1
|
Davis TME, Bruce DG, Schimke K, Chubb SAP, Davis WA. The inter-relationship between Helicobacter pylori infection, dementia and mortality in type 2 diabetes: The Fremantle Diabetes Study Phase I. J Diabetes Complications 2024; 38:108854. [PMID: 39244938 DOI: 10.1016/j.jdiacomp.2024.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Given sparse relevant data, the aim of this study was to determine whether Helicobacter pylori infection, including cytotoxin-associated gene-A (CagA) producing strains, is associated with dementia in type 2 diabetes (T2DM). METHODS Longitudinal data from 1115 participants in the community-based Fremantle Diabetes Study Phase I (mean age 64.0 years, 48.0 % males; 38.0 % H. pylori seronegative, 24.3 % H. pylori seropositive/CagA seronegative, and 37.7 % H. pylori/CagA seropositive at baseline) were analyzed. RESULTS During up to 19 years of follow-up, 50.3 % and 83.5 % of participants without and with incident dementia, respectively, died. In Cox proportional hazards models, H. pylori/CagA seropositivity (hazard ratio (95 % CI) 1.68 (1.15, 2.46), P = 0.008), but not H. pylori seropositivity/CagA seronegativity (P = 0.541) was an independent predictor of incident dementia, but neither H. pylori seropositivity/CagA seronegativity nor H. pylori/CagA seropositivity were significant predictors in competing risks models (P ≥ 0.280). CONCLUSIONS Although CagA seropositivity in T2DM may have a contributory etiologic role in the risk of dementia, this may be through its association with reduced cardiovascular/all-cause mortality.
Collapse
Affiliation(s)
- Timothy M E Davis
- University of Western Australia, Medical School, Fremantle Hospital, PO Box 480, Fremantle, Western Australia 6959, Australia; Department of Endocrinology and Diabetes, Fiona Stanley and Fremantle Hospitals Group, 11 Robin Warren Drive, Murdoch, Western Australia 6150, Australia.
| | - David G Bruce
- University of Western Australia, Medical School, Fremantle Hospital, PO Box 480, Fremantle, Western Australia 6959, Australia
| | - Katrin Schimke
- University of Western Australia, Medical School, Fremantle Hospital, PO Box 480, Fremantle, Western Australia 6959, Australia; Center Practice, Neumarkt 1, St Leonhardstrasse 35, 9000 St Gallen, Switzerland
| | - S A Paul Chubb
- University of Western Australia, Medical School, Fremantle Hospital, PO Box 480, Fremantle, Western Australia 6959, Australia
| | - Wendy A Davis
- University of Western Australia, Medical School, Fremantle Hospital, PO Box 480, Fremantle, Western Australia 6959, Australia
| |
Collapse
|
2
|
Zeiher C, Kuhrt H, Rifflet A, Winter K, Boon L, Stassart RM, Nutma E, Middeldorp J, Strating IM, Boneca IG, Bechmann I, Laman JD. Peptidoglycan accumulates in distinct brain regions and cell types over lifetime but is absent in newborns. Brain Behav Immun 2024; 123:799-812. [PMID: 39442638 DOI: 10.1016/j.bbi.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/28/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
Peptidoglycan (PGN) is a large complex polymer critical to structure and function of all bacterial species. Intact PGN and its fragments are inflammatory, contributing to infectious and autoimmune disease. Recent studies show that PGN physiologically contributes to immune setpoints, and importantly also to mouse brain development and behavior. However, for the human brain, it remains unknown whether PGN and its fragments differentially gain access to distinct brain regions, which cell types accumulate it, and whether PGN brain load varies with age. Therefore, we investigated human postmortem brain samples of donors with an extensive age range, from newborns to nonagenarians. We examined two monoclonal antibodies against PGN which were validated using dot blot analysis, competition assays and immunofluorescence experiments on bacteria sacculi, which jointly showed specific detection of Gram-positive PGN. As positive reference tissue, brain tissue from sepsis patients, and human liver were used, both showing the expected high PGN levels. In adult brain tissue of different age (34- to 94-year-old) and sex, we detected PGN signals in seven different brain regions, with highest loads in the occipital cortex, hippocampal formation, frontal cortex, the periventricular region and the olfactory bulb. Age-dependent increase of signals was not evident by microscopic observations and only weak correlation was found by statistical analysis in this cohort. PGN was found intracellularly in the cytoplasm surrounding the cell nucleus in astrocytes, oligodendrocytes, neurons, and endothelial cells, but not in macrophages like microglia. PGN was absent in brain tissues of three human newborns (stillbirth to four weeks old). For comparison, three brain regions from non-human primates of varying age (newborn to 21 years) were immunohistochemically stained. The highest PGN-load was observed in brain tissue from 18- to 21-year-old macaques. This first systematic evaluation of PGN in human postmortem brain suggests that PGN accumulates during lifetime until it reaches a plateau by homeostatic turnover and highlights the ubiquitous presence of PGN in human brain tissues, and their ability to participate in physiological as well as pathological processes throughout life.
Collapse
Affiliation(s)
- Carolin Zeiher
- Institute of Anatomy, University of Leipzig, Leipzig, Germany.
| | - Heidrun Kuhrt
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Aline Rifflet
- Institute Pasteur, Université Paris Cité, INSERM U1306, Biology and Genetics of the Bacterial Cell Wall Unit, F-75015 Paris, France
| | - Karsten Winter
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | | | | | - Erik Nutma
- Biomedical Primate Research Centre (BPRC), Department of Neurobiology and Aging, Rijswijk, Netherlands (The)
| | - Jinte Middeldorp
- Biomedical Primate Research Centre (BPRC), Department of Neurobiology and Aging, Rijswijk, Netherlands (The)
| | - Inge M Strating
- University Groningen, University Medical Center Groningen (UMCG), Dept. Pathology & Medical Biology, and MS Center Noord Nederland (MSCNN), Groningen, Netherlands (The)
| | - Ivo G Boneca
- Institute Pasteur, Université Paris Cité, INSERM U1306, Biology and Genetics of the Bacterial Cell Wall Unit, F-75015 Paris, France.
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany.
| | - Jon D Laman
- University Groningen, University Medical Center Groningen (UMCG), Dept. Pathology & Medical Biology, and MS Center Noord Nederland (MSCNN), Groningen, Netherlands (The).
| |
Collapse
|
3
|
Xiao L, Tang R, Wang J, Wan D, Yin Y, Xie L. Gut microbiota bridges the iron homeostasis and host health. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1952-1975. [PMID: 37515687 DOI: 10.1007/s11427-022-2302-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/08/2023] [Indexed: 07/31/2023]
Abstract
The gut microbiota acts as a symbiotic microecosystem that plays an indispensable role in the regulation of a number of metabolic processes in the host by secreting secondary metabolites and impacting the physiology and pathophysiology of numerous organs and tissues through the circulatory system. This relationship, referred to as the "gut-X axis", is associated with the development and progression of disorders, including obesity, fatty liver and Parkinson's disease. Given its importance, the gut flora is a vital research area for the understanding and development of the novel therapeutic approaches for multiple disorders. Iron is a common but necessary element required by both mammals and bacteria. As a result, iron metabolism is closely intertwined with the gut microbiota. The host's iron homeostasis affects the composition of the gut microbiota and the interaction between host and gut microbiota through various mechanisms such as nutrient homeostasis, intestinal peaceability, gut immunity, and oxidative stress. Therefore, understanding the relationship between gut microbes and host iron metabolism is not only of enormous significance to host health but also may offer preventative and therapeutic approaches for a number of disorders that impact both parties. In this review, we delve into the connection between the dysregulation of iron metabolism and dysbiosis of gut microbiota, and how it contributes to the onset and progression of metabolic and chronic diseases.
Collapse
Affiliation(s)
- Lanling Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rui Tang
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Jie Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, 528308, China.
| |
Collapse
|
4
|
Controlling the Impact of Helicobacter pylori-Related Hyperhomocysteinemia on Neurodegeneration. Medicina (B Aires) 2023; 59:medicina59030504. [PMID: 36984505 PMCID: PMC10056452 DOI: 10.3390/medicina59030504] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Helicobacter pylori infection consists a high global burden affecting more than 50% of the world’s population. It is implicated, beyond substantiated local gastric pathologies, i.e., peptic ulcers and gastric cancer, in the pathophysiology of several neurodegenerative disorders, mainly by inducing hyperhomocysteinemia-related brain cortical thinning (BCT). BCT has been advocated as a possible biomarker associated with neurodegenerative central nervous system disorders such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and/or glaucoma, termed as “ocular Alzheimer’s disease”. According to the infection hypothesis in relation to neurodegeneration, Helicobacter pylori as non-commensal gut microbiome has been advocated as trigger and/or mediator of neurodegenerative diseases, such as the development of Alzheimer’s disease. Among others, Helicobacter pylori-related inflammatory mediators, defensins, autophagy, vitamin D, dietary factors, role of probiotics, and some pathogenetic considerations including relevant involved genes are discussed within this opinion article. In conclusion, by controlling the impact of Helicobacter pylori-related hyperhomocysteinemia on neurodegenerative disorders might offer benefits, and additional research is warranted to clarify this crucial topic currently representing a major worldwide burden.
Collapse
|
5
|
Robinson MJ, Newbury S, Singh K, Leonenko Z, Beazely MA. The Interplay Between Cholesterol and Amyloid-β on HT22 Cell Viability, Morphology, and Receptor Tyrosine Kinase Signaling. J Alzheimers Dis 2023; 96:1663-1683. [PMID: 38073391 DOI: 10.3233/jad-230753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND There is a lack of understanding in the molecular and cellular mechanisms of Alzheimer's disease that has hindered progress on therapeutic development. The focus has been on targeting toxic amyloid-β (Aβ) pathology, but these therapeutics have generally failed in clinical trials. Aβ is an aggregation-prone protein that has been shown to disrupt cell membrane structure in molecular biophysics studies and interfere with membrane receptor signaling in cell and animal studies. Whether the lipid membrane or specific receptors are the primary target of attack has not been determined. OBJECTIVE This work elucidates some of the interplay between membrane cholesterol and Aβ42 on HT22 neuronal cell viability, morphology, and platelet-derived growth factor (PDGF) signaling pathways. METHODS The effects of cholesterol depletion by methyl-β-cyclodextrin followed by treatment with Aβ and/or PDGF-AA were assessed by MTT cell viability assays, western blot, optical and AFM microscopy. RESULTS Cell viability studies show that cholesterol depletion was mildly protective against Aβ toxicity. Together cholesterol reduction and Aβ42 treatment compounded the disruption of the PDGFα receptor activation. Phase contrast optical microscopy and live cell atomic force microscopy imaging revealed that cytotoxic levels of Aβ42 caused morphological changes including cell membrane damage, cytoskeletal disruption, and impaired cell adhesion; cell damage was ameliorated by cellular cholesterol depletion. CONCLUSIONS Cholesterol depletion impacted the effects of Aβ42 on HT22 cell viability, morphology, and receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Morgan J Robinson
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Sean Newbury
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Kartar Singh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Michael A Beazely
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
6
|
Dziedzic A. Is Periodontitis Associated with Age-Related Cognitive Impairment? The Systematic Review, Confounders Assessment and Meta-Analysis of Clinical Studies. Int J Mol Sci 2022; 23:15320. [PMID: 36499656 PMCID: PMC9739281 DOI: 10.3390/ijms232315320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
It has been suggested that molecular pathological mechanisms responsible for periodontitis can be linked with biochemical alterations in neurodegenerative disorders. Hypothetically, chronic systemic inflammation as a response to periodontitis plays a role in the etiology of cognitive impairment. This study aimed to determine whether periodontitis (PDS) is a risk factor for age-related cognitive impairment (ACI) based on evidence of clinical studies. A comprehensive, structured systematic review of existing data adhering to the Preferred Reporting Items for Systematic Review and Meta Analyses (PRISMA) guidelines was carried out. Five electronic databases, PubMed, Embase, Scopus, Web of Science, and Cochrane, were searched for key terms published in peer-reviewed journals until January 2021. The Newcastle-Ottawa scale was used to assess the quality of studies and risk of bias. The primary and residual confounders were explored and evaluated. A meta-analysis synthesizing quantitative data was carried out using a random-effects model. Seventeen clinical studies were identified, including 14 cohort, one cross-sectional, and two case-control studies. Study samples ranged from 85 to 262,349 subjects, with follow-up between 2 and 32 years, and age above 45 years, except for two studies. The findings of studies suggesting the PDS-ACI relationship revealed substantial differences in design and methods. A noticeable variation related to the treatment of confounders was observed. Quality assessment unveiled a moderate quality of evidence and risk of bias. The subgroups meta-analysis and pooled sensitivity analysis of results from seven eligible studies demonstrated overall that the presence of PDS is associated with an increased risk of incidence of cognitive impairment (OR = 1.36, 95% CI 1.03-1.79), particularly dementia (OR = 1.39, 95% CI 1.02-1.88) and Alzheimer's disease (OR = 1.03 95% CI 0.98-1.07)). However, a considerable heterogeneity of synthesized data (I2 = 96%) and potential publication bias might affect obtained results. While there is a moderate statistical association between periodontitis and dementia, as well as Alzheimer's disease, the risk of bias in the evidence prevents conclusions being drawn about the role of periodontitis as a risk factor for age-related cognitive impairment.
Collapse
Affiliation(s)
- Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
7
|
Yoon J, Kim M. In vitro evaluation of anti-diabetic, anti-dementia, and antioxidant activity of Artemisia capillaris fermented by Leuconostoc spp. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
González MF, Burgos-Ravanal R, Shao B, Heinecke J, Valenzuela-Valderrama M, Corvalán AH, Quest AFG. Extracellular vesicles from gastric epithelial GES-1 cells infected with Helicobacter pylori promote changes in recipient cells associated with malignancy. Front Oncol 2022; 12:962920. [PMID: 36313672 PMCID: PMC9596800 DOI: 10.3389/fonc.2022.962920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/19/2022] [Indexed: 10/29/2023] Open
Abstract
Chronic Helicobacter pylori (H. pylori) infection is considered the main risk factor for the development of gastric cancer. Pathophysiological changes in the gastric mucosa initiated by this bacterium can persist even after pharmacological eradication and are likely attributable also to changes induced in non-infected cells as a consequence of intercellular communication via extracellular vesicles (EVs). To better understand what such changes might entail, we isolated EVs from immortalized normal gastric GES-1 cells infected (EVHp+) or not with H. pylori (EVHp-) by ultracentrifugation and characterized them. Infection of GES-1 cells with H. pylori significantly increased the release of EVs and slightly decreased the EV mean size. Incubation with EVHp+ for 24 h decreased the viability of GES-1 cells, but increased the levels of IL-23 in GES-1 cells, as well as the migration of GES-1 and gastric cancer AGS cells. Furthermore, incubation of GES-1 and AGS cells with EVHp+, but not with EVHp-, promoted cell invasion and trans-endothelial migration in vitro. Moreover, stimulation of endothelial EA.hy926 cells for 16 h with EVHp+ promoted the formation of linked networks. Finally, analysis by mass spectrometry identified proteins uniquely present and others enriched in EVHp+ compared to EVHp-, several of which are known targets of hypoxia induced factor-1α (HIF-1α) that may promote the acquisition of traits important for the genesis/progression of gastric pre-neoplastic changes associated with H. pylori infection. In conclusion, the harmful effects of H. pylori infection associated with the development of gastric malignancies may spread via EVs to non-infected areas in the early and later stages of gastric carcinogenesis.
Collapse
Affiliation(s)
- María Fernanda González
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
| | - Renato Burgos-Ravanal
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
| | - Jay Heinecke
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
| | - Manuel Valenzuela-Valderrama
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Universidad Central de Chile, Santiago, Chile
| | - Alejandro H. Corvalán
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
- Departamento de Hematología-Oncología, Facultad de Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrew F. G. Quest
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, Chile
| |
Collapse
|
9
|
Asher S, Stephen R, Mäntylä P, Suominen AL, Solomon A. Periodontal health, cognitive decline, and dementia: A systematic review and meta-analysis of longitudinal studies. J Am Geriatr Soc 2022; 70:2695-2709. [PMID: 36073186 PMCID: PMC9826143 DOI: 10.1111/jgs.17978] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Emerging evidence indicates that poor periodontal health adversely impacts cognition. This review examined the available longitudinal evidence concerning the effect of poor periodontal health on cognitive decline and dementia. METHODS Comprehensive literature search was conducted on five electronic databases for relevant studies published until April 2022. Longitudinal studies having periodontal health as exposure and cognitive decline and/or dementia as outcomes were considered. Random effects pooled estimates and 95% confidence intervals were generated (pooled odds ratio for cognitive decline and hazards ratio for dementia) to assess whether poor periodontal health increases the risk of cognitive decline and dementia. Heterogeneity between studies was estimated by I2 and the quality of available evidence was assessed through quality assessment criteria. RESULTS Adopted search strategy produced 2132 studies for cognitive decline and 2023 for dementia, from which 47 studies (24 for cognitive decline and 23 for dementia) were included in this review. Poor periodontal health (reflected by having periodontitis, tooth loss, deep periodontal pockets, or alveolar bone loss) was associated with both cognitive decline (OR = 1.23; 1.05-1.44) and dementia (HR = 1.21; 1.07-1.38). Further analysis, based on measures of periodontal assessment, found tooth loss to independently increase the risk of both cognitive decline (OR = 1.23; 1.09-1.39) and dementia (HR = 1.13; 1.04-1.23). Stratified analysis based on the extent of tooth loss indicated partial tooth loss to be important for cognitive decline (OR = 1.50; 1.02-2.23) and complete tooth loss for dementia (HR = 1.23; 1.05-1.45). However, the overall quality of evidence was low, and associations were at least partly due to reverse causality. CONCLUSIONS Poor periodontal health and tooth loss appear to increase the risk of both cognitive decline and dementia. However, the available evidence is limited (e.g., highly heterogenous, lacking robust methodology) to draw firm conclusions. Further well-designed studies involving standardized periodontal and cognitive health assessment and addressing reverse causality are highly warranted.
Collapse
Affiliation(s)
- Sam Asher
- Institute of DentistryUniversity of Eastern FinlandKuopioFinland
| | - Ruth Stephen
- Neurology, Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
| | - Päivi Mäntylä
- Institute of DentistryUniversity of Eastern FinlandKuopioFinland
- Department of Oral and Maxillofacial DiseasesKuopio University HospitalKuopioFinland
| | - Anna Liisa Suominen
- Institute of DentistryUniversity of Eastern FinlandKuopioFinland
- Department of Oral and Maxillofacial DiseasesKuopio University HospitalKuopioFinland
| | - Alina Solomon
- Neurology, Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
- Division of Clinical Geriatrics, NVSKarolinska InstituteStockholmSweden
- Aging Epidemiology Research Unit, School of Public HealthImperial College LondonLondonUK
| |
Collapse
|
10
|
Golan N, Engelberg Y, Landau M. Structural Mimicry in Microbial and Antimicrobial Amyloids. Annu Rev Biochem 2022; 91:403-422. [PMID: 35729071 DOI: 10.1146/annurev-biochem-032620-105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; .,European Molecular Biology Laboratory (EMBL) and Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
11
|
Li P, Gao Y, Ma X, Zhou S, Guo Y, Xu J, Wang X, Van Halm-Lutterodt N, Yuan L. Study on the Association of Dietary Fatty Acid Intake and Serum Lipid Profiles With Cognition in Aged Subjects With Type 2 Diabetes Mellitus. Front Aging Neurosci 2022; 14:846132. [PMID: 35431907 PMCID: PMC9009143 DOI: 10.3389/fnagi.2022.846132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Abstract
Background The correlation between dietary fatty acid (FA) intake and serum lipid profile levels with cognition in the aged population has been reported by previous studies. However, the association of dietary FA intake and serum lipid profile levels with cognition in subjects with type 2 diabetes mellitus (T2DM) is seldom reported. Objective A cross-sectional study was conducted to explore the correlation between dietary FA intake and serum lipid profiles with cognition in the aged Chinese population with T2DM. Methods A total of 1,526 aged Chinese subjects were recruited from communities. Fasting blood samples were collected for parameter measurement. The food frequency questionnaire (FFQ) method was applied for a dietary survey. Cognition was assessed using the Montreal Cognitive Assessment (MoCA) test. Dietary FA intake and serum lipid levels were compared between subjects with T2DM and control subjects. A logistic regression analysis was carried out for analyzing the association of FA intake and serum lipid levels with the risk of mild cognitive impairment (MCI) in subjects with T2DM and control subjects. Results There was a significant difference in the serum lipid level between the T2DM group and the control group. Results of the logistic regression analysis demonstrated the potential associations of serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and dietary n-3 polyunsaturated fatty acids (PUFAs) intake with the risk of MCI in subjects with T2DM, but the associations were not observed in control subjects. Conclusion The T2DM phenotype might affect the relationship between dietary FA intake, circulating lipids, and cognitive performance. Large prospective cohort studies are needed to uncover the underlying mechanism of how dietary FA intake and serum lipid levels affect cognition in aged subjects with T2DM.
Collapse
Affiliation(s)
- Pengfei Li
- School of Public Health, Capital Medical University, Beijing, China
| | - Yanyan Gao
- School of Public Health, Capital Medical University, Beijing, China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing, China
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton, United Kingdom
| | - Yujie Guo
- School of Public Health, Capital Medical University, Beijing, China
| | - Jingjing Xu
- School of Public Health, Capital Medical University, Beijing, China
| | - Xixiang Wang
- School of Public Health, Capital Medical University, Beijing, China
| | | | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Mallo F. Effects of Glucagon-like peptide 1 (GLP-1) analogs in the hippocampus. VITAMINS AND HORMONES 2022; 118:457-478. [PMID: 35180937 DOI: 10.1016/bs.vh.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone very well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain, and it displays critical roles in neuroprotection by activating the GLP-1 receptor signaling pathways. GLP-1 enhances learning and memory in the hippocampus, promotes neurogenesis, decreases inflammation and apoptosis, modulates reward behavior, and reduces food intake. Its pharmacokinetics have been improved to enhance the peptide's half-life, enhancing exposure and time of action. The GLP-1 agonists are successfully in clinical use for the treatment of type-2 diabetes, obesity, and clinical evaluation for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.
| | - Salvador Herrera-Pérez
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Lucas C González-Matías
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Federico Mallo
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| |
Collapse
|
13
|
Borsa L, Dubois M, Sacco G, Lupi L. Analysis the Link between Periodontal Diseases and Alzheimer's Disease: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179312. [PMID: 34501899 PMCID: PMC8430572 DOI: 10.3390/ijerph18179312] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
The hypothesis of an infectious connection from the oro-pharyngeal sphere to the brain underlines the interest in analyzing the link between periodontal disease and Alzheimer’s disease. The aim of this systematic review was to examine the link between Alzheimer’s disease and periodontal disease in patients aged 65 and over. Databases (PubMed (MEDLINE), the Cochrane Library, and Embase) were analyzed for relevant references up to 21 June 2021. The authors independently selected the studies and extracted the data. The quality of included studies was checked using the National Institutes of Health’s quality assessment tools. Five studies were included. The selected studies described in their results an increase in F. nucleatum in Alzheimer’s disease patients (adjusted p = 0.02), and its incidence was linked to C. rectus and P. gingivalis (adjusted HR = 1.22 (1.04–1.43), p = 0.012) as well as A. naeslundii (crude HR = 2.0 (1.1–3.8)). The presence of periodontitis at baseline was associated with a six-fold increase in the rate of cognitive decline over a 6-month follow-up period (ADAS-Cog mean change = 2.9 ± 6.6). The current review suggests an association between periodontal disease and Alzheimer’s disease. The treatment of periodontal disease could be a way to explore Alzheimer’s disease prevention.
Collapse
Affiliation(s)
- Leslie Borsa
- Faculté de Chirurgie Dentaire-Odontologie, Université Côte d’Azur, 06300 Nice, France; (M.D.); (L.L.)
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06000 Nice, France
- UPR7354–Laboratoire Microbiologie Orale, Immunothérapie et Santé (Micoralis), Faculté de Chirurgie Dentaire-Odontologie, Université Côte d’Azur, 06300 Nice, France
- Correspondence:
| | - Margaux Dubois
- Faculté de Chirurgie Dentaire-Odontologie, Université Côte d’Azur, 06300 Nice, France; (M.D.); (L.L.)
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06000 Nice, France
| | - Guillaume Sacco
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06003 Nice, France;
- Université Côte d’Azur, CoBTeK, 06100 Nice, France
- Univ Angers, Université de Nantes, LPPL, SFR CONFLUENCES, 49000 Angers, France
| | - Laurence Lupi
- Faculté de Chirurgie Dentaire-Odontologie, Université Côte d’Azur, 06300 Nice, France; (M.D.); (L.L.)
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06000 Nice, France
- UPR7354–Laboratoire Microbiologie Orale, Immunothérapie et Santé (Micoralis), Faculté de Chirurgie Dentaire-Odontologie, Université Côte d’Azur, 06300 Nice, France
| |
Collapse
|
14
|
Ran D, Hong W, Yan W, Mengdie W. Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113958. [PMID: 33639206 DOI: 10.1016/j.jep.2021.113958] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GE) is ubiquitous in nearly 40 species of plants, among which Gardenia jasminoides J. Ellis has the highest content, and has been used ethnopharmacologically to treat chronic inflammatory diseases. As a traditional Chinese medicine, Gardenia jasminoides J. Ellis has a long history of usage in detumescence and sedation, liver protection and cholestasis, hypotension and hemostasis. It is commonly used in the treatment of diabetes, hypertension, jaundice hepatitis, sprain and contusion. As a type of iridoid glycosides extracted from Gardenia jasminoides J. Ellis, GE has many pharmacological effects, such as anti-inflammatory, anti-angiogenesic, anti-oxidative, etc. AIM OF THE REVIEW: In this article, we reviewed the sources, traditional usage, pharmacokinetics, toxicity and therapeutic effect of GE on chronic inflammatory diseases, and discussed its potential regulatory mechanisms and clinical application. RESULTS GE is a common iridoid glycoside in medicinal plants, which has strong activity in the treatment of chronic inflammatory diseases. A large number of in vivo and in vitro experiments confirmed that GE has certain therapeutic value for a variety of chronic inflammation disease. Its mechanism of function is mainly based on its anti-inflammatory, anti-oxidant, neuroprotective properties, as well as regulation of apoptotsis. GE plays a role in the treatment of chronic inflammatory diseases by regulating cell proliferation and apoptosis, realizing the dynamic balance of pro/anti-inflammatory factors, improving the state of oxidative stress, and restoring abnormally expressed inflammation-related pathways. CONCLUSION According to its extensive pharmacological effects, GE is a promising drug for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Deng Ran
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wu Hong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Wang Yan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wang Mengdie
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
15
|
Santiago JA, Potashkin JA. The Impact of Disease Comorbidities in Alzheimer's Disease. Front Aging Neurosci 2021; 13:631770. [PMID: 33643025 PMCID: PMC7906983 DOI: 10.3389/fnagi.2021.631770] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
A wide range of comorbid diseases is associated with Alzheimer's disease (AD), the most common neurodegenerative disease worldwide. Evidence from clinical and molecular studies suggest that chronic diseases, including diabetes, cardiovascular disease, depression, and inflammatory bowel disease, may be associated with an increased risk of AD in different populations. Disruption in several shared biological pathways has been proposed as the underlying mechanism for the association between AD and these comorbidities. Notably, inflammation is a common dysregulated pathway shared by most of the comorbidities associated with AD. Some drugs commonly prescribed to patients with diabetes and cardiovascular disease have shown promising results in AD patients. Systems-based biology studies have identified common genetic factors and dysregulated pathways that may explain the relationship of comorbid disorders in AD. Nonetheless, the precise mechanisms for the occurrence of disease comorbidities in AD are not entirely understood. Here, we discuss the impact of the most common comorbidities in the clinical management of AD patients.
Collapse
Affiliation(s)
| | - Judith A Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
16
|
Carranza-Naval MJ, Vargas-Soria M, Hierro-Bujalance C, Baena-Nieto G, Garcia-Alloza M, Infante-Garcia C, del Marco A. Alzheimer's Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models. Biomolecules 2021; 11:biom11020262. [PMID: 33578998 PMCID: PMC7916805 DOI: 10.3390/biom11020262] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Epidemiological studies show the association between AD and type 2 diabetes (T2DM), although the mechanisms are not fully understood. Dietary habits and lifestyle, that are risk factors in both diseases, strongly modulate gut microbiota composition. Also, the brain-gut axis plays a relevant role in AD, diabetes and inflammation, through products of bacterial metabolism, like short-chain fatty acids. We provide a comprehensive review of current literature on the relation between dysbiosis, altered inflammatory cytokines profile and microglia in preclinical models of AD, T2DM and models that reproduce both diseases as commonly observed in the clinic. Increased proinflammatory cytokines, such as IL-1β and TNF-α, are widely detected. Microbiome analysis shows alterations in Actinobacteria, Bacteroidetes or Firmicutes phyla, among others. Altered α- and β-diversity is observed in mice depending on genotype, gender and age; therefore, alterations in bacteria taxa highly depend on the models and approaches. We also review the use of pre- and probiotic supplements, that by favoring a healthy microbiome ameliorate AD and T2DM pathologies. Whereas extensive studies have been carried out, further research would be necessary to fully understand the relation between diet, microbiome and inflammation in AD and T2DM.
Collapse
Affiliation(s)
- Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Salus Infirmorum, Universidad de Cadiz, 11005 Cadiz, Spain
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Gloria Baena-Nieto
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Department of Endocrinology, Jerez Hospital, Jerez de la Frontera, 11407 Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| | - Angel del Marco
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| |
Collapse
|
17
|
Fulop T, Tripathi S, Rodrigues S, Desroches M, Bunt T, Eiser A, Bernier F, Beauregard PB, Barron AE, Khalil A, Plotka A, Hirokawa K, Larbi A, Bocti C, Laurent B, Frost EH, Witkowski JM. Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatr Dis Treat 2021; 17:1311-1339. [PMID: 33976546 PMCID: PMC8106529 DOI: 10.2147/ndt.s264910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aβ) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aβ is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aβ, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Shreyansh Tripathi
- Cluster Innovation Centre, North Campus, University of Delhi, Delhi, 110007, India.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.,Mathematical Computational and Experimental Neuroscience (MCEN), BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Sophia Antipolis, France.,Department of Mathematics, Université Côte d'Azur, Nice, France
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA, USA
| | - Arnold Eiser
- Leonard Davis Institute, University of Pennsylvania, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Francois Bernier
- Morinaga Milk Industry Co., Ltd, Next Generation Science Institute, Kanagawa, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam Plotka
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nito-Memory Nakanosogo Hospital, Department of Pathology, Tokyo, Japan
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (ASTAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Christian Bocti
- Research Center on Aging, Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
18
|
Komaroff AL, Pellett PE, Jacobson S. Human Herpesviruses 6A and 6B in Brain Diseases: Association versus Causation. Clin Microbiol Rev 2020; 34:e00143-20. [PMID: 33177186 PMCID: PMC7667666 DOI: 10.1128/cmr.00143-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B), collectively termed HHV-6A/B, are neurotropic viruses that permanently infect most humans from an early age. Although most people infected with these viruses appear to suffer no ill effects, the viruses are a well-established cause of encephalitis in immunocompromised patients. In this review, we summarize the evidence that the viruses may also be one trigger for febrile seizures (including febrile status epilepticus) in immunocompetent infants and children, mesial temporal lobe epilepsy, multiple sclerosis (MS), and, possibly, Alzheimer's disease. We propose criteria for linking ubiquitous infectious agents capable of producing lifelong infection to any neurologic disease, and then we examine to what extent these criteria have been met for these viruses and these diseases.
Collapse
Affiliation(s)
- Anthony L Komaroff
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip E Pellett
- Department of Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven Jacobson
- Virology/Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. Microbiol Mol Biol Rev 2020; 85:85/1/e00062-20. [PMID: 33239434 DOI: 10.1128/mmbr.00062-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria often reside in multicellular communities, called biofilms, held together by an extracellular matrix. In many bacteria, the major proteinaceous component of the biofilm are amyloid fibers. Amyloids are highly stable and structured protein aggregates which were known mostly to be associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In recent years, microbial amyloids were identified also in other species and shown to play major roles in microbial physiology and virulence. For example, amyloid fibers assemble on the bacterial cell surface as a part of the extracellular matrix and are extremely important to the scaffolding and structural integrity of biofilms, which contribute to microbial resilience and resistance. Furthermore, microbial amyloids play fundamental nonscaffold roles that contribute to the development of biofilms underlying numerous persistent infections. Here, we review several nonscaffold roles of bacterial amyloid proteins, including bridging cells during collective migration, acting as regulators of cell fate, as toxins against other bacteria or against host immune cells, and as modulators of the hosts' immune system. These overall points on the complexity of the amyloid fold in encoding numerous activities, which offer approaches for the development of a novel repertoire of antivirulence therapeutics.
Collapse
|
20
|
Guo Z, Peng X, Li HY, Wang Y, Qian Y, Wang Z, Ye D, Ji X, Wang Z, Wang Y, Chen D, Lei H. Evaluation of Peripheral Immune Dysregulation in Alzheimer's Disease and Vascular Dementia. J Alzheimers Dis 2020; 71:1175-1186. [PMID: 31498124 DOI: 10.3233/jad-190666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Immune dysregulation has been observed in the brain and blood of patients with Alzheimer's disease (AD). However, a convenient assay to evaluate peripheral immune dysregulation in AD has not been developed, partly due to the inconsistent observations from different studies. We hypothesized that peripheral immune dysregulation may only exist in a subpopulation of AD patients; therefore it may be valuable to identify this subpopulation with a convenient assay. Along this line, we selected 14 candidate genes based on our analysis of microarray data on peripheral blood of AD and other diseases. We used RT-qPCR to examine the expression of these 14 genes in a cohort of 288 subjects, including 74 patients with AD, 64 patients with mild cognitive impairment (MCI), 51 patients with vascular dementia (VaD), and 99 elderly controls with no cognitive dysfunction/impairment. Seven of these 14 genes displayed significant difference in group comparison. Switching from group comparison to individualized evaluation revealed more in-depth information. First, there existed a wide dynamic range for the expression of these immune genes in peripheral blood even within the control group. Second, for the vast majority of the patients (AD, VaD, and MCI patients), the expression of these genes fell within the dynamic range of the control group. Third, a small portion of outliers were observed in the patient groups, more so in the VaD group than that in the AD or MCI groups. This is our first attempt to conduct personalized evaluation of peripheral immune dysregulation in AD and VaD. These findings may be applicable to the identification of peripheral immune dysregulation in AD and VaD patients which may lead to tailored treatment toward those patients.
Collapse
Affiliation(s)
- Zongjun Guo
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Yun Li
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yunlai Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ying Qian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhihong Wang
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongqing Ye
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyun Ji
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhixin Wang
- Qingdao Chengyang People's Hospital, Qingdao, China
| | - Yanjiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Dongwan Chen
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
21
|
Moyse E, Haddad M, Benlabiod C, Ramassamy C, Krantic S. Common Pathological Mechanisms and Risk Factors for Alzheimer's Disease and Type-2 Diabetes: Focus on Inflammation. Curr Alzheimer Res 2020; 16:986-1006. [PMID: 31692443 DOI: 10.2174/1567205016666191106094356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/10/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diabetes is considered as a risk factor for Alzheimer's Disease, but it is yet unclear whether this pathological link is reciprocal. Although Alzheimer's disease and diabetes appear as entirely different pathological entities affecting the Central Nervous System and a peripheral organ (pancreas), respectively, they share a common pathological core. Recent evidence suggests that in the pancreas in the case of diabetes, as in the brain for Alzheimer's Disease, the initial pathological event may be the accumulation of toxic proteins yielding amyloidosis. Moreover, in both pathologies, amyloidosis is likely responsible for local inflammation, which acts as a driving force for cell death and tissue degeneration. These pathological events are all inter-connected and establish a vicious cycle resulting in the progressive character of both pathologies. OBJECTIVE To address the literature supporting the hypothesis of a common pathological core for both diseases. DISCUSSION We will focus on the analogies and differences between the disease-related inflammatory changes in a peripheral organ, such as the pancreas, versus those observed in the brain. Recent evidence suggesting an impact of peripheral inflammation on neuroinflammation in Alzheimer's disease will be presented. CONCLUSION We propose that it is now necessary to consider whether neuroinflammation in Alzheimer's disease affects inflammation in the pancreas related to diabetes.
Collapse
Affiliation(s)
| | - Mohamed Haddad
- INRS-Centre Armand-Frappier Sante Biotechnologie, Laval, QC, Canada
| | | | | | | |
Collapse
|
22
|
Bubak AN, Beseler C, Como CN, Coughlan CM, Johnson NR, Hassell JE, Burnet AM, Mescher T, Schmid DS, Coleman C, Mahalingam R, Cohrs RJ, Boyd TD, Potter H, Shilleh AH, Russ HA, Nagel MA. Amylin, Aβ42, and Amyloid in Varicella Zoster Virus Vasculopathy Cerebrospinal Fluid and Infected Vascular Cells. J Infect Dis 2020; 223:1284-1294. [PMID: 32809013 DOI: 10.1093/infdis/jiaa513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Varicella zoster virus (VZV) vasculopathy is characterized by persistent arterial inflammation leading to stroke. Studies show that VZV induces amyloid formation that may aggravate vasculitis. Thus, we determined if VZV central nervous system infection produces amyloid. METHODS Aβ peptides, amylin, and amyloid were measured in cerebrospinal fluid (CSF) from 16 VZV vasculopathy subjects and 36 stroke controls. To determine if infection induced amyloid deposition, mock- and VZV-infected quiescent primary human perineurial cells (qHPNCs), present in vasculature, were analyzed for intracellular amyloidogenic transcripts/proteins and amyloid. Supernatants were assayed for amyloidogenic peptides and ability to induce amyloid formation. To determine amylin's function during infection, amylin was knocked down with small interfering RNA and viral complementary DNA (cDNA) was quantitated. RESULTS Compared to controls, VZV vasculopathy CSF had increased amyloid that positively correlated with amylin and anti-VZV antibody levels; Aβ40 was reduced and Aβ42 unchanged. Intracellular amylin, Aβ42, and amyloid were seen only in VZV-infected qHPNCs. VZV-infected supernatant formed amyloid fibrils following addition of amyloidogenic peptides. Amylin knockdown decreased viral cDNA. CONCLUSIONS VZV infection increased levels of amyloidogenic peptides and amyloid in CSF and qHPNCs, indicating that VZV-induced amyloid deposition may contribute to persistent arterial inflammation in VZV vasculopathy. In addition, we identified a novel proviral function of amylin.
Collapse
Affiliation(s)
- Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Cheryl Beseler
- Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
| | - Christina N Como
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christina M Coughlan
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Noah R Johnson
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - James E Hassell
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anna M Burnet
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Teresa Mescher
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - D Scott Schmid
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Colin Coleman
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Randall J Cohrs
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Timothy D Boyd
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ali H Shilleh
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Maria A Nagel
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
23
|
Fülöp T, Munawara U, Larbi A, Desroches M, Rodrigues S, Catanzaro M, Guidolin A, Khalil A, Bernier F, Barron AE, Hirokawa K, Beauregard PB, Dumoulin D, Bellenger JP, Witkowski JM, Frost E. Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs 2020; 34:673-695. [PMID: 32458360 PMCID: PMC9020372 DOI: 10.1007/s40263-020-00737-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Usma Munawara
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
- Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Michele Catanzaro
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Andrea Guidolin
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Abdelouahed Khalil
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - François Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Tokyo Med. Dent. University, Tokyo, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eric Frost
- Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
24
|
Jørgensen IF, Aguayo‐Orozco A, Lademann M, Brunak S. Age-stratified longitudinal study of Alzheimer's and vascular dementia patients. Alzheimers Dement 2020; 16:908-917. [PMID: 32342671 PMCID: PMC7383608 DOI: 10.1002/alz.12091] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Similar symptoms, comorbidities and suboptimal diagnostic tests make the distinction between different types of dementia difficult, although this is essential for improved work-up and treatment optimization. METHODS We calculated temporal disease trajectories of earlier multi-morbidities in Alzheimer's disease (AD) dementia and vascular dementia (VaD) patients using the Danish National Patient Registry covering all hospital encounters in Denmark (1994 to 2016). Subsequently, we reduced the comorbidity space dimensionality using a non-linear technique, uniform manifold approximation and projection. RESULTS We found 49,112 and 24,101 patients that were diagnosed with AD or VaD, respectively. Temporal disease trajectories showed very similar disease patterns before the dementia diagnosis. Stratifying patients by age and reducing the comorbidity space to two dimensions, showed better discrimination between AD and VaD patients in early-onset dementia. DISCUSSION Similar age-associated comorbidities, the phenomenon of mixed dementia, and misdiagnosis create great challenges in discriminating between classical subtypes of dementia.
Collapse
Affiliation(s)
- Isabella Friis Jørgensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3BCopenhagenDenmark
| | - Alejandro Aguayo‐Orozco
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3BCopenhagenDenmark
| | - Mette Lademann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3BCopenhagenDenmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3BCopenhagenDenmark
| |
Collapse
|
25
|
Lin JW, Chang CH, Caffrey JL. Examining the association between oral health status and dementia: A nationwide nested case-controlled study. Exp Biol Med (Maywood) 2020; 245:231-244. [PMID: 32039633 DOI: 10.1177/1535370220904924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease as a consequence of chronic brain inflammation mediated by infectious microbes including the oral microbiome continues to attract support. Taiwan’s National Insurance database was used to evaluate associations between dental health and Alzheimer’s disease; 209,112 new cases of Alzheimer’s disease were matched 1:4 with 836,448 dementia-free controls to test the hypothesis that better dental health would be associated with less occurrence of dementia. Ten year dental records and conditional logistic regression models were used to estimate the odds ratios associated with Alzheimer’s disease. Subgroup analyses compared vascular Alzheimer’s disease and sporadic Alzheimer’s disease. As the population aged, Alzheimer’s disease diagnoses were more frequent with a 10 fold upward inflection after 60. Nearly 56% of sporadic Alzheimer’s disease patients were women but less than 50% had vascular Alzheimer’s disease. Comorbidities were 10–20% higher in the Alzheimer’s disease patients than in controls, but stroke, chronic infection, and pneumonia were 40–45% more common in the vascular Alzheimer’s disease patients. Heart disease, hypertension, diabetes, stroke, peripheral artery disease, pneumonia, and herpetic disease (HSV) were all associated with higher odds of Alzheimer’s disease. HSV was not a factor in the vascular Alzheimer’s disease. Routine dental procedures tended to lower odds ratios. Root canals and extractions that restore oral homeostasis were associated with lower odds of dementia. However, when extractions exceeded four, the odds of Alzheimer’s disease rose. The fact that Alzheimer’s disease was not associated with periodontal procedures per se but with more frequent periodontal emergencies suggested again a chronic issue. Dental health costs suggest that good dental care was associated with lower odds of Alzheimer’s disease except for radiographic costs which were consistently associated with higher odds, independent of oral health. Common comorbid conditions were associated with higher odds of Alzheimer’s disease and oral health care was associated with lower odds, providing support for the hypothesis that the oral microbiome is a factor in the development of Alzheimer’s disease. Impact statement This study clearly demonstrates the power and value of a nationally applied digital medical record. Longitudinal studies of gradually developing pathologies like dementia have often been limited by sample size and narrow and incomplete medical histories. The Taiwan National Insurance database provides an unparalleled opportunity for detailed analyses of associations between current medical conditions and a spectrum of prior medical and dental events. The temporal impact of the database will only become more important as the past historical record progressively expands going forward. The inclusion of dental records in assessing the relationship with subsequent dementia is very important because this information is often unavailable or dependent on subject recall. This study clearly establishes associations between a variety of suspected cardiovascular and metabolic factors and the odds of dementia. A critical outcome should include the design of targeted interventions and the subsequent assessment of their efficacy.
Collapse
Affiliation(s)
- J W Lin
- Cardiovascular Center, National Taiwan University Hospital Yunlin Branch, Douliu City, Yunlin County 64051
| | - C H Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10617
| | - J L Caffrey
- Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, TX 76107, USA
| |
Collapse
|
26
|
Santiago JA, Bottero V, Potashkin JA. Transcriptomic and Network Analysis Highlight the Association of Diabetes at Different Stages of Alzheimer's Disease. Front Neurosci 2019; 13:1273. [PMID: 31849586 PMCID: PMC6895844 DOI: 10.3389/fnins.2019.01273] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are among the most prevalent chronic diseases affecting the aging population. Extensive research evidence indicates that T2D is a well-established risk factor for AD; however, the molecular mechanisms underlying this association have not been fully elucidated. Furthermore, how T2D may contribute to the progression of AD is a subject of extensive investigation. In this study, we compared the blood transcriptome of patients with mild cognitive impairment (MCI), AD, and advanced AD to those afflicted with T2D to unveil shared and unique pathways and potential therapeutic targets. Blood transcriptomic analyses revealed a positive correlation between gene expression profiles of MCI, AD, and T2D in seven independent microarrays. Interestingly, gene expression profiles from women with advanced AD correlated negatively with T2D, suggesting sex-specific differences in T2D as a risk factor for AD. Network and pathway analysis revealed that shared molecular networks between MCI and T2D were predominantly enriched in inflammation and infectious diseases whereas those networks shared between overt AD and T2D were involved in the phosphatidylinositol 3-kinase and protein kinase B/Akt (PI3K-AKT) signaling pathway, a major mediator of insulin signaling in the body. The PI3K-AKT signaling pathway became more significantly dysregulated in the advanced AD and T2D shared network. Furthermore, endocrine resistance and atherosclerosis pathways emerged as dysregulated pathways in the advanced AD and T2D shared network. Interestingly, network analysis of shared differentially expressed genes between children with T2D and MCI subjects identified forkhead box O3 (FOXO3) as a central transcriptional regulator, suggesting that it may be a potential therapeutic target for early intervention in AD. Collectively, these results suggest that T2D may be implicated at different stages of AD through different molecular pathways disrupted during the preclinical phase of AD and more advanced stages of the disease.
Collapse
Affiliation(s)
| | - Virginie Bottero
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Judith A Potashkin
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
27
|
Lebedeva NS, Yurina ES, Gubarev YA, Koifman OI. Effect of macrocyclic compounds to protein aggregation. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00947-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire Repurposing of Anti-amyloid Compounds as Anti-biofilm Agents. PLoS Pathog 2019; 15:e1007978. [PMID: 31469892 PMCID: PMC6748439 DOI: 10.1371/journal.ppat.1007978] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/17/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Curli amyloid fibrils secreted by Enterobacteriaceae mediate host cell adhesion and contribute to biofilm formation, thereby promoting bacterial resistance to environmental stressors. Here, we present crystal structures of amyloid-forming segments from the major curli subunit, CsgA, revealing steric zipper fibrils of tightly mated β-sheets, demonstrating a structural link between curli and human pathological amyloids. D-enantiomeric peptides, originally developed to interfere with Alzheimer's disease-associated amyloid-β, inhibited CsgA fibrillation and reduced biofilm formation in Salmonella typhimurium. Moreover, as previously shown, CsgA fibrils cross-seeded fibrillation of amyloid-β, providing support for the proposed structural resemblance and potential for cross-species amyloid interactions. The presented findings provide structural insights into amyloidogenic regions important for curli formation, suggest a novel strategy for disrupting amyloid-structured biofilms, and hypothesize on the formation of self-propagating prion-like species originating from a microbial source that could influence neurodegenerative diseases.
Collapse
|
29
|
Guo H, Cao H, Cui X, Zheng W, Wang S, Yu J, Chen Z. Silymarin's Inhibition and Treatment Effects for Alzheimer's Disease. Molecules 2019; 24:E1748. [PMID: 31064071 PMCID: PMC6539875 DOI: 10.3390/molecules24091748] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
As a longstanding problem, Alzheimer's disease (AD) has stymied researchers in the medical field with its increasing incidence and enormous treatment difficulty. Silymarin has always been valued by researchers for its good efficacy and safety in treating liver disease. Recent studies have shown that silymarin also has good pharmacological activity in the nervous system, especially for the treatment of AD. Silymarin can control the production of Aβ by inhibiting the precursor substance of Aβ (β-amyloid precursor protein), and it can inhibit the polymerization of Aβ. Silymarin can also increase the acetylcholine content in the nervous system by inhibiting cholinesterase activity. At the same time, it also has the effect of resisting oxidative stress and the inflammatory response of the nervous system. These pharmacological activities contribute to the inhibition of the onset of AD. The good efficacy of silymarin on AD and its high safety and availability give it huge potential for the treatment of AD.
Collapse
Affiliation(s)
- Hong Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Hui Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiaowei Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wenxiu Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Shanshan Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jiyang Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhi Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
30
|
Brenner SR. Reader response: Pattern of polyphenol intake and the long-term risk of dementia in older persons. Neurology 2019; 92:493. [DOI: 10.1212/wnl.0000000000007028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Chang WW, Liang W, Yao XM, Zhang L, Zhu LJ, Yan C, Jin YL, Yao YS. Tumour necrosis factor-related apoptosis-inducing ligand expression in patients with diabetic nephropathy. J Renin Angiotensin Aldosterone Syst 2019; 19:1470320318785744. [PMID: 29999450 PMCID: PMC6047249 DOI: 10.1177/1470320318785744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective: The objective of this study was to evaluate the expression profile of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in patients with diabetic nephropathy (DN). Methods: A total of 126 Chinese subjects were enrolled in this study, including 42 patients with diabetes mellitus (DM), 42 patients with DN and 42 healthy controls. Real-time polymerase chain reaction was performed to analyze levels of TRAIL mRNA in peripheral blood mononuclear cells (PBMCs). Serum levels of soluble TRAIL (sTRAIL) and various cytokines were detected with a commercially available enzyme-linked immunosorbent assay kit. Results: Compared with the control group, the levels of TRAIL mRNA in PBMCs and sTRAIL in sera were both significantly decreased in the DM and DN patients (P < 0.05). Conversely, levels of interleukin (IL)-1, IL-6, tumour necrosis factor-α and monocyte chemotactic protein-1 were higher in the DN group than in the control group. Serum levels of TRAIL positively correlated with TRAIL mRNA levels in all of the subjects examined (P < 0.05). Conclusions: These results provide support and a theoretical basis for further research of TRAIL in regard to the pathogenesis of DN.
Collapse
Affiliation(s)
- Wei-Wei Chang
- 1 Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, China
| | - Wei Liang
- 2 Department of Hospital Infection Management, Zhenjiang First People's Hospital, China
| | - Xin-Ming Yao
- 3 Department of Endocrine, the First Affiliated Hospital of Wannan Medical College, China
| | - Liu Zhang
- 4 Department of Hospital Infection Management Office, Wuhu Hospital of Traditional Chinese Medicine, China
| | - Li-Jun Zhu
- 1 Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, China
| | - Chen Yan
- 1 Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, China
| | - Yue-Long Jin
- 1 Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, China
| | - Ying-Shui Yao
- 1 Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, China
| |
Collapse
|
32
|
Chen YL, Weng SF, Yang CY, Wang JJ, Tien KJ. Diabetic ketoacidosis further increases risk of Alzheimer's disease in patients with type 2 diabetes. Diabetes Res Clin Pract 2019; 147:55-61. [PMID: 30481578 DOI: 10.1016/j.diabres.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/28/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
AIM Diabetes mellitus (DM) is a known risk factor for dementia. It is unclear whether diabetic ketoacidosis (DKA) further increases the risk of dementia in patients with type 2 DM. METHODS This retrospective nationwide population-based cohort study was conducted using Taiwan's National Health Insurance database. We extracted claims data for 4451 patients with type 2 diabetes and DKA and 8902 diabetic controls matched for age, gender, diabetes complication severity index, frequency of clinic visits and baseline comorbidities between 2000 and 2002. Patients with type 1 diabetes or prior hypoglycemia before index date were excluded. All patients were tracked until new dementia diagnosis, death, or end of 2011. RESULTS Of the 4451 DKA patients, 211 (4.7%) and 305 (3.4%) of the 8902 diabetic controls were diagnosed as having dementia during the follow-up period. The incidence rate ratio (IRR) for dementia was 1.62 (95% CI 1.35-1.93; P < 0.0001) for patients with DKA versus diabetic patients without DKA. After adjusting for age, baseline comorbidities, geographic area, and income, patients with DKA were found to have 1.86 times the risk of developing dementia, compared to controls (95% CI 1.56-2.22, P < 0.0001). They were found to have a higher risk of Alzheimer's dementia (HR:1.86; 95% CI 1.52-2.28, P < 0.0001) but not non-Alzheimer's dementia. CONCLUSION Type 2 diabetes patients with DKA are at increased risk of Alzheimer's dementia but not non-Alzheimer dementia.
Collapse
Affiliation(s)
- Yu-Li Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Chia-Li Branch, Tainan, Taiwan
| | - Shih-Feng Weng
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chwen-Yi Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Kai-Jen Tien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.
| |
Collapse
|
33
|
Pretorius L, Kell DB, Pretorius E. Iron Dysregulation and Dormant Microbes as Causative Agents for Impaired Blood Rheology and Pathological Clotting in Alzheimer's Type Dementia. Front Neurosci 2018; 12:851. [PMID: 30519157 PMCID: PMC6251002 DOI: 10.3389/fnins.2018.00851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease and other similar dementias are debilitating neurodegenerative disorders whose etiology and pathogenesis remain largely unknown, even after decades of research. With the anticipated increase in prevalence of Alzheimer’s type dementias among the more susceptible aging population, the need for disease-modifying treatments is urgent. While various hypotheses have been put forward over the last few decades, we suggest that Alzheimer’s type dementias are triggered by external environmental factors, co-expressing in individuals with specific genetic susceptibilities. These external stressors are defined in the Iron Dysregulation and Dormant Microbes (IDDM) hypothesis, previously put forward. This hypothesis is consistent with current literature in which serum ferritin levels of individuals diagnosed with Alzheimer’s disease are significantly higher compared those of age- and gender-matched controls. While iron dysregulation contributes to oxidative stress, it also causes microbial reactivation and virulence of the so-called dormant blood (and tissue) microbiome. Dysbiosis (changes in the microbiome) or previous infections can contribute to the dormant blood microbiome (atopobiosis1), and also directly promotes systemic inflammation via the amyloidogenic formation and shedding of potent inflammagens such as lipopolysaccharides. The simultaneous iron dysregulation and microbial aberrations affect the hematological system, promoting fibrin amylodiogenesis, and pathological clotting. Systemic inflammation and oxidative stress can contribute to blood brain barrier permeability and the ensuing neuro-inflammation, characteristic of Alzheimer’s type dementias. While large inter-individual variability exists, especially concerning disease pathogenesis, the IDDM hypothesis acknowledges primary causative factors which can be targeted for early diagnosis and/or for prevention of disease progression.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom.,The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
34
|
Itzhaki RF. Corroboration of a Major Role for Herpes Simplex Virus Type 1 in Alzheimer's Disease. Front Aging Neurosci 2018; 10:324. [PMID: 30405395 PMCID: PMC6202583 DOI: 10.3389/fnagi.2018.00324] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/25/2018] [Indexed: 01/10/2023] Open
Abstract
Strong evidence has emerged recently for the concept that herpes simplex virus type 1 (HSV1) is a major risk for Alzheimer’s disease (AD). This concept proposes that latent HSV1 in brain of carriers of the type 4 allele of the apolipoprotein E gene (APOE-ε4) is reactivated intermittently by events such as immunosuppression, peripheral infection, and inflammation, the consequent damage accumulating, and culminating eventually in the development of AD. Population data to investigate this epidemiologically, e.g., to find if subjects treated with antivirals might be protected from developing dementia—are available in Taiwan, from the National Health Insurance Research Database, in which 99.9% of the population has been enrolled. This is being extensively mined for information on microbial infections and disease. Three publications have now appeared describing data on the development of senile dementia (SD), and the treatment of those with marked overt signs of disease caused by varicella zoster virus (VZV), or by HSV. The striking results show that the risk of SD is much greater in those who are HSV-seropositive than in seronegative subjects, and that antiviral treatment causes a dramatic decrease in number of subjects who later develop SD. It should be stressed that these results apply only to those with severe cases of HSV1 or VZV infection, but when considered with the over 150 publications that strongly support an HSV1 role in AD, they greatly justify usage of antiherpes antivirals to treat AD. Three other studies are described which directly relate to HSV1 and AD: they deal respectively with lysosomal changes in HSV1-infected cell cultures, with evidence for a role of human herpes virus type 6 and 7 (HHV6 and HHV7) in AD, and viral effects on host gene expression, and with the antiviral characteristics of beta amyloid (Aβ). Three indirectly relevant studies deal respectively with schizophrenia, relating to antiviral treatment to target HSV1, with the likelihood that HSV1 is a cause of fibromyalgia (FM), and with FM being associated with later development of SD. Studies on the link between epilepsy, AD and herpes simplex encephalitis (HSE) are described also, as are the possible roles of APOE-ε4, HHV6 and HSV1 in epilepsy.
Collapse
Affiliation(s)
- Ruth F Itzhaki
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Park S, Liu M, Kang S. Alcohol Intake Interacts with CDKAL1, HHEX, and OAS3 Genetic Variants, Associated with the Risk of Type 2 Diabetes by Lowering Insulin Secretion in Korean Adults. Alcohol Clin Exp Res 2018; 42:2326-2336. [PMID: 30207601 DOI: 10.1111/acer.13888] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Since alcohol intake increases the prevalence of type 2 diabetes (T2DM) in Koreans, we tested the hypothesis that the interactions of genetic variants involved in β-cell function and mass with alcohol intake increase the T2DM risk. METHODS The single nucleotide polymorphisms (SNPs) were selected by genome-wide association study for insulin secretion after adjusting for age, gender, area of residence, body mass index, and alcohol intake (p < 1 × 10-4 ) in 8,842 middle-aged adults in the Ansan/Ansung cohort. Genetic risk scores (GRSs) were calculated by summing the risk alleles of 4 selected SNPs, CDKAL1 rs7754840 and rs9460546, HHEX rs5015480, and OAS3 rs2072134. The GRSs were categorized into 3 groups by tertiles, and the association between GRS and insulin secretion was measured using logistic regression after adjusting for confounding factors in the Ansan/Ansung cohort. The results were confirmed by the Rural cohort. RESULTS HOMA-IR was higher and HOMA-B was much lower in the High-GRS than the Low-GRS in both cohorts. T2DM risk was higher by approximately 1.5-fold in the High-GRS than in the Low-GRS in both cohorts. In the High-GRS group, HOMA-B decreased by 0.89- and 0.62-fold in comparison with the Low-GRS in the Ansan/Ansung cohort and Rural cohort. The GRS interacted with alcohol intake to increase the risk of developing T2DM in the Ansan/Ansung cohort (p = 0.036) and Rural cohort (p = 0.071). The risk of T2DM increased in the High-GRS group with high alcohol intake and it was associated with decreased HOMA-B. High alcohol intake decreased HOMA-B regardless of GRS, and HOMA-B was lower in the descending order of Medium-GRS, Low-GRS, and High-GRS. However, HOMA-IR was not altered by alcohol intake, but was elevated in the High-GRS more than in the other groups. CONCLUSIONS Subjects with a High-GRS had an elevated risk of T2DM even with moderate alcohol intakes due to lower HOMA-B. High alcohol intake appears to be a risk factor for all Asians regardless of alcohol intake.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| | - Meiling Liu
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| |
Collapse
|
36
|
Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barron AE. Role of Microbes in the Development of Alzheimer's Disease: State of the Art - An International Symposium Presented at the 2017 IAGG Congress in San Francisco. Front Genet 2018; 9:362. [PMID: 30250480 PMCID: PMC6139345 DOI: 10.3389/fgene.2018.00362] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
This article reviews research results and ideas presented at a special symposium at the International Association of Gerontology and Geriatrics (IAGG) Congress held in July 2017 in San Francisco. Five researchers presented their results related to infection and Alzheimer's disease (AD). Prof. Itzhaki presented her work on the role of viruses, specifically HSV-1, in the pathogenesis of AD. She maintains that although it is true that most people harbor HSV-1 infection, either latent or active, nonetheless aspects of herpes infection can play a role in the pathogenesis of AD, based on extensive experimental evidence from AD brains and infected cell cultures. Dr. Miklossy presented research on the high prevalence of bacterial infections that correlate with AD, specifically spirochete infections, which have been known for a century to be a significant cause of dementia (e.g., in syphilis). She demonstrated how spirochetes drive senile plaque formation, which are in fact biofilms. Prof. Balin then described the involvement of brain tissue infection by the Chlamydia pneumoniae bacterium, with its potential to use the innate immune system in its spread, and its initiation of tissue damage characteristic of AD. Prof. Fülöp described the role of AD-associated amyloid beta (Aβ) peptide as an antibacterial, antifungal and antiviral innate immune effector produced in reaction to microorganisms that attack the brain. Prof. Barron put forward the novel hypothesis that, according to her experiments, there is strong sequence-specific binding between the AD-associated Aβ and another ubiquitous and important human innate immune effector, the cathelicidin peptide LL-37. Given this binding, LL-37 expression in the brain will decrease Aβ deposition via formation of non-toxic, soluble Aβ/LL-37 complexes. Therefore, a chronic underexpression of LL-37 could be the factor that simultaneously permits chronic infections in brain tissue and allows for pathological accumulation of Aβ. This first-of-its-kind symposium opened the way for a paradigm shift in studying the pathogenesis of AD, from the "amyloid cascade hypothesis," which so far has been quite unsuccessful, to a new "infection hypothesis," or perhaps more broadly, "innate immune system dysregulation hypothesis," which may well permit and lead to the discovery of new treatments for AD patients.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Department of Medicine, Division of Geriatrics, Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ruth F. Itzhaki
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Brian J. