1
|
Choukair D, Mittnacht J, Bettendorf M. Markers of Fertility in Adolescents With Chronic Endocrinopathies at Transition From Paediatric to Adult Care. Endocrinol Diabetes Metab 2024; 7:e00493. [PMID: 38845445 PMCID: PMC11157144 DOI: 10.1002/edm2.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 06/10/2024] Open
Abstract
OBJECTIVE During the process of transition from paediatric to adult health care, counselling concerning fertility is an important issue and is based mainly on serum markers of gonadal function. Here, we analysed these markers in adolescents with various underlying endocrine diseases at the time of transition. METHODS After reaching near adult height and late puberty (girls: bone age [BA] ≥14 years, and boys: BA ≥16 years), we assessed stages of puberty according to Tanner and measured testes or ovarian volumes and serum markers of gonadal function (anti-Mullerian hormone [AMH], inhibin B, 17β-estradiol, testosterone). RESULTS One hundred and ten patients (56 females and 54 males) were included from May 2010 to March 2016 with multiple pituitary hormone deficiency (MPHD; n = 17), growth hormone deficiency (GHD; n = 35), Turner syndrome (TS; n = 27), short stature after being born small for gestational age (SGA; n = 20) and Klinefelter syndrome (KS; n = 11). Female and male adolescents exhibited mature secondary sexual characteristics. The levels of serum inhibin B and AMH were lower in TS and female MPHD than in GHD and SGA, each independently (p < 0.05). The levels of serum AMH were higher whereas serum inhibin B were lower in male MPHD and KS (p < 0.05). Ovary volumes were significantly smaller in patients with TS, and testicular volumes were smaller in patients with KS. CONCLUSIONS After current established treatments with sex steroids, the development of secondary sexual characteristics was mature. However, impaired markers of fertility have been identified in patients with TS, KS and MPHD, reflecting gonadal dysgenesis in TS and KS, but gonadal immaturity in MPHD as gonadal gonadotropin stimulation is lacking throughout development. Consequently, in patients with MPHD, these markers cannot reliably predict individual fertility, which warrants consideration and incorporation in future treatment concepts.
Collapse
Affiliation(s)
- Daniela Choukair
- Division of Paediatric Endocrinology and Diabetes, Department of PaediatricsUniversity Hospital HeidelbergHeidelbergGermany
| | - Janna Mittnacht
- Division of Paediatric Endocrinology and Diabetes, Department of PaediatricsUniversity Hospital HeidelbergHeidelbergGermany
| | - Markus Bettendorf
- Division of Paediatric Endocrinology and Diabetes, Department of PaediatricsUniversity Hospital HeidelbergHeidelbergGermany
| |
Collapse
|
2
|
Rhys-Evans S, Howard SR. Combined gonadotropin therapy to replace mini-puberty in male infants with congenital hypogonadotropic hypogonadism. Ann N Y Acad Sci 2024; 1537:32-40. [PMID: 38924109 DOI: 10.1111/nyas.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Infants born with severe central disorders of the hypothalamic-pituitary-gonadal axis leading to gonadotropin deficiency not only lack pubertal development in adolescence, but also lack infantile mini-puberty. This period of mini-puberty, where infants have gonadotropin and sex steroid concentrations up into the adult range, is vital for future reproductive capacity, particularly in boys. At present, there is no consensus on the diagnosis or management of infants with gonadotropin deficiency due to congenital hypogonadotropic hypogonadism or multiple pituitary hormone deficiency. Case series suggest that gonadotropin treatment in male infants with absent mini-puberty is effective in promoting both testicular descent in those with undescended testes and also facilitating increased penile size. Moreover, replacement with follicle-stimulating hormone increases the testicular Sertoli cell population, measurable as an increase in testicular volume and inhibin B, thus hypothetically increasing the capacity for spermatogenesis in adult life for these patients. However, long-term follow-up data is limited for both outcomes pertaining to fertility and nonreproductive sequelae, including neurodevelopment and psychological well-being. The use of international registries for patients with gonadotropin deficiency is a key element in the collection of high-quality, geographically widespread data to inform best-practice management from birth to adulthood.
Collapse
Affiliation(s)
- Sophie Rhys-Evans
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Paediatric Endocrinology, Barts Health NHS Trust, London, UK
| |
Collapse
|
3
|
Rey RA, Bergadá I, Ballerini MG, Braslavsky D, Chiesa A, Freire A, Grinspon RP, Keselman A, Arcari A. Diagnosing and treating anterior pituitary hormone deficiency in pediatric patients. Rev Endocr Metab Disord 2024; 25:555-573. [PMID: 38112850 DOI: 10.1007/s11154-023-09868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Hypopituitarism, or the failure to secrete hormones produced by the anterior pituitary (adenohypophysis) and/or to release hormones from the posterior pituitary (neurohypophysis), can be congenital or acquired. When more than one pituitary hormone axis is impaired, the condition is known as combined pituitary hormone deficiency (CPHD). The deficiency may be primarily due to a hypothalamic or to a pituitary disorder, or concomitantly both, and has a negative impact on target organ function. This review focuses on the pathophysiology, diagnosis and management of anterior pituitary hormone deficiency in the pediatric age. Congenital hypopituitarism is generally due to genetic disorders and requires early medical attention. Exposure to toxicants or intrauterine infections should also be considered as potential etiologies. The molecular mechanisms underlying the fetal development of the hypothalamus and the pituitary are well characterized, and variants in the genes involved therein may explain the pathophysiology of congenital hypopituitarism: mutations in the genes expressed in the earliest stages are usually associated with syndromic forms whereas variants in genes involved in later stages of pituitary development result in non-syndromic forms with more specific hormone deficiencies. Tumors or lesions of the (peri)sellar region, cranial radiation therapy, traumatic brain injury and, more rarely, other inflammatory or infectious lesions represent the etiologies of acquired hypopituitarism. Hormone replacement is the general strategy, with critical periods of postnatal life requiring specific attention.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina.
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - María Gabriela Ballerini
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Débora Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Analía Freire
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Andrea Arcari
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| |
Collapse
|
4
|
Pereira SA, Oliveira FCB, Naulé L, Royer C, Neves FAR, Abreu AP, Carroll RS, Kaiser UB, Coelho MS, Lofrano-Porto A. Mouse Testicular Mkrn3 Expression Is Primarily Interstitial, Increases Peripubertally, and Is Responsive to LH/hCG. Endocrinology 2023; 164:bqad123. [PMID: 37585624 PMCID: PMC10449413 DOI: 10.1210/endocr/bqad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Studies in humans and mice support a role for Makorin RING finger protein 3 (MKRN3) as an inhibitor of gonadotropin-releasing hormone (GnRH) secretion prepubertally, and its loss of function is the most common genetic cause of central precocious puberty in humans. Studies have shown that the gonads can synthesize neuropeptides and express MKRN3/Mkrn3 mRNA. Therefore, we aimed to investigate the spatiotemporal expression pattern of Mkrn3 in gonads during sexual development, and its potential regulation in the functional testicular compartments by gonadotropins. Mkrn3 mRNA was detected in testes and ovaries of wild-type mice at all ages evaluated, with a sexually dimorphic expression pattern between male and female gonads. Mkrn3 expression was highest peripubertally in the testes, whereas it was lower peripubertally than prepubertally in the ovaries. Mkrn3 is expressed primarily in the interstitial compartment of the testes but was also detected at low levels in the seminiferous tubules. In vitro studies demonstrated that Mkrn3 mRNA levels increased in human chorionic gonadotropin (hCG)-treated Leydig cell primary cultures. Acute administration of a GnRH agonist in adult mice increased Mkrn3 expression in testes, whereas inhibition of the hypothalamic-pituitary-gonadal axis by chronic administration of GnRH agonist had the opposite effect. Finally, we found that hCG increased Mkrn3 mRNA levels in a dose-dependent manner. Taken together, our developmental expression analyses, in vitro and in vivo studies show that Mkrn3 is expressed in the testes, predominantly in the interstitial compartment, and that Mkrn3 expression increases after puberty and is responsive to luteinizing hormone/hCG stimulation.
Collapse
Affiliation(s)
- Sidney A Pereira
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fernanda C B Oliveira
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carine Royer
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Francisco A R Neves
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michella S Coelho
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Adriana Lofrano-Porto
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Rey RA. Steroid receptors in the testis: implications in the physiology of prenatal and postnatal development and translation to clinical application. Histol Histopathol 2023; 38:373-389. [PMID: 36218320 DOI: 10.14670/hh-18-533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The testes are the main source of sex steroids in the male, especially androgens and to a lesser extent estrogens. In target cells, steroid hormones typically signal after binding to intracellular receptors, which act as transcription factors. Androgens and estrogens have ubiquitous functions in peripheral organs, but also have paracrine actions within the gonads where they are far more concentrated. The levels of steroid production by the testes vary throughout fetal and postnatal development: they are high in intrauterine life and in the first months after birth, then they decline and are almost undetectable in childhood and increase again during puberty to attain adult levels. The expression of the androgen and estrogen receptors also depict specific ontogenies in the various testicular cell types. The combination of intratesticular steroid concentration with the pattern of expression of the steroid hormone receptors defines androgen and estrogen action on Sertoli, germ and Leydig cells. Here, we review the ontogeny of expression of the androgen and estrogen receptors in the testis, its impact on testicular physiology during prenatal and postnatal development, as well as its implication on the pathophysiology of different disorders affecting gonadal function throughout life.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Кокорева КД, Чугунов ИС, Карева МА, Безлепкина ОБ. [Puberty induction in boys with congenital isolated hypogonadotropic hypogonadism]. PROBLEMY ENDOKRINOLOGII 2023; 69:59-67. [PMID: 36842078 PMCID: PMC9978876 DOI: 10.14341/probl13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 02/27/2023]
Abstract
BACKGROUND Gonadotropin therapy in boys with congenital isolated hypogonadotropic hypogonadism helps to increase testes volume and induce spermatogenesis in comparison with testosterone therapy. However, difficulties with dose titration, partial therapy success, absence of generally accepted regimen protocols don't allow to use this therapy in order to induce puberty in adolescents with Kallmann syndrome or normosmic hypogonadotropic hypogonadism. AIM To assess the effectiveness of combination hormonal replacement therapy via human chorionic gonadotropin and recombinant follicle stimulation hormone in adolescents with congenital isolated normosmic hypogonadotropic hypogonadism and with Kallmann syndromeMATERIALS AND METHODS: This is an open single-center prospective non-controlled study. Boys with hypogonadotropic hypogonadism were receiving hormonal replacement therapy for 12 months. Initial dose of human chorionic gonadotropin was 500 IU per week. Initial dose of recombinant follicle stimulation hormone was 37.5 IU per week. Doses were doubled in 6 months. Antropometric data, Tanner stage, testes volumes, inhibin B and anti-Mullerian hormone (AMH) levels were evaluated in all the patients before the treatment, after 6 and 12 months of the therapy. RESULTS 8 boys with hypogonadotropic hypogonadism were included into the study. Median age before therapy initiation was 15.7 years [15.33; 16.41]. In 12 months after the therapy initiation puberty development, testosterone increase from 0.44 [0.34;0.62] to 4.39 [0.88;10.51] nmol/l (p=0.012), AMH decrease from 35.70 [18.00;59.00] to 14.41 [11.60;16.65] ng/ml were noted in all the patients (p=0.017). Testes volumes increase and inhibin B level increase were not statistically significant. CONCLUSION Gonadotropin therapy is effective in order to puberty initiation in adolescents with congenital hypogonadotropic hypogonadism. In helps to achieve not only androgenization, but also to Sertoli cells maturation.
Collapse
Affiliation(s)
- К. Д. Кокорева
- Национальный медицинский исследовательский центр эндокринологии
| | - И. С. Чугунов
- Национальный медицинский исследовательский центр эндокринологии
| | - М. А. Карева
- Национальный медицинский исследовательский центр эндокринологии
| | | |
Collapse
|
7
|
Ketchem JM, Bowman EJ, Isales CM. Male sex hormones, aging, and inflammation. Biogerontology 2023; 24:1-25. [PMID: 36596999 PMCID: PMC9810526 DOI: 10.1007/s10522-022-10002-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 01/05/2023]
Abstract
Adequate levels of androgens (eugonadism), and specifically testosterone, are vital compounds for male quality of life, longevity, and positive health outcomes. Testosterone exerts its effects by binding to the androgen receptor, which is expressed in numerous tissues throughout the body. Significant research has been conducted on the impact of this steroid hormone on skeletal, muscle and adipose tissues and on the cardiovascular, immune, and nervous systems. Testosterone levels have also been studied in relation to the impact of diseases, aging, nutrition and the environment on its circulating levels. Conversely, the impact of testosterone on health has also been evaluated with respect to its cardiac and vascular protective effects, body composition, autoimmunity and all-cause mortality. The male aging process results in decreasing testosterone levels over time. The exact mechanisms and impact of these changes in testosterone levels with age on health- and life-span are still not completely clear. Further research is needed to determine the optimal testosterone and androgen levels to protect from chronic age-related conditions such as frailty and osteoporosis.
Collapse
Affiliation(s)
- Justin M. Ketchem
- grid.410427.40000 0001 2284 9329Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | | | - Carlos M. Isales
- grid.410427.40000 0001 2284 9329Departments of Medicine, Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912 USA
| |
Collapse
|
8
|
Bhattacharya I, Dey S, Banerjee A. Revisiting the gonadotropic regulation of mammalian spermatogenesis: evolving lessons during the past decade. Front Endocrinol (Lausanne) 2023; 14:1110572. [PMID: 37124741 PMCID: PMC10140312 DOI: 10.3389/fendo.2023.1110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Spermatogenesis is a multi-step process of male germ cell (Gc) division and differentiation which occurs in the seminiferous tubules of the testes under the regulation of gonadotropins - Follicle Stimulating Hormone (FSH) and Luteinising hormone (LH). It is a highly coordinated event regulated by the surrounding somatic testicular cells such as the Sertoli cells (Sc), Leydig cells (Lc), and Peritubular myoid cells (PTc). FSH targets Sc and supports the expansion and differentiation of pre-meiotic Gc, whereas, LH operates via Lc to produce Testosterone (T), the testicular androgen. T acts on all somatic cells e.g.- Lc, PTc and Sc, and promotes the blood-testis barrier (BTB) formation, completion of Gc meiosis, and spermiation. Studies with hypophysectomised or chemically ablated animal models and hypogonadal (hpg) mice supplemented with gonadotropins to genetically manipulated mouse models have revealed the selective and synergistic role(s) of hormones in regulating male fertility. We here have briefly summarized the present concept of hormonal control of spermatogenesis in rodents and primates. We also have highlighted some of the key critical questions yet to be answered in the field of male reproductive health which might have potential implications for infertility and contraceptive research in the future.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, School of Biological Science, Central University of Kerala, Kasaragod, Kerala, India
- *Correspondence: Arnab Banerjee, ; Indrashis Bhattacharya,
| | - Souvik Dey
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Arnab Banerjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Goa, India
- *Correspondence: Arnab Banerjee, ; Indrashis Bhattacharya,
| |
Collapse
|
9
|
Rodprasert W, Koskenniemi JJ, Virtanen HE, Sadov S, Perheentupa A, Ollila H, Albrethsen J, Andersson AM, Juul A, Skakkebaek NE, Main KM, Toppari J. Reproductive Markers of Testicular Function and Size During Puberty in Boys With and Without a History of Cryptorchidism. J Clin Endocrinol Metab 2022; 107:3353-3361. [PMID: 36073163 PMCID: PMC9693807 DOI: 10.1210/clinem/dgac520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Longitudinal data on levels of hypothalamic-pituitary-gonadal axis hormones and insulin-like growth factor I (IGF-I) during puberty in boys with a history of cryptorchidism are largely missing. OBJECTIVE We aimed to compare pubertal hormone levels between boys with a history of congenital cryptorchidism who experienced spontaneous testicular descent or underwent orchiopexy and boys without a history of cryptorchidism. METHODS This was a nested case-control study within a population-based birth cohort, with a prospective, longitudinal pubertal follow-up every 6 months (2005 to 2019). Participants were 109 Finnish boys, including boys with a history of unilateral cryptorchidism who underwent orchiopexy (n = 15), unilateral cryptorchidism who had spontaneous testicular descent (n = 15), bilateral cryptorchidism who underwent orchiopexy (n = 9), bilateral cryptorchidism who had spontaneous testicular descent (n = 7), and controls (n = 63). Serum reproductive hormone levels and testicular volumes were measured. RESULTS From around onset of puberty, boys with bilateral cryptorchidism who underwent orchiopexy had significantly higher follicle-stimulating hormone (FSH) and lower inhibin B levels than controls. Boys with unilateral cryptorchidism who underwent orchiopexy had significantly higher FSH than controls, whereas inhibin B levels were similar. Testosterone, luteinizing hormone, insulin-like factor 3, and IGF-I were generally similar between groups. Testicular volume of boys with unilateral or bilateral cryptorchidism who underwent orchiopexy was smaller than that of the controls from 1 year after pubertal onset (P < 0.05). CONCLUSION Cryptorchid boys, particularly those with bilateral cryptorchidism who underwent orchiopexy, had altered levels of serum biomarkers of Sertoli cells and germ cells and smaller testicular volumes compared with controls.
Collapse
Affiliation(s)
| | | | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Sergey Sadov
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Antti Perheentupa
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku 20520, Finland
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, Turku 20520, Finland
| | - Helena Ollila
- Department of Public Health, University of Turku and Clinical Research Centre, Turku University Hospital, Turku 20520, Finland
| | - Jakob Albrethsen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen DK-2100, Denmark
- Centre for Research and research training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen DK-2100, Denmark
- Centre for Research and research training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen DK-2100, Denmark
- Centre for Research and research training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Niels E Skakkebaek
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen DK-2100, Denmark
- Centre for Research and research training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Katharina M Main
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen DK-2100, Denmark
- Centre for Research and research training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Jorma Toppari
- Correspondence: Jorma Toppari, M.D. Ph.D., Institute of Biomedicine, room # A506, University of Turku, Kiinamyllynkatu 10, 20520 Turku Finland.
| |
Collapse
|
10
|
Dacal JL, Grinspon RP, Rey RA. Review of the Function of the Hypothalamic-Pituitary-Gonadal Axis in Children and Adolescents with Cancer. TOUCHREVIEWS IN ENDOCRINOLOGY 2022; 18:122-132. [PMID: 36694892 PMCID: PMC9835818 DOI: 10.17925/ee.2022.18.2.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
The most common malignancies in childhood are leukaemias, brain tumours, lymphomas, neuroblastomas, soft tissue sarcomas and kidney tumours. At present, about 80% of childhood cancers can be treated successfully, which has significantly increased long-term survival. Concomitantly, adult gonadal function in childhood cancer survivors has become a concern. However, the immediate effect of cancer and its management on the reproductive axis function has received less attention. We conducted a review of the effects of malignancies and their treatments on the gonadal axis during childhood and adolescence. Some results are controversial, probably because the analyses do not distinguish between the malignancy types, their treatments and/or the age at treatment. However, there is agreement that cancer can partially affect gonadal function before treatment, as revealed by low circulating levels of inhibin B and anti-Müllerian hormone. Subsequently, chemotherapy transiently impairs the somatic component of the gonads (i.e. testicular Sertoli cells and ovarian granulosa cells) with normalization after treatment ends. The impact of chemotherapy may persist through adulthood after more intensive chemotherapy regimens, radiotherapy and conditioning for haematopoietic stem cell transplantation, when there is a severe impairment of the somatic component of the gonads or of the stem germ cells.
Collapse
Affiliation(s)
- Jimena Lopez Dacal
- Centro de Investigaciones Endocrinolègicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinolègicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinolègicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina,Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
11
|
Abstract
INTRODUCTION Delayed puberty, defined as the appearance of pubertal signs after the age of 14 years in males, usually affects psychosocial well-being. Patients and their parents show concern about genital development and stature. The condition is transient in most of the patients; nonetheless, the opportunity should not be missed to diagnose an underlying illness. AREAS COVERED The aetiologies of pubertal delay in males and their specific pharmacological therapies are discussed in this review. EXPERT OPINION High-quality evidence addressing the best pharmacological therapy approach for each aetiology of delayed puberty in males is scarce, and most of the current practice is based on small case series or unpublished experience. Male teenagers seeking attention for pubertal delay most probably benefit from medical treatment to avoid psychosocial distress. While watchful waiting is appropriate in 12- to 14-year-old boys when constitutional delay of growth and puberty (CGDP) is suspected, hormone replacement should not be delayed beyond the age of 14 years in order to avoid impairing height potential and peak bone mass. When primary or central hypogonadism is diagnosed, hormone replacement should be proposed by the age of 12 years provided that a functional central hypogonadism has been ruled out. Testosterone replacement regimens have been used for decades and are fairly standardised. Aromatase inhibitors have arisen as an interesting alternative for boy with CDGP and short stature. Gonadotrophin therapy seems more physiological in patients with central hypogonadism, but its relative efficacy and most adequate timing still need to be established.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
12
|
Nordenström A. Potential Impact of mini-puberty on fertility. ANNALES D'ENDOCRINOLOGIE 2022; 83:250-253. [PMID: 35728696 DOI: 10.1016/j.ando.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mini-puberty is defined as the period in infancy with elevated FSH and LH resulting increased levels of sex hormones. It differs between boys and girls. Its impact on future fertility is largely unknown. This mini-review focus on the effects of mini-puberty on genital development and some aspects possibly related to future fertility.
Collapse
Affiliation(s)
- Anna Nordenström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden, Department of Pediatric Endocrinology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
13
|
Sharma S, Shah R, Patil V, Lila AR, Sarathi V, Shah N, Bandgar T. Gonadotropins for testicular descent in cryptorchid congenital hypogonadotropic hypogonadism males beyond infancy. J Pediatr Endocrinol Metab 2021; 34:917-924. [PMID: 33894111 DOI: 10.1515/jpem-2020-0683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/04/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To study the effect of combined gonadotropin therapy (CGT) on testicular descent ± spermatogenesis in congenital hypogonadotropic hypogonadism (CHH) patients with cryptorchidism beyond infancy. METHODS This retrospective cohort study included CHH patients with cryptorchidism [bilateral (n=5) or unilateral (n=1)] treated with CGT for testicular descent ± pubertal induction. All participants were treated with CGT [human menopausal gonadotropin (hMG) and human chorionic gonadotropin (hCG)] with hMG pretreatment in three and monitored for changes in testicular volume (TV), serum total testosterone (T), serum inhibin-B, and sperm concentration. RESULTS Complete testicular descent to the scrotal position was achieved in 5/6 patients (10/11 testes) after 4.7 ± 1.6 months of treatment. There was 44 ± 18%, 97.5% (IQR: 44-195), 10-fold (IQR: 3-19.6), and two-fold (IQR: 1.7-9.3) increase in stretched penile length, ultrasound measured TV, T level, and serum inhibin-B from baseline, respectively. In two pediatric cases, testicular descent occurred with isolated hMG therapy. At the last follow up (median: 23.5, IQR: 10.5-38.7 months), all the descended testes remained in scrotal position. In four pubertal/postpubertal age patients, continuous CGT (18-60 months) yielded T and inhibin-B levels of 16.64 ± 1.46 nmol/l and 106 ± 32.6 pg/mL, respectively. All the three patients with available semen analysis had sperm concentration of ≥5 million/mL and one of them achieved paternity. CONCLUSIONS A trial of CGT before orchiopexy may be considered in CHH males with cryptorchidism even beyond the narrow age-window of infancy. CGT may also have beneficial effects on future spermatogenesis and fertility outcomes in these patients.
Collapse
Affiliation(s)
- Shreya Sharma
- Department of Endocrinology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Ravikumar Shah
- Department of Endocrinology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Virendra Patil
- Department of Endocrinology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Anurag R Lila
- Department of Endocrinology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Center, Bangalore, Karnataka, India
| | - Nalini Shah
- Department of Endocrinology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Tushar Bandgar
- Department of Endocrinology, Seth GS Medical College and KEM Hospital, Mumbai, India
| |
Collapse
|
14
|
Abstract
During adolescence, androgens are responsible for the development of secondary
sexual characteristics, pubertal growth, and the anabolic effects on bone and
muscle mass. Testosterone is the most abundant testicular androgen, but some
effects are mediated by its conversion to the more potent androgen
dihydrotestosterone (DHT) or to estradiol. Androgen deficiency, requiring
replacement therapy, may occur due to a primary testicular failure or secondary
to a hypothalamic–pituitary disorder. A very frequent condition characterized by
a late activation of the gonadal axis that may also need androgen treatment is
constitutional delay of puberty. Of the several testosterone or DHT formulations
commercially available, very few are employed, and none is marketed for its use
in adolescents. The most frequently used androgen therapy is based on the
intramuscular administration of testosterone enanthate or cypionate every 3 to 4
weeks, with initially low doses. These are progressively increased during
several months or years, in order to mimic the physiology of puberty, until
adult doses are attained. Scarce experience exists with oral or transdermal
formulations. Preparations containing DHT, which are not widely available, are
preferred in specific conditions. Oxandrolone, a non-aromatizable drug with
higher anabolic than androgenic effects, has been used in adolescents with
preserved testosterone production, like Klinefelter syndrome, with positive
effects on cardiometabolic health and visual, motor, and psychosocial functions.
The usual protocols applied for androgen therapy in boys and adolescents are
discussed.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.,Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
15
|
Yang H, Wei H, Shen L, Kumar C S, Chen Q, Chen Y, Kumar SA. A novel stop-loss DAX1 variant affecting its protein-interaction with SF1 precedes the adrenal hypoplasia congenital with rare spontaneous precocious puberty and elevated hypothalamic-pituitary-gonadal/adrenal axis responses. Eur J Med Genet 2021; 64:104192. [PMID: 33766795 DOI: 10.1016/j.ejmg.2021.104192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022]
Abstract
The case study unveils the likely mechanism of a novel stop-loss DAX1 variant preceding the prolonged precocious puberty in the adrenal hypoplasia congenital (AHC) boy. A boy aged five years and nine months initially examined for the primary adrenal insufficiency symptoms. Next-generation sequencing confirmed the X-linked inheritance of a novel stop-loss DAX1 variant: c.1411T>C/p.Ter471Gln associated with AHC in the patient. The patient was subjected to a brief clinical follow-up from 11 to 15.1 years of age. The effect of the mutant-DAX1 variant (p.Ter471Gln) on DAX1-steroidogenic factor 1 (SF1) (protein-protein) interaction was studied by protein-protein docking using the ClusPro-online tool. At 5.9 yrs of age, the patient exhibited precocious puberty with the secondary sexual characteristics of Tanner 2 stage (of 9-14 yrs of age). The patient showed primary adrenal insufficiency with diminished cortisol concentrations at blood serum (25 ng/ml) and urine (3.55 μg/24 h) levels. Upon steroidal exposure, the patient showed normalized serum cortisol levels of 45-61 ng/ml. However, the precocious puberty got prolonged with the increased penis length of 8.5 cm and the bone age of 18 yrs old during the follow-up. The patient showed increased basal serum adrenocorticotropic hormone (110->2000 pg/ml) and follicle-stimulating hormone (18.4-22.3 mIU/ml) concentrations. Following an elevated hypothalamic-pituitary-gonadal axis activity witnessed upon gonarellin stimulation. Protein-protein docking confirmed a weaker interaction between the mutant-DAX1 (p.Ter471Gln) protein and the wild-SF1 protein. Overall, we hypothesize the weakened mutant-DAX1-SF1 (protein-protein) interaction could govern the prolonged precocious puberty augmented with the elevated hypothalamic-pituitary-gonadal/adrenal axis responses via SF1-induced neuronal nitric oxide synthetase activation in the patient.
Collapse
Affiliation(s)
- Haihua Yang
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China
| | - Haiyan Wei
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China.
| | - Linghua Shen
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China
| | - Selvaa Kumar C
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to Be University, Sector-15, CBD Belapur. Navi Mumbai, 400614, India
| | - Qiong Chen
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China
| | - Yongxing Chen
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China
| | - Senthil Arun Kumar
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China.
| |
Collapse
|
16
|
Kohva E, Varimo T, Huopio H, Tenhola S, Voutilainen R, Toppari J, Miettinen PJ, Vaaralahti K, Viinamäki J, Backman JT, Hero M, Raivio T. Anti-Müllerian hormone and letrozole levels in boys with constitutional delay of growth and puberty treated with letrozole or testosterone. Hum Reprod 2021; 35:257-264. [PMID: 31958337 PMCID: PMC7048712 DOI: 10.1093/humrep/dez231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/15/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Does treatment of constitutional delay of growth and puberty (CDGP) in boys with aromatase inhibitor letrozole (Lz) or conventional low-dose testosterone (T) have differing effects on developing seminiferous epithelium? SUMMARY ANSWER Anti-Müllerian hormone (AMH) declined similarly in both treatment groups, and the two Sertoli cell-derived markers (AMH and inhibin B (iB)) exhibited differing responses to changes in gonadotrophin milieu. WHAT IS KNOWN ALREADY Boys with CDGP may benefit from puberty-inducing medication. Peroral Lz activates gonadotrophin secretion, whereas intramuscular low-dose T may transiently suppress gonadotrophins and iB. STUDY DESIGN, SIZE, DURATION Sera of 28 boys with CDGP who participated in a randomised, controlled, open-label trial at four paediatric centres in Finland between August 2013 and January 2017 were analysed. The patients were randomly assigned to receive either Lz (2.5 mg/day) (n = 15) or T (1 mg/kg/month) (n = 13) for 6 months. PARTICIPANTS/MATERIALS, SETTING, METHODS The 28 patients were at least 14 years of age, showed first signs of puberty, wanted medical attention for CDGP and were evaluated at 0, 3, 6 and 12 months of visits. AMH levels were measured with an electrochemiluminescence immunoassay and Lz levels with liquid chromatography coupled with tandem mass spectrometry. MAIN RESULTS AND THE ROLE OF CHANCE AMH levels decreased in both treatment groups during the 12-month follow-up (P < 0.0001). Between 0 and 3 months, the changes in gonadotrophin levels (increase in the Lz group, decrease in the T group) correlated strongly with the changes in levels of iB (FSH vs iB, r = 0.55, P = 0.002; LH vs iB, r = 0.72, P < 0.0001), but not with the changes in AMH (P = NS). At 12 months, AMH levels did not differ between the groups (P = NS). Serum Lz levels (range, 124-1262 nmol/L) were largely explained by the Lz dose per weight (at 3 months r = 0.62, P = 0.01; at 6 months r = 0.52, P = 0.05). Lz levels did not associate with changes in indices of hypothalamic-pituitary-gonadal axis activity or Sertoli cell markers (in all, P = NS). LIMITATIONS, REASONS FOR CAUTION The original trial was not blinded for practical reasons and included a limited number of participants. WIDER IMPLICATIONS OF THE FINDINGS In early puberty, treatment-induced gonadotrophin stimulus was unable to counteract the androgen-mediated decrease in AMH, while changes in iB levels were associated with changes in gonadotrophin levels. AMH decreased similarly in both groups during the treatment, reassuring safety of developing seminiferous epithelium in both treatment approaches. Since a fixed dose of Lz induced variable serum Lz levels with a desired puberty-promoting effect in all boys, more research is needed to aim at a minimal efficient dose per weight. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Academy of Finland, the Foundation for Pediatric Research, the Emil Aaltonen Foundation, Sigrid Juselius Foundation and Helsinki University Hospital Research Funds. The authors have nothing to disclose. TRIAL REGISTRATION NUMBER NCT01797718.
Collapse
Affiliation(s)
- E Kohva
- Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - T Varimo
- Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - H Huopio
- Department of Pediatrics, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - S Tenhola
- Department of Pediatrics, Kymenlaakso Central Hospital, Kotka, Finland
| | - R Voutilainen
- Department of Pediatrics, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - J Toppari
- Department of Pediatrics, Turku University Hospital and Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - P J Miettinen
- Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - K Vaaralahti
- Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - J Viinamäki
- Department of Clinical Pharmacology, and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J T Backman
- Department of Clinical Pharmacology, and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Hero
- Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - T Raivio
- Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland.,Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Valeri C, Lovaisa MM, Racine C, Edelsztein NY, Riggio M, Giulianelli S, Venara M, Bedecarrás P, Ballerini MG, di Clemente N, Lamb CA, Schteingart HF, Rey RA. Molecular mechanisms underlying AMH elevation in hyperoestrogenic states in males. Sci Rep 2020; 10:15062. [PMID: 32934281 PMCID: PMC7492256 DOI: 10.1038/s41598-020-71675-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023] Open
Abstract
Anti-Müllerian hormone (AMH) is secreted by Sertoli cells of the testes from early fetal life until puberty, when it is downregulated by androgens. In conditions like complete androgen insensitivity syndrome (CAIS), AMH downregulation does not occur and AMH increases at puberty, due in part to follicle-stimulating hormone (FSH) effect. However, other conditions like Peutz-Jeghers syndrome (PJS), characterised by low FSH, also have increased AMH. Because both CAIS and PJS may present as hyperoestrogenic states, we tested the hypothesis that oestradiol (E2) upregulates AMH expression in peripubertal Sertoli cells and explored the molecular mechanisms potentially involved. The results showed that E2 is capable of inducing an upregulation of endogenous AMH and of the AMH promoter activity in the prepubertal Sertoli cell line SMAT1, signalling through ERα binding to a specific ERE sequence present on the hAMH promoter. A modest action was also mediated through the membrane oestrogen receptor GPER. Additionally, the existence of ERα expression in Sertoli cells in patients with CAIS was confirmed by immunohistochemistry. The evidence presented here provides biological plausibility to the hypothesis that testicular AMH production increases in clinical conditions in response to elevated oestrogen levels.
