp[a]) concentrations are primarily determined by genetic factors and are believed to remain stable throughout life. However, data are scarce on longitudinal trends in Lp(a) concentrations over time. Therefore, it is unclear whether measurement of Lp(a) once in a person's life is sufficient for cardiovascular risk assessment in all adults.
Methods and Results
Lp(a) concentrations, specifically apolipoprotein(a) concentrations, were measured at visits 4 and 5, ≈15 years apart, in 4734 adult participants of the ARIC (Atherosclerosis Risk in Communities) study (mean age at visits 4 and 5, 60.7±5.1 and 75.5±5.2 years, respectively). Participants were categorized by baseline (visit 4) Lp(a) concentrations as normal (<30 mg/dL), borderline‐high (30–49 mg/dL), or high (≥50 mg/dL). We compared adults with Lp(a) change ≥20 mg/dL between visits and those with Lp(a) change <20 mg/dL. Multivariable logistic regression analysis was used to identify covariates associated with change in Lp(a) over time. At visit 5, 58.1% of participants with borderline‐high Lp(a) concentrations of 30 to 49 mg/dL at visit 4 had high Lp(a) concentrations ≥50 mg/dL. Participants with low Lp(a) (<30 mg/dL) or high Lp(a) (≥50 mg/dL) at visit 4 tended to stay in these respective categories. Black race, female sex, diabetes, hypertension, total cholesterol, and albuminuria were associated with significantly greater probability for Lp(a) change ≥20 mg/dL over time.
Conclusions
Our results suggest that adults with borderline‐high Lp(a) concentrations may be considered for repeat monitoring of Lp(a) over time, particularly if they are Black, women, or have diabetes, hypertension, and/or elevated albuminuria.
Collapse
Affiliation(s)
| | - Caroline Sun
- Department of Medicine Baylor College of Medicine Houston TX
| | - Vijay Nambi
- Department of Medicine Baylor College of Medicine Houston TX
- Section of Cardiology Michael E. DeBakey Veterans Affairs Medical Center Houston TX
| | - Salim S. Virani
- Department of Medicine Baylor College of Medicine Houston TX
- Section of Cardiology Michael E. DeBakey Veterans Affairs Medical Center Houston TX
| | - Kunihiro Matsushita
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health University of Texas Health Science Center Houston TX
| | | | | |
Collapse
|
8
|
The kringle IV type 2 domain variant 4925G>A causes the elusive association signal of the LPA pentanucleotide repeat. J Lipid Res 2022; 63:100306. [PMID: 36309064 PMCID: PMC9700027 DOI: 10.1016/j.jlr.2022.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/23/2022] Open
Abstract
Lipoprotein(a) [Lp(a)] concentrations are regulated by the LPA gene mainly via the large kringle IV-type 2 (KIV-2) copy number variation and multiple causal variants. Early studies suggested an effect of long pentanucleotide repeat (PNR) alleles (10 and 11 repeats, PNR10 and PNR11) in the LPA promoter on gene transcription and found an association with lower Lp(a). Subsequent in vitro studies showed no effects on mRNA transcription, but the association with strongly decreased Lp(a) remained consistent. We investigated the isolated and combined effect of PNR10, PNR11, and the frequent splice site variant KIV-2 4925G>A on Lp(a) concentrations in the Cooperative Health Research in the Region of Augsburg F4 study by multiple quantile regression in single-SNP and joint models. Data on Lp(a), apolipoprotein(a) Western blot isoforms, and variant genotypes were available for 2,858 individuals. We found a considerable linkage disequilibrium between KIV-2 4925G>A and the alleles PNR10 and PNR11. In single-variant analysis adjusted for age, sex, and the shorter apo(a) isoform, we determined that both PNR alleles were associated with a highly significant Lp(a) decrease (PNR10: β = -14.43 mg/dl, 95% CI: -15.84, -13.02, P = 3.33e-84; PNR11: β = -17.21 mg/dl, 95% CI: -20.19, -14.23, P = 4.01e-29). However, a joint model, adjusting the PNR alleles additionally for 4925G>A, abolished the effect on Lp(a) (PNR10: β = +0.44 mg/dl, 95% CI: -1.73, 2.60, P = 0.69; PNR11: β = -1.52 mg/dl, 95% CI: -6.05, 3.00, P = 0.51). Collectively, we conclude that the previously reported Lp(a) decrease observed in pentanucleotide alleles PNR10 or PNR11 carriers results from a linkage disequilibrium with the frequent splicing mutation KIV-2 4925G>A.
Collapse
|
9
|
Kronenberg F, Mora S, Stroes ESG, Ference BA, Arsenault BJ, Berglund L, Dweck MR, Koschinsky M, Lambert G, Mach F, McNeal CJ, Moriarty PM, Natarajan P, Nordestgaard BG, Parhofer KG, Virani SS, von Eckardstein A, Watts GF, Stock JK, Ray KK, Tokgözoğlu LS, Catapano AL. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: a European Atherosclerosis Society consensus statement. Eur Heart J 2022; 43:3925-3946. [PMID: 36036785 PMCID: PMC9639807 DOI: 10.1093/eurheartj/ehac361] [Citation(s) in RCA: 472] [Impact Index Per Article: 157.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
This 2022 European Atherosclerosis Society lipoprotein(a) [Lp(a)] consensus statement updates evidence for the role of Lp(a) in atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis, provides clinical guidance for testing and treating elevated Lp(a) levels, and considers its inclusion in global risk estimation. Epidemiologic and genetic studies involving hundreds of thousands of individuals strongly support a causal and continuous association between Lp(a) concentration and cardiovascular outcomes in different ethnicities; elevated Lp(a) is a risk factor even at very low levels of low-density lipoprotein cholesterol. High Lp(a) is associated with both microcalcification and macrocalcification of the aortic valve. Current findings do not support Lp(a) as a risk factor for venous thrombotic events and impaired fibrinolysis. Very low Lp(a) levels may associate with increased risk of diabetes mellitus meriting further study. Lp(a) has pro-inflammatory and pro-atherosclerotic properties, which may partly relate to the oxidized phospholipids carried by Lp(a). This panel recommends testing Lp(a) concentration at least once in adults; cascade testing has potential value in familial hypercholesterolaemia, or with family or personal history of (very) high Lp(a) or premature ASCVD. Without specific Lp(a)-lowering therapies, early intensive risk factor management is recommended, targeted according to global cardiovascular risk and Lp(a) level. Lipoprotein apheresis is an option for very high Lp(a) with progressive cardiovascular disease despite optimal management of risk factors. In conclusion, this statement reinforces evidence for Lp(a) as a causal risk factor for cardiovascular outcomes. Trials of specific Lp(a)-lowering treatments are critical to confirm clinical benefit for cardiovascular disease and aortic valve stenosis.
Collapse
Affiliation(s)
- Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Samia Mora
- Center for Lipid Metabolomics, Division of Preventive Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, and Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Lars Berglund
- Department of Internal Medicine, School of Medicine, University of California-Davis, Davis, Sacramento, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Heart Centre, University of Edinburgh, Chancellors Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Marlys Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gilles Lambert
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France
| | - François Mach
- Department of Cardiology, Geneva University Hospital, Geneva, Switzerland
| | - Catherine J McNeal
- Division of Cardiology, Department of Internal Medicine, Baylor Scott & White Health, 2301 S. 31st St., USA
| | | | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, and Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus G Parhofer
- Medizinische Klinik und Poliklinik IV, Ludwigs- Maximilians University Klinikum, Munich, Germany
| | - Salim S Virani
- Section of Cardiovascular Research, Baylor College of Medicine & Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerald F Watts
- Medical School, University of Western Australia, and Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, SE-412 51 Gothenburg, Sweden
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy.,IRCCS Multimedica, Milano, Italy
| |
Collapse
|
10
|
Simony SB, Mortensen MB, Langsted A, Afzal S, Kamstrup PR, Nordestgaard BG. Sex differences of lipoprotein(a) levels and associated risk of morbidity and mortality by age: The Copenhagen General Population Study. Atherosclerosis 2022; 355:76-82. [DOI: 10.1016/j.atherosclerosis.2022.06.1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
|
11
|
Abstract
An elevated level of lipoprotein(a) [Lp(a)] is a genetically regulated, independent, causal risk factor for cardiovascular disease. However, the extensive variability in Lp(a) levels between individuals and population groups cannot be fully explained by genetic factors, emphasizing a potential role for non-genetic factors. In this review, we provide an overview of current evidence on non-genetic factors influencing Lp(a) levels with a particular focus on diet, physical activity, hormones and certain pathological conditions. Findings from randomized controlled clinical trials show that diets lower in saturated fats modestly influence Lp(a) levels and often in the opposing direction to LDL cholesterol. Results from studies on physical activity/exercise have been inconsistent, ranging from no to minimal or moderate change in Lp(a) levels, potentially modulated by age and the type, intensity, and duration of exercise modality. Hormone replacement therapy (HRT) in postmenopausal women lowers Lp(a) levels with oral being more effective than transdermal estradiol; the type of HRT, dose of estrogen and addition of progestogen do not modify the Lp(a)-lowering effect of HRT. Kidney diseases result in marked elevations in Lp(a) levels, albeit dependent on disease stages, dialysis modalities and apolipoprotein(a) phenotypes. In contrast, Lp(a) levels are reduced in liver diseases in parallel with the disease progression, although population studies have yielded conflicting results on the associations between Lp(a) levels and nonalcoholic fatty liver disease. Overall, current evidence supports a role for diet, hormones and related conditions, and liver and kidney diseases in modifying Lp(a) levels.
Collapse
Affiliation(s)
- Byambaa Enkhmaa
- Department of Internal Medicine, School of Medicine, University of California Davis, Davis, CA, USA; Center for Precision Medicine and Data Sciences, School of Medicine, University of California Davis, Davis, CA, USA.
| | - Lars Berglund
- Department of Internal Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
12
|
Lipoprotein(a) beyond the kringle IV repeat polymorphism: The complexity of genetic variation in the LPA gene. Atherosclerosis 2022; 349:17-35. [PMID: 35606073 PMCID: PMC7613587 DOI: 10.1016/j.atherosclerosis.2022.04.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/23/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
High lipoprotein(a) [Lp(a)] concentrations are one of the most important genetically determined risk factors for cardiovascular disease. Lp(a) concentrations are an enigmatic trait largely controlled by one single gene (LPA) that contains a complex interplay of several genetic elements with many surprising effects discussed in this review. A hypervariable coding copy number variation (the kringle IV type-2 repeat, KIV-2) generates >40 apolipoprotein(a) protein isoforms and determines the median Lp(a) concentrations. Carriers of small isoforms with up to 22 kringle IV domains have median Lp(a) concentrations up to 5 times higher than those with large isoforms (>22 kringle IV domains). The effect of the apo(a) isoforms are, however, modified by many functional single nucleotide polymorphisms (SNPs) distributed over the complete range of allele frequencies (<0.1% to >20%) with very pronounced effects on Lp(a) concentrations. A complex interaction is present between the apo (a) isoforms and LPA SNPs, with isoforms partially masking the effect of functional SNPs and, vice versa, SNPs lowering the Lp(a) concentrations of affected isoforms. This picture is further complicated by SNP-SNP interactions, a poorly understood role of other polymorphisms such as short tandem repeats and linkage structures that are poorly captured by common R2 values. A further layer of complexity derives from recent findings that several functional SNPs are located in the KIV-2 repeat and are thus not accessible to conventional sequencing and genotyping technologies. A critical impact of the ancestry on correlation structures and baseline Lp(a) values becomes increasingly evident. This review provides a comprehensive overview on the complex genetic architecture of the Lp(a) concentrations in plasma, a field that has made tremendous progress with the introduction of new technologies. Understanding the genetics of Lp(a) might be a key to many mysteries of Lp(a) and booster new ideas on the metabolism of Lp(a) and possible interventional targets.
