1
|
Amone F, Spina A, Perri A, Lofaro D, Zaccaria V, Insolia V, Lirangi C, Puoci F, Nobile V. Standardized Grape ( Vitis vinifera L.) Extract Improves Short- and Long-Term Cognitive Performances in Healthy Older Adults: A Randomized, Double-Blind, and Placebo-Controlled Trial. Foods 2024; 13:2999. [PMID: 39335927 PMCID: PMC11431441 DOI: 10.3390/foods13182999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Cognitive decline, a common consequence of aging, detrimentally affects independence, physical activity, and social interactions. This decline encompasses various cognitive functions, including processing speed, memory, language, and executive functioning. This trial aimed to investigate, with a double-blind, placebo-controlled clinical trial on 96 healthy older adults, the efficacy of once-daily 250 mg of a standardized grape (Vitis vinifera L.) juice extract (Cognigrape®) in improving short- and long-term cognitive functions. The results revealed significant improvements across multiple cognitive domains, notably immediate and delayed memory, visuospatial abilities, language, and attention, with improvements occurring within just 14 days, which continued to improve after 84 days of supplementation. The extract exhibited statistically significant enhancements in the Mini-Mental State Evaluation (MMSE), assessment of neuropsychological status (RBANS), "Esame Neuropsicologico Breve 2 (ENB-2), and Modified Bells Test (MBT) scores, with the latter test revealing a significant improvement in selective attention within just 90 min of the first dose. These positive results highlight the potential this natural grape extract has on improving cognitive function both acutely and chronically in a healthy aging population, which in turn supports a longer health span, at least cognitively.
Collapse
Affiliation(s)
- Fabio Amone
- R&D Department, Nutratech S.r.l., 87036 Rende, CS, Italy
| | - Amelia Spina
- R&D Department, Nutratech S.r.l., 87036 Rende, CS, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", 88100 Catanzaro, CZ, Italy
| | - Danilo Lofaro
- de-Health Lab, Department of Mechanical, Energy, Management Engineering, University of Calabria, 87036 Rende, CS, Italy
| | | | | | | | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87100 Cosenza, CS, Italy
| | - Vincenzo Nobile
- R&D Department, Complife Italia S.r.l., 27028 San Martino Siccomario, PV, Italy
| |
Collapse
|
2
|
De Silva NS, Siewiera J, Alkhoury C, Nader GPF, Nadalin F, de Azevedo K, Couty M, Izquierdo HM, Bhargava A, Conrad C, Maurin M, Antoniadou K, Fouillade C, Londono-Vallejo A, Behrendt R, Bertotti K, Serdjebi C, Lanthiez F, Gallwitz L, Saftig P, Herrero-Fernández B, Saez A, González-Granado JM, van Niel G, Boissonnas A, Piel M, Manel N. Nuclear envelope disruption triggers hallmarks of aging in lung alveolar macrophages. NATURE AGING 2023; 3:1251-1268. [PMID: 37723209 DOI: 10.1038/s43587-023-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.
Collapse
Affiliation(s)
| | - Johan Siewiera
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Chantal Alkhoury
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | | | - Kevin de Azevedo
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mickaël Couty
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | | | - Anvita Bhargava
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Cécile Conrad
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | - Charles Fouillade
- Institut Curie, PSL Research University, Université Paris-Saclay, CNRS, INSERM, UMR3347, U1021, Orsay, France
| | | | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | | | - François Lanthiez
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Lisa Gallwitz
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Beatriz Herrero-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Angela Saez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain
| | - José María González-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12). Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid. CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
3
|
Duan H, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int 2022; 158:111501. [DOI: 10.1016/j.foodres.2022.111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
4
|
Shi D, Tan Q, Ruan J, Tian Z, Wang X, Liu J, Liu X, Liu Z, Zhang Y, Sun C, Niu Y. Aging-related markers in rat urine revealed by dynamic metabolic profiling using machine learning. Aging (Albany NY) 2021; 13:14322-14341. [PMID: 34016789 PMCID: PMC8202887 DOI: 10.18632/aging.203046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/29/2021] [Indexed: 12/29/2022]
Abstract
The process of aging and metabolism is intimately intertwined; thus, developing biomarkers related to metabolism is critical for delaying aging. However, few studies have identified reliable markers that reflect aging trajectories based on machine learning. We generated metabolomic profiles from rat urine using ultra-performance liquid chromatography/mass spectrometry. This was dynamically collected at four stages of the rat's age (20, 50, 75, and 100 weeks) for both the training and test groups. Partial least squares-discriminant analysis score plots revealed a perfect separation trajectory in one direction with increasing age in the training and test groups. We further screened 25 aging-related biomarkers through the combination of four algorithms (VIP, time-series, LASSO, and SVM-RFE) in the training group. They were validated in the test group with an area under the curve of 1. Finally, six metabolites, known or novel aging-related markers, were identified, including epinephrine, glutarylcarnitine, L-kynurenine, taurine, 3-hydroxydodecanedioic acid, and N-acetylcitrulline. We also found that, except for N-acetylcitrulline (p < 0.05), the identified aging-related metabolites did not differ between tumor-free and tumor-bearing rats at 100 weeks (p > 0.05). Our findings reveal the metabolic trajectories of aging and provide novel biomarkers as potential therapeutic antiaging targets.
