1
|
Interactions between the intrarenal dopaminergic and the renin-angiotensin systems in the control of systemic arterial pressure. Clin Sci (Lond) 2022; 136:1205-1227. [PMID: 35979889 DOI: 10.1042/cs20220338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Systemic arterial hypertension is one of the leading causes of morbidity and mortality in the general population, being a risk factor for many cardiovascular diseases. Although its pathogenesis is complex and still poorly understood, some systems appear to play major roles in its development. This review aims to update the current knowledge on the interaction of the intrarenal renin-angiotensin system (RAS) and dopaminergic system in the development of hypertension, focusing on recent scientific hallmarks in the field. The intrarenal RAS, composed of several peptides and receptors, has a critical role in the regulation of blood pressure (BP) and, consequently, the development of hypertension. The RAS is divided into two main intercommunicating axes: the classical axis, composed of angiotensin-converting enzyme, angiotensin II, and angiotensin type 1 receptor, and the ACE2/angiotensin-(1-7)/Mas axis, which appears to modulate the effects of the classical axis. Dopamine and its receptors are also increasingly showing an important role in the pathogenesis of hypertension, as abnormalities in the intrarenal dopaminergic system impair the regulation of renal sodium transport, regardless of the affected dopamine receptor subtype. There are five dopamine receptors, which are divided into two major subtypes: the D1-like (D1R and D5R) and D2-like (D2R, D3R, and D4R) receptors. Mice deficient in any of the five dopamine receptor subtypes have increased BP. Intrarenal RAS and the dopaminergic system have complex interactions. The balance between both systems is essential to regulate the BP homeostasis, as alterations in the control of both can lead to hypertension.
Collapse
|
2
|
Yang J, Villar VAM, Jose PA, Zeng C. Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxid Redox Signal 2021; 34:716-735. [PMID: 32349533 PMCID: PMC7910420 DOI: 10.1089/ars.2020.8106] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The kidney plays an important role in the long-term control of blood pressure. Oxidative stress is one of the fundamental mechanisms responsible for the development of hypertension. Dopamine, via five subtypes of receptors, plays an important role in the control of blood pressure by various mechanisms, including the inhibition of oxidative stress. Recent Advances: Dopamine receptors exert their regulatory function to decrease the oxidative stress in the kidney and ultimately maintain normal sodium balance and blood pressure homeostasis. An aberration of this regulation may be involved in the pathogenesis of hypertension. Critical Issues: Our present article reviews the important role of oxidative stress and intrarenal dopaminergic system in the regulation of blood pressure, summarizes the current knowledge on renal dopamine receptor-mediated antioxidation, including decreasing reactive oxygen species production, inhibiting pro-oxidant enzyme nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and stimulating antioxidative enzymes, and also discusses its underlying mechanisms, including the increased activity of G protein-coupled receptor kinase 4 (GRK4) and abnormal trafficking of renal dopamine receptors in hypertensive status. Future Directions: Identifying the mechanisms of renal dopamine receptors in the regulation of oxidative stress and their contribution to the pathogenesis of hypertension remains an important research focus. Increased understanding of the role of reciprocal regulation between renal dopamine receptors and oxidative stress in the regulation of blood pressure may give us novel insights into the pathogenesis of hypertension and provide a new treatment strategy for hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Chunyu Zeng
- Department of Cardiology, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Dopamine Receptors and the Kidney: An Overview of Health- and Pharmacological-Targeted Implications. Biomolecules 2021; 11:biom11020254. [PMID: 33578816 PMCID: PMC7916607 DOI: 10.3390/biom11020254] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/21/2022] Open
Abstract
The dopaminergic system can adapt to the different physiological or pathological situations to which the kidneys are subjected throughout life, maintaining homeostasis of natriuresis, extracellular volume, and blood pressure levels. The role of renal dopamine receptor dysfunction is clearly established in the pathogenesis of essential hypertension. Its associations with other pathological states such as insulin resistance and redox balance have also been associated with dysfunction of the dopaminergic system. The different dopamine receptors (D1-D5) show a protective effect against hypertension and kidney disorders. It is essential to take into account the various interactions of the dopaminergic system with other elements, such as adrenergic receptors. The approach to therapeutic strategies for essential hypertension must go through the blocking of those elements that lead to renal vasoconstriction or the restoration of the normal functioning of dopamine receptors. D1-like receptors are fundamental in this role, and new therapeutic efforts should be directed to the restoration of their functioning in many patients. More studies will be needed to allow the development of drugs that can be targeted to renal dopamine receptors in the treatment of hypertension.
Collapse
|
4
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
5
|
Lipid Rafts and Dopamine Receptor Signaling. Int J Mol Sci 2020; 21:ijms21238909. [PMID: 33255376 PMCID: PMC7727868 DOI: 10.3390/ijms21238909] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
The renal dopaminergic system has been identified as a modulator of sodium balance and blood pressure. According to the Centers for Disease Control and Prevention, in 2018 in the United States, almost half a million deaths included hypertension as a primary or contributing cause. Renal dopamine receptors, members of the G protein-coupled receptor family, are divided in two groups: D1-like receptors that act to keep the blood pressure in the normal range, and D2-like receptors with a variable effect on blood pressure, depending on volume status. The renal dopamine receptor function is regulated, in part, by its expression in microdomains in the plasma membrane. Lipid rafts form platforms within the plasma membrane for the organization and dynamic contact of molecules involved in numerous cellular processes such as ligand binding, membrane sorting, effector specificity, and signal transduction. Understanding all the components of lipid rafts, their interaction with renal dopamine receptors, and their signaling process offers an opportunity to unravel potential treatment targets that could halt the progression of hypertension, chronic kidney disease (CKD), and their complications.
Collapse
|
6
|
Xie J, Wang D, Ling S, Yang G, Yang Y, Chen W. High-Salt Diet Causes Sleep Fragmentation in Young Drosophila Through Circadian Rhythm and Dopaminergic Systems. Front Neurosci 2019; 13:1271. [PMID: 31849585 PMCID: PMC6895215 DOI: 10.3389/fnins.2019.01271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
Salt (sodium chloride) is an essential dietary requirement, but excessive consumption has long-term adverse consequences. A high-salt diet (HSD) increases the risk of chronic diseases such as cardiovascular conditions and diabetes and is also associated with poor sleep quality. Little is known, however, about the neural circuit mechanisms that mediate HSD-induced sleep changes. In this study, we sought to identify the effects of HSD on the sleep and related neural circuit mechanisms of Drosophila. Strikingly, we found that HSD causes young Drosophila to exhibit a fragmented sleep phenotype similar to that of normal aging individuals. Importantly, we further showed that HSD slightly impairs circadian rhythms and that the HSD-induced sleep changes are dependent on the circadian rhythm system. In addition, we demonstrated that HSD-induced sleep changes are dopaminergic-system dependent. Together, these results provide insight into how elevated salt in the diet can affect sleep quality.
Collapse
Affiliation(s)
- Jiayu Xie
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Danfeng Wang
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengan Ling
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Guang Yang
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yufeng Yang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
7
|
Jordan CJ, Humburg BA, Thorndike EB, Shaik AB, Xi ZX, Baumann MH, Newman AH, Schindler CW. Newly Developed Dopamine D 3 Receptor Antagonists, R-VK4-40 and R-VK4-116, Do Not Potentiate Cardiovascular Effects of Cocaine or Oxycodone in Rats. J Pharmacol Exp Ther 2019; 371:602-614. [PMID: 31562201 PMCID: PMC6863462 DOI: 10.1124/jpet.119.259390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Opioid and cocaine abuse are major public health burdens. Existing medications for opioid use disorder are limited by abuse liability and side effects, whereas no treatments are currently approved in the United States for cocaine use disorder. Dopamine D3 receptor (D3R) antagonists have shown promise in attenuating opioid and cocaine reward and mitigating relapse in preclinical models. However, translation of D3R antagonists to the clinic has been hampered by reports that the D3R antagonists GSK598,809 (5-(5-((3-((1S,5R)-1-(2-fluoro-4-(trifluoromethyl)phenyl)-3-azabicyclo[3.1.0]hexan-3-yl)propyl)thio)-4-methyl-4H-1,2,4-triazol-3-yl)-4-methyloxazole) and SB-277,011A (2-(2-((1r,4r)-4-(2-oxo-2-(quinolin-4-yl)ethyl)cyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile) have adverse cardiovascular effects in the presence of cocaine. Recently, we developed two structurally novel D3R antagonists, R-VK4-40 and R-VK4-116, which are highly selective for D3R and display translational potential for treatment of opioid use disorder. Here, we tested whether R-VK4-40 ((R)-N-(4-(4-(2-Chloro-3-ethylphenyl)piperazin-1-yl)-3-hydroxybutyl)-1H-indole-2-carboxamide) and R-VK4-116 ((R)-N-(4-(4-(3-Chloro-5-ethyl-2-methoxyphenyl)piperazin-1-yl)-3-hydroxybutyl)-1H-indole-2-carboxamide) have unwanted cardiovascular effects in the presence of oxycodone, a prescription opioid, or cocaine in freely moving rats fitted with surgically implanted telemetry transmitters. We also examined cardiovascular effects of the D3R antagonist, SB-277,011A, and L-741,626 (1-((1H-indol-3-yl)methyl)-4-(4-chlorophenyl)piperidin-4-ol), a dopamine D2 receptor-selective antagonist, for comparison. Consistent with prior reports, SB-277,011A increased blood pressure, heart rate, and locomotor activity alone and in the presence of cocaine. L-741,626 increased blood pressure and heart rate. In contrast, R-VK4-40 alone dose-dependently reduced blood pressure and heart rate and attenuated oxycodone-induced increases in blood pressure and oxycodone or cocaine-induced increases in heart rate. Similarly, R-VK4-116 alone dose-dependently reduced cocaine-induced increases in blood pressure and heart rate. These results highlight the safety of new D3R antagonists and support the continued development of R-VK4-40 and R-VK4-116 for the treatment of opioid and cocaine use disorders. SIGNIFICANCE STATEMENT: Opioid and cocaine abuse are major public health challenges and new treatments that do not adversely impact the cardiovascular system are needed. Here, we show that two structurally novel dopamine D3 receptor antagonists, R-VK4-40 and R-VK4-116, do not potentiate, and may even protect against, oxycodone- or cocaine-induced changes in blood pressure and heart rate, supporting their further development for the treatment of opioid and/or cocaine use disorders.