Collapse
|
13
|
Grüneis R, Lamina C, Di Maio S, Schönherr S, Zoescher P, Forer L, Streiter G, Peters A, Gieger C, Köttgen A, Kronenberg F, Coassin S. The effect of LPA Thr3888Pro on lipoprotein(a) and coronary artery disease is modified by the LPA KIV-2 variant 4925G>A. Atherosclerosis 2022; 349:151-159. [PMID: 35534298 PMCID: PMC7613586 DOI: 10.1016/j.atherosclerosis.2022.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS High lipoprotein(a) [Lp(a)] concentrations are associated with increased coronary artery disease (CAD) risk. Lp(a) is regulated mainly genetically by the LPA gene but involved genetic variants have not been fully elucidated. Improved understanding of the entanglements of genetic Lp(a) regulation may enhance genetic prediction of Lp(a) and CAD risk. We investigated an interaction between the well-known LPA missense SNP rs41272110 (known as Thr3888Pro) and the frequent LPA splicing mutation KIV-2 4925G>A. METHODS Effects on Lp(a) concentrations were investigated by multiple quantile regression in the German Chronic Kidney Disease (GCKD) study, KORA-F3 and KORA-F4 (ntotal = 10,405) as well as in the UK Biobank (UKB) 200k exome dataset (n = 173,878). The impact of the interaction on CAD risk was assessed by survival analysis in UKB. RESULTS We observed a significant SNP-SNP interaction in all studies (p = 1.26e-05 to 3.03e-04). In quantile regression analysis, rs41272110 as a predictor shows no impact on Lp(a) (β = -0.06 [-0.79; 0.68], p = 0.879), but in a joint model including both SNPs as predictors, rs41272110 is associated with markedly higher Lp(a) (β = +9.40 mg/dL [6.45; 12.34], p = 4.07e-10). Similarly, rs41272110 shows no effect on CAD in UKB (HR = 1.01 [0.97; 1.04], p = 0.731), while rs41272110 carriers not carrying 4925G>A show an increased CAD risk (HR = 1.10 [1.04; 1.16], p = 6.9e-04). This group corresponds to 4% of the population. Adjustment for apolipoprotein(a) isoforms further modified the effect estimates markedly. CONCLUSIONS This work emphasizes the complexity of the genetic regulation of Lp(a) and the importance to account for genetic subgroups in Lp(a) association studies and when interpreting genetic cardiovascular risk profiles.
Collapse
Affiliation(s)
- Rebecca Grüneis
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Silvia Di Maio
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Peter Zoescher
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Gertraud Streiter
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany and German Chronic Kidney Disease Study, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria.
| |
Collapse
|
14
|
Dzobo KE, Kraaijenhof JM, Stroes ES, Nurmohamed NS, Kroon J. Lipoprotein(a): An underestimated inflammatory mastermind. Atherosclerosis 2022; 349:101-109. [DOI: 10.1016/j.atherosclerosis.2022.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/09/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
|
15
|
Li Q, Chen Y, Yu L, Zhu L, Wang Z, Jiao S, Wu C, Tu Y, Wu Y, Guo Z, Gao Y, Zheng J, Sun Y. The relationship between lipoprotein(a) and cardiovascular events in acute coronary syndrome patients with and without chronic kidney disease. Atherosclerosis 2022; 349:204-210. [DOI: 10.1016/j.atherosclerosis.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
|
16
|
Zheng J, Zhang Y, Rasheed H, Walker V, Sugawara Y, Li J, Leng Y, Elsworth B, Wootton RE, Fang S, Yang Q, Burgess S, Haycock PC, Borges MC, Cho Y, Carnegie R, Howell A, Robinson J, Thomas LF, Brumpton BM, Hveem K, Hallan S, Franceschini N, Morris AP, Köttgen A, Pattaro C, Wuttke M, Yamamoto M, Kashihara N, Akiyama M, Kanai M, Matsuda K, Kamatani Y, Okada Y, Walters R, Millwood IY, Chen Z, Davey Smith G, Barbour S, Yu C, Åsvold BO, Zhang H, Gaunt TR. Trans-ethnic Mendelian-randomization study reveals causal relationships between cardiometabolic factors and chronic kidney disease. Int J Epidemiol 2022; 50:1995-2010. [PMID: 34999880 PMCID: PMC8743120 DOI: 10.1093/ije/dyab203] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/01/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND This study was to systematically test whether previously reported risk factors for chronic kidney disease (CKD) are causally related to CKD in European and East Asian ancestries using Mendelian randomization. METHODS A total of 45 risk factors with genetic data in European ancestry and 17 risk factors in East Asian participants were identified as exposures from PubMed. We defined the CKD by clinical diagnosis or by estimated glomerular filtration rate of <60 ml/min/1.73 m2. Ultimately, 51 672 CKD cases and 958 102 controls of European ancestry from CKDGen, UK Biobank and HUNT, and 13 093 CKD cases and 238 118 controls of East Asian ancestry from Biobank Japan, China Kadoorie Biobank and Japan-Kidney-Biobank/ToMMo were included. RESULTS Eight risk factors showed reliable evidence of causal effects on CKD in Europeans, including genetically predicted body mass index (BMI), hypertension, systolic blood pressure, high-density lipoprotein cholesterol, apolipoprotein A-I, lipoprotein(a), type 2 diabetes (T2D) and nephrolithiasis. In East Asians, BMI, T2D and nephrolithiasis showed evidence of causality on CKD. In two independent replication analyses, we observed that increased hypertension risk showed reliable evidence of a causal effect on increasing CKD risk in Europeans but in contrast showed a null effect in East Asians. Although liability to T2D showed consistent effects on CKD, the effects of glycaemic phenotypes on CKD were weak. Non-linear Mendelian randomization indicated a threshold relationship between genetically predicted BMI and CKD, with increased risk at BMI of >25 kg/m2. CONCLUSIONS Eight cardiometabolic risk factors showed causal effects on CKD in Europeans and three of them showed causality in East Asians, providing insights into the design of future interventions to reduce the burden of CKD.
Collapse
Affiliation(s)
- Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, P. R. China
| | - Humaira Rasheed
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Venexia Walker
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuka Sugawara
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Jiachen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, P. R. China
| | - Yue Leng
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Benjamin Elsworth
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Robyn E Wootton
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Si Fang
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Qian Yang
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Yoonsu Cho
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Rebecca Carnegie
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Amy Howell
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Jamie Robinson
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Laurent F Thomas
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ben Michael Brumpton
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Thoracic Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stein Hallan
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Nephrology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew P Morris
- Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization and Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Kanai
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, the University of Tokyo, Tokyo, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Robin Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, UK
| | - Sean Barbour
- Division of Nephrology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Provincial Renal Agency, Vancouver, British Columbia, Canada
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, P. R. China
| | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, P. R. China
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, UK
| |
Collapse
|
17
|
Xie Y, Qi H, Li B, Wen F, Zhang F, Guo C, Zhang L. Serum lipoprotein (a) associates with the risk of renal function damage in the CHCN-BTH Study: Cross-sectional and Mendelian randomization analyses. Front Endocrinol (Lausanne) 2022; 13:1023919. [PMID: 36506069 PMCID: PMC9727385 DOI: 10.3389/fendo.2022.1023919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Evidence regarding the effects of lipoprotein (a) [lp(a)] and renal function remains unclear. The present study aimed to explore the causal association of serum lp(a) with renal function damage in Chinese general adults. METHODS A total of 25343 individuals with available lp(a) data were selected from the baseline survey of the Cohort Study on Chronic Disease of Communities Natural Population in Beijing, Tianjin, and Hebei (CHCN-BTH). Five renal function indexes [estimated glomerular filtration rate (eGFR), serum creatinine (Scr), blood urea nitrogen (BUN), uric acid (UA), high-sensitivity C-reactive protein(CRPHS)] were analyzed. The restricted cubic spline (RCS) method, logistic regression, and linear regression were used to test the dose-response association between lp(a) and renal function. Stratified analyses related to demographic characteristics and disease status were performed. Two-sample Mendelian randomization (MR) analysis was used to obtain the causal association of lp(a) and renal function indexes. Genotyping was accomplished by MassARRAY System. RESULTS Lp(a) levels were independently associated with four renal function indexes (eGFR, Scr, BUN, CRPHS). Individuals with a higher lp(a) level had a lower eGFR level, and the association with Scr estimated GFR was stronger in individuals with a lower lp(a) level (under 14 mg/dL). . The association was similar in individuals regardless of diabetes or hypertension. MR analysis confirmed the causal association of two renal function indexes (Scr and BUN). For MR analysis, each one unit higher lp(a) was associated with 7.4% higher Scr (P=0.031) in the inverse-variance weighted method. But a causal effect of genetically increased lp(a) level with increased eGFR level which contrasted with our observational results was observed. CONCLUSION The observational and causal effect of lp(a) on Scr and BUN were founded, suggesting the role of lp(a) on the risk of renal function damage in general Chinese adults.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To provide an overview of the associations between elevated blood pressure and lipoprotein (a) and possible causal links, as well as data on the prevalence of elevated lipoprotein (a) in a cohort of hypertensive patients. RECENT FINDINGS Elevated lipoprotein (a) is now considered to be an independent and causal risk factor for atherosclerotic cardiovascular disease and calcific aortic valve disease. Despite this, there are limited data demonstrating an association between elevated lipoprotein (a) and hypertension. Further, there is limited mechanistic data linking lipoprotein (a) and hypertension through either renal impairment or direct effects on the vasculature. Despite the links between lipoprotein (a) and atherosclerosis, there are limited data demonstrating an association with hypertension. Evidence from our clinic suggests that ~ 30% of the patients in this at-risk, hypertensive cohort had elevated lipoprotein (a) levels and that measurement of lipoprotein (a) maybe useful in risk stratification.
Collapse
|
19
|
Huang Z, Yang Y, Lu J, Liang J, He Y, Yu Y, Huang H, Li Q, Wang B, Li S, Yan Z, Xu D, Liu Y, Chen K, Huang Z, Ni J, Liu J, Chen L, Chen S. Association of Lipoprotein(a)-Associated Mortality and the Estimated Glomerular Filtration Rate Level in Patients Undergoing Coronary Angiography: A 51,500 Cohort Study. Front Cardiovasc Med 2021; 8:747120. [PMID: 34869651 PMCID: PMC8635642 DOI: 10.3389/fcvm.2021.747120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background: High lipoprotein(a) is associated with poor prognosis in patients at high risk for cardiovascular disease. Renal function based on the estimated glomerular filtration rate (eGFR) is a potential risk factor for the change of lipoprotein(a). However, the regulatory effect of eGFR stratification on lipoprotein(a)-associated mortality has not been adequately addressed. Methods: 51,500 patients who underwent coronary angiography (CAG) or percutaneous coronary intervention (PCI) were included from the Cardiorenal ImprovemeNt (CIN) study (ClinicalTrials.gov NCT04407936). These patients were grouped according to lipoprotein(a) quartiles (Q1–Q4) stratified by eGFR categories (<60 and ≥60 mL/min/1.73m2). Cox regression models were used to estimate hazard ratios (HR) for mortality across combined eGFR and lipoprotein(a) categories. Results: The mean age of the study population was 62.3 ± 10.6 years, 31.3% were female (n = 16,112). During a median follow-up of 5.0 years (interquartile range: 3.0–7.6 years), 13.0% (n = 6,695) of patients died. Compared with lipoprotein(a) Q1, lipoprotein(a) Q2–Q4 was associated with 10% increased adjusted risk of death in all patients (HR: 1.10 [95% CI: 1.03–1.17]), and was strongly associated with about 23% increased adjusted risk of death in patients with eGFR <60 mL/min/1.73m2 (HR: 1.23 [95% CI: 1.08–1.39]), while such association was not significant in patients with eGFR ≥60 mL/min/1.73m2 (HR: 1.05 [95% CI: 0.97–1.13]). P for interaction between lipoprotein(a) (Q1 vs. Q2–Q4) and eGFR (≥60 vs. eGFR <60 mL/min/1.73m2) on all-cause mortality was 0.019. Conclusions: Elevated lipoprotein(a) was associated with increased risk of all-cause mortality and such an association was modified by the baseline eGFR in CAG patients. More attention should be paid to the patients with reduced eGFR and elevated lipoprotein(a), and the appropriate lipoprotein(a) intervention is required.
Collapse
Affiliation(s)
- Zhidong Huang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanfang Yang
- The Graduate School of Clinical Medicine, Fujian Medical University, Fuzhou, China.,Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jin Lu
- The Graduate School of Clinical Medicine, Fujian Medical University, Fuzhou, China.,Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jingjing Liang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yibo He
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yaren Yu
- Department of Cardiology, The First People's Hospital of Foshan, Foshan, China
| | - Haozhang Huang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiang Li
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Wang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shanggang Li
- Department of Public Health, Guangdong Medical University, Dongguan, China
| | - Zelin Yan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Danyuan Xu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kaihong Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Zhigang Huang
- Department of Public Health, Guangdong Medical University, Dongguan, China
| | - Jindong Ni
- Department of Public Health, Guangdong Medical University, Dongguan, China
| | - Jin Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liling Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shiqun Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
20
|
Tao J, Dai W, Ye C, Yao Q, Zhou M, Li Y. Preprocedural Lp(a) level and ApoB/ApoA-Ι ratio and the risk for contrast-induced acute kidney injury in patients undergoing emergency PCI. Lipids Health Dis 2021; 20:130. [PMID: 34627286 PMCID: PMC8502341 DOI: 10.1186/s12944-021-01535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High serum Lipoprotein(a) (Lp(a)) level and Apolipoprotein B/Apolipoprotein AΙ (ApoB/ApoA-Ι) ratio are risk factors for cardiovascular disease and kidney disease and have been found to be correlated with the prevalence and prognosis of various kidney diseases. However, it is not clear whether the serum Lp(a) level and ApoB/ApoA-Ι ratio pre-PCI are correlated with the prevalence of contrast-induced acute kidney injury (CI-AKI). METHODS A total of 931 participants undergoing emergency PCI from July 2018 to July 2020 were included. According to whether the serum creatinine concentration was higher than the baseline concentration (by ≥25% or ≥ 0.5 mg/dL) 48-72 h after contrast exposure, these participants were divided into a CI-AKI group (n = 174) and a non-CI-AKI group (n = 757). Serum Lp(a), ApoA-Ι and ApoB concentration were detected in the patients when they were admitted to hospital, and the ApoB/ApoA-Ι ratio was calculated. Logistic regression and restricted cubic spline analyses were used to explore the correlation between the Lp(a) concentration or the ApoB/ApoA-Ι ratio and the risk of CI-AKI. RESULTS Among the 931 participants undergoing emergency PCI, 174 (18.69%) participants developed CI-AKI. Compared with the non-CI-AKI group, the Lp(a) level and ApoB/ApoA-Ι ratio pre-PCI in the CI-AKI group were significantly higher (P < 0.05). The incidence of CI-AKI was positively associated with the serum Lp(a) level and ApoB/ApoA-Ι ratio pre-PCI in each logistic regression model (P < 0.05). After adjusting for all the risk factors included in this study, restricted cubic spline analyses found that the Lp(a) level and the ApoB/ApoA-Ι ratio before PCI, within certain ranges, were positively associated with the prevalence of CI-AKI. CONCLUSION High Lp(a) levels and high ApoB/ApoA-Ι ratios before PCI are potential risk factors for CI-AKI.
Collapse
Affiliation(s)
- Jun Tao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang district, Wuhan, 430060, Hubei, China
| | - Wen Dai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang district, Wuhan, 430060, Hubei, China
| | - Chenglin Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Yao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang district, Wuhan, 430060, Hubei, China
| | - Man Zhou
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang district, Wuhan, 430060, Hubei, China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang district, Wuhan, 430060, Hubei, China.
| |
Collapse
|
21
|
How does clinical profile and outcome differ in patients with Chronic Kidney Disease undergoing percutaneous coronary revascularization according to the severity of CKD? - CHANNEL Study. Indian Heart J 2021; 73:476-480. [PMID: 34474761 PMCID: PMC8424264 DOI: 10.1016/j.ihj.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/28/2021] [Accepted: 06/16/2021] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is an independent risk factor for the development of coronary artery disease. We evaluated outcomes amongst patients of CKD undergoing percutaneous coronary intervention (PCI) as assessed on severity of CKD based on estimated glomerular filtration rate (eGFR) at the time of PCI. METHOD AND MATERIALS We analyzed 100 consecutive CKD patients who underwent PCI and were followed up for 1 year; an observational, prospective, open-label study. Multivariate and Receiver operator characteristics (ROC) analysis was used to determine the cut point ofeGFR for predicting 4-P major adverse cardiac events (MACE) outcomes defined as the composite of Cardiovascular (CV) mortality, heart failure hospitalization (HHF), repeat revascularization and non-fatal MI over 1 year follow up. RESULTS According to eGFR cut-off value derived from ROC, patients were divided in to two groups based on eGFR cut-off of 36.25 mL/min/1.73 m2. Majority of patients (79%) were in Group 1 (eGFR >36.25 mL/min/1.73 m2). Group 2 had Lower HbA1C, hemoglobin and elevated level of urea as compared to group:1 (p=0.002,<0.0001 respectively). All-cause mortality had trend forbeing higher (6.3 vs. 19%) in group:2, but statistically non-significant (p = 0.17). Lower baseline LVEF (39 ± 10.08%) across the cohort was independent predictor of higher risk for HHF. eGFR <36.25 mL/mim/1.73 m2 was the most robust predictor of MACE, carrying a 3-fold increase in risk of 4-P MACE with significant association (0.69, CI 0.59 to 0.78, p = 0.0009). CONCLUSIONS Lower baseline eGFR was associated with higher incidence of 4 P MACE with best cut-off being eGFR <36.25 mL/min/1.73 m2. Lower Baseline LVEF was independent predictor from HHF across the cohort.
Collapse
|
22
|
Noels H, Lehrke M, Vanholder R, Jankowski J. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. Nat Rev Nephrol 2021; 17:528-542. [PMID: 33972752 DOI: 10.1038/s41581-021-00423-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) induces modifications in lipid and lipoprotein metabolism and homeostasis. These modifications can promote, modulate and/or accelerate CKD and secondary cardiovascular disease (CVD). Lipid and lipoprotein abnormalities - involving triglyceride-rich lipoproteins, LDL and/or HDL - not only involve changes in concentration but also changes in molecular structure, including protein composition, incorporation of small molecules and post-translational modifications. These alterations modify the function of lipoproteins and can trigger pro-inflammatory and pro-atherogenic processes, as well as oxidative stress. Serum fatty acid levels are also often altered in patients with CKD and lead to changes in fatty acid metabolism - a key process in intracellular energy production - that induce mitochondrial dysfunction and cellular damage. These fatty acid changes might not only have a negative impact on the heart, but also contribute to the progression of kidney damage. The presence of these lipoprotein alterations within a biological environment characterized by increased inflammation and oxidative stress, as well as the competing risk of non-atherosclerotic cardiovascular death as kidney function declines, has important therapeutic implications. Additional research is needed to clarify the pathophysiological link between lipid and lipoprotein modifications, and kidney dysfunction, as well as the genesis and/or progression of CVD in patients with kidney disease.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Michael Lehrke
- Department of Internal Medicine I, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, University Hospital, Ghent, Belgium
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
23
|
Langsted A, Nordestgaard BG. Genetics of Lipoprotein(a): Cardiovascular Disease and Future Therapy. Curr Atheroscler Rep 2021; 23:46. [PMID: 34148150 DOI: 10.1007/s11883-021-00937-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Lipoprotein(a) levels are determined 80-90% by genetics and differ by up to 1000-fold between individuals. This review discusses the most recent literature on lipoprotein(a) as a risk factor for cardiovascular disease, as well as future lipoprotein(a)lowering therapies. RECENT FINDINGS Over the past few decades, numerous studies have observed that high lipoprotein(a) levels are associated observationally and causally through human genetics with increased risk of cardiovascular disease. Also, the development of safe and effective therapies to lower lipoprotein(a) is ongoing, most importantly using antisense oligonucleotides to prevent production of lipoprotein(a). Finally, both observational and genetic studies have estimated the extent to which lowering of lipoprotein(a) is needed to obtain a clinically meaningful reduction in the risk of cardiovascular disease. Lipoprotein(a) is a causal risk factor for cardiovascular disease; however, currently no approved safe and effective therapy is available to lower lipoprotein(a) levels. That said, promising randomized studies using antisense oligonucleotides show up to 80% reductions in lipoprotein(a), reductions that hopefully will result in lowering the risk of cardiovascular disease as presently tested in the ongoing HORIZON phase 3 trial.
Collapse
Affiliation(s)
- Anne Langsted
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark. .,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark. .,Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark.,Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Christoffersen M, Tybjaerg-Hansen A. Targeting IL-6 in patients at high cardiovascular risk. Lancet 2021; 397:2025-2027. [PMID: 34015339 DOI: 10.1016/s0140-6736(21)00985-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Mette Christoffersen
- Department of Clinical Biochemistry, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Cesaro A, Schiavo A, Moscarella E, Coletta S, Conte M, Gragnano F, Fimiani F, Monda E, Caiazza M, Limongelli G, D'Erasmo L, Riccio C, Arca M, Calabrò P. Lipoprotein(a): a genetic marker for cardiovascular disease and target for emerging therapies. J Cardiovasc Med (Hagerstown) 2021; 22:151-161. [PMID: 32858625 DOI: 10.2459/jcm.0000000000001077] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipoprotein(a) [Lp(a)] is an established cardiovascular risk factor, and growing evidence indicates its causal association with atherosclerotic disease because of the proatherogenic low-density lipoprotein (LDL)-like properties and the prothrombotic plasminogen-like activity of apolipoprotein(a) [apo(a)]. As genetics significantly influences its plasma concentration, Lp(a) is considered an inherited risk factor of atherosclerotic cardiovascular disease (ASCVD), especially in young individuals. Moreover, it has been suggested that elevated Lp(a) may significantly contribute to residual cardiovascular risk in patients with coronary artery disease and optimal LDL-C levels. Nonetheless, the fascinating hypothesis that lowering Lp(a) could reduce the risk of cardiovascular events - in primary or secondary prevention - still needs to be demonstrated by randomized clinical trials. To date, no specific Lp(a)-lowering agent has been approved for reducing the lipoprotein levels, and current lipid-lowering drugs have limited effects. In the future, emerging therapies targeting Lp(a) may offer the possibility to further investigate the relation between Lp(a) levels and cardiovascular outcomes in randomized controlled trials, ultimately leading to a new era in cardiovascular prevention. In this review, we aim to provide an updated overview of current evidence on Lp(a) as well as currently investigated therapeutic strategies that specifically address the reduction of the lipoprotein.
Collapse
Affiliation(s)
- Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Alessandra Schiavo
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Silvio Coletta
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Matteo Conte
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Fabio Fimiani
- Division of Cardiology
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Monaldi Hospital, Naples
| | - Emanuele Monda
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
- Division of Cardiology
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Monaldi Hospital, Naples
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Cardiology
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Monaldi Hospital, Naples
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmine Riccio
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| |
Collapse
|
26
|
Xuan L, Wang T, Dai H, Wang B, Xiang J, Wang S, Lin H, Li M, Zhao Z, Lu J, Chen Y, Xu Y, Wang W, Xu M, Bi Y, Ning G. Serum lipoprotein (a) associates with a higher risk of reduced renal function: a prospective investigation. J Lipid Res 2020; 61:1320-1327. [PMID: 32703886 PMCID: PMC7529054 DOI: 10.1194/jlr.ra120000771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipoprotein (a) [Lp(a)] is a well-known risk factor for cardiovascular disease, but analysis on Lp(a) and renal dysfunction is scarce. We aimed to investigate prospectively the association of serum Lp(a) with the risk of reduced renal function, and further investigated whether diabetic or hypertensive status modified such association. Six thousand two hundred and fifty-seven Chinese adults aged ≤40 years and free of reduced renal function at baseline were included in the study. Reduced renal function was defined as estimated glomerular filtration rate <60 ml/min/1.73 m2 During a mean follow-up of 4.4 years, 158 participants developed reduced renal function. Each one-unit increase in log10-Lp(a) (milligrams per deciliter) was associated with a 1.99-fold (95% CI 1.15-3.43) increased risk of incident reduced renal function; the multivariable-adjusted odds ratio (OR) for the highest tertile of Lp(a) was 1.61 (95% CI 1.03-2.52) compared with the lowest tertile (P for trend = 0.03). The stratified analysis showed the association of serum Lp(a) and incident reduced renal function was more prominent in participants with prevalent diabetes [OR 4.04, 95% CI (1.42-11.54)] or hypertension [OR 2.18, 95% CI (1.22-3.89)]. A stronger association was observed in the group with diabetes and high Lp(a) (>25 mg/dl), indicating a combined effect of diabetes and high Lp(a) on the reduced renal function risk. An elevated Lp(a) level was independently associated with risk of incident reduced renal function, especially in diabetic or hypertensive patients.
Collapse
Affiliation(s)
- Liping Xuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajie Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Xiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Di Maio S, Grüneis R, Streiter G, Lamina C, Maglione M, Schoenherr S, Öfner D, Thorand B, Peters A, Eckardt KU, Köttgen A, Kronenberg F, Coassin S. Investigation of a nonsense mutation located in the complex KIV-2 copy number variation region of apolipoprotein(a) in 10,910 individuals. Genome Med 2020; 12:74. [PMID: 32825847 PMCID: PMC7442989 DOI: 10.1186/s13073-020-00771-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/05/2020] [Indexed: 01/23/2023] Open
Abstract
Background The concentrations of the highly atherogenic lipoprotein(a) [Lp(a)] are mainly genetically determined by the LPA gene locus. However, up to 70% of the coding sequence is located in the complex so-called kringle IV type 2 (KIV-2) copy number variation, a region hardly accessible by common genotyping and sequencing technologies. Despite its size, little is known about genetic variants in this complex region. The R21X variant is a functional variant located in this region, but it has never been analyzed in large cohorts. Methods We typed R21X in 10,910 individuals from three European populations using a newly developed high-throughput allele-specific qPCR assay. R21X allelic location was determined by separating the LPA alleles using pulsed-field gel electrophoresis (PFGE) and typing them separately. Using GWAS data, we identified a proxy SNP located outside of the KIV-2. Linkage disequilibrium was determined both statistically and by long-range haplotyping using PFGE. Worldwide frequencies were determined by reanalyzing the sequencing data of the 1000 Genomes Project with a dedicated pipeline. Results R21X carriers (frequency 0.016–0.021) showed significantly lower mean Lp(a) concentrations (− 11.7 mg/dL [− 15.5; − 7.82], p = 3.39e−32). The variant is located mostly on medium-sized LPA alleles. In the 1000 Genome data, R21X mostly occurs in Europeans and South Asians, is absent in Africans, and shows varying frequencies in South American populations (0 to 0.022). Of note, the best proxy SNP was another LPA null mutation (rs41272114, D′ = 0.958, R2 = 0.281). D′ was very high in all 1000G populations (0.986–0.996), although rs41272114 frequency varies considerably (0–0.182). Co-localization of both null mutations on the same allele was confirmed by PFGE-based long-range haplotyping. Conclusions We performed the largest epidemiological study on an LPA KIV-2 variant so far, showing that it is possible to assess LPA KIV-2 mutations on a large scale. Surprisingly, in all analyzed populations, R21X was located on the same haplotype as the splice mutation rs41272114, creating “double-null” LPA alleles. Despite being a nonsense variant, the R21X status does not provide additional information beyond the rs41272114 genotype. This has important implications for studies using LPA loss-of-function mutations as genetic instruments and emphasizes the complexity of LPA genetics.
Collapse
Affiliation(s)
- Silvia Di Maio
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020, Innsbruck, Austria
| | - Rebecca Grüneis
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020, Innsbruck, Austria
| | - Gertraud Streiter
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020, Innsbruck, Austria
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020, Innsbruck, Austria
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schoenherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020, Innsbruck, Austria
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020, Innsbruck, Austria.
| |
Collapse
|
28
|
Littmann K, Wodaje T, Alvarsson M, Bottai M, Eriksson M, Parini P, Brinck J. The Association of Lipoprotein(a) Plasma Levels With Prevalence of Cardiovascular Disease and Metabolic Control Status in Patients With Type 1 Diabetes. Diabetes Care 2020; 43:1851-1858. [PMID: 31862789 DOI: 10.2337/dc19-1398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/19/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the association of the cardiovascular risk factor lipoprotein (Lp)(a) and vascular complications in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS Patients with type 1 diabetes receiving regular care were recruited in this observational cross-sectional study and divided into four groups according to their Lp(a) levels in nmol/L (very low <10, low 10-30, intermediate 30-120, high >120). Prevalence of vascular complications was compared between the groups. In addition, the association between metabolic control, measured as HbA1c, and Lp(a) was studied. RESULTS The patients (n = 1,860) had a median age of 48 years, diabetes duration of 25 years, and HbA1c of 7.8% (61 mmol/mol). The median Lp(a) was 19 (interquartile range 10-71) nmol/L. No significant differences between men and women were observed, but Lp(a) levels increased with increasing age. Patients in the high Lp(a) group had higher prevalence of complications than patients in the very low Lp(a) group. The age- and smoking-status-adjusted relative risk ratio of having any macrovascular disease was 1.51 (95% CI 1.01-2.28, P = 0.048); coronary heart disease, 1.70 (95% CI 0.97-3.00, P = 0.063); albuminuria, 1.68 (95% CI 1.12-2.50, P = 0.01); and calcified aortic valve disease, 2.03 (95% CI 1.03-4.03; P = 0.042). Patients with good metabolic control, HbA1c <6.9% (<52 mmol/mol), had significantly lower Lp(a) levels than patients with poorer metabolic control, HbA1c >6.9% (>52 mmol/mol). CONCLUSIONS Lp(a) is a significant risk factor for macrovascular disease, albuminuria, and calcified aortic valve disease in patients with type 1 diabetes. Poor metabolic control in patients with type 1 diabetes is associated with increased Lp(a) levels.
Collapse
Affiliation(s)
- Karin Littmann
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Function Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Tigist Wodaje
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Theme Heart and Vascular, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Alvarsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Theme Endocrinology and Nephrology, Karolinska University Hospital, Stockholm, Sweden
| | - Matteo Bottai
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Eriksson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Theme Endocrinology and Nephrology, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Theme Endocrinology and Nephrology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Brinck
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden .,Theme Endocrinology and Nephrology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
What do we know about the role of lipoprotein(a) in atherogenesis 57 years after its discovery? Prog Cardiovasc Dis 2020; 63:219-227. [PMID: 32277995 DOI: 10.1016/j.pcad.2020.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Elevated circulating concentrations of lipoprotein(a) [Lp(a)] is strongly associated with increased risk of atherosclerotic cardiovascular disease (CVD) and degenerative aortic stenosis. This relationship was first observed in prospective observational studies, and the causal relationship was confirmed in genetic studies. Everybody should have their Lp(a) concentration measured once in their lifetime. CVD risk is elevated when Lp(a) concentrations are high i.e. > 50 mg/dL (≥100 mmol/L). Extremely high Lp(a) levels >180 mg/dL (≥430 mmol/L) are associated with CVD risk similar to that conferred by familial hypercholesterolemia. Elevated Lp(a) level was previously treated with niacin, which exerts a potent Lp(a)-lowering effect. However, niacin is currently not recommended because, despite the improvement in lipid profile, no improvements on clinical outcomes have been observed. Furthermore, niacin use has been associated with severe adverse effects. Post hoc analyses of clinical trials with proprotein convertase subtilisin/kexin type-9 (PCSK9) inhibitors have shown that these drugs exert clinical benefits by lowering Lp(a), independent of their potent reduction of low-density lipoprotein cholesterol (LDL-C). It is not yet known whether PCSK9 inhibitors will be of clinical use in patients with elevated Lp(a). Apheresis is a very effective approach to Lp(a) reduction, which reduces CVD risk but is invasive and time-consuming and is thus reserved for patients with very high Lp(a) levels and progressive CVD. Studies are ongoing on the practical application of genetic approaches to therapy, including antisense oligonucleotides against apolipoprotein(a) and small interfering RNA (siRNA) technology, to reduce the synthesis of Lp(a).