Collapse
Affiliation(s)
- Dan Shi
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Qilong Tan
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Jingqi Ruan
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Zhen Tian
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xinyue Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Jinxiao Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xin Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Zhipeng Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Yuntao Zhang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Changhao Sun
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Yucun Niu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| |
Collapse
|
5
|
Hewlings SJ, Draayer K, Kalman DS. Palm Fruit Bioactive Complex (PFBc), a Source of Polyphenols, Demonstrates Potential Benefits for Inflammaging and Related Cognitive Function. Nutrients 2021; 13:nu13041127. [PMID: 33808068 PMCID: PMC8066389 DOI: 10.3390/nu13041127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cognitive function is a key aspect of healthy aging. Inflammation associated with normal aging, also called inflammaging is a primary risk factor for cognitive decline. A diet high in fruits and vegetable and lower in calories, particularly a Mediterranean Diet, may lower the risk of age-related cognitive decline due in part to the associated high intake of antioxidants and polyphenols. A phenolic, Palm Fruit Bioactive complex (PFBc) derived from the extraction process of palm oil from oil palm fruit (Elaeis guineensis), is reported to offset inflammation due to its high antioxidant, especially vitamin E, and polyphenol content. The benefit is thought to be achieved via the influence of antioxidants on gene expression. It is the purpose of this comprehensive review to discuss the etiology, including gene expression, of mild cognitive impairment (MCI) specific to dietary intake of antioxidants and polyphenols and to focus on the potential impact of nutritional interventions specifically PFBc has on MCI. Several in vitro, in vivo and animal studies support multiple benefits of PFBc especially for improving cognitive function via anti-inflammatory and antioxidant mechanisms. While more human studies are needed, those completed thus far support the benefit of consuming PFBc to enhance cognitive function via its anti-inflammatory antioxidant functions.
Collapse
Affiliation(s)
- Susan J. Hewlings
- The Herbert H & Grace A. Dow College of Health Professions, Nutrition, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Nutrasource/GRAS Associates, Scientific Affairs, Guelph, ON N1G0B4, Canada;
- Correspondence:
| | - Kristin Draayer
- EDGE Veterinary Vaccines Consulting Group, 315 MAIN STREET 201, Ames, IA 50010, USA;
| | - Douglas S. Kalman
- Nutrasource/GRAS Associates, Scientific Affairs, Guelph, ON N1G0B4, Canada;
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
6
|
Qin H. Estimating network changes from lifespan measurements using a parsimonious gene network model of cellular aging. BMC Bioinformatics 2019; 20:599. [PMID: 31747877 PMCID: PMC6865033 DOI: 10.1186/s12859-019-3177-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022] Open
Abstract
Background Cellular aging is best studied in the budding yeast Saccharomyces cerevisiae. As an example of a pleiotropic trait, yeast lifespan is influenced by hundreds of interconnected genes. However, no quantitative methods are currently available to infer system-level changes in gene networks during cellular aging. Results We propose a parsimonious mathematical model of cellular aging based on stochastic gene interaction networks. This network model is made of only non-aging components: the strength of gene interactions declines with a constant mortality rate. Death of a cell occurs in the model when an essential node loses all of its interactions with other nodes, and is equivalent to the deletion of an essential gene. Stochasticity of gene interactions is modeled using a binomial distribution. We show that the exponential increase of mortality rate over time can emerge from this gene network model during the early stages of aging.We developed a maximal likelihood approach to estimate three lifespan-influencing network parameters from experimental lifespans: t0, the initial virtual age of the network system; n, the average lifespan-influencing interactions per essential node; and R, the initial mortality rate. We applied this model to yeast mutants with known effects on replicative lifespans. We found that deletion of SIR2, FOB1, and HXK2 considerably altered the initial virtual age but not the average lifespan-influencing interactions per essential node, suggesting that these mutations mainly influence the reliability of gene interactions but not the overall configurations of gene networks.We applied this model to investigate replicative lifespans of yeast natural isolates. We estimated that the average number of lifespan-influencing interactions per essential node is 7.0 (6.1–8) and the average estimated initial virtual age is 45.4 (30.6–74) cell divisions in these isolates. We also found that t0 could potentially mediate the observed Strehler-Mildvan correlation in yeast natural isolates. Conclusions Our theoretical model provides a parsimonious interpretation of experimental lifespan data from the perspective of gene networks. We hope that our work will stimulate more interest in developing network models to study aging as a pleiotropic trait.
Collapse
Affiliation(s)
- Hong Qin
- Department of Computer Science and Engineering, Department of Biology, Geology and Environmental Science, SimCenter, University of Tennessee at Chattanooga, Chattanooga, 37403, TN, U.S.A..
| |
Collapse
|
7
|
Drosophila larvae fed palm fruit juice (PFJ) delay pupation via expression regulation of hormetic stress response genes linked to ageing and longevity. Exp Gerontol 2018; 106:198-221. [DOI: 10.1016/j.exger.2018.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023]
|
8
|
Savion N, Levine A, Kotev-Emeth S, Bening Abu-Shach U, Broday L. S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans. PLoS One 2018; 13:e0194780. [PMID: 29579097 PMCID: PMC5868827 DOI: 10.1371/journal.pone.0194780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/11/2018] [Indexed: 01/04/2023] Open
Abstract
S-allylmercapto-N-acetylcysteine (ASSNAC) was shown in our previous study to activate Nrf2-mediated processes and increase glutathione level and resistance to oxidative stress in cultured endothelial cells. In this study, we explored the antioxidant protective effect of ASSNAC in Caenorhabditis elegans (C. elegans). Treatment of gst-4 reporter strain (CL2166) with increasing concentrations of ASSNAC (0.2 to 20 mM) for 24 hours and with ASSNAC (10 mM) for various time periods demonstrated a significant concentration- and time-dependent increase in Glutathione S-transferase (GST) gene expression (up to 60-fold at 20 mM after 24 hours). In addition, ASSNAC (2 mM; 24 hours) treatment of C. elegans strains N2 (wild type strain), gst-4 reporter (CL2166) and temperature sensitive sterile strain (CF512) significantly increased GST enzyme activity by 1.9-, 1.5- and 1.8-fold, respectively. ASSNAC (2.0 mM; 24 hours) increased the reduced glutathione content in N2 and CF512 strains by 5.9- and 4.9-fold, respectively. Exposure of C. elegans (N2 strain) to a lethal concentration of H2O2 (3.5 mM; 120 min) resulted in death of 88% of the nematodes while pretreatment with ASSNAC (24 hours) reduced nematodes death in a concentration-dependent manner down to 8% at 2.0 mM. C. elegans nematodes (strain CF512) cultured on agar plates containing ASSNAC (0.5 to 5.0 mM) demonstrated a significant increase in lifespan compared to control (mean lifespan 26.45 ± 0.64 versus 22.90 ± 0.59 days; log-rank p ≤ 0.001 at 2.0 mM) with a maximal lifespan of 40 versus 36 days. In conclusion, ASSNAC up-regulates the GST gene expression and enzyme activity as well as the glutathione content in C. elegans nematodes and thereby increases their resistance to oxidative stress and extends their lifespan.
Collapse
Affiliation(s)
- Naphtali Savion
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, Tel Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Amir Levine
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, Tel Aviv University, Tel-Aviv, Israel
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Shlomo Kotev-Emeth
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, Tel Aviv University, Tel-Aviv, Israel
| | - Ulrike Bening Abu-Shach
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
9
|
Xiangyun Y, Xiaomin N, linping G, Yunhua X, Ziming L, Yongfeng Y, Zhiwei C, Shun L. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 2017; 8:6984-6993. [PMID: 28036303 PMCID: PMC5351684 DOI: 10.18632/oncotarget.14346] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Tumor cells trends to express high level of pyruvate kinase M2 (PKM2). The inhibition of PKM2 activity is needed for antioxidant response by diverting glucose flux into the pentose phosphate pathway and thus generating sufficient reducing potential. Here we report that PKM2 is succinylated at lysine 498 (K498) and succinylation increases its activity. SIRT5 binds to, desuccinylates and inhibits PKM2 activity. Increased level of reactive oxygen species (ROS) decreases both the succinylation and activity of PKM2 by increasing its binding to SIRT5. Substitution of endogenous PKM2 with a succinylation mimetic mutant K498E decreases cellular NADPH production and inhibits cell proliferation and tumor growth. Moreover, inhibition of SIRT5 suppresses tumor cell proliferation through desuccinylation of PKM2 K498. These results reveal a new mechanism of PKM2 modification, a new function of SIRT5 in response to oxidative stress which stimulates cell proliferation and tumor growth, and also a potential target for clinical cancer research.
Collapse
Affiliation(s)
- Ye Xiangyun
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Niu Xiaomin
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Gu linping
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Xu Yunhua
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Li Ziming
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yu Yongfeng
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Chen Zhiwei
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Lu Shun
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| |
Collapse
|
10
|
A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab 2015; 22:86-99. [PMID: 26094889 PMCID: PMC4509734 DOI: 10.1016/j.cmet.2015.05.012] [Citation(s) in RCA: 560] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/02/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022]
Abstract
Prolonged fasting (PF) promotes stress resistance, but its effects on longevity are poorly understood. We show that alternating PF and nutrient-rich medium extended yeast lifespan independently of established pro-longevity genes. In mice, 4 days of a diet that mimics fasting (FMD), developed to minimize the burden of PF, decreased the size of multiple organs/systems, an effect followed upon re-feeding by an elevated number of progenitor and stem cells and regeneration. Bi-monthly FMD cycles started at middle age extended longevity, lowered visceral fat, reduced cancer incidence and skin lesions, rejuvenated the immune system, and retarded bone mineral density loss. In old mice, FMD cycles promoted hippocampal neurogenesis, lowered IGF-1 levels and PKA activity, elevated NeuroD1, and improved cognitive performance. In a pilot clinical trial, three FMD cycles decreased risk factors/biomarkers for aging, diabetes, cardiovascular disease, and cancer without major adverse effects, providing support for the use of FMDs to promote healthspan.
Collapse
|
11
|
Asthana J, Yadav AK, Pant A, Pandey S, Gupta MM, Pandey R. Specioside ameliorates oxidative stress and promotes longevity in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2015; 169:25-34. [PMID: 25619942 DOI: 10.1016/j.cbpc.2015.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 11/20/2022]
Abstract
Specioside (6-O-coumaroylcatalpol) is an iridoid glucoside which possesses multifunctional activities viz. analgesic, antidyspeptic, astringent, liver stimulating and wound healing properties. The present study for the first time delineates stress alleviating and lifespan prolonging action of specioside (SPC), isolated from Stereospermum suaveolens in the free living, multicellular nematode model Caenorhabditis elegans. A strong correlation between lifespan extension and stress modulation in adult worms was established in a dose dependent manner. The dietary intake of this phytomolecule elevated juglone induced oxidative and heat induced thermal stress tolerance in C. elegans. On evaluation, it was found that 25 μM dose of SPC significantly extended lifespan by 15.47% (P≤0.0001) with reduction in stress level. Furthermore, SPC enhanced mean survival in mev-1 mutant suggesting its oxidative stress reducing potential. Furthermore, SPC augmented stress modulatory enzymes superoxide dismutase (SOD) and catalase (CAT) level in C. elegans. Altogether, these findings broaden current perspectives concerning stress alleviating potentials of SPC and have implications in development of therapeutics for curing age related disorders.