Collapse
Affiliation(s)
- Chloe J Jordan
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Bree A Humburg
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Eric B Thorndike
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Anver Basha Shaik
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Michael H Baumann
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Charles W Schindler
- Molecular Targets and Medications Discovery Branch (C.J.J., B.A.H., A.B.S., Z.-X.X., A.H.N.), Designer Drug Research Unit (M.H.B., C.W.S.), and Preclinical Pharmacology Section (E.B.T., C.W.S.), Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| |
Collapse
|
8
|
Manuszak M, Harding W, Gadhiya S, Ranaldi R. (-)-Stepholidine reduces cue-induced reinstatement of cocaine seeking and cocaine self-administration in rats. Drug Alcohol Depend 2018; 189:49-54. [PMID: 29879681 PMCID: PMC6062455 DOI: 10.1016/j.drugalcdep.2018.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dopamine receptors are implicated in cocaine reward and seeking. We hypothesize that (-)-stepholidine, a dopamine D1/D2/D3 multi-receptor agent, would be effective in reducing cocaine reward and seeking in an animal model. We investigated the effects of (-)-stepholidine in cue-induced reinstatement of cocaine seeking and cocaine self-administration (reward). METHODS Cue-induced reinstatement experiment: Rats were trained to press a lever reinforced by cocaine (1 mg/kg/injection) for 15 consecutive daily sessions, after which the response was extinguished by withholding cocaine and cocaine-paired cues (light and pump activation). This was followed by a cue-induced reinstatement test where subjects were exposed to two cocaine cue presentations and presses on the active lever produced cues. Subjects were treated with one of four (-)-stepholidine doses prior to the reinstatement test. Cocaine self-administration (reward) experiment: Rats were trained to self-administer cocaine under a progressive ratio schedule of reinforcement. After stable breakpoints were established, rats were injected with four doses of (-)-stepholidine prior to testing; each dose was injected prior to a separate test session with no-treatment sessions intervening to re-establish break points. RESULTS (-)-Stepholidine significantly reduced cue-induced reinstatement of cocaine seeking in a dose-related manner. Additionally, (-)-stepholidine significantly reduced break points for cocaine reward. (-)-Stepholidine did not significantly affect locomotor activity. CONCLUSIONS (-)-Stepholidine reduces cue-induced reinstatement of cocaine seeking and cocaine reward, suggesting that it may be useful in treating relapse in cocaine addiction.
Collapse
Affiliation(s)
- M. Manuszak
- Department of Psychology, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing NY 11367, USA
| | - W. Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016
| | - S. Gadhiya
- Angion Biomedica Corp., 51 Charles Linndbergh Blvd, Uniondale, NY 11553, USA
| | - R. Ranaldi
- Department of Psychology, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing NY 11367, USA,The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
9
|
Isobe-Sasaki Y, Fukuda M, Ogiyama Y, Sato R, Miura T, Fuwa D, Mizuno M, Matsuoka T, Shibata H, Ito H, Ono M, Abe-Dohmae S, Kiyono K, Yamamoto Y, Kobori H, Michikawa M, Hayano J, Ohte N. Sodium balance, circadian BP rhythm, heart rate variability, and intrarenal renin-angiotensin-aldosterone and dopaminergic systems in acute phase of ARB therapy. Physiol Rep 2018; 5:5/11/e13309. [PMID: 28576855 PMCID: PMC5471446 DOI: 10.14814/phy2.13309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/29/2017] [Accepted: 05/10/2017] [Indexed: 01/11/2023] Open
Abstract
We have revealed that even in humans, activated intrarenal renin–angiotensin–aldosterone system (RAAS) enhances tubular sodium reabsorption to facilitate salt sensitivity and nondipper rhythm of blood pressure (BP), and that angiotensin receptor blocker (ARB) could increase daytime urinary sodium excretion rate (UNaV) to produce lower sodium balance and restore nondipper rhythm. However, the sympathetic nervous system and intrarenal dopaminergic system can also contribute to renal sodium handling. A total of 20 patients with chronic kidney disease (61 ± 15 years) underwent 24‐h ambulatory BP monitoring before and during two‐day treatment with ARB, azilsartan. Urinary angiotensinogen excretion rate (UAGTV, μg/gCre) was measured as intrarenal RAAS; urinary dopamine excretion rate (UDAV, pg/gCre) as intrarenal dopaminergic system; heart rate variabilities (HRV, calculated from 24‐h Holter‐ECG) of non‐Gaussianity index λ25s as sympathetic nerve activity; and power of high‐frequency (HF) component or deceleration capacity (DC) as parasympathetic nerve activity. At baseline, glomerular filtration rate correlated inversely with UAGTV (r = −0.47, P = 0.04) and positively with UDAV (r = 0.58, P = 0.009). HF was a determinant of night/day BP ratio (β = −0.50, F = 5.8), rather than DC or λ25s. During the acute phase of ARB treatment, a lower steady sodium balance was not achieved. Increase in daytime UNaV preceded restoration of BP rhythm, accompanied by decreased UAGTV (r = −0.88, P = 0.05) and increased UDAV (r = 0.87, P = 0.05), but with no changes in HRVs. Diminished sodium excretion can cause nondipper BP rhythm. This was attributable to intrarenal RAAS and dopaminergic system and impaired parasympathetic nerve activity. During the acute phase of ARB treatment, cooperative effects of ARB and intrarenal dopaminergic system exert natriuresis to restore circadian BP rhythm.
Collapse
Affiliation(s)
- Yukako Isobe-Sasaki
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Michio Fukuda
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiaki Ogiyama
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryo Sato
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiyuki Miura
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Daisuke Fuwa
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masashi Mizuno
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuhei Matsuoka
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Shibata
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Ito
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Minamo Ono
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sumiko Abe-Dohmae
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ken Kiyono
- Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan
| | - Yoshiharu Yamamoto
- Department of Physical and Health Education, University of Tokyo Graduate School of Education, Tokyo, Japan
| | - Hiroyuki Kobori
- International University of Health and Welfare, Tokyo, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Junichiro Hayano
- Department of Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuyuki Ohte
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
10
|
Elijovich F, Weinberger MH, Anderson CAM, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laffer CL. Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association. Hypertension 2016; 68:e7-e46. [PMID: 27443572 DOI: 10.1161/hyp.0000000000000047] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Abstract
PURPOSE OF REVIEW The kidney mediates the excretion or conservation of water and electrolytes in the face of changing fluid and salt intake and losses. To ultrafilter and reabsorb the exact quantities of free water and salts to maintain euvolemia a range of endocrine, paracrine, and hormonal signaling systems have evolved linking the tubules, capillaries, glomeruli, arterioles, and other intrinsic cells of the kidney. Our understanding of these systems remains incomplete. RECENT FINDINGS Recent work has provided new insights into the workings of the communication pathways between tubular segments and the glomeruli and vasculature, with novel therapeutic agents in development. Particular progress has also been made in the visualization of tubuloglomerular feedback. SUMMARY The review summarizes our current understanding of pathway functions in health and disease, as well as future therapeutic options to protect the healthy and injured kidney.
Collapse
Affiliation(s)
- David A. Ferenbach
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph V. Bonventre
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Natarajan AR, Eisner GM, Armando I, Browning S, Pezzullo JC, Rhee L, Dajani M, Carey RM, Jose PA. The Renin-Angiotensin and Renal Dopaminergic Systems Interact in Normotensive Humans. J Am Soc Nephrol 2015; 27:265-79. [PMID: 25977313 DOI: 10.1681/asn.2014100958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/26/2015] [Indexed: 12/22/2022] Open
Abstract
The renin-angiotensin-aldosterone (RAAS) and renal dopaminergic systems interact to maintain sodium balance. High NaCl intake increases renal synthesis of dopamine and dopaminergic receptor activity, decreasing epithelial sodium transport, whereas sodium deficit activates the RAAS, increasing epithelial sodium transport. We tested the hypothesis that attenuation of the natriuretic effect of dopamine D1-like receptors during salt restriction results in part from increased RAAS activity in seven salt-resistant normotensive adults using a double-blind placebo-controlled balanced crossover design. All subjects attained sodium balance on low (50 mmol Na(+)/day) and high (300 mmol Na(+)/day) NaCl diets, administered 4 weeks apart. Sodium, potassium, lithium, para-aminohippurate, and creatinine clearances were measured before, during, and after a 3-hour infusion of fenoldopam, a D1-like receptor agonist, with and without pretreatment with enalapril, an angiotensin converting enzyme inhibitor. On the high NaCl diet, fenoldopam-induced natriuresis was associated with the inhibition of renal proximal and distal tubule sodium transport. On the low NaCl diet, fenoldopam decreased renal distal tubule sodium transport but did not cause natriuresis. The addition of enalapril to fenoldopam restored the natriuretic effect of fenoldopam and its inhibitory effect on proximal tubule sodium transport. Thus, on a high NaCl diet fenoldopam causes natriuresis by inhibiting renal proximal and distal tubule transport, but on a low NaCl diet the increased RAAS activity prevents the D1-like receptor from inhibiting renal proximal tubule sodium transport, neutralizing the natriuretic effect of fenoldopam. These results demonstrate an interaction between the renin-angiotensin and renal dopaminergic systems in humans and highlight the influence of dietary NaCl on these interactions.
Collapse
Affiliation(s)
| | - Gilbert M Eisner
- Internal Medicine, MedStar-Georgetown University Hospital, Washington, DC
| | - Ines Armando
- Department of Medicine, Division of Nephrology, and
| | - Shaunagh Browning
- Clinical Research Unit, Georgetown University Medical Center, Washington, DC; and
| | - John C Pezzullo
- Clinical Research Unit, Georgetown University Medical Center, Washington, DC; and
| | - Lauren Rhee
- Clinical Research Unit, Georgetown University Medical Center, Washington, DC; and
| | | | - Robert M Carey
- Department of Internal Medicine, The University of Virginia, Charlottesville, Virginia
| | - Pedro A Jose
- Department of Medicine, Division of Nephrology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Armando I, Konkalmatt P, Felder RA, Jose PA. The renal dopaminergic system: novel diagnostic and therapeutic approaches in hypertension and kidney disease. Transl Res 2015; 165:505-11. [PMID: 25134060 PMCID: PMC4305499 DOI: 10.1016/j.trsl.2014.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 12/15/2022]
Abstract
Salt sensitivity of blood pressure, whether in hypertensive or normotensive subjects, is associated with increased cardiovascular risk and overall mortality. Salt sensitivity can be treated by reducing NaCl consumption. However, decreasing salt intake in some may actually increase cardiovascular risk, including an increase in blood pressure, that is, inverse salt sensitivity. Several genes have been associated with salt sensitivity and inverse salt sensitivity. Some of these genes encode proteins expressed in the kidney that are needed to excrete a sodium load, for example, dopamine receptors and their regulators, G protein-coupled receptor kinase 4 (GRK4). We review here research in this field that has provided several translational opportunities, ranging from diagnostic tests to gene therapy, such as (1) a test in renal proximal tubule cells isolated from the urine of humans that may determine the salt-sensitive phenotype by analyzing the recruitment of dopamine D1 receptors to the plasma membrane; (2) the presence of common GRK4 gene variants that are not only associated with hypertension but may also be predictive of the response to antihypertensive therapy; (3) genetic testing for polymorphisms of the dopamine D2 receptor that may be associated with hypertension and inverse salt sensitivity and may increase the susceptibility to chronic kidney disease because of loss of the antioxidant and anti-inflammatory effects of the renal dopamine D2 receptor, and (4) in vivo renal selective amelioration of renal tubular genetic defects by a gene transfer approach, using adeno-associated viral vectors introduced to the kidney by retrograde ureteral infusion.
Collapse
Affiliation(s)
- Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Prasad Konkalmatt
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Robin A Felder
- Department of Pathology, The University of Virginia School of Medicine, Charlottesville, VA
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
14
|
Armando I, Villar VAM, Jones JE, Lee H, Wang X, Asico LD, Yu P, Yang J, Escano CS, Pascua-Crusan AM, Felder RA, Jose PA. Dopamine D3 receptor inhibits the ubiquitin-specific peptidase 48 to promote NHE3 degradation. FASEB J 2013; 28:1422-34. [PMID: 24308971 DOI: 10.1096/fj.13-243840] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dopamine D3 receptor (D3R) is crucial in the regulation of blood pressure and sodium balance, in that Drd3 gene ablation in mice results in hypertension and failure to excrete a dietary salt load. The mechanism responsible for the renal sodium retention in these mice is largely unknown. We now offer and describe a novel mechanism by which D3R decreases sodium transport in the long term by inhibiting the deubiquitinylating activity of ubiquitin-specific peptidase 48 (USP48), thereby promoting Na(+)-H(+) exchanger (NHE)-3 degradation. We found that stimulation with the D3R-specific agonist PD128907 (1 μM, 30 min) promoted the interaction and colocalization among D3R, NHE3, and USP48; inhibited USP48 activity (-35±6%, vs. vehicle), resulting in increased ubiquitinylated NHE3 (+140±10%); and decreased NHE3 expression (-50±9%) in human renal proximal tubule cells (hRPTCs). USP48 silencing decreased NHE3's half-life (USP48 siRNA t1/2=6.1 h vs. vehicle t1/2=12.9 h), whereas overexpression of USP48 increased NHE3 half-life (t1/2=21.8 h), indicating that USP48 protects NHE3 from degradation via deubiquitinylation. USP48 accounted for ∼30% of the total deubiquitinylating activity in these cells. Extending our studies in vivo, we found that pharmacologic blockade of D3R via the D3R-specific antagonist GR103691 (1 μg/kg/min, 4 d) in C57Bl/6J mice increased renal NHE3 expression (+310±15%, vs. vehicle), whereas an innovative kidney-restricted Usp48 silencing via siRNA (3 μg/d, 7 d) increased ubiquitinylated NHE3 (+250±30%, vs. controls), decreased total NHE3 (-23±2%), and lowered blood pressure (-24±2 mm Hg), compared with that in control mice that received either the vehicle or nonsilencing siRNA. Our data demonstrate a crucial role for the dynamic interaction between D3R and USP48 in the regulation of NHE3 expression and function.
Collapse
Affiliation(s)
- Ines Armando
- 2Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 20 Penn St., HSF II, Ste. S003C, Baltimore, MD, USA 21201,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Banday AA, Lokhandwala MF. Transcription factor Nrf2 protects renal dopamine D1 receptor function during oxidative stress. Hypertension 2013; 62:512-7. [PMID: 23876469 DOI: 10.1161/hypertensionaha.113.01358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The renal dopaminergic system plays a significant role in controlling sodium excretion and blood pressure (BP). Overwhelming evidence shows that oxidative stress downregulates renal dopamine receptors (D1R), and antioxidant supplementation protects D1R function. However, the mechanisms for benefits of antioxidants in protecting D1R function are unknown. We investigated the role of nuclear factor E2-related factor 2 (Nrf2), a redox-sensitive transcription factor, in reducing oxidative stress, protecting renal D1R function and lowering BP in rats. Male Sprague-Dawley rats were treated with L-buthionine-sulfoximine (BSO) and sulforaphane for 4 weeks. Rats treated with BSO exhibited significant increase in oxidative stress and BP. BSO treatment reduced renal D1R expression and abolished SKF38393 (a D1R agonist)-induced Na/K-ATPase and Na/H-exchanger (NHE3) inhibition. Also, in these rats, SKF38393 failed to promote sodium excretion. BSO caused an increase in nuclear factor-κB expression, a modest nuclear translocation of Nrf2 and a moderate activation of phase II antioxidant enzymes. Treatment of rats with sulforaphane alone induced modest activation of Nrf2 and phase II antioxidant enzymes, although having no effect on BP, redox status, or D1R function. However, sulforaphane prevented oxidative stress, protected D1R function, and abrogated hypertension in BSO-treated rats. In these animals, sulforaphane, whereas attenuating nuclear factor-κB activation, caused a robust stimulation of Nrf2 and phase II antioxidant enzyme pathway. In conclusion, oxidative stress via nuclear factor-κB activation downregulated D1R function causing a decrease in sodium excretion, which contributed to an increase in BP. Sulforaphane via activation of Nrf2-phase II antioxidant enzyme pathway mitigated oxidative stress and nuclear factor-κB activation, preserved D1R function, and prevented hypertension.
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX, USA.
| | | |
Collapse
|
16
|
Wang X, Escano CS, Asico L, Jones JE, Barte A, Lau YS, Jose PA, Armando I. Upregulation of renal D5 dopamine receptor ameliorates the hypertension in D3 dopamine receptor-deficient mice. Hypertension 2013; 62:295-301. [PMID: 23753418 DOI: 10.1161/hypertensionaha.113.01483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
D3 dopamine receptor (D3R)-deficient mice have renin-dependent hypertension associated with sodium retention, but the hypertension is mild. To determine whether any compensatory mechanisms in the kidney are involved in the regulation of blood pressure with disruption of Drd3, we measured the renal protein expression of all dopamine receptor subtypes (D1R, D2R, D4R, and D5R) in D3R homozygous (D3(-/-)) and heterozygous (D3(+/-)) knockout mice and their wild-type (D3(+/+)) littermates. The renal immunohistochemistry and protein expression of D5R were increased (n=5/group) in D3(-/-) mice; renal D4R protein expression was decreased, whereas renal protein expressions of D1R and D2R were similar in both groups. Renal D5R protein expression was also increased in D3(+/-) (n=5/group) relative to D3(+/+) mice, whereas D1R, D2R, and D4R protein expressions were similar in D3(+/-) and D3(+/+) mice. The increase in renal D5R protein expression was abolished when D3(-/-) mice were fed a high-salt diet. Treatment with the D1-like receptor antagonist, SCH23390, increased the blood pressure in anesthetized D3(-/-) but not D3(+/+) mice (n=4/group), suggesting that the renal upregulation of D5R may have minimized the hypertension in D3(-/-) mice. The renal D5R protein upregulation was not caused by increased transcription because renal mRNA expression of D5R was similar in D3(-/-) and D3(+/+) mice. Our findings suggest that the renal upregulation of D5R may have minimized the hypertension that developed in D3(-/-) mice.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Medicine, University of Maryland, School of Medicine, 20 Penn St, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Role of Gα(12)- and Gα(13)-protein subunit linkage of D(3) dopamine receptors in the natriuretic effect of D(3) dopamine receptor in kidney. Hypertens Res 2011; 34:1011-6. [PMID: 21633357 DOI: 10.1038/hr.2011.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The D(3) dopamine receptor is the major D(2)-like receptor that regulates sodium transport in the renal proximal tubule (RPT) and helps maintain blood pressure in the normal range. In Wistar-Kyoto (WKY) rats chronically fed high-salt diet, the intrarenal arterial infusion of a D(3) receptor agonist, PD128907, increased absolute and fractional sodium excretion. We have reported that Gα(12) and Gα(13), which participate in the signal transduction of the D(5) receptor, are expressed in RPTs. As the D(3) receptor is also expressed in RPTs, we hypothesized that it may also interact with Gα(12)/Gα(13) in RPTs from WKY rats. There were co-localization and co-immunoprecipitation of D(3) receptor and Gα(12)/Gα(13) in renal brush border membranes (BBMs) and RPT cells. The intrarenal infusion of PD128907 (1 μg kg(-1) min(-1)) that increased sodium excretion also increased the co-immunoprecipitations of D(3)/Gα(12) and D(3)/Gα(13) in renal BBMs; their co-immunoprecipitation was confirmed in RPT cells. As Gα(12) and Gα(13) increase sodium pump and transporter activity (for example, Na(+)-K(+)-ATPase, NHE3), an increased association of D(3) receptors with Gα(12)/Gα(13) receptors after D(3) receptor activation may be a mechanism to prevent Gα(12)/Gα(13)-mediated stimulation of sodium transport (and thus enhance natriuresis). We conclude that a D(3) receptor interaction with Gα(12)/Gα(13) that increases sodium excretion may have a role in the regulation of blood pressure.
Collapse
|
18
|
Zhang Y, Fu C, Ren H, He D, Wang X, Asico LD, Jose PA, Zeng C. Impaired stimulatory effect of ETB receptor on D₃ receptor in immortalized renal proximal tubule cells of spontaneously hypertensive rats. Kidney Blood Press Res 2011; 34:75-82. [PMID: 21228598 DOI: 10.1159/000323135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/23/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Activation of renal D₃ receptor induces natriuresis and diuresis in Wistar-Kyoto (WKY) rats; in the presence of ETB receptor antagonist, the natriuretic effect of D₃ receptor in WKY rats is reduced. We hypothesize that ETB receptor activation may regulate D₃ receptor expression in renal proximal tubule (RPT) cells from WKY rats, which is impaired in RPT cells from spontaneously hypertensive rats (SHRs). METHODS D₃ receptor expression was determined by immunoblotting; the D₃/ETB receptor linkage was checked by coimmunoprecipitation; Na(+)-K(+)-ATPase activity was determined as the rate of inorganic phosphate released in the presence or absence of ouabain. RESULTS In RPT cells from WKY rats, the ETB receptor agonist BQ3020 increased D₃ receptor protein. In contrast, in RPT cells from SHRs, BQ3020 did not increase D₃ receptor. There was coimmunoprecipitation between D₃ and ETB receptors in RPT cells from WKY and SHRs. Activation of ETB receptor increased D₃/ETB coimmunoprecipitation in RPT cells from WKY rats, but not from SHRs. The basal levels of D₃/ETB receptor coimmunoprecipitation were greater in RPT cells from WKY rats than in those from SHRs. Stimulation of D₃ receptor inhibited Na(+)-K(+)-ATPase activity, which was augmented by the pretreatment with the ETB receptor agonist BQ3020 in WKY RPT cells, but not in SHR RPT cells. CONCLUSION ETB receptors regulate and physically interact with D₃ receptors differently in WKY rats and SHRs. The impaired natriuretic effect in SHRs may be, in part, related to impaired ETB and D₃ receptor interactions.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zeng C, Jose PA. Dopamine receptors: important antihypertensive counterbalance against hypertensive factors. Hypertension 2010; 57:11-7. [PMID: 21098313 DOI: 10.1161/hypertensionaha.110.157727] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City 400042, China.
| | | |
Collapse
|
20
|
Zeng C, Villar VAM, Yu P, Zhou L, Jose PA. Reactive oxygen species and dopamine receptor function in essential hypertension. Clin Exp Hypertens 2009; 31:156-78. [PMID: 19330604 DOI: 10.1080/10641960802621283] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Essential hypertension is a major risk factor for stroke, myocardial infarction, and heart and kidney failure. Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones and humoral factors. However, the mechanisms leading to impaired dopamine receptor function in hypertension states are not clear. Compelling experimental evidence indicates a role of reactive oxygen species (ROS) in hypertension, and there are increasing pieces of evidence showing that in conditions associated with oxidative stress, which is present in hypertensive states, dopamine receptor effects, such as natriuresis, diuresis, and vasodilation, are impaired. The goal of this review is to present experimental evidence that has led to the conclusion that decreased dopamine receptor function increases ROS activity and vice versa. Decreased dopamine receptor function and increased ROS production, working in concert or independent of each other, contribute to the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China.