Collapse
|
30
|
Massy ZA, Caskey FJ, Finne P, Harambat J, Jager KJ, Nagler E, Stengel B, Sever MS, Vanholder R, Blankestijn PJ, Bruchfeld A, Capasso G, Fliser D, Fouque D, Goumenos D, Soler MJ, Rychlík I, Spasovski G, Stevens K, Wanner C, Zoccali C. Nephrology and Public Policy Committee propositions to stimulate research collaboration in adults and children in Europe. Nephrol Dial Transplant 2020; 34:1469-1480. [PMID: 31197325 PMCID: PMC6736134 DOI: 10.1093/ndt/gfz089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
The strengths and the limitations of research activities currently present in Europe are explored in order to outline how to proceed in the near future. Epidemiological and clinical research and public policy in Europe are generally considered to be comprehensive and successful, and the European Renal Association – European Dialysis and Transplant Association (ERA-EDTA) is playing a key role in the field of nephrology research. The Nephrology and Public Policy Committee (NPPC) aims to improve the current situation and translation into public policy by planning eight research topics to be supported in the coming 5 years by ERA-EDTA.
Collapse
Affiliation(s)
- Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, APHP, Paris-Ile-de-France-West University (UVSQ), Boulogne-Billancourt, Paris, France.,INSERM U1018 Team5, Paris-Saclay University, Villejuif, France
| | - Fergus J Caskey
- Consultant Senior Lecturer, Population Health Sciences University of Bristol, UK
| | - Patrik Finne
- Finnish Registry for Kidney Diseases, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jerome Harambat
- Pediatric Nephrology Unit, Pellegrin-Enfants Hospital, Bordeaux University Hospital, and University of Bordeaux, INSERM, Team LEHA, Bordeaux, France
| | - Kitty J Jager
- ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health research institute, Amsterdam, The Netherlands
| | - Evi Nagler
- European Renal Best Practice, London, UK
| | | | - Mehmet Sukru Sever
- Department of Nephrology/Internal Medicine, Istanbul School of Medicine, Istanbul University, Millet Caddesi, Istanbul, Turkey
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Corneel Heymanslaan, Ghent, Belgium
| | - Peter J Blankestijn
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - Annette Bruchfeld
- Department of Renal Medicine, CLINTEC, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Giovambattista Capasso
- Department of Medical Translational Sciences, University of "Luigi Vanvitelli" Naples and Biogem, Ariano Irpino, Italy
| | - Danilo Fliser
- Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Medical Centre, Homburg, Germany
| | - Denis Fouque
- Department of Nephrology, Dialysis, Nutrition, Université de Lyon, CARMEN, Centre Hospitalier Lyon Sud, Pierre Bénite Cedex, France
| | | | - Maria Jose Soler
- Department of Nephrology, Vall d'Hebron University Hospital, Barcelona, Spain.,Departament of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ivan Rychlík
- 1st Department of Internal Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Goce Spasovski
- Department of Nephrology, Medical Faculty, University of Skopje, Skopje, Former Yugoslav, Republic of Macedonia
| | - Kathryn Stevens
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Christoph Wanner
- Department of Medicine, Division of Nephrology, University Hospital, Wuerzburg, Germany
| | | |
Collapse
|
31
|
Abstract
Cardiovascular disease (CVD) is the most common cause of death in adults with end-stage renal disease and after renal transplantation, and the relative excess of mortality is greatest in the young. The most likely explanation is the dramatic accumulation of both classical and uremic risk factors leading to atherosclerosis, uremic vasculopathy, and uremic cardiomyopathy. Prospective studies have established the significance of classical and uremic risk factors for the occurrence of CVD in the normal population and in the population with chronic renal disease alike. However, whether and to what degree modification of risk factors by therapeutic intervention can lower morbidity and mortality rates is as yet unknown.
Collapse
Affiliation(s)
- Uwe Querfeld
- Department of Pediatric Nephrology, Charité University Hospital, Berlin, Germany
| |
Collapse
|
32
|
Ward NC, Kostner KM, Sullivan DR, Nestel P, Watts GF. Molecular, Population, and Clinical Aspects of Lipoprotein(a): A Bridge Too Far? J Clin Med 2019; 8:E2073. [PMID: 31783529 PMCID: PMC6947201 DOI: 10.3390/jcm8122073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022] Open
Abstract
There is now significant evidence to support an independent causal role for lipoprotein(a) (Lp(a)) as a risk factor for atherosclerotic cardiovascular disease. Plasma Lp(a) concentrations are predominantly determined by genetic factors. However, research into Lp(a) has been hampered by incomplete understanding of its metabolism and proatherogeneic properties and by a lack of suitable animal models. Furthermore, a lack of standardized assays to measure Lp(a) and no universal consensus on optimal plasma levels remain significant obstacles. In addition, there are currently no approved specific therapies that target and lower elevated plasma Lp(a), although there are recent but limited clinical outcome data suggesting benefits of such reduction. Despite this, international guidelines now recognize elevated Lp(a) as a risk enhancing factor for risk reclassification. This review summarises the current literature on Lp(a), including its discovery and recognition as an atherosclerotic cardiovascular disease risk factor, attempts to standardise analytical measurement, interpopulation studies, and emerging therapies for lowering elevated Lp(a) levels.
Collapse
Affiliation(s)
- Natalie C. Ward
- School of Public Health, Curtin University, Perth 6102, Australia;
- School of Medicine, University of Western Australia, Perth 6009, Australia
| | - Karam M. Kostner
- Department of Cardiology, Mater Hospital, Brisbane 4104, Australia;
- School of Medicine University of Queensland, Brisbane 4072, Australia
| | - David R. Sullivan
- Medical School, The University of Sydney, Sydney 2006, Australia;
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
- Department of Biochemistry, Royal Prince Alfred Hospital, Sydney 2050, Australia
| | - Paul Nestel
- Baker Heart & Diabetes Institute, Melbourne 3004, Australia;
- Department of Cardiology, The Alfred Hospital, Melbourne 3004, Australia
| | - Gerald F. Watts
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth 6000, Australia
| |
Collapse
|
33
|
Enkhmaa B, Anuurad E, Zhang W, Kim K, Berglund L. Heritability of apolipoprotein (a) traits in two-generational African-American and Caucasian families. J Lipid Res 2019; 60:1603-1609. [PMID: 31324652 PMCID: PMC6718432 DOI: 10.1194/jlr.p091249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/15/2019] [Indexed: 11/20/2022] Open
Abstract
Heritability of LPA allele, apo(a) isoform sizes, and isoform-associated lipoprotein(a) [Lp(a)] levels was studied in 82 Caucasian and African-American families with two parents and two children (age: 6-74 years). We determined: 1) Lp(a) levels; 2) LPA allele sizes; 3) apo(a) isoform sizes; and 4) isoform-specific apo(a) levels (ISLs), the amount of Lp(a) carried by an individual apo(a) isoform. Trait heritability was estimated by mid-parent-offspring analysis. The ethnicity-adjusted heritability estimate for Lp(a) level was 0.95. Heritability for ISLs corresponding to the smaller LPA allele in a given allele-pair was higher than that corresponding to the larger LPA allele (0.91 vs. 0.59, P = 0.017). Although not statistically different, heritability for both apo(a) isoforms (0.90 vs. 0.70) and LPA alleles (0.98 vs. 0.82) was higher for the smaller versus larger sizes. Heritability was generally lower in African-Americans versus Caucasians with a 4-fold difference for the larger LPA allele (0.25 vs. 0.94, P = 0.001). In Caucasians, an overall higher heritability pattern was noted for the older (≥47 years) versus younger (<47 years) families. In conclusion, Lp(a) level and traits associated with the smaller LPA alleles were strongly determined by genetics, although with a varying ethnic influence. Ethnic differences in heritability of the larger LPA allele warrant further investigations.
Collapse
Affiliation(s)
- Byambaa Enkhmaa
- Departments of Internal MedicineUniversity of California Davis, Davis, CA.
| | - Erdembileg Anuurad
- Departments of Internal MedicineUniversity of California Davis, Davis, CA
| | - Wei Zhang
- Departments of Internal MedicineUniversity of California Davis, Davis, CA
| | - Kyoungmi Kim
- Public Health Sciences University of California Davis, Davis, CA
| | - Lars Berglund
- Departments of Internal MedicineUniversity of California Davis, Davis, CA
| |
Collapse
|
34
|
Yahya R, Berk K, Verhoeven A, Bos S, van der Zee L, Touw J, Erhart G, Kronenberg F, Timman R, Sijbrands E, Roeters van Lennep J, Mulder M. Statin treatment increases lipoprotein(a) levels in subjects with low molecular weight apolipoprotein(a) phenotype. Atherosclerosis 2019; 289:201-205. [PMID: 31327478 DOI: 10.1016/j.atherosclerosis.2019.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/20/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIMS We aimed to evaluate the effect of statin treatment initiation on lipoprotein(a) [Lp(a)] levels in patients with dyslipidemia, and the interactions with the apolipoprotein(a) [apo(a)] phenotype, LPA single nucleotide polymorphisms (SNPs) and change in LDL cholesterol. METHODS The study population consisted of patients with dyslipidemia, predominantly familial hypercholesterolemia, who first initiated statin treatment (initiation group; n = 39) or were already on stable statin treatment for at least 4 months (control group; n = 42). Plasma Lp(a) levels were determined with a particle-enhanced immunoturbidimetric assay before and at least 2 months after start of statin treatment in individuals of the initiation group, and at two time points with an interval of at least 2 months in the control group. High and low molecular weight (HMW and LMW, respectively) apo(a) phenotype was determined by immunoblotting, and the common LPA SNPs rs10455872, rs3798220 and rs41272110 by Taqman assay. RESULTS Plasma Lp(a) levels did not increase significantly in the initiation group (median 20.5 (IQR 10.9-80.7) to 23.3 (10.8-71.8) mg/dL; p = 0.09) nor in the control group (30.9 (IQR 9.2-147.0) to 31.7 (IQR 10.9-164.0) mg/dL; p = 0.61). In patients with the LMW apo(a) phenotype, Lp(a) levels increased significantly from 66.4 (IQR 23.5-148.3) to 97.4 (IQR 24.9-160.4) mg/dL (p = 0.026) in the initiation group, but not in the control group and not in patients characterized by the HMW apo(a) phenotype. Interactions with common LPA SNPs and change in LDL cholesterol were not significant. CONCLUSIONS Statins affect Lp(a) levels differently in patients with dyslipidemia depending on the apo(a) phenotype. Statins increase Lp(a) levels exclusively in patients with the LMW apo(a) phenotype.
Collapse
Affiliation(s)
- Reyhana Yahya
- Department of Internal Medicine, division of Vascular Medicine and Pharmacology, Division of Medical Psychology and Psychotherapy, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kirsten Berk
- Department of Internal Medicine, division of Vascular Medicine and Pharmacology, Division of Medical Psychology and Psychotherapy, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Dietetics and Division of Medical Psychology and Psychotherapy, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Adrie Verhoeven
- Department of Internal Medicine, division of Vascular Medicine and Pharmacology, Division of Medical Psychology and Psychotherapy, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sven Bos
- Department of Internal Medicine, division of Vascular Medicine and Pharmacology, Division of Medical Psychology and Psychotherapy, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Leonie van der Zee
- Department of Internal Medicine, division of Vascular Medicine and Pharmacology, Division of Medical Psychology and Psychotherapy, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeanette Touw
- Department of Internal Medicine, division of Vascular Medicine and Pharmacology, Division of Medical Psychology and Psychotherapy, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gertraud Erhart
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinier Timman
- Department of Psychiatry, Division of Medical Psychology and Psychotherapy, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric Sijbrands
- Department of Internal Medicine, division of Vascular Medicine and Pharmacology, Division of Medical Psychology and Psychotherapy, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeanine Roeters van Lennep
- Department of Internal Medicine, division of Vascular Medicine and Pharmacology, Division of Medical Psychology and Psychotherapy, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Monique Mulder
- Department of Internal Medicine, division of Vascular Medicine and Pharmacology, Division of Medical Psychology and Psychotherapy, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
35
|
Haring B, Crandall CJ, Carbone L, Liu S, Li W, Johnson KC, Wactawski-Wende J, Shadyab AH, Gass ML, Kamensky V, Cauley JA, Wassertheil-Smoller S. Lipoprotein(a) plasma levels, bone mineral density and risk of hip fracture: a post hoc analysis of the Women's Health Initiative, USA. BMJ Open 2019; 9:e027257. [PMID: 31023762 PMCID: PMC6501983 DOI: 10.1136/bmjopen-2018-027257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Elevated Lipoprotein(a) (Lp[a]) is a well-known risk factor for cardiovascular disease. However, its roles in bone metabolism and fracture risk are unclear. We therefore investigated whether plasma Lp(a) levels were associated with bone mineral density (BMD) and incident hip fractures in a large cohort of postmenopausal women. DESIGN Post hoc analysis of data from the Women's Health Initiative (WHI), USA. SETTING 40 clinical centres in the USA. PARTICIPANTS The current analytical cohort consisted of 9698 white, postmenopausal women enrolled in the WHI, a national prospective study investigating determinants of chronic diseases including heart disease, breast and colorectal cancers and osteoporotic fractures among postmenopausal women. Recruitment for WHI took place from 1 October 1993 to 31 December 1998. EXPOSURES Plasma Lp(a) levels were measured at baseline. OUTCOME MEASURES Incident hip fractures were ascertained annually and confirmed by medical records with follow-up through 29 August 2014. BMD at the femoral neck was measured by dual X-ray absorptiometry in a subset of participants at baseline. STATISTICAL ANALYSES Cox proportional hazards and logistic regression models were used to evaluate associations of quartiles of plasma Lp(a) levels with hip fracture events and hip BMD T-score, respectively. RESULTS During a mean follow-up of 13.8 years, 454 incident cases of hip fracture were observed. In analyses adjusting for confounding variables including age, body mass index, history of hysterectomy, smoking, physical activity, diabetes mellitus, general health status, cardiovascular disease, use of menopausal hormone therapy, use of bisphosphonates, calcitonin or selective-oestrogen receptor modulators, baseline dietary and supplemental calcium and vitamin D intake and history of fracture, no significant association of plasma Lp(a) levels with low hip BMD T-score or hip fracture risk was detected. CONCLUSIONS These findings suggest that plasma Lp(a) levels are not related to hip BMD T-score or hip fracture events in postmenopausal women. TRIAL REGISTRATION NUMBER NCT00000611; Post-results.
Collapse
Affiliation(s)
- Bernhard Haring
- Department of Internal Medicine I, University of Würzburg, Würzburg, Germany
| | - Carolyn J Crandall
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Laura Carbone
- Department of Medicine, Augusta University Medical College of Georgia, Augusta, Georgia, USA
| | - Simin Liu
- Department of Epidemiology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Wenjun Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karen C Johnson
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, USA
| | - Aladdin H Shadyab
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| | | | - Victor Kamensky
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jane A Cauley
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
36
|
Coassin S, Schönherr S, Weissensteiner H, Erhart G, Forer L, Losso JL, Lamina C, Haun M, Utermann G, Paulweber B, Specht G, Kronenberg F. A comprehensive map of single-base polymorphisms in the hypervariable LPA kringle IV type 2 copy number variation region. J Lipid Res 2018; 60:186-199. [PMID: 30413653 PMCID: PMC6314250 DOI: 10.1194/jlr.m090381] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
Lipoprotein (a) [Lp(a)] concentrations are among the strongest genetic risk factors for cardiovascular disease and present pronounced interethnic and interindividual differences. Approximately 90% of Lp(a) variance is controlled by the LPA gene, which contains a 5.6-kb-large copy number variation [kringle IV type 2 (KIV-2) repeat] that generates >40 protein isoforms. Variants within the KIV-2 region are not called in common sequencing projects, leaving up to 70% of the LPA coding region currently unaddressed. To completely assess the variability in LPA, we developed a sequencing strategy for this region and report here the first map of genetic variation in the KIV-2 region, a comprehensively evaluated ultradeep sequencing protocol, and an easy-to-use variant analysis pipeline. We sequenced 123 Central-European individuals and reanalyzed public data of 2,504 individuals from 26 populations. We found 14 different loss-of-function and splice-site mutations, as well as >100, partially even common, missense variants. Some coding variants were frequent in one population but absent in others. This provides novel candidates to explain the large ethnic and individual differences in Lp(a) concentrations. Importantly, our approach and pipeline are also applicable to other similar copy number variable regions, allowing access to regions that are not captured by common genome sequencing.
Collapse
Affiliation(s)
- Stefan Coassin
- Division of Genetic Epidemiology Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Division of Genetic Epidemiology Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hansi Weissensteiner
- Division of Genetic Epidemiology Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gertraud Erhart
- Division of Genetic Epidemiology Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Division of Genetic Epidemiology Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jamie Lee Losso
- Division of Genetic Epidemiology Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Lamina
- Division of Genetic Epidemiology Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Margot Haun
- Division of Genetic Epidemiology Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerd Utermann
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Paulweber
- First Department of Internal Medicine, Paracelsus Private Medical University, Salzburg, Austria
| | - Günther Specht
- Department of Database and Information Systems, Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
37
|
Hopewell JC, Haynes R, Baigent C. The role of lipoprotein (a) in chronic kidney disease. J Lipid Res 2018; 59:577-585. [PMID: 29378781 PMCID: PMC5880503 DOI: 10.1194/jlr.r083626] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 01/05/2023] Open
Abstract
Lipoprotein (a) [Lp(a)] and its measurement, structure and function, the impact of ethnicity and environmental factors, epidemiological and genetic associations with vascular disease, and new prospects in drug development have been extensively examined throughout this Thematic Review Series on Lp(a). Studies suggest that the kidney has a role in Lp(a) catabolism, and that Lp(a) levels are increased in association with kidney disease only for people with large apo(a) isoforms. By contrast, in those patients with large protein losses, as in the nephrotic syndrome and continuous ambulatory peritoneal dialysis, Lp(a) is increased irrespective of apo(a) isoform size. Such acquired abnormalities can be reversed by kidney transplantation or remission of nephrosis. In this Thematic Review, we focus on the relationship between Lp(a), chronic kidney disease, and risk of cardiovascular events.
Collapse
Affiliation(s)
- Jemma C Hopewell
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
| | - Richard Haynes
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Population Health Research Unit, Oxford, United Kingdom
| | - Colin Baigent
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Population Health Research Unit, Oxford, United Kingdom
| |
Collapse
|
38
|
Erhart G, Lamina C, Lehtimäki T, Marques-Vidal P, Kähönen M, Vollenweider P, Raitakari OT, Waeber G, Thorand B, Strauch K, Gieger C, Meitinger T, Peters A, Kronenberg F, Coassin S. Genetic Factors Explain a Major Fraction of the 50% Lower Lipoprotein(a) Concentrations in Finns. Arterioscler Thromb Vasc Biol 2018; 38:1230-1241. [PMID: 29567679 PMCID: PMC5943067 DOI: 10.1161/atvbaha.118.310865] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/26/2018] [Indexed: 11/17/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Lp(a) (lipoprotein(a)) concentrations are widely genetically determined by the LPA isoforms and show 5-fold interpopulation differences. Two- to 3-fold differences have been reported even within Europe. Finns represent a distinctive population isolate within Europe and have been repeatedly reported to present lower Lp(a) concentrations than Central Europeans. The significance of this finding was unclear for a long time because of the difficult comparability of Lp(a) assays. Recently, a large standardized study in >50 000 individuals from 7 European populations confirmed this observation but could not provide insights into the causes. Approach and Results— We investigated Lp(a) concentrations, LPA isoforms, and genotypes of established genetic variants affecting Lp(a) concentrations (LPA variants, APOE isoforms, and PCSK9 R46L) in the Finnish YFS (Cardiovascular Risk in Young Finns Study) population (n=2281) and 3 Non-Finnish Central European populations (n=10 003). We observed ≈50% lower Lp(a) concentrations in Finns. The isoform distribution was shifted toward longer isoforms, and the percentage of low-molecular-weight isoform carriers was reduced. Most interestingly, however, Lp(a) was reduced in each single-isoform group. In contrast to the known inverse relationship between LPA isoforms and Lp(a) concentrations, especially very short isoforms presented unexpectedly low Lp(a) concentrations in Finns. The investigated genetic variants, as well as age, sex, and renal function, explained 71.8% of the observed population differences. Conclusions— The population differences in Lp(a) concentrations between Finnish and Central European populations originate not only from a different LPA isoform distribution but suggest the existence of novel functional variation in the small-isoform range.
Collapse
Affiliation(s)
- Gertraud Erhart
- From the Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (G.E., C.L., F.K., S.C.)
| | - Claudia Lamina
- From the Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (G.E., C.L., F.K., S.C.)
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories (T.L.).,Finnish Cardiovascular Research Center (T.L., M.K.)
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Switzerland (P.M.-V., P.V., G.W.)
| | - Mika Kähönen
- Finnish Cardiovascular Research Center (T.L., M.K.).,Department of Clinical Physiology, Tampere University Hospital (M.K.), University of Tampere, Finland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Switzerland (P.M.-V., P.V., G.W.)
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Finland (O.T.R.).,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Finland (O.T.R.)
| | - Gérard Waeber
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Switzerland (P.M.-V., P.V., G.W.)
| | - Barbara Thorand
- Institute of Epidemiology II (B.T., C.G., A.P.).,German Center for Diabetes Research, Neuherberg, Germany (B.T., A.P.)
| | - Konstantin Strauch
- Institute of Genetic Epidemiology (K.S., C.G.).,Institute of Medical Informatics, Biometry, and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany (K.S.)
| | - Christian Gieger
- Institute of Epidemiology II (B.T., C.G., A.P.).,Institute of Genetic Epidemiology (K.S., C.G.).,Research Unit of Molecular Epidemiology (C.G.), Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Germany (T.M.).,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (T.M.).,Munich Cluster for Systems Neurology, Germany (T.M.)
| | - Annette Peters
- Institute of Epidemiology II (B.T., C.G., A.P.).,German Center for Diabetes Research, Neuherberg, Germany (B.T., A.P.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance (A.P.)
| | - Florian Kronenberg
- From the Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (G.E., C.L., F.K., S.C.)
| | - Stefan Coassin
- From the Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (G.E., C.L., F.K., S.C.)
| |
Collapse
|
39
|
Scipione CA, Koschinsky ML, Boffa MB. Lipoprotein(a) in clinical practice: New perspectives from basic and translational science. Crit Rev Clin Lab Sci 2017; 55:33-54. [PMID: 29262744 DOI: 10.1080/10408363.2017.1415866] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a causal risk factor for coronary heart disease (CHD) and calcific aortic valve stenosis (CAVS). Genetic, epidemiological and in vitro data provide strong evidence for a pathogenic role for Lp(a) in the progression of atherothrombotic disease. Despite these advancements and a race to develop new Lp(a) lowering therapies, there are still many unanswered and emerging questions about the metabolism and pathophysiology of Lp(a). New studies have drawn attention to Lp(a) as a contributor to novel pathogenic processes, yet the mechanisms underlying the contribution of Lp(a) to CVD remain enigmatic. New therapeutics show promise in lowering plasma Lp(a) levels, although the complete mechanisms of Lp(a) lowering are not fully understood. Specific agents targeted to apolipoprotein(a) (apo(a)), namely antisense oligonucleotide therapy, demonstrate potential to decrease Lp(a) to levels below the 30-50 mg/dL (75-150 nmol/L) CVD risk threshold. This therapeutic approach should aid in assessing the benefit of lowering Lp(a) in a clinical setting.
Collapse
Affiliation(s)
- Corey A Scipione
- a Department of Advanced Diagnostics , Toronto General Hospital Research Institute, UHN , Toronto , Canada
| | - Marlys L Koschinsky
- b Robarts Research Institute , Western University , London , Canada.,c Department of Physiology & Pharmacology , Schulich School of Medicine & Dentistry, Western University , London , Canada
| | - Michael B Boffa
- d Department of Biochemistry , Western University , London , Canada
| |
Collapse
|
40
|
Ellis KL, Boffa MB, Sahebkar A, Koschinsky ML, Watts GF. The renaissance of lipoprotein(a): Brave new world for preventive cardiology? Prog Lipid Res 2017; 68:57-82. [DOI: 10.1016/j.plipres.2017.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022]
|
41
|
Nikkola E, Ko A, Alvarez M, Cantor RM, Garske K, Kim E, Gee S, Rodriguez A, Muxel R, Matikainen N, Söderlund S, Motazacker MM, Borén J, Lamina C, Kronenberg F, Schneider WJ, Palotie A, Laakso M, Taskinen MR, Pajukanta P. Family-specific aggregation of lipid GWAS variants confers the susceptibility to familial hypercholesterolemia in a large Austrian family. Atherosclerosis 2017; 264:58-66. [PMID: 28772107 DOI: 10.1016/j.atherosclerosis.2017.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/27/2017] [Accepted: 07/21/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Hypercholesterolemia confers susceptibility to cardiovascular disease (CVD). Both serum total cholesterol (TC) and LDL-cholesterol (LDL-C) exhibit a strong genetic component (heritability estimates 0.41-0.50). However, a large part of this heritability cannot be explained by the variants identified in recent extensive genome-wide association studies (GWAS) on lipids. Our aim was to find genetic causes leading to high LDL-C levels and ultimately CVD in a large Austrian family presenting with what appears to be autosomal dominant inheritance for familial hypercholesterolemia (FH). METHODS We utilized linkage analysis followed by whole-exome sequencing and genetic risk score analysis using an Austrian multi-generational family with various dyslipidemias, including elevated TC and LDL-C, and one family branch with elevated lipoprotein (a) (Lp(a)). RESULTS We did not find evidence for genome-wide significant linkage for LDL-C or apparent causative variants in the known FH genes rather, we discovered a particular family-specific combination of nine GWAS LDL-C SNPs (p = 0.02 by permutation), and putative less severe familial hypercholesterolemia mutations in the LDLR and APOB genes in a subset of the affected family members. Separately, high Lp(a) levels observed in one branch of the family were explained primarily by the LPA locus, including short (<23) Kringle IV repeats and rs3798220. CONCLUSIONS Taken together, some forms of FH may be explained by family-specific combinations of LDL-C GWAS SNPs.
Collapse
Affiliation(s)
- Elina Nikkola
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Arthur Ko
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, USA; Molecular Biology Institute at UCLA, Los Angeles, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Rita M Cantor
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Kristina Garske
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Elliot Kim
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Stephanie Gee
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Alejandra Rodriguez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | | | - Niina Matikainen
- Endocrinology, Abdominal Centre, Helsinki University Hospital, Finland; Heart and Lung Center, Helsinki University Hospital, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Finland
| | - Sanni Söderlund
- Heart and Lung Center, Helsinki University Hospital, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Finland
| | - Mahdi M Motazacker
- Department of Clinical Genetics, Academic Medical Center at the University of Amsterdam, The Netherlands
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Claudia Lamina
- Division of Genetic Epidemiology, Medical University of Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Medical University of Innsbruck, Austria
| | - Wolfgang J Schneider
- Department Medical Biochemistry, Medical University Vienna and Max F. Perutz Laboratories, Austria
| | - Aarno Palotie
- Institute for Molecular Medicine, University of Helsinki, Finland; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts General Hospital, Boston, MA, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Marja-Riitta Taskinen
- Heart and Lung Center, Helsinki University Hospital, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, USA; Molecular Biology Institute at UCLA, Los Angeles, USA; Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Noureen A, Ronke C, Khalifa M, Halbwax M, Fischer A, André C, Atencia R, Garriga R, Mugisha L, Ceglarek U, Thiery J, Utermann G, Schmidt K. Significant differentiation in the apolipoprotein(a)/lipoprotein(a) trait between chimpanzees from Western and Central Africa. Am J Primatol 2017; 79. [PMID: 28671714 DOI: 10.1002/ajp.22683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 12/20/2022]
Abstract
Elevated Lipoprotein(a) (Lp(a)) plasma concentrations are a risk factor for cardiovascular disease in humans, largely controlled by the LPA gene encoding apolipoprotein(a) (apo(a)). Lp(a) is composed of low-density lipoprotein (LDL) and apo(a) and restricted to Catarrhini. A variable number of kringle IV (KIV) domains in LPA lead to a size polymorphism of apo(a) that is inversely correlated with Lp(a) concentrations. Smaller apo(a) isoforms and higher Lp(a) levels in central chimpanzees (Pan troglodytes troglodytes [PTT]) compared to humans from Europe had been reported. We studied apo(a) isoforms and Lp(a) concentrations in 75 western (Pan troglodytes verus [PTV]) and 112 central chimpanzees, and 12 bonobos (Pan paniscus [PPA]), all wild born and living in sanctuaries in Sierra Leone, Republic of the Congo, and DR Congo, respectively, and 116 humans from Gabon. Lp(a) levels were severalfold higher in western than in central chimpanzees (181.0 ± 6.7 mg/dl vs. 56.5 ± 4.3 mg/dl), whereas bonobos showed intermediate levels (134.8 ± 33.4 mg/dl). Apo(a) isoform sizes differed significantly between subspecies (means 20.9 ± 2.2, 22.9 ± 4.4, and 23.8 ± 3.8 KIV repeats in PTV, PTT, and PPA, respectively). However, far higher isoform-associated Lp(a) concentrations for all isoform sizes in western chimpanzees offered the main explanation for the higher overall Lp(a) levels in this subspecies. Human Lp(a) concentrations (mean 47.9 ± 2.8 mg/dl) were similar to those in central chimpanzees despite larger isoforms (mean 27.1 ± 4.9 KIV). Lp(a) and LDL, apoB-100, and total cholesterol levels only correlated in PTV. This remarkable differentiation between chimpanzees from different African habitats and the trait's similarity in humans and chimpanzees from Central Africa poses the question of a possible impact of an environmental factor that has shaped the genetic architecture of LPA. Overall, studies on the cholesterol-containing particles of Lp(a) and LDL in chimpanzees should consider differentiation between subspecies.
Collapse
Affiliation(s)
- Asma Noureen
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Ronke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Mahmoud Khalifa
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.,Molecular Biology Laboratory, Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Michel Halbwax
- International Center of Medical Research of Franceville (CIRMF), Franceville, Gabon
| | - Anne Fischer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Claudine André
- Lola Ya Bonobo Sanctuary, "Petites Chutes de la Lukaya", Kinshasa, Democratic Republic of Congo
| | - Rebeca Atencia
- Réserve Naturelle Sanctuaire à Chimpanzés de Tchimpounga, Jane Goodall Institute, Pointe-Noire, Republic of Congo
| | - Rosa Garriga
- Tacugama Chimpanzee Sanctuary, Freetown, Sierra Leone
| | - Lawrence Mugisha
- Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda.,College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Gerd Utermann
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Konrad Schmidt
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.,Department for Tropical Medicine, Eberhard-Karls-University, Tuebingen, Germany.,Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital, Lambaréné, Gabon
| |
Collapse
|
43
|
Berk KA, Yahya R, Verhoeven AJM, Touw J, Leijten FP, van Rossum EF, Wester VL, Lips MA, Pijl H, Timman R, Erhart G, Kronenberg F, Roeters van Lennep JE, Sijbrands EJG, Mulder MT. Effect of diet-induced weight loss on lipoprotein(a) levels in obese individuals with and without type 2 diabetes. Diabetologia 2017; 60:989-997. [PMID: 28386638 PMCID: PMC5423997 DOI: 10.1007/s00125-017-4246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Elevated levels of lipoprotein(a) [Lp(a)] are an independent risk factor for cardiovascular disease (CVD), particularly in individuals with type 2 diabetes. Although weight loss improves conventional risk factors for CVD in type 2 diabetes, the effects on Lp(a) are unknown and may influence the long-term outcome of CVD after diet-induced weight loss. The aim of this clinical study was to determine the effect of diet-induced weight loss on Lp(a) levels in obese individuals with type 2 diabetes. METHODS Plasma Lp(a) levels were determined by immunoturbidimetry in plasma obtained before and after 3-4 months of an energy-restricted diet in four independent study cohorts. The primary cohort consisted of 131 predominantly obese patients with type 2 diabetes (cohort 1), all participants of the Prevention Of Weight Regain in diabetes type 2 (POWER) trial. The secondary cohorts consisted of 30 obese patients with type 2 diabetes (cohort 2), 37 obese individuals without type 2 diabetes (cohort 3) and 26 obese individuals without type 2 diabetes who underwent bariatric surgery (cohort 4). RESULTS In the primary cohort, the energy-restricted diet resulted in a weight loss of 9.9% (95% CI 8.9, 10.8) and improved conventional CVD risk factors such as LDL-cholesterol levels. Lp(a) levels increased by 14.8 nmol/l (95% CI 10.2, 20.6). In univariate analysis, the change in Lp(a) correlated with baseline Lp(a) levels (r = 0.38, p < 0.001) and change in LDL-cholesterol (r = 0.19, p = 0.033). In cohorts 2 and 3, the weight loss of 8.5% (95% CI 6.5, 10.6) and 6.5% (95% CI 5.7, 7.2) was accompanied by a median increase in Lp(a) of 13.5 nmol/l (95% CI 2.3, 30.0) and 11.9 nmol/l (95% CI 5.7, 19.0), respectively (all p < 0.05). When cohorts 1-3 were combined, the diet-induced increase in Lp(a) correlated with weight loss (r = 0.178, p = 0.012). In cohort 4, no significant change in Lp(a) was found (-7.0 nmol/l; 95% CI -18.8, 5.3) despite considerable weight loss (14.0%; 95% CI 12.2, 15.7). CONCLUSIONS/INTERPRETATION Diet-induced weight loss was accompanied by an increase in Lp(a) levels in obese individuals with and without type 2 diabetes while conventional CVD risk factors for CVD improved. This increase in Lp(a) levels may potentially antagonise the beneficial cardiometabolic effects of diet-induced weight reduction.