Collapse
Affiliation(s)
- Clara Valeri
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - María M Lovaisa
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Chrystèle Racine
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine (CRSA), 75012, Paris, France.,Institut Hospitalo-Universitaire ICAN, 75013, Paris, France.,Sorbonne Paris Cité, Paris-Diderot Université, 75013, Paris, France
| | - Nadia Y Edelsztein
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Marina Riggio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN, Buenos Aires, Argentina
| | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN, Buenos Aires, Argentina.,Instituto de Biología de Organismos Marinos, IBIOMAR-CCT (CENPAT-CONICET), U9120ACD, Puerto Madryn, Argentina
| | - Marcela Venara
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Patricia Bedecarrás
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - María G Ballerini
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Nathalie di Clemente
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine (CRSA), 75012, Paris, France.,Institut Hospitalo-Universitaire ICAN, 75013, Paris, France
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN, Buenos Aires, Argentina
| | - Helena F Schteingart
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina. .,Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Kohva E, Huopio H, Hietamäki J, Hero M, Miettinen PJ, Raivio T. Treatment of gonadotropin deficiency during the first year of life: long-term observation and outcome in five boys. Hum Reprod 2020; 34:863-871. [PMID: 31067328 PMCID: PMC6505442 DOI: 10.1093/humrep/dez040] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION What is the peripubertal outcome of recombinant human FSH (r-hFSH) treatment during minipuberty in boys with congenital hypogonadotropic hypogonadism (CHH)? SUMMARY ANSWER Sertoli-cell response to r-hFSH, given during the minipuberty of infancy, appears insufficient to maintain Sertoli cell function throughout childhood, as evaluated by inhibin B measurements. WHAT IS KNOWN ALREADY Severe CHH in boys can be diagnosed during the minipuberty of infancy. Combined gonadotropin treatment at that age is suggested to improve testicular endocrine function and future fertility, yet long-term evidence is lacking. STUDY DESIGN, SIZE, DURATION In this retrospective cohort study, we describe five CHH boys treated with r-hFSH in Helsinki University Hospital or Kuopio University Hospital between 2004 and 2018. Immediate follow-up data (0.1-1.4 months after cessation of the gonadotropin therapy) was available for four boys and long-term observations (at the age of 10.0-12.8 years) was available for three boys. As a retrospective control cohort, we provide inhibin B values of eight untreated CHH boys at the age of 12.7-17.8 years. PARTICIPANTS/MATERIALS, SETTING, METHODS Four patients had combined pituitary hormone deficiency, and one had CHARGE syndrome due to a CHD7 mutation. The patients were treated at the age of 0.7-4.2 months with r-hFSH (3.4 IU/kg-7.5 IU/kg per week in 2 or 3 s.c. doses for 3-4.5 months) combined with T (25 mg i.m. monthly for three months for the treatment of micropenis). Inhibin B was chosen as the primary outcome measure. MAIN RESULTS AND THE ROLE OF CHANCE During the r-hFSH + T treatment, inhibin B increased from 76 ± 18 ng/l to 176 ± 80 ng/l (P = 0.04) and penile length increased by 81 ± 50% (P = 0.04). Unexpectedly, two boys with robust inhibin B responses in infancy demonstrated low inhibin B values in peripuberty: declining from 290 ng/l (4 months) to 16 ng/l (12.4 years), and from 207 ng/l (6 months) to 21 ng/l (12.8 years). All boys underwent orchiopexy at 2.0 ± 0.7 years of age. Inhibin B values in long-term follow-up, available for the three boys, did not significantly differ from the untreated CHH controls. LIMITATIONS, REASONS FOR CAUTION Limitations of this retrospective study are the small number and heterogeneity of the patients and their treatment schemes. WIDER IMPLICATIONS OF THE FINDINGS We describe the first long-term follow-up data on CHH boys treated with r-hFSH and T as infants. The results from this small patient series suggest that the effects of infant r-hFSH treatment may be transient, and further longitudinal studies are required to determine the efficacy of this treatment approach to optimise the fertility potential in this patient population. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Finnish foundation for Pediatric Research, the Academy of Finland and the Emil Aaltonen Foundation. The authors have no competing interests. TRIAL REGISTRATION NUMBER Non-applicable.
Collapse
Affiliation(s)
- Ella Kohva
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki, Finland
| | - Hanna Huopio
- Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Johanna Hietamäki
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki, Finland
| | - Matti Hero
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki, Finland
| | - Päivi J Miettinen
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki, Finland
| | - Taneli Raivio
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki, Finland.,Department of Physiology, Medicum Unit, and Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Rey RA. Biomarcadores de hipogonadismo masculino en la infancia y la adolescencia. ADVANCES IN LABORATORY MEDICINE 2020; 1:20190043. [PMCID: PMC10158747 DOI: 10.1515/almed-2019-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/19/2020] [Indexed: 06/28/2023]
Abstract
El eje hipotálamo-hipófiso-testicular es activo en la vida fetal y durante los primeros meses de la vida posnatal: la hipófisis secreta hormona luteinizante (LH) y folículo-estimulante (FSH), mientras que el testículo produce testosterona y factor insulino-símil 3 (INSL3) en las células de Leydig y hormona anti-Mülleriana (AMH) e inhibina B en las células de Sertoli. En la infancia, los niveles séricos de gonadotrofinas, testosterona y factor INSL3 disminuyen a valores prácticamente indetectables, pero los de AMH e inhibina B permanecen altos. En la pubertad, se reactivan las gonadotrofinas y la producción de testosterona e INSL3, aumenta la inhibina y disminuye la AMH, como signo de maduración de la célula de Sertoli. Sobre la base del conocimiento de la fisiología del desarrollo del eje, es posible utilizar clínicamente estos biomarcadores para interpretar la fisiopatología y diagnosticar las diferentes formas de hipogonadismo que pueden presentarse en la infancia y la adolescencia.
Collapse
Affiliation(s)
- Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET-FEI- División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo, 1330, C1425EFD, Buenos Aires, Argentina
| |
Collapse
|
20
|
Rey RA. Biomarkers of male hypogonadism in childhood and adolescence. ADVANCES IN LABORATORY MEDICINE 2020; 1:20200024. [PMID: 37363780 PMCID: PMC10159267 DOI: 10.1515/almed-2020-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/19/2020] [Indexed: 06/28/2023]
Abstract
Objectives The objective of this review was to characterize the use of biomarkers of male hypogonadism in childhood and adolescence. Contents The hypothalamic-pituitary-gonadal (HPG) axis is active during fetal life and over the first months of postnatal life. The pituitary gland secretes follicle stimulating hormone (FSH) and luteinizing hormone (LH), whereas the testes induce Leydig cells to produce testosterone and insulin-like factor 3 (INSL), and drive Sertoli cells to secrete anti-Müllerian hormone (AMH) and inhibin B. During childhood, serum levels of gonadotropins, testosterone and insulin-like 3 (INSL3) decline to undetectable levels, whereas levels of AMH and inhibin B remain high. During puberty, the production of gonadotropins, testosterone, and INSL3 is reactivated, inhibin B increases, and AMH decreases as a sign of Sertoli cell maturation. Summary and outlook Based on our knowledge of the developmental physiology of the HPG axis, these biomarkers can be used in clinical practice to interpret the physiopathology of hypogonadism. Additionally, these markers can have diagnostic value in different forms of hypogonadism that may appear during childhood and adolescence.
Collapse
Affiliation(s)
- Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET-FEI- División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Buenos Aires, Argentina
- Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG, Buenos Aires, Argentina
| |
Collapse
|
21
|
Karaoglan M. Correlation of anti-Mullerian hormone with humanchorionic gonadotropin test in the evaluation of testicular function of children with 46 XY male hypogonadism: Use of anti-Mullerian hormone as abiomarker. J Paediatr Child Health 2020; 56:411-419. [PMID: 31614067 DOI: 10.1111/jpc.14643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 01/11/2023]
Abstract
AIM It is challenging to evaluate reproductive potential during childhood. These challenges necessitate the use of invasive dynamic tests. Although the anti-Mullerian hormone (AMH) is a reliable biomarker in evaluating testicular function, especially in the pre-pubertal period, there are uncertainties concerning its use in a clinical setting. This study is focused on comparing the AMH and human chorionic gonadotropin (hCG) test in boys with hypogonadism. METHODS A total of 160 boys aged between 0 and 18 years who presented with complaints associated with hypogonadism were prospectively enrolled in the study. All children were assigned to the following five groups: gonadal disorders (n = 34), androgen synthesis and end organ effect disorder (n = 48), isolated genital malformation disorders (n = 57), hypogonadotropic hypogonadism (n = 15) and constitutional delayed puberty (n = 6). All children underwent a short 3-day hCG test (1500 U/m2 /day). The concordance and correlation were evaluated between the hCG test and AMH. RESULTS All groups exhibited a strong correlation (r160 = 0.689) and strong concordance (Kappa coefficient160 = 0.7) between the AMH and hCG test. Values of AMH higher than 32.7 pmol/L and hCG responses higher than 86 pmol/L were significant as indicative markers of functional testicular tissue presence. CONCLUSIONS This study has shown that there is a strong correlation between the AMH and short-term hCG test and that values of AMH higher than 32.7 pmol/L and stimulated testosterone higher than 86 pmol/L can be used as indicators of functionally sufficient testicular tissue. These results indicate that AMH value can be used as a reliable and useful biomarker in the evaluation of the testicular function in 46 XY hypogonadism.
Collapse
Affiliation(s)
- Murat Karaoglan
- Department of Pediatric Endocrinology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
22
|
Grinspon RP, Freire AV, Rey RA. Hypogonadism in Pediatric Health: Adult Medicine Concepts Fail. Trends Endocrinol Metab 2019; 30:879-890. [PMID: 31471249 DOI: 10.1016/j.tem.2019.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 02/03/2023]
Abstract
The classical definition of hypogonadism, used in adult medicine, as gonadal failure resulting in deficient steroid and gamete production, and its classification into hypergonadotropic and hypogonadotropic refer to primary gonadal and hypothalamic-pituitary disorders respectively and may lead to under- or misdiagnosis in pediatrics. Indeed, in children with primary gonadal failure, gonadotropin levels may be within the reference range for age. Conversely, since gonadotropins and steroids are normally low during childhood, it may prove impossible to show the existence of a hypogonadotropic state before pubertal age. Anti-Müllerian hormone (AMH) and inhibin B arise as more adequate biomarkers to assess gonadal function and increase the possibility of making an earlier diagnosis of hypogonadism in children, which may positively impact on timely management.
Collapse
Affiliation(s)
- Romina P Grinspon
- Centro de Investigaciones Endocrinológicas 'Dr. César Bergadá' (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD Buenos Aires, Argentina
| | - Analía V Freire
- Centro de Investigaciones Endocrinológicas 'Dr. César Bergadá' (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas 'Dr. César Bergadá' (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD Buenos Aires, Argentina.
| |
Collapse
|
23
|
Grinspon RP, Arozarena M, Prada S, Bargman G, Sanzone M, Morales Bazurto M, Gutiérrez M, Bedecarrás P, Kannemann A, Elena GO, Gottlieb S, Berenstein AJ, Ropelato MG, Bergadá I, Aversa LA, Rey RA. Safety of standardised treatments for haematologic malignancies as regards to testicular endocrine function in children and teenagers. Hum Reprod 2019; 34:2480-2494. [PMID: 31768530 DOI: 10.1093/humrep/dez216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/02/2019] [Indexed: 12/23/2022] Open
Abstract
STUDY QUESTION Does standardised treatments used in children and adolescents with haematologic malignancies, including acute lymphoblastic (ALL) or myeloid leukaemia (AML) and non-Hodgkin lymphoma (NHL), affect endocrine function of the developing testes? SUMMARY ANSWER Therapy of haematologic malignancies do not provoke an overt damage of Sertoli and Leydig cell populations, as revealed by normal levels of anti-Müllerian hormone (AMH) and testosterone, but a mild primary testicular dysfunction may be observed, compensated by moderate gonadotropin elevation, during pubertal development. WHAT IS KNOWN ALREADY Evidence exists on the deleterious effect that chemotherapy and radiotherapy have on germ cells, and some attention has been given to the effects on Leydig and Sertoli cells of the adult gonads, but information is virtually non-existent on the effects of oncologic treatment on testicular somatic cell components during childhood and adolescence. STUDY DESIGN, SIZE, DURATION A retrospective, analytical, observational study included 97 boys with haematological malignancies followed at two tertiary paediatric public hospitals in Buenos Aires, Argentina, between 2002 and 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS Clinical records of males aged 1-18 years, referred with the diagnoses of ALL, AML or NHL for the assessment of gonadal function, were eligible. We assessed serum levels of AMH and FSH as biomarkers of Sertoli cell endocrine function and testosterone and LH as biomarkers of Leydig cell function. MAIN RESULTS AND THE ROLE OF CHANCE All hormone levels were normal in the large majority of patients until early pubertal development. From Tanner stage G3 onwards, while serum AMH and testosterone kept within the normal ranges, gonadotropins reached mildly to moderately elevated values in up to 35.9% of the cases, indicating a compensated Sertoli and/or Leydig cell dysfunction, which generally did not require hormone replacement therapy. LIMITATIONS, REASONS FOR CAUTION Serum inhibin B determination and semen analysis were not available for most patients; therefore, we could not conclude on potential fertility impairment or identify whether primary Sertoli cell dysfunction resulted in secondary depleted spermatogenesis or whether primary germ cell damage impacted Sertoli cell function. WIDER IMPLICATIONS OF THE FINDINGS The regimens used in the treatment of boys and adolescents with ALL, AML or NHL in the past two decades seem relatively safe for endocrine testicular function; nonetheless, a mild primary testicular endocrine dysfunction may be observed, usually compensated by slightly elevated gonadotropin secretion by the pituitary in adolescents, and not requiring hormone replacement therapy. No clinically relevant risk factor, such as severity of the disease or treatment protocol, could be identified in association with the compensated endocrine dysfunction. STUDY FUNDING/COMPETING INTEREST(S) This work was partially funded by grants PIP 11220130100687 of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and PICT 2016-0993 of Fondo para la Investigación Científica y Tecnológica (FONCYT), Argentina. R.A.R., R.P.G. and P.B. have received honoraria from CONICET (Argentina) for technology services using the AMH ELISA. L.A.A. is part-time employee of CSL Behring Argentina. The other authors have no conflicts of interest to disclose.
Collapse
Affiliation(s)
- Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - María Arozarena
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Silvina Prada
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Graciela Bargman
- División de Endocrinología, Hospital de Niños Pedro de Elizalde, C1270AAN Buenos Aires, Argentina
| | - María Sanzone
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Marjorie Morales Bazurto
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Marcela Gutiérrez
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Patricia Bedecarrás
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Ana Kannemann
- Unidad de Hematología, Hospital Pedro de Elizalde, C1270AAN Buenos Aires, Argentina
| | - Graciela O Elena
- Unidad de Hematología, Hospital Pedro de Elizalde, C1270AAN Buenos Aires, Argentina
| | - Silvia Gottlieb
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Ariel J Berenstein
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - María Gabriela Ropelato
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Luis A Aversa
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| |
Collapse
|
24
|
Edelsztein NY, Rey RA. Importance of the Androgen Receptor Signaling in Gene Transactivation and Transrepression for Pubertal Maturation of the Testis. Cells 2019; 8:E861. [PMID: 31404977 PMCID: PMC6721648 DOI: 10.3390/cells8080861] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Androgens are key for pubertal development of the mammalian testis, a phenomenon that is tightly linked to Sertoli cell maturation. In this review, we discuss how androgen signaling affects Sertoli cell function and morphology by concomitantly inhibiting some processes and promoting others that contribute jointly to the completion of spermatogenesis. We focus on the molecular mechanisms that underlie anti-Müllerian hormone (AMH) inhibition by androgens at puberty, as well as on the role androgens have on Sertoli cell tight junction formation and maintenance and, consequently, on its effect on proper germ cell differentiation and meiotic onset during spermatogenesis.
Collapse
Affiliation(s)
- Nadia Y Edelsztein
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) - CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina.
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) - CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1425EFD, Argentina.
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| |
Collapse
|
25
|
Abstract
Puberty is a defining phase of human development where growth ends and the ability to reproduce begins. An understanding of the events leading up to puberty highlights the fact that this is the culmination of a process of skeletal and gonadal activity that has been ongoing since conception. Although there is natural variation in the timing of events in and around puberty the basic underlying processes are common to all healthy human beings. This chapter is intended to outline the mechanisms underlying normal growth and development before and during puberty. By understanding normality the pathological processes that give rise to abnormalities of pubertal development can be understood more easily.
Collapse
Affiliation(s)
- Claire L Wood
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK; Great North Children's Hospital, Royal Victoria Infirmary, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK.
| | - Laura C Lane
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK; Great North Children's Hospital, Royal Victoria Infirmary, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK.
| | - Tim Cheetham
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK; Great North Children's Hospital, Royal Victoria Infirmary, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK.
| |
Collapse
|
26
|
Salonia A, Rastrelli G, Hackett G, Seminara SB, Huhtaniemi IT, Rey RA, Hellstrom WJG, Palmert MR, Corona G, Dohle GR, Khera M, Chan YM, Maggi M. Paediatric and adult-onset male hypogonadism. Nat Rev Dis Primers 2019; 5:38. [PMID: 31147553 PMCID: PMC6944317 DOI: 10.1038/s41572-019-0087-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is of relevance in many processes related to the development, maturation and ageing of the male. Through this axis, a cascade of coordinated activities is carried out leading to sustained testicular endocrine function, with gonadal testosterone production, as well as exocrine function, with spermatogenesis. Conditions impairing the hypothalamic-pituitary-gonadal axis during paediatric or pubertal life may result in delayed puberty. Late-onset hypogonadism is a clinical condition in the ageing male combining low concentrations of circulating testosterone and specific symptoms associated with impaired hormone production. Testosterone therapy for congenital forms of hypogonadism must be lifelong, whereas testosterone treatment of late-onset hypogonadism remains a matter of debate because of unclear indications for replacement, uncertain efficacy and potential risks. This Primer focuses on a reappraisal of the physiological role of testosterone, with emphasis on the critical interpretation of the hypogonadal conditions throughout the lifespan of the male individual, with the exception of hypogonadal states resulting from congenital disorders of sex development.
Collapse
Affiliation(s)
- Andrea Salonia
- Division of Experimental Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| | - Giulia Rastrelli
- Sexual Medicine and Andrology Unit Department of Experimental Clinical and Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Geoffrey Hackett
- Department of Urology, University of Bedfordshire, Bedfordshire, UK
| | - Stephanie B Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ilpo T Huhtaniemi
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, UK
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños R. Gutiérrez, Buenos Aires, Argentina
| | - Wayne J G Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mark R Palmert
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Giovanni Corona
- Sexual Medicine and Andrology Unit Department of Experimental Clinical and Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
- Endocrinology Unit, Medical Department, Azienda Usl Bologna Maggiore-Bellaria Hospital, Bologna, Italy
| | - Gert R Dohle
- Department of Urology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Mohit Khera
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mario Maggi
- Sexual Medicine and Andrology Unit Department of Experimental Clinical and Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| |
Collapse
|
27
|
La Vignera S, Condorelli RA, Cimino L, Cannarella R, Giacone F, Calogero AE. Early Identification of Isolated Sertoli Cell Dysfunction in Prepubertal and Transition Age: Is It Time? J Clin Med 2019; 8:jcm8050636. [PMID: 31075862 PMCID: PMC6572413 DOI: 10.3390/jcm8050636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022] Open
Abstract
The male transitional phase is of fundamental importance for future fertility. This aspect is largely neglected in clinical practice. This opinion aims to shed light on these issues. The children frequently complete the transition phase with a slight reduction of testicular volume. The system of detecting testicular volume is often inadequate. These patients evidently complete puberty in an incomplete way because they do not reach an adequate testicular volume, albeit in the presence of adequate height and regular secondary sexual characteristics.
Collapse
Affiliation(s)
- Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Laura Cimino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Filippo Giacone
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
28
|
Urrutia M, Grinspon RP, Rey RA. Comparing the role of anti-Müllerian hormone as a marker of FSH action in male and female fertility. Expert Rev Endocrinol Metab 2019; 14:203-214. [PMID: 30880521 DOI: 10.1080/17446651.2019.1590197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/01/2019] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Originally limited to the assessment of disorders of sex development, anti-Müllerian hormone (AMH) measurement has more recently been extended to several conditions affecting the reproductive axis in males and females. Follicle-stimulating hormone (FSH) regulation of gonadal function has been extensively studied, but its role on AMH production has been explored only recently. AREAS COVERED We addressed the relationship between FSH action on the gonads and the usefulness of AMH as a marker in conditions affecting the reproductive axis. EXPERT OPINION Sertoli cells are the most active cell population in the prepubertal testis. Serum AMH is an excellent marker of FSH action on Sertoli cell proliferation and function in patients with hypogonadotropic hypogonadism. Low serum AMH is expected to predict low sperm production and prompts initial FSH treatment followed by human chorionic gonadotropin (hCG) or luteinizing hormone (LH) addition. Gonadotropin treatment may be more effective if installed to mimic the postnatal activation stage of the hypothalamic-pituitary-testicular axis. In females, AMH secretion by small antral follicles is stimulated by FSH. Elevated AMH indicates increased follicle numbers and should be considered as a potential contraindication of gonadotropin treatment in infertile patients due to an increased risk of developing ovarian hyperstimulation syndrome.
Collapse
Affiliation(s)
- Mariela Urrutia
- a Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología , Hospital de Niños Ricardo Gutiérrez , Buenos Aires , Argentina
| | - Romina P Grinspon
- a Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología , Hospital de Niños Ricardo Gutiérrez , Buenos Aires , Argentina
| | - Rodolfo A Rey
- a Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología , Hospital de Niños Ricardo Gutiérrez , Buenos Aires , Argentina
- b Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|