| | | | | | | | | |
Collapse
|
21
|
Wang X, Villar VAM, Armando I, Eisner GM, Felder RA, Jose PA. Dopamine, kidney, and hypertension: studies in dopamine receptor knockout mice. Pediatr Nephrol 2008; 23:2131-46. [PMID: 18615257 PMCID: PMC3724362 DOI: 10.1007/s00467-008-0901-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/18/2008] [Accepted: 05/07/2008] [Indexed: 02/06/2023]
Abstract
Dopamine is important in the pathogenesis of hypertension because of abnormalities in receptor-mediated regulation of renal sodium transport. Dopamine receptors are classified into D(1)-like (D(1), D(5)) and D(2)-like (D(2), D(3), D(4)) subtypes, all of which are expressed in the kidney. Mice deficient in specific dopamine receptors have been generated to provide holistic assessment on the varying physiological roles of each receptor subtype. This review examines recent studies on these mutant mouse models and evaluates the impact of individual dopamine receptor subtypes on blood pressure regulation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | | | - Ines Armando
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Gilbert M. Eisner
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Pedro A. Jose
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
22
|
Yatabe J, Sanada H, Midorikawa S, Hashimoto S, Watanabe T, Andrews PM, Armando I, Wang X, Felder RA, Jose PA. Effects of decreased renal cortical expression of G protein-coupled receptor kinase 4 and angiotensin type 1 receptors in rats. Hypertens Res 2008; 31:1455-64. [PMID: 18957817 DOI: 10.1291/hypres.31.1455] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abnormalities in renal angiotensin type 1 receptor (AT1R), D1 dopamine receptor (D1R) and G protein-coupled receptor kinase 4 (GRK4) are present in polygenic hypertension. Selective renal reduction of AT1R expression by intrarenal cortical infusion of antisense oligodeoxynucleotides (As-Odns) in conscious, uninephrectomized, sodium-loaded rats decreases proteinuria, normalizes the glomerular sclerosis index (GSI), increases the sodium excretion (UNaV), and modestly increases blood pressure (BP) in spontaneously hypertensive rats (SHR) but not in normotensive Wistar-Kyoto rats (WKY). In contrast, selective renal reduction of GRK4 expression by infusion of GRK4 As-Odns increases UnaV, attenuates the increase in arterial BP with age, and modestly decreases protein excretion in SHR, but not in WKY. In this study, we report that intrarenal cortical infusion of both GRK4 and AT1R As-Odns decreased BP and increased UNaV in SHR; these effects were also noted in WKY to a lesser extent. Infusion of SHR with this combination of As-Odns resulted in a decrease in proteinuria and improvement of GSI similar to those by AT1R As-Odn only. In contrast to the increased circulating angiotensin II and aldosterone levels induced by AT1R As-Odn alone, the combination of As-Odns decreased both, contributing to greater natriuresis and amelioration of hypertension than by GRK4 or AT1R As-Odn only. Our results indicate an interaction between GRK4-regulated receptors and the renin-angiotensin system in the regulation of renal function and BP.
Collapse
Affiliation(s)
- Junichi Yatabe
- Department of Internal Medicine III, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zeng C, Asico LD, Yu C, Villar VAM, Shi W, Luo Y, Wang Z, He D, Liu Y, Huang L, Yang C, Wang X, Hopfer U, Eisner GM, Jose PA. Renal D3 dopamine receptor stimulation induces natriuresis by endothelin B receptor interactions. Kidney Int 2008; 74:750-9. [PMID: 18547994 DOI: 10.1038/ki.2008.247] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dopaminergic and endothelin systems participate in the control blood pressure by regulating sodium transport in the renal proximal tubule. Disruption of either the endothelin B receptor (ETB) or D(3) dopamine receptor gene in mice produces hypertension. To examine whether these two receptors interact we studied the Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats by selectively infusing reagents into the right kidney of anesthetized rats. The D(3) receptor agonist (PD128907) caused natriuresis in WKY rats which was partially blocked by the ETB receptor antagonist. In contrast, PD128907 blunted sodium excretion in the SHRs. We found using laser confocal microscopy that the ETB receptor was mainly located in the cell membrane in control WKY cells. Treatment with the D(3) receptor antagonist caused its internalization into intracellular compartments that contained the D(3) receptors. Combined use of D(3) and ETB antagonists failed to internalize ETB receptors in cells from WKY rats. In contrast in SHR cells, ETB receptors were found mainly in internal compartments under basal condition and thus were likely prevented from interacting with the agonist-stimulated, membrane-bound D(3) receptors. Our studies suggest that D(3) receptors physically interact with proximal tubule ETB receptors and that the blunted natriuretic effect of dopamine in SHRs may be explained, in part, by abnormal D(3)/ETB receptor interactions.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Banday AA, Lau YS, Lokhandwala MF. Oxidative Stress Causes Renal Dopamine D1 Receptor Dysfunction and Salt-Sensitive Hypertension in Sprague-Dawley Rats. Hypertension 2008; 51:367-75. [DOI: 10.1161/hypertensionaha.107.102111] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Renal dopamine plays an important role in maintaining sodium homeostasis and blood pressure (BP) during increased sodium intake. The present study was carried out to determine whether renal dopamine D1 receptor (D1R) dysfunction contributes to increase in salt sensitivity during oxidative stress. Male Sprague-Dawley rats, divided into various groups, received tap water (vehicle); 1% NaCl (high salt [HS]);
l
-buthionine sulfoximine (BSO), an oxidant; and HS plus BSO with or without Tempol, an antioxidant, for 12 days. Compared with vehicle, HS intake increased urinary dopamine production and decreased basal renal Na/K-ATPase activity but did not affect BP. BSO-treated rats exhibited oxidative stress and a mild increase in BP. In these rats, D1R expression and G protein coupling were reduced, and SKF38393, a D1R agonist, failed to inhibit Na/K-ATPase activity and promote sodium excretion. Concomitant administration of BSO and HS caused oxidative stress, D1R dysfunction, and a marked increase in BP. Although renal dopamine production was increased, it failed to reduce the basal Na/K-ATPase activity in these animals. Treatment of BSO plus HS rats with Tempol decreased oxidative stress and restored endogenous, as well as exogenous, D1R agonist-mediated Na/K-ATPase inhibition and normalized BP. In conclusion, during HS intake, the increased dopamine production via Na/K-ATPase inhibition prevents an increase in BP. During oxidative stress, D1R function is defective, and there is mild hypertension. However, in the presence of oxidative stress, HS intake causes marked elevation in BP, which results from a defective renal D1R function leading to the failure of dopamine to inhibit Na/K-ATPase and promote sodium excretion.
Collapse
Affiliation(s)
- Anees A. Banday
- From the Heart and Kidney Institute, College of Pharmacy, University of Houston, Tex
| | - Yuen-Sum Lau
- From the Heart and Kidney Institute, College of Pharmacy, University of Houston, Tex
| | | |
Collapse
|
25
|
Zeng C, Armando I, Luo Y, Eisner GM, Felder RA, Jose PA. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice. Am J Physiol Heart Circ Physiol 2008; 294:H551-69. [PMID: 18083900 PMCID: PMC4029502 DOI: 10.1152/ajpheart.01036.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3), and D(4)) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure.
Collapse
MESH Headings
- Animals
- Blood Pressure/genetics
- Blood Pressure/physiology
- Dopamine/physiology
- Hypertension/genetics
- Hypertension/physiopathology
- Mice
- Mice, Knockout
- Receptors, Dopamine/genetics
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/physiology
- Receptors, Dopamine D5/genetics
- Receptors, Dopamine D5/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City 400042, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport, vascular smooth muscle contractility and production of reactive oxygen species and by interacting with the renin–angiotensin and sympathetic nervous systems. Dopamine receptors are classified into D1-like (D1 and D5) and D2-like (D2, D3 and D4) subtypes based on their structure and pharmacology. Each of the dopamine receptor subtypes participates in the regulation of blood pressure by mechanisms specific for the subtype. Some receptors regulate blood pressure by influencing the central and/or peripheral nervous system; others influence epithelial transport and regulate the secretion and receptors of several humoral agents. This review summarizes the physiology of the different dopamine receptors in the regulation of blood pressure, and the relationship between dopamine receptor subtypes and hypertension.
Collapse
MESH Headings
- Blood Pressure/physiology
- Dopamine/metabolism
- Gastrointestinal Tract/metabolism
- Gastrointestinal Tract/physiopathology
- Humans
- Hypertension/metabolism
- Hypertension/physiopathology
- Kidney/metabolism
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Receptors, Dopamine/metabolism
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/metabolism
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/metabolism
- Receptors, Dopamine D4/physiology
- Receptors, Dopamine D5/metabolism
- Receptors, Dopamine D5/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City, People's Republic of China.
| | | | | | | | | |
Collapse
|
27
|
Felder RA, Jose PA. Mechanisms of disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity. ACTA ACUST UNITED AC 2006; 2:637-50. [PMID: 17066056 DOI: 10.1038/ncpneph0301] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 07/03/2006] [Indexed: 12/15/2022]
Abstract
Hypertension and salt sensitivity of blood pressure are two conditions the etiologies of which are still elusive because of the complex influences of genes, environment, and behavior. Recent understanding of the molecular mechanisms that govern sodium homeostasis is shedding new light on how genes, their protein products, and interacting metabolic pathways contribute to disease. Sodium transport is increased in the proximal tubule and thick ascending limb of Henle of the kidney in human essential hypertension. This Review focuses on the counter-regulation between the dopaminergic and renin-angiotensin systems in the renal proximal tubule, which is the site of about 70% of total renal sodium reabsorption. The inhibitory effect of dopamine is most evident under conditions of moderate sodium excess, whereas the stimulatory effect of angiotensin II is most evident under conditions of sodium deficit. Dopamine and angiotensin II exert their actions via G protein-coupled receptors, which are in turn regulated by G protein-coupled receptor kinases (GRKs). Polymorphisms that lead to aberrant action of GRKs cause a number of conditions, including hypertension and salt sensitivity. Polymorphisms in one particular member of this family-GRK4-have been shown to cause hyperphosphorylation, desensitization and internalization of a member of the dopamine receptor family, the dopamine 1 receptor, while increasing the expression of a key receptor of the renin-angiotensin system, the angiotensin II type 1 receptor. Novel diagnostic and therapeutic approaches for identifying at-risk subjects, followed by selective treatment of hypertension and salt sensitivity, might center on restoring normal receptor function through blocking the effects of GRK4 polymorphisms.
Collapse
Affiliation(s)
- Robin A Felder
- Department of Pathology, Post Office Box 800403, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
28
|
Zeng C, Liu Y, Wang Z, He D, Huang L, Yu P, Zheng S, Jones JE, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA. Activation of D
3
Dopamine Receptor Decreases Angiotensin II Type 1 Receptor Expression in Rat Renal Proximal Tubule Cells. Circ Res 2006; 99:494-500. [PMID: 16902178 DOI: 10.1161/01.res.0000240500.96746.ec] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dopaminergic and renin angiotensin systems interact to regulate blood pressure. Disruption of the D
3
dopamine receptor gene in mice produces renin-dependent hypertension. In rats, D
2
-like receptors reduce angiotensin II binding sites in renal proximal tubules (RPTs). Because the major D
2
-like receptor in RPTs is the D
3
receptor, we examined whether D
3
receptors regulate angiotensin II type 1 (AT
1
) receptors in rat RPT cells. The effect of D
3
receptors on AT
1
receptors was studied in vitro and in vivo. The D
3
receptor agonist PD128907 decreased AT
1
receptor protein and mRNA in WKY RPT cells and increased it in SHR cells. PD128907 increased D
3
receptors in WKY cells but had no effect in SHR cells. D
3
/AT
1
receptors colocalized in RPT cells; D
3
receptor stimulation decreased the percent amount of D
3
receptors that coimmunoprecipitated with AT
1
receptors to a greater extent in WKY than in SHR cells. However, D
3
receptor stimulation did not change the percent amount of AT
1
receptors that coimmunoprecipitated with D
3
receptors in WKY cells and markedly decreased the coimmunoprecipitation in SHR cells. The D
3
receptor also regulated the AT
1
receptor in vivo because AT
1
receptor expression was increased in kidneys of D
3
receptor–null mice compared with wild type littermates. D
3
receptors may regulate AT
1
receptor function by direct interaction with and regulation of AT
1
receptor expression. One mechanism of hypertension may be related to increased renal expression of AT
1
receptors due decreased D
3
receptor regulation.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Benzopyrans/pharmacology
- Cells, Cultured
- Dopamine Agonists/pharmacology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Mice
- Mice, Knockout
- Oxazines/pharmacology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/deficiency
- Receptors, Dopamine D3/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zeng C, Wang Z, Li H, Yu P, Zheng S, Wu L, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA. D3 dopamine receptor directly interacts with D1 dopamine receptor in immortalized renal proximal tubule cells. Hypertension 2006; 47:573-9. [PMID: 16401764 DOI: 10.1161/01.hyp.0000199983.24674.83] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
D3 receptors act synergistically with D1 receptors to inhibit sodium transport in renal proximal tubules; however, the mechanism by which this occurs is not known. Because dopamine receptor subtypes can regulate and interact with each other, we studied the interaction of D3 and D1 receptors in rat renal proximal tubule (RPT) cells. The D3 agonist PD128907 increased the immunoreactive expression of D1 receptors in a concentration- and time-dependent manner; these effects were blocked by the D3 antagonist U99194A. PD128907 also transiently (15 minutes) increased the amount of cell surface membrane D1 receptors. Laser confocal immunofluorescence microscopy showed that D3 receptor and D1 receptor colocalized in RPT cells more distinctly in Wistar-Kyoto rats than in spontaneously hypertensive rats (SHRs). In addition, D3 and D1 receptors could be coimmunoprecipitated, and this interaction was increased after D3 receptor agonist stimulation for 24 hours in Wistar-Kyoto rats but not in SHRs. We propose that the synergistic effects of D3 and D1 receptors may be caused by a D3 receptor-mediated increase in total, as well as cell surface membrane D1 receptor expression, and direct D3 and D1 receptor interaction, both of which are impaired in SHRs.
Collapse
MESH Headings
- Animals
- Benzopyrans/pharmacology
- Cell Line, Transformed
- Cell Membrane/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Drug Interactions
- Hypertension/metabolism
- Immunoprecipitation
- Indans/pharmacology
- Kidney Tubules, Proximal/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Oxazines/pharmacology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/antagonists & inhibitors
- Receptors, Dopamine D3/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zeng C, Wang Z, Hopfer U, Asico LD, Eisner GM, Felder RA, Jose PA. Rat strain effects of AT1 receptor activation on D1 dopamine receptors in immortalized renal proximal tubule cells. Hypertension 2005; 46:799-805. [PMID: 16172423 DOI: 10.1161/01.hyp.0000184251.01159.72] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The dopaminergic and renin-angiotensin systems regulate blood pressure, in part, by affecting sodium transport in renal proximal tubules (RPTs). We have reported that activation of a D1-like receptor decreases AT1 receptor expression in the mouse kidney and in immortalized RPT cells from Wistar-Kyoto (WKY) rats. The current studies were designed to test the hypothesis that activation of the AT1 receptor can also regulate the D1 receptor in RPT cells, and this regulation is aberrant in spontaneously hypertensive rats (SHRs). Long-term (24 hours) stimulation of RPT cells with angiotensin II, via AT1 receptors increased total cellular D1 receptor protein in a time- and concentration-dependent manner in WKY but not in SHR cells. Short-term stimulation (15 minutes) with angiotensin II did not affect total cellular D1 receptor protein in either rat strain. However, in the short-term experiments, angiotensin II decreased cell surface membrane D1 receptor protein in WKY but not in SHR cells. D1 and AT1 receptors colocalized (confocal microscopy) and their coimmunoprecipitation was greater in WKY than in SHRs. However, AT1/D1 receptor coimmunoprecipitation was decreased by angiotensin II (10(-8) M/24 hours) to a similar extent in WKY (-22+/-8%) and SHRs (-22+/-12%). In summary, these studies show that AT1 and D1 receptors interact differently in RPT cells from WKY and SHRs. It is possible that an angiotensin II-mediated increase in D1 receptors and dissociation of AT1 from D1 receptors serve to counter regulate the long-term action of angiotensin II in WKY rats; different effects are seen in SHRs.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Luippold G, Beilharz M, Wehrmann M, Unger L, Gross G, Mühlbauer B. Effect of dopamine D3 receptor blockade on renal function and glomerular size in diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:420-7. [PMID: 15887004 DOI: 10.1007/s00210-005-1030-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 01/28/2005] [Indexed: 01/11/2023]
Abstract
Dopamine D2-like receptors, including D2, D3, and D4 receptors, are involved in the regulation of glomerular hyperfiltration due to diabetes mellitus. These hemodynamic alterations represent a risk factor for the later development of diabetic nephropathy. The aim of the present study was to determine whether the D3 receptor subtype modulates the diabetes-induced increase in glomerular filtration rate (GFR) in rats. Renal function was studied in Sprague-Dawley rats 14 days after induction of a moderate diabetes mellitus (DM) by streptozotocin and in non-diabetic controls (CON). Rats were orally treated either with the peripherally acting, selective dopamine D3 receptor antagonist BSF 135170 (BSF, 10 mg/kg per day for 2 weeks) or with vehicle (VHC). Perfusion-fixed kidneys were used for estimation of glomerular volume. In conscious rats, which were treated with BSF, the DM-induced increase in fluid intake, urinary output, and renal sodium excretion was significantly less pronounced than in the vehicle group (DM-VHC). In the clearance experiments, GFR in CON was about 0.84+/-0.04 ml/min per 100 g body weight. The DM-VHC group presented a significant glomerular hyperfiltration (1.09+/-0.04 ml/min per 100 g body weight). Treatment with BSF significantly lowered GFR towards levels of CON. The estimated glomerular volume was 0.73+/-0.03 x 10(6) microm3 in the CON-VHC group and 0.86+/-0.04 x 10(6) microm3 in the DM-VHC animals. Interestingly, treatment with BSF decreased the glomerular volume in both groups. Irrespective of BSF treatment, kidney wet weight related to body weight was about 36% higher in DM animals compared with CON animals. We conclude that dopamine D3 receptors represent a target for the modulation of diabetes-induced glomerular hyperfiltration. Therefore, the results encourage the testing of the possible beneficial effects of long-term D3 receptor blockade on the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Gerd Luippold
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Tübingen, Wilhelmstrasse 56, 72074 Tübingen, Germany,
| | | | | | | | | | | |
Collapse
|
32
|
Nürnberger A, Räbiger M, Mack A, Diaz J, Sokoloff P, Mühlbauer B, Luippold G. Subapical localization of the dopamine D3 receptor in proximal tubules of the rat kidney. J Histochem Cytochem 2004; 52:1647-55. [PMID: 15557219 DOI: 10.1369/jhc.4a6359.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dopamine D3 receptor (D3R), intensively studied in neuroscience, also plays an important role in the regulation of renal and cardiovascular function. In contrast to functional findings, less information is available on its localization in the kidney. Neither RT-PCR studies nor radioligand binding assays are suitable to selectively determine the distribution of renal D3R at the level of cellular or even subcellular structures. We studied the renal D3R distribution in Sprague-Dawley rats by a polyclonal antiserum directed against an epitope in the third intracytoplasmic loop. D3R immunoreactivity was detected by indirect immunofluorescence and confocal laser scanning microscopy. D3R staining was confined to the renal cortex and occurred in proximal convoluted tubules near or in direct connection with the urinary pole of the glomeruli. The fluorescent spots were restricted to the subapical portion of the proximal tubular cells. Double staining with the F-actin marker phalloidin revealed a localization of the D3R below the brush border region. However, staining by anti-beta1/beta2-adaptins, recognizing clathrin-coated compartments, did not correspond to the distribution of the D3R signal. This is the first description of a D3R accumulation in a cytoplasmic pool in the kidney, probably corresponding to a recycling mechanism or storage compartment.
Collapse
Affiliation(s)
- Asja Nürnberger
- Dept. of Pharmacology and Toxicology, Faculty of Medicine, University of Tübingen, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Fedorova OV, Talan MI, Agalakova NI, Lakatta EG, Bagrov AY. Coordinated shifts in Na/K-ATPase isoforms and their endogenous ligands during cardiac hypertrophy and failure in NaCl-sensitive hypertension. J Hypertens 2004; 22:389-97. [PMID: 15076199 DOI: 10.1097/00004872-200402000-00025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES NaCl loading of Dahl salt-sensitive rats (DS) stimulates marinobufagenin (MBG), an alpha1 Na/K-ATPase (NKA) isoform ligand. Cardiac function depends on NKA, which is regulated in part by endogenous digitalis-like ligands. Our goal was to study whether changes occur in MBG and endogenous ouabain (EO) production during cardiac remodelling in hypertensive DS, and whether these are associated with changes in myocardial NKA isoforms and sensitivity to MBG and ouabain. METHODS Changes in MBG and EO levels, changes in myocardial NKA isoform composition, and sensitivity to endogenous ligands during development of cardiac hypertrophy and the transition to heart failure were studied in DS rats with an 8% NaCl intake. RESULTS The animals developed compensated left ventricular hypertrophy after 4 weeks, which progressed to heart failure at 9-12 weeks. The hypertrophic stage was associated with increased plasma MBG levels (mean +/- SEM of 1.22 +/- 0.22 versus 0.31 +/- 0.03 nmol/l; P < 0.01), increased sensitivity of NKA to MBG, and an increased abundance of alpha1 NKA. Plasma levels of EO did not change, and the sensitivity of NKA to ouabain decreased. The transition to heart failure was accompanied by a decrease in alpha1 NKA, a reduction in plasma MBG, and decreased sensitivity of NKA to MBG. In addition, an increased abundance of ouabain-sensitive alpha3 NKA, a three-fold rise in plasma EO (1.01 +/- 0.13 versus 0.27 +/- 0.06 nmol/l), and a seven-fold increase in the ouabain sensitivity of NKA compared with controls were observed. CONCLUSIONS During cardiac hypertrophy and the transition to heart failure, a shift in endogenous NKA ligands production is linked to a shift in myocardial NKA isoforms.
Collapse
Affiliation(s)
- Olga V Fedorova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA.
| | | | | | | | | |
Collapse
|
34
|
Pedrosa R, Gomes P, Zeng C, Hopfer U, Jose PA, Soares-da-Silva P. Dopamine D3 receptor-mediated inhibition of Na+/H+ exchanger activity in normotensive and spontaneously hypertensive rat proximal tubular epithelial cells. Br J Pharmacol 2004; 142:1343-53. [PMID: 15265811 PMCID: PMC1575199 DOI: 10.1038/sj.bjp.0705893] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study evaluated the response of the Na(+)/H(+) exchanger (NHE) to dopamine D(1)- and D(2)-like receptor stimulation in immortalized renal proximal tubular epithelial cells and freshly isolated renal proximal tubules from the spontaneously hypertensive rat (SHR) and their normotensive controls (Wistar Kyoto rats; WKY). Stimulation of D(1)-like receptors with SKF 38393 attenuated NHE activity in WKY cells (IC(50)=151 nM), but not in SHR cells. Stimulation of D(2)-like receptors with quinerolane (IC(50)=120 nM) attenuated NHE activity in SHR cells, but not in WKY cells. Forskolin was equipotent in SHR and WKY cells in inhibiting NHE activity. The effect of SKF 38393 was abolished by overnight treatment of WKY cells with cholera toxin (CTX, 500 ng ml(-1)), but not with pertussis toxin (PTX, 100 ng ml(-1)). The effect of quinerolane (1 microm) was abolished by overnight treatment of SHR cells with PTX, but not with CTX. The D(3) receptor agonist 7-OH-DPAT (IC(50)=0.8 microM) attenuated NHE activity in SHR cells only. This effect was abolished by S-sulpiride and by overnight treatment with PTX. The D(4) receptor agonist RBI 257 did not affect NHE activity. The 7-OH-DPAT inhibited NHE activity in freshly isolated renal proximal tubules from 4- and 12-week-old SHR and 12-week-old WKY, but not in freshly isolated renal proximal tubules from 4-week-old WKY. It is concluded that D(3) receptors coupled to a G(i/o) protein play a role in the handling of tubular Na(+), namely through inhibition of the NHE activity, this being of particular relevance in the SHR, which fail to respond to D(1)-like dopamine receptor stimulation.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cell Line, Transformed
- Cells, Cultured
- Dopamine/pharmacology
- Dopamine D2 Receptor Antagonists
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Hypertension/metabolism
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Male
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3
- Sodium-Hydrogen Exchangers/antagonists & inhibitors
- Sodium-Hydrogen Exchangers/metabolism
Collapse
Affiliation(s)
- Rui Pedrosa
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, Porto 4200-319, Portugal
| | - Pedro Gomes
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, Porto 4200-319, Portugal
| | - Chunyu Zeng
- Departments of Pediatrics and Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, U.S.A
| | - Ulrich Hopfer
- Department of Physiology, Case Western Reserve Medical School, Cleveland, OH, U.S.A
| | - Pedro A Jose
- Departments of Pediatrics and Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, U.S.A
| | - Patrício Soares-da-Silva
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, Porto 4200-319, Portugal
- Author for correspondence:
| |
Collapse
|
35
|
Luippold G, Piesch C, Osswald H, Mühlbauer B. Dopamine D3 receptor mRNA and renal response to D3 receptor activation in spontaneously hypertensive rats. Hypertens Res 2004; 26:855-61. [PMID: 14621190 DOI: 10.1291/hypres.26.855] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Defective dopamine receptors may be involved in the development of hypertension. Recently, it has been shown that gene expression and function of the renal dopamine D3 receptor is impaired in salt-sensitive Dahl rats, a model of salt-dependent hypertension. Here, the functional response to D3 receptor activation was investigated in spontaneously hypertensive rats (SHR) and their normotensive Wistar-Kyoto rats (WKY). In addition, expression of the D3 receptor gene was studied in both rat strains. In clearance experiments, Ringer solution was infused at baseline in thiopental-anesthetized SHR and WKY (each n = 8), followed by an infusion of R(+)-7-hydroxy-dipropylaminotetralin (DPAT), a specific D3 receptor agonist. DPAT was infused in two consecutive doses of 0.01 and 0.1 microg/min per kg body weight. During the entire experiment mean arterial blood pressure was significantly higher (1.5-fold) in adult SHR when compared to age-matched WKY. In both groups DPAT infusion induced a similar dose-dependent increase in urinary flow rate and sodium excretion by a maximum of 2.3-fold and 3.5-fold, respectively. DPAT also increased the glomerular filtration rate in both SHR and WKY. Reverse transcription-polymerase chain reaction studies of whole kidney samples showed no significant differences between young prehypertensive and adult hypertensive SHR when compared to age-matched normotensive WKY. In summary, pharmacological dopamine D3 receptor activation induces a uniform renal response in SHR and WKY. Together with the similar D3 receptor gene expression in both rat strains, which is independent of age or blood pressure levels, the results do not support the notion that the dopamine D3 receptor system is involved in the pathogenesis of hypertension in the SHR model.
Collapse
Affiliation(s)
- Gerd Luippold
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| | | | | | | |
Collapse
|
36
|
Zeng C, Wang D, Yang Z, Wang Z, Asico LD, Wilcox CS, Eisner GM, Welch WJ, Felder RA, Jose PA. Dopamine D
1
Receptor Augmentation of D
3
Receptor Action in Rat Aortic or Mesenteric Vascular Smooth Muscles. Hypertension 2004; 43:673-9. [PMID: 14769810 DOI: 10.1161/01.hyp.0000118958.27649.6f] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dopamine is an important modulator of blood pressure, in part, by regulating vascular resistance. To test the hypothesis that D
1
and D
3
receptors interact in vascular smooth muscle cells, we studied A10 cells, a rat aortic smooth muscle cell line, and rat mesenteric arteries that express both dopamine receptor subtypes. Fenoldopam, a D
1
-like receptor agonist, increased both D
1
and D
3
receptor protein in a time-dependent and a concentration-dependent manner in A10 cells. The effect of fenoldopam was specific because a D
1
-like receptor antagonist, SCH23390 (10
−7
M/24 h), completely blocked the stimulatory effect of fenoldopam (10
−7
M/24 h) (D
3
receptor: control=21±1 density units [DU]); SCH23390=23±2 DU; fenoldopam=33±2 DU; fenoldopam+SCH23390=23±2 DU; n=10). D
1
and D
3
receptors physically interacted with each other because fenoldopam (10
−7
M/24 h) increased D
1
/D
3
receptor coimmunoprecipitation (35±5 versus 65±5 DU; n=8). A D
3
receptor agonist, PD128907, relaxed mesenteric arterial rings independent of the endothelium, effects that were blocked by a D
3
receptor antagonist, U99194A. Costimulation of D
1
and D
3
receptors led to additive vasorelaxation. We conclude that the D
1
receptor regulates the D
3
receptor by physical interaction and receptor expression. D
1
receptor stimulation augments D
3
receptor vasorelaxant effects. An interaction of D
1
and D
3
receptors may be involved in the regulation of blood pressure.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Aorta/cytology
- Cell Line
- Culture Techniques
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Fenoldopam/pharmacology
- Male
- Mesenteric Arteries/anatomy & histology
- Mesenteric Arteries/chemistry
- Mesenteric Arteries/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Rats
- Rats, Inbred WKY
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/immunology
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/immunology
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Pediatrics, PHC-2 Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zeng C, Wang D, Asico LD, Welch WJ, Wilcox CS, Hopfer U, Eisner GM, Felder RA, Jose PA. Aberrant D1 and D3 dopamine receptor transregulation in hypertension. Hypertension 2004; 43:654-60. [PMID: 14732731 DOI: 10.1161/01.hyp.0000114601.30306.bf] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dopamine plays a role in the regulation of blood pressure by inhibition of sodium transport in renal proximal tubules (RPTs) and relaxation of vascular smooth muscles. Because dopamine receptors can regulate and interact with each other, we studied the interaction of D(1) and D(3) receptors in immortalized RPT cells and mesenteric arteries from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs), and in human coronary artery smooth muscle cells (CASMCs). In WKY rats, the D(1)-like agonist, fenoldopam, increased D(3) receptor protein in a time-dependent and concentration-dependent manner (EC(50)=4.5x10(-9) M, t(1/2)=15.8 hours). In SHRs, fenoldopam (10(-5) M) actually decreased the expression of D(3) receptors. D(1) and D(3) receptor co-immunoprecipitation was increased by fenoldopam (10(-7) M/24 h) in WKY rats but not in SHRs. The effects of fenoldopam in CASMCs were similar as those in WKY RPT cells (ie, fenoldopam increased D(1) and D(3) receptor proteins). Both D(3) (PD128907, Emax=80%+/-6%, pED(50)=5+/-0.1) and D(1)-like receptor (fenoldopam, Emax=81%+/-8%, pED(50)=5+/-0.2, n=12) agonists relaxed mesenteric arterial rings. Co-stimulation of D(1) and D(3) receptors led to additive vasorelaxation in WKY rats, but not in SHRs. D(1) and D(3) receptors interact differently in WKY and SHRs. Altered interactions between D(1) and D(3) receptors may play a role in the pathogenesis of genetic hypertension, including human hypertension, because these receptors also interact in human vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Cell Line
- Coronary Vessels/cytology
- Dopamine Agonists/pharmacology
- Fenoldopam/pharmacology
- Humans
- Hypertension/metabolism
- Hypertension/physiopathology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Male
- Mesenteric Arteries/physiopathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Precipitin Tests
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
- Vasodilation
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Pediatrics, PHC-2, Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zeng C, Asico LD, Wang X, Hopfer U, Eisner GM, Felder RA, Jose PA. Angiotensin II regulation of AT1 and D3 dopamine receptors in renal proximal tubule cells of SHR. Hypertension 2003; 41:724-9. [PMID: 12623987 DOI: 10.1161/01.hyp.0000047880.78462.0e] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dopamine and angiotensin II negatively interact to regulate sodium excretion and blood pressure. D3 dopamine receptors downregulate angiotensin type 1 (AT1) receptors in renal proximal tubule cells from normotensive Wistar-Kyoto rats. We determined whether AT1 receptors regulate D3 receptors and whether the regulation is different in cultured renal proximal tubule cells from normotensive and spontaneously hypertensive rats. Angiotensin II (10(-8)M/24 hours) decreased D3 receptors in both normotensive (control, 36+/-3; angiotensin II, 24+/-3 U) and hypertensive (control, 30+/-3; angiotensin II, 11+/-3 U; n=9 per group) rats; effects that were blocked by the AT1 receptor antagonist, losartan (10(-8)M/24 hours). However, the reduction in D3 expression was greater in hypertensive (60+/-10%) than in normotensive rats (32+/-9%). In normotensive rats, angiotensin II (10(-8)M/24hr) also decreased AT1 receptors. In contrast, in cells from hypertensive rats, angiotensin II increased AT1 receptors. AT1 and D3 receptors co-immunoprecipitated in renal proximal tubule cells from both strains. Angiotensin II decreased D3/AT1 receptor co-immunoprecipitation similarly in both rat strains, but basal D3/AT1 co-immunoprecipitation was 6 times higher in normotensive than in hypertensive rats. Therefore, AT1 and D3 receptor interaction is qualitatively and quantitatively different between normotensive and hypertensive rats; angiotensin II decreases AT1 expression in normotensive but increases it in hypertensive rats. In addition, angiotensin II decreases D3 expression to a greater extent in hypertensive than in normotensive rats. Aberrant interactions between D3 and AT1 receptors may play a role in the pathogenesis of hypertension.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Antibody Specificity
- Cells, Cultured
- Hypertension/metabolism
- Immunoblotting
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Precipitin Tests
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1
- Receptors, Angiotensin/immunology
- Receptors, Angiotensin/metabolism
- Receptors, Dopamine D2/immunology
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Doggrell SA. The therapeutic potential of dopamine modulators on the cardiovascular and renal systems. Expert Opin Investig Drugs 2002; 11:631-44. [PMID: 11996645 DOI: 10.1517/13543784.11.5.631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the periphery, physiological dopamine increases renal blood flow, decreases renal resistance and acts on the kidney tubule to enhance natriuresis and diuresis. The loss of dopamine function may be involoved in the deterioration in kidney function associated with ageing and may have a role in the pathogenesis of hypertension and diabetes. Intravenous dopamine is used as a positive inotrope in the treatment of acute heart failure and cardiogenic shock and as a diuretic in renal failure. The clinical uses of dopamine are limited, as it must be given intravenously, and also has widespread effects. The levels of peripheral dopamine can be increased by the administration of L-dopa to increase synthesis, prodrugs to release dopamine (docarpamine, glu-dopa) or by inhibiting the breakdown of dopamine (nitecapone). Preliminary clinical trials suggest that docarpamine may be useful in patients with low cardiac output syndrome after cardiac surgery and in refractory cirrhotic ascites. Ibopamine is an agonist at dopamine D1 and D2 receptors, which may retard the progression of chronic renal failure. Glu-dopa is selective for the kidney, thus avoiding widespread side effects. The early clinical studies with ibopamine as a diuretic in heart failure were favourable but the subsequent large mortality study showed that ibopamine increased mortality. Fenoldopam is a selective dopamine D1 receptor agonist. Intravenous fenoldopam may be useful in the treatment of hypertension associated with coronary artery bypass surgery or in hypertensive emergencies. Although our understanding of physiological and pathological roles of peripheral dopamine has been increasing rapidly in recent times, we still need more information to allow the design of clinically useful drugs that modify these roles. One priority is an orally-active selective dopamine D1 receptor agonist.
Collapse
Affiliation(s)
- Sheila A Doggrell
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, QLD 4072, Australia.
| |
Collapse
|