Collapse
Affiliation(s)
- Jyotsna Asthana
- Department of Microbial Technology and Nematology, CSIR, Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226 015, India
| | - A K Yadav
- Analytical Chemistry Division, CSIR, Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226 015, India
| | - Aakanksha Pant
- Department of Microbial Technology and Nematology, CSIR, Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226 015, India
| | - Swapnil Pandey
- Department of Microbial Technology and Nematology, CSIR, Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226 015, India
| | - M M Gupta
- Analytical Chemistry Division, CSIR, Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226 015, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR, Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226 015, India.
| |
Collapse
|
12
|
Wood JG, Whitaker R, Helfand SL. Genetic and biochemical tools for investigating sirtuin function in Drosophila melanogaster. Methods Mol Biol 2013; 1077:57-67. [PMID: 24014399 DOI: 10.1007/978-1-62703-637-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Drosophila melanogaster is one of the most widely used genetic model systems in biology. The ease of working in an invertebrate model system allows the design and execution of many experiments that would be infeasible in a vertebrate model. Although the strength of the fly as a model system lies primarily in the ease of genetic manipulation, it is flexible enough that biochemical and proteomic approaches can also be used to build a more comprehensive study. Here we present a pair of complementary protocols that we have used to examine sirtuin biology in Drosophila. First, we describe our protocol for measuring lifespan in flies expressing a gene of interest under the inducible control of the Gene-Switch system. Finally, we describe a method for performing chromatin immunoprecipitation on adult flies, including some of the difficulties associated with using this technique in chitinous tissue.
Collapse
Affiliation(s)
- Jason G Wood
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | | | | |
Collapse
|
13
|
Estrela JM, Ortega A, Mena S, Rodriguez ML, Asensi M. Pterostilbene: Biomedical applications. Crit Rev Clin Lab Sci 2013; 50:65-78. [DOI: 10.3109/10408363.2013.805182] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Yu SL, An YJ, Yang HJ, Kang MS, Kim HY, Wen H, Jin X, Kwon HN, Min KJ, Lee SK, Park S. Alanine-Metabolizing Enzyme Alt1 Is Critical in Determining Yeast Life Span, As Revealed by Combined Metabolomic and Genetic Studies. J Proteome Res 2013; 12:1619-27. [DOI: 10.1021/pr300979r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sung-Lim Yu
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Yong Jin An
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Hey-ji Yang
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Mi-Sun Kang
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Ho-Yeol Kim
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - He Wen
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Xing Jin
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Hyuk Nam Kwon
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Kyung-Jin Min
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Sung-Keun Lee
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| | - Sunghyouk Park
- Inha
Research Institute for Medical Sciences, ‡Department of Biochemistry, and §Department of
Pharmacology, Center for Advanced Medical Education by
BK21 project, College of Medicine and ∥Department of Biological Sciences, Inha University, Incheon, Korea, 400-712
- College
of Pharmacy and #Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu,
Seoul, Korea, 151-742
| |
Collapse
|
15
|
Dimmeler S, Nicotera P. MicroRNAs in age-related diseases. EMBO Mol Med 2013; 5:180-90. [PMID: 23339066 PMCID: PMC3569636 DOI: 10.1002/emmm.201201986] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/03/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022] Open
Abstract
Aging is a complex process that is linked to an increased incidence of major diseases such as cardiovascular and neurodegenerative disease, but also cancer and immune disorders. MicroRNAs (miRNAs) are small non-coding RNAs, which post-transcriptionally control gene expression by inhibiting translation or inducing degradation of targeted mRNAs. MiRNAs target up to hundreds of mRNAs, thereby modulating gene expression patterns. Many miRNAs appear to be dysregulated during cellular senescence, aging and disease. However, only few miRNAs have been so far linked to age-related changes in cellular and organ functions. The present article will discuss these findings, specifically focusing on the cardiovascular and neurological systems.
Collapse
Affiliation(s)
- Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
| | | |
Collapse
|
16
|
Choudhery MS, Khan M, Mahmood R, Mohsin S, Akhtar S, Ali F, Khan SN, Riazuddin S. Mesenchymal stem cells conditioned with glucose depletion augments their ability to repair-infarcted myocardium. J Cell Mol Med 2012; 16:2518-29. [PMID: 22435530 PMCID: PMC3823444 DOI: 10.1111/j.1582-4934.2012.01568.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are an attractive candidate for autologous cell therapy, but their ability to repair damaged myocardium is severely compromised with advanced age. Development of viable autologous cell therapy for treatment of heart failure in the elderly requires the need to address MSC ageing. In this study, MSCs from young (2 months) and aged (24 months) C57BL/6 mice were characterized for gene expression of IGF-1, FGF-2, VEGF, SIRT-1, AKT, p16(INK4a) , p21 and p53 along with measurements of population doubling (PD), superoxide dismutase (SOD) activity and apoptosis. Aged MSCs displayed senescent features compared with cells isolated from young animals and therefore were pre-conditioned with glucose depletion to enhance age affected function. Pre-conditioning of aged MSCs led to an increase in expression of IGF-1, AKT and SIRT-1 concomitant with enhanced viability, proliferation and delayed senescence. To determine the myocardial repair capability of pre-conditioned aged MSCs, myocardial infarction (MI) was induced in 24 months old C57BL/6 wild type mice and GFP expressing untreated and pre-conditioned aged MSCs were transplanted. Hearts transplanted with pre-conditioned aged MSCs showed increased expression of paracrine factors, such as IGF-1, FGF-2, VEGF and SDF-1α. This was associated with significantly improved cardiac performance as measured by dp/dt(max), dp/dt(min), LVEDP and LVDP, declined left ventricle (LV) fibrosis and apoptosis as measured by Masson's Trichrome and TUNEL assays, respectively, after 30 days of transplantation. In conclusion, pre-conditioning of aged MSCs with glucose depletion can enhance proliferation, delay senescence and restore the ability of aged cells to repair senescent infarcted myocardium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sheikh Riazuddin
- *Correspondence to: Sheikh RIAZUDDIN, Ph.D., National Center of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan. Tel: 042-35293142 Fax: 042-35293149 E-mail:
| |
Collapse
|
17
|
Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, Andò S, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle 2012; 11:3599-610. [PMID: 22935696 PMCID: PMC3478311 DOI: 10.4161/cc.21884] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Here, we investigated the compartment-specific role of cell cycle arrest and senescence in breast cancer tumor growth. For this purpose, we generated a number of hTERT-immortalized senescent fibroblast cell lines overexpressing CDK inhibitors, such as p16(INK4A), p19(ARF) or p21(WAF1/CIP1). Interestingly, all these senescent fibroblast cell lines showed evidence of increased susceptibility toward the induction of autophagy (either at baseline or after starvation), as well as significant mitochondrial dysfunction. Most importantly, these senescent fibroblasts also dramatically promoted tumor growth (up to ~2-fold), without any comparable increases in tumor angiogenesis. Conversely, we generated human breast cancer cells (MDA-MB-231 cells) overexpressing CDK inhibitors, namely p16(INK4A) or p21(WAF1/CIP1). Senescent MDA-MB-231 cells also showed increased expression of markers of cell cycle arrest and autophagy, including β-galactosidase, as predicted. Senescent MDA-MB-231 cells had retarded tumor growth, with up to a near 2-fold reduction in tumor volume. Thus, the effects of CDK inhibitors are compartment-specific and are related to their metabolic effects, which results in the induction of autophagy and mitochondrial dysfunction. Finally, induction of cell cycle arrest with specific inhibitors (PD0332991) or cellular stressors [hydrogen peroxide (H₂O₂) or starvation] indicated that the onset of autophagy and senescence are inextricably linked biological processes. The compartment-specific induction of senescence (and hence autophagy) may be a new therapeutic target that could be exploited for the successful treatment of human breast cancer patients.
Collapse
Affiliation(s)
- Claudia Capparelli
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Capparelli C, Guido C, Whitaker-Menezes D, Bonuccelli G, Balliet R, Pestell TG, Goldberg AF, Pestell RG, Howell A, Sneddon S, Birbe R, Tsirigos A, Martinez-Outschoorn U, Sotgia F, Lisanti MP. Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle 2012; 11:2285-302. [PMID: 22684298 PMCID: PMC3383590 DOI: 10.4161/cc.20718] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Senescent fibroblasts are known to promote tumor growth. However, the exact mechanism remains largely unknown. An important clue comes from recent studies linking autophagy with the onset of senescence. Thus, autophagy and senescence may be part of the same physiological process, known as the autophagy-senescence transition (AST). To test this hypothesis, human fibroblasts immortalized with telomerase (hTERT-BJ1) were stably transfected with autophagy genes (BNIP3, CTSB or ATG16L1). Their overexpression was sufficient to induce a constitutive autophagic phenotype, with features of mitophagy, mitochondrial dysfunction and a shift toward aerobic glycolysis, resulting in L-lactate and ketone body production. Autophagic fibroblasts also showed features of senescence, with increased p21(WAF1/CIP1), a CDK inhibitor, cellular hypertrophy and increased β-galactosidase activity. Thus, we genetically validated the existence of the autophagy-senescence transition. Importantly, autophagic-senescent fibroblasts promoted tumor growth and metastasis, when co-injected with human breast cancer cells, independently of angiogenesis. Autophagic-senescent fibroblasts stimulated mitochondrial metabolism in adjacent cancer cells, when the two cell types were co-cultured, as visualized by MitoTracker staining. In particular, autophagic ATG16L1 fibroblasts, which produced large amounts of ketone bodies (3-hydroxy-butyrate), had the strongest effects and promoted metastasis by up to 11-fold. Conversely, expression of ATG16L1 in epithelial cancer cells inhibited tumor growth, indicating that the effects of autophagy are compartment-specific. Thus, autophagic-senescent fibroblasts metabolically promote tumor growth and metastasis, by paracrine production of high-energy mitochondrial fuels. Our current studies provide genetic support for the importance of “two-compartment tumor metabolism” in driving tumor growth and metastasis via a simple energy transfer mechanism. Finally, β-galactosidase, a known lysosomal enzyme and biomarker of senescence, was localized to the tumor stroma in human breast cancer tissues, providing in vivo support for our hypothesis. Bioinformatic analysis of genome-wide transcriptional profiles from tumor stroma, isolated from human breast cancers, also validated the onset of an autophagy-senescence transition. Taken together, these studies establish a new functional link between host aging, autophagy, the tumor microenvironment and cancer metabolism.
Collapse
Affiliation(s)
- Claudia Capparelli
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ertel A, Tsirigos A, Whitaker-Menezes D, Birbe RC, Pavlides S, Martinez-Outschoorn UE, Pestell RG, Howell A, Sotgia F, Lisanti MP. Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle 2012; 11:253-63. [PMID: 22234241 DOI: 10.4161/cc.11.2.19006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aging drives large systemic reductions in oxidative mitochondrial function, shifting the entire body metabolically towards aerobic glycolysis, a.k.a, the Warburg effect. Aging is also one of the most significant risk factors for the development of human cancers, including breast tumors. How are these two findings connected? One simplistic idea is that cancer cells rebel against the aging process by increasing their capacity for oxidative mitochondrial metabolism (OXPHOS). Then, local and systemic aerobic glycolysis in the aging host would provide energy-rich mitochondrial fuels (such as L-lactate and ketones) to directly "fuel" tumor cell growth and metastasis. This would establish a type of parasite-host relationship or "two-compartment tumor metabolism", with glycolytic/oxidative metabolic-coupling. The cancer cells ("the seeds") would flourish in this nutrient-rich microenvironment ("the soil"), which has been fertilized by host aging. In this scenario, cancer cells are only trying to save themselves from the consequences of aging, by engineering a metabolic mutiny, through the amplification of mitochondrial metabolism. We discuss the recent findings of Drs. Ron DePinho (MD Anderson) and Craig Thomspson (Sloan-Kettering) that are also consistent with this new hypothesis, linking cancer progression with metabolic aging. Using data mining and bioinformatics approaches, we also provide key evidence of a role for PGC1a/NRF1 signaling in the pathogenesis of (1) two-compartment tumor metabolism, and (2) mitochondrial biogenesis in human breast cancer cells.
Collapse
Affiliation(s)
- Adam Ertel
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Balliet RM, Capparelli C, Guido C, Pestell TG, Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Chiavarina B, Pestell RG, Howell A, Sotgia F, Lisanti MP. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection. Cell Cycle 2011; 10:4065-73. [PMID: 22129993 PMCID: PMC3272288 DOI: 10.4161/cc.10.23.18254] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/15/2011] [Indexed: 12/14/2022] Open
Abstract
Increasing chronological age is the most significant risk factor for cancer. Recently, we proposed a new paradigm for understanding the role of the aging and the tumor microenvironment in cancer onset. In this model, cancer cells induce oxidative stress in adjacent stromal fibroblasts. This, in turn, causes several changes in the phenotype of the fibroblast including mitochondrial dysfunction, hydrogen peroxide production, and aerobic glycolysis, resulting in high levels of L-lactate production. L-lactate is then transferred from these glycolytic fibroblasts to adjacent epithelial cancer cells and used as "fuel" for oxidative mitochondrial metabolism. Here, we created a new pre-clinical model system to directly test this hypothesis experimentally. To synthetically generate glycolytic fibroblasts, we genetically-induced mitochondrial dysfunction by knocking down TFAM using an sh-RNA approach. TFAM is mitochondrial transcription factor A, which is important in functionally maintaining the mitochondrial respiratory chain. Interestingly, TFAM-deficient fibroblasts showed evidence of mitochondrial dysfunction and oxidative stress, with the loss of certain mitochondrial respiratory chain components, and the over-production of hydrogen peroxide and L-lactate. Thus, TFAM-deficient fibroblasts underwent metabolic reprogramming towards aerobic glycolysis. Most importantly, TFAM-deficient fibroblasts significantly promoted tumor growth, as assayed using a human breast cancer (MDA-MB-231) xenograft model. These increases in glycolytic fibroblast driven tumor growth were independent of tumor angiogenesis. Mechanistically, TFAM-deficient fibroblasts increased the mitochondrial activity of adjacent epithelial cancer cells in a co-culture system, as seen using MitoTracker. Finally, TFAM-deficient fibroblasts also showed a loss of caveolin-1 (Cav-1), a known breast cancer stromal biomarker. Loss of stromal fibroblast Cav-1 is associated with early tumor recurrence, metastasis, and treatment failure, resulting in poor clinical outcome in breast cancer patients. Thus, this new experimental model system, employing glycolytic fibroblasts, may be highly clinically relevant. These studies also have implications for understanding the role of hydrogen peroxide production in oxidative damage and "host cell aging," in providing a permissive metabolic microenvironment for promoting and sustaining tumor growth.
Collapse
Affiliation(s)
- Renee M Balliet
- The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
- Departments of Stem Cell Biology & Regenerative Medicine; Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
| | - Claudia Capparelli
- The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
- Departments of Stem Cell Biology & Regenerative Medicine; Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
| | - Carmela Guido
- The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
- Departments of Stem Cell Biology & Regenerative Medicine; Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
| | - Timothy G Pestell
- The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
- Departments of Stem Cell Biology & Regenerative Medicine; Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
| | - Ubaldo E Martinez-Outschoorn
- The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
- Departments of Stem Cell Biology & Regenerative Medicine; Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
- Medical Oncology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
| | - Zhao Lin
- The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
- Departments of Stem Cell Biology & Regenerative Medicine; Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
| | - Diana Whitaker-Menezes
- The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
- Departments of Stem Cell Biology & Regenerative Medicine; Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
| | - Barbara Chiavarina
- The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
- Departments of Stem Cell Biology & Regenerative Medicine; Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
| | - Richard G Pestell
- The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
- Departments of Stem Cell Biology & Regenerative Medicine; Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
| | - Anthony Howell
- Manchester Breast Centre & Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer; Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; UK
| | - Federica Sotgia
- The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
- Departments of Stem Cell Biology & Regenerative Medicine; Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
- Manchester Breast Centre & Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer; Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; UK
| | - Michael P Lisanti
- The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
- Departments of Stem Cell Biology & Regenerative Medicine; Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
- Medical Oncology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
- Manchester Breast Centre & Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer; Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; UK
| |
Collapse
|
21
|
Liao VHC, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev 2011; 132:480-7. [DOI: 10.1016/j.mad.2011.07.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/30/2011] [Accepted: 07/31/2011] [Indexed: 12/26/2022]
|
22
|
Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, Bäsecke J, Stivala F, Donia M, Fagone P, Malaponte G, Mazzarino MC, Nicoletti F, Libra M, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Laidler P, Milella M, Tafuri A, Bonati A, Evangelisti C, Cocco L, Martelli AM, McCubrey JA. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2011; 2:135-64. [PMID: 21411864 PMCID: PMC3260807 DOI: 10.18632/oncotarget.240] [Citation(s) in RCA: 449] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Integral components of these pathways, Ras, B-Raf, PI3K, and PTEN are also activated/inactivated by mutations. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of these pathways can contribute to chemotherapeutic drug resistance, proliferation of cancer initiating cells (CICs) and premature aging. This review will evaluate more recently described potential uses of MEK, PI3K, Akt and mTOR inhibitors in the proliferation of malignant cells, suppression of CICs, cellular senescence and prevention of aging. Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways play key roles in the regulation of normal and malignant cell growth. Inhibitors targeting these pathways have many potential uses from suppression of cancer, proliferative diseases as well as aging.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lisanti MP, Martinez-Outschoorn UE, Lin Z, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs "fertilizer". Cell Cycle 2011; 10:2440-9. [PMID: 21734470 PMCID: PMC3180186 DOI: 10.4161/cc.10.15.16870] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/18/2011] [Indexed: 01/13/2023] Open
Abstract
In 1889, Dr. Stephen Paget proposed the "seed and soil" hypothesis, which states that cancer cells (the seeds) need the proper microenvironment (the soil) for them to grow, spread and metastasize systemically. In this hypothesis, Dr. Paget rightfully recognized that the tumor microenvironment has an important role to play in cancer progression and metastasis. In this regard, a series of recent studies have elegantly shown that the production of hydrogen peroxide, by both cancer cells and cancer-associated fibroblasts, may provide the necessary "fertilizer," by driving accelerated aging, DNA damage, inflammation and cancer metabolism, in the tumor microenvironment. By secreting hydrogen peroxide, cancer cells and fibroblasts are mimicking the behavior of immune cells (macrophages/neutrophils), driving local and systemic inflammation, via the innate immune response (NFκB). Thus, we should consider using various therapeutic strategies (such as catalase and/or other anti-oxidants) to neutralize the production of cancer-associated hydrogen peroxide, thereby preventing tumor-stroma co-evolution and metastasis. The implications of these findings for overcoming chemo-resistance in cancer cells are also discussed in the context of hydrogen peroxide production and cancer metabolism.
Collapse
Affiliation(s)
- Michael P Lisanti
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lisanti MP, Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Accelerated aging in the tumor microenvironment: connecting aging, inflammation and cancer metabolism with personalized medicine. Cell Cycle 2011; 10:2059-63. [PMID: 21654190 DOI: 10.4161/cc.10.13.16233] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cancer is thought to be a disease associated with aging. Interestingly, normal aging is driven by the production of ROS and mitochondrial oxidative stress, resulting in the cumulative accumulation of DNA damage. Here, we discuss how ROS signaling, NFκB- and HIF1-activation in the tumor microenvironment induces a form of "accelerated aging," which leads to stromal inflammation and changes in cancer cell metabolism. Thus, we present a unified model where aging (ROS), inflammation (NFκB) and cancer metabolism (HIF1), act as co-conspirators to drive autophagy ("self-eating") in the tumor stroma. Then, autophagy in the tumor stroma provides high-energy "fuel" and the necessary chemical building blocks, for accelerated tumor growth and metastasis. Stromal ROS production acts as a "mutagenic motor" and allows cancer cells to buffer-at a distance-exactly how much of a mutagenic stimulus they receive, further driving tumor cell selection and evolution. Surviving cancer cells would be selected for the ability to induce ROS more effectively in stromal fibroblasts, so they could extract more nutrients from the stroma via autophagy. If lethal cancer is a disease of "accelerated host aging" in the tumor stroma, then cancer patients may benefit from therapy with powerful antioxidants. Antioxidant therapy should block the resulting DNA damage, and halt autophagy in the tumor stroma, effectively "cutting off the fuel supply" for cancer cells. These findings have important new implications for personalized cancer medicine, as they link aging, inflammation and cancer metabolism with novel strategies for more effective cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Michael P Lisanti
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
A proper balance between synthesis, maturation and degradation of cellular proteins is crucial for cells to maintain physiological functions. The costly process of protein synthesis is tightly coupled to energy status and nutrient levels by the mammalian target of rapamycin (mTOR), whereas the quality of newly synthesized polypeptides is largely maintained by molecular chaperones and the ubiquitin-proteasome system. There is a wealth of evidence indicating close ties between the nutrient signaling pathway and the intracellular stress response. Dysregulation of both systems has been implicated in aging and age-associated pathologies. In this review, we describe molecular mechanisms underlying the connection between mTOR and the chaperone network and discuss the importance of their functional interaction in growth and aging.
Collapse
Affiliation(s)
- Crystal S Conn
- Graduate Field of Genetics and Development, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
26
|
Ugalde AP, Mariño G, López-Otín C. Rejuvenating somatotropic signaling: a therapeutical opportunity for premature aging? Aging (Albany NY) 2010; 2:1017-22. [PMID: 21212467 PMCID: PMC3034170 DOI: 10.18632/aging.100262] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 11/25/2022]
Abstract
We have recently reported that progeroid Zmpste24-/- mice, which exhibit multiple defects that phenocopy Hutchinson-Gilford progeria syndrome, show a profound dysregulation of somatotropic axis, mainly characterized by the occurrence of very high circulating levels of growth hormone (GH) and a drastic reduction in insulin-like growth factor-1 (IGF-1). We have also shown that restoration of the proper GH/IGF-1 balance in Zmpste24-/- mice by treatment with recombinant IGF-1 delays the onset of many progeroid features in these animals and significantly extends their lifespan. Here, we summarize these observations and discuss the importance of GH/IGF-1 balance in longevity as well as its modulation as a putative therapeutic strategy for the treatment of human progeroid syndromes.
Collapse
Affiliation(s)
- Alejandro P Ugalde
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | | | | |
Collapse
|
27
|
Gertz M, Steegborn C. The Lifespan-regulator p66Shc in mitochondria: redox enzyme or redox sensor? Antioxid Redox Signal 2010; 13:1417-28. [PMID: 20214499 DOI: 10.1089/ars.2010.3147] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondria contribute to various diseases and aging phenotypes. Reactive oxygen species (ROS), mainly formed by the respiratory chain, were long thought to cause these effects by damaging proteins, DNA, and lipids. The emerging understanding that ROS act not only destructively but also as dedicated signaling molecules, and that aging processes are regulated by specific signaling networks has stimulated research on mitochondrial signaling systems and the regulation of mitochondrial ROS metabolism. p66Shc is a lifespan-regulating protein contributing to mitochondrial ROS metabolism and regulating the mitochondrial apoptosis pathway. It was found to participate in aging processes and has been implicated in several pathologies. Considerable progress has been made recently concerning the molecular function of p66Shc. It appears that p66Shc responds to a variety of proapoptotic stimuli by increasing ROS levels in the mitochondrial intermembrane space through an inherent ROS-producing activity, and that this ROS formation might trigger initiation of the mitochondrial apoptosis pathway. In this review, we will discuss the current knowledge on the molecular architecture of the p66Shc protein, its role in ROS metabolism and apoptosis regulation in the mitochondrial intermembrane space, the regulation of its mitochondrial transport, and the molecular mechanisms and interactions involved in these processes.
Collapse
Affiliation(s)
- Melanie Gertz
- Department of Physiological Chemistry, Ruhr-University Bochum, Germany
| | | |
Collapse
|
28
|
Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1658-65. [PMID: 19766741 DOI: 10.1016/j.bbapap.2009.09.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/13/2009] [Accepted: 09/10/2009] [Indexed: 11/21/2022]
Abstract
Sirtuins are a family of protein deacetylases that catalyze the nicotinamide adenine dinucleotide (NAD(+))-dependent removal of acetyl groups from modified lysine side chains in various proteins. Sirtuins act as metabolic sensors and influence metabolic adaptation but also many other processes such as stress response mechanisms, gene expression, and organismal aging. Mammals have seven Sirtuin isoforms, three of them - Sirt3, Sirt4, and Sirt5 - located to mitochondria, our centers of energy metabolism and apoptosis initiation. In this review, we shortly introduce the mammalian Sirtuin family, with a focus on the mitochondrial isoforms. We then discuss in detail the current knowledge on the mitochondrial isoform Sirt5. Its physiological role in metabolic regulation has recently been confirmed, whereas an additional function in apoptosis regulation remains speculative. We will discuss the biochemical properties of Sirt5 and how they might contribute to its physiological function. Furthermore, we discuss the potential use of Sirt5 as a drug target, structural features of Sirt5 and of an Sirt5/inhibitor complex as well as their differences to other Sirtuins and the current status of modulating Sirt5 activity with pharmacological compounds.
Collapse
|
29
|
Obukhova LA, Skulachev VP, Kolosova NG. Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats. Aging (Albany NY) 2009; 1:389-401. [PMID: 20195490 PMCID: PMC2830050 DOI: 10.18632/aging.100043] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 04/20/2009] [Indexed: 11/25/2022]
Abstract
One
of the most striking changes during mammal aging is a progressive
involution of the thymus, associated with an increase in susceptibility to
infections, autoimmune diseases and cancer. In order to delay age-related
processes, we have developed mitochondria-targeted antioxidant
plastoquinonyl decyltriphenyl phosphonium (SkQ1). Here we report that, at
low doses, SkQ1 (250 nmol/kg per day) inhibited age-dependent
involution of the thymus in normal (Wistar) and senescence-prone (OXYS)
rats. SkQ1 preserved total weight and volume of the organ, the volume of
thymic cortex and medulla, the thymic cellularity, and the number of CD3+,
CD4+, and CD8+ cells in the thymus. Moreover, SkQ1 was especially effective
in senescence-prone rats. Thus SkQ1 slows down age-linked
decline of the immune system, explaining prevention by this compound of
infection-caused death in rodents, previously described in our group.
Collapse
Affiliation(s)
- Lidia A Obukhova
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
30
|
Abstract
It is commonly assumed that growth and aging are somehow linked, but the nature of this link has been elusive. Here we review the aging process as a continuation of TOR-driven growth. TOR is absolutely essential for developmental growth, but upon completion of development it causes aging and age-related diseases. Thus, the nutrient-sensing and growth-promoting TOR signaling pathway may provide a molecular link between growth and aging that is universal from yeast to human.
Collapse
|