Collapse
Affiliation(s)
- Kirsten A Berk
- Department of Internal Medicine, Erasmus Medical Center, Office Ee800, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Reyhana Yahya
- Department of Internal Medicine, Erasmus Medical Center, Office Ee800, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Adrie J M Verhoeven
- Department of Internal Medicine, Erasmus Medical Center, Office Ee800, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Jeanette Touw
- Department of Internal Medicine, Erasmus Medical Center, Office Ee800, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Frank P Leijten
- Department of Internal Medicine, Erasmus Medical Center, Office Ee800, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Elisabeth F van Rossum
- Department of Internal Medicine, Erasmus Medical Center, Office Ee800, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Vincent L Wester
- Department of Internal Medicine, Erasmus Medical Center, Office Ee800, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Mirjam A Lips
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hanno Pijl
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Reinier Timman
- Department of Psychiatry, Section of Medical Psychology and Psychotherapy, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gertraud Erhart
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jeanine E Roeters van Lennep
- Department of Internal Medicine, Erasmus Medical Center, Office Ee800, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus Medical Center, Office Ee800, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus Medical Center, Office Ee800, PO Box 2040, 3000, CA, Rotterdam, the Netherlands.
| |
Collapse
|
44
|
Christoffersen C, Bartels ED, Aarup A, Nielsen LB, Pedersen TX. ApoB and apoM - New aspects of lipoprotein biology in uremia-induced atherosclerosis. Eur J Pharmacol 2017; 816:154-160. [PMID: 28351665 DOI: 10.1016/j.ejphar.2017.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/09/2017] [Accepted: 03/23/2017] [Indexed: 12/27/2022]
Abstract
Chronic kidney disease affects as much as 13% of the population, and is associated with a markedly increased risk of developing cardiovascular disease. One of the underlying reasons is accelerated development of atherosclerosis. This can be ascribed both to increased occurrence of traditional cardiovascular risk factors, and to risk factors that may be unique to patients with chronic kidney disease. The latter is reflected in the observation that the current treatment modalities, mainly directed against traditional risk factors, are insufficient to prevent cardiovascular disease in the patient with chronic kidney disease. This review discusses mechanisms accelerating uremic atherosclerosis with a specific focus on the putative roles of apolipoprotein(apo)s B and M that may be particularly important in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Emil D Bartels
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark.
| | - Annemarie Aarup
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Tanja X Pedersen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
45
|
Papachristidis A, Lim WY, Voukalis C, Ayis S, Laing C, Rakhit RD. Determinants of Mortality in Patients with Chronic Kidney Disease Undergoing Percutaneous Coronary Intervention. Cardiorenal Med 2016; 6:169-79. [PMID: 27275153 DOI: 10.1159/000442897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 11/13/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Renal impairment is a known predictor of mortality in both the general population and in patients with cardiac disease. The aim of this study was to evaluate factors that determine mortality in patients with chronic kidney disease (CKD) who have undergone percutaneous coronary intervention (PCI). METHODS In this study we included 293 consecutive patients with CKD who underwent PCI between 1st January 2007 and 30th September 2012. The primary outcome that we studied was all-cause mortality in a follow-up period of 12-69 months (mean 38.8 ± 21.7). RESULTS Age (p < 0.001), PCI indication (p = 0.035), CKD stage (p < 0.001) and left ventricular ejection fraction (p < 0.001) were significantly related to mortality. CKD stage 5 [hazard ratio (HR) = 6.39, 95% CI: 1.51-27.12) and severely impaired left ventricular function (HR = 4.04, 95% CI: 2.15-7.59) were the strongest predictors of mortality. Other factors tested (gender, hypertension, diabetes, hyperlipidaemia, established peripheral vascular disease/stroke, coronary arteries intervened, number of vessels treated, number of stents implanted and length of lesion treated) did not show any correlation with mortality. CONCLUSIONS The mortality of patients with CKD undergoing PCI increases with age, worsening CKD stage and deteriorating left ventricular systolic function, and it is also higher in patients with acute coronary syndromes compared to those with stable coronary artery disease.
Collapse
Affiliation(s)
| | - Wei Yao Lim
- Renal Department, Royal Free Hospital, King's College London, London, UK
| | | | - Salma Ayis
- Department of Primary Care and Public Health Sciences, King's College London, London, UK
| | - Christopher Laing
- Renal Department, Royal Free Hospital, King's College London, London, UK
| | - Roby D Rakhit
- Department of Cardiology, King's College London, London, UK
| |
Collapse
|
46
|
Schmidt K, Noureen A, Kronenberg F, Utermann G. Structure, function, and genetics of lipoprotein (a). J Lipid Res 2016; 57:1339-59. [PMID: 27074913 DOI: 10.1194/jlr.r067314] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Indexed: 12/29/2022] Open
Abstract
Lipoprotein (a) [Lp(a)] has attracted the interest of researchers and physicians due to its intriguing properties, including an intragenic multiallelic copy number variation in the LPA gene and the strong association with coronary heart disease (CHD). This review summarizes present knowledge of the structure, function, and genetics of Lp(a) with emphasis on the molecular and population genetics of the Lp(a)/LPA trait, as well as aspects of genetic epidemiology. It highlights the role of genetics in establishing Lp(a) as a risk factor for CHD, but also discusses uncertainties, controversies, and lack of knowledge on several aspects of the genetic Lp(a) trait, not least its function.
Collapse
Affiliation(s)
- Konrad Schmidt
- Divisions of Human Genetics Medical University of Innsbruck, Innsbruck, Austria Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Asma Noureen
- Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerd Utermann
- Divisions of Human Genetics Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
47
|
Kollerits B, Drechsler C, Krane V, Lamina C, März W, Dieplinger H, Ritz E, Wanner C, Kronenberg F. Lipoprotein(a) concentrations, apolipoprotein(a) isoforms and clinical endpoints in haemodialysis patients with type 2 diabetes mellitus: results from the 4D Study. Nephrol Dial Transplant 2016; 31:1901-1908. [DOI: 10.1093/ndt/gfv428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
|
48
|
Enkhmaa B, Anuurad E, Berglund L. Lipoprotein (a): impact by ethnicity and environmental and medical conditions. J Lipid Res 2015; 57:1111-25. [PMID: 26637279 DOI: 10.1194/jlr.r051904] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 12/11/2022] Open
Abstract
Levels of lipoprotein (a) [Lp(a)], a complex between an LDL-like lipid moiety containing one copy of apoB, and apo(a), a plasminogen-derived carbohydrate-rich hydrophilic protein, are primarily genetically regulated. Although stable intra-individually, Lp(a) levels have a skewed distribution inter-individually and are strongly impacted by a size polymorphism of the LPA gene, resulting in a variable number of kringle IV (KIV) units, a key motif of apo(a). The variation in KIV units is a strong predictor of plasma Lp(a) levels resulting in stable plasma levels across the lifespan. Studies have demonstrated pronounced differences across ethnicities with regard to Lp(a) levels and some of this difference, but not all of it, can be explained by genetic variations across ethnic groups. Increasing evidence suggests that age, sex, and hormonal impact may have a modest modulatory influence on Lp(a) levels. Among clinical conditions, Lp(a) levels are reported to be affected by kidney and liver diseases.
Collapse
Affiliation(s)
- Byambaa Enkhmaa
- Department of Internal Medicine, University of California, Davis, CA
| | | | - Lars Berglund
- Department of Internal Medicine, University of California, Davis, CA Veterans Affairs Northern California Health Care System, Sacramento, CA
| |
Collapse
|
49
|
Reiss AB, Voloshyna I, De Leon J, Miyawaki N, Mattana J. Cholesterol Metabolism in CKD. Am J Kidney Dis 2015; 66:1071-82. [PMID: 26337134 DOI: 10.1053/j.ajkd.2015.06.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
Abstract
Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely affects lipid balance. Dyslipidemia in CKD is characterized by elevated triglyceride levels and high-density lipoprotein levels that are both decreased and dysfunctional. This dysfunctional high-density lipoprotein becomes proinflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglyceride levels result primarily from defective clearance. The weak association between low-density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and preclinical evidence of the effect of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY.
| | - Iryna Voloshyna
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY
| | - Joshua De Leon
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY
| | - Nobuyuki Miyawaki
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY
| | - Joseph Mattana
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY
| |
Collapse
|
50
|
Ronke C, Dannemann M, Halbwax M, Fischer A, Helmschrodt C, Brügel M, André C, Atencia R, Mugisha L, Scholz M, Ceglarek U, Thiery J, Pääbo S, Prüfer K, Kelso J. Lineage-Specific Changes in Biomarkers in Great Apes and Humans. PLoS One 2015; 10:e0134548. [PMID: 26247603 PMCID: PMC4527672 DOI: 10.1371/journal.pone.0134548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
Although human biomedical and physiological information is readily available, such information for great apes is limited. We analyzed clinical chemical biomarkers in serum samples from 277 wild- and captive-born great apes and from 312 healthy human volunteers as well as from 20 rhesus macaques. For each individual, we determined a maximum of 33 markers of heart, liver, kidney, thyroid and pancreas function, hemoglobin and lipid metabolism and one marker of inflammation. We identified biomarkers that show differences between humans and the great apes in their average level or activity. Using the rhesus macaques as an outgroup, we identified human-specific differences in the levels of bilirubin, cholinesterase and lactate dehydrogenase, and bonobo-specific differences in the level of apolipoprotein A-I. For the remaining twenty-nine biomarkers there was no evidence for lineage-specific differences. In fact, we find that many biomarkers show differences between individuals of the same species in different environments. Of the four lineage-specific biomarkers, only bilirubin showed no differences between wild- and captive-born great apes. We show that the major factor explaining the human-specific difference in bilirubin levels may be genetic. There are human-specific changes in the sequence of the promoter and the protein-coding sequence of uridine diphosphoglucuronosyltransferase 1 (UGT1A1), the enzyme that transforms bilirubin and toxic plant compounds into water-soluble, excretable metabolites. Experimental evidence that UGT1A1 is down-regulated in the human liver suggests that changes in the promoter may be responsible for the human-specific increase in bilirubin. We speculate that since cooking reduces toxic plant compounds, consumption of cooked foods, which is specific to humans, may have resulted in relaxed constraint on UGT1A1 which has in turn led to higher serum levels of bilirubin in humans.
Collapse
Affiliation(s)
- Claudius Ronke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- * E-mail:
| | - Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michel Halbwax
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Fischer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christin Helmschrodt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Mathias Brügel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Claudine André
- Lola Ya Bonobo Sanctuary, “Petites Chutes de la Lukaya,” Kinshasa, Democratic Republic of Congo
| | - Rebeca Atencia
- Réserve Naturelle Sanctuaire à Chimpanzés de Tchimpounga, Jane Goodall Institute, Pointe-Noire, Republic of Congo
| | - Lawrence Mugisha
- Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda
- College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, Kampala, Uganda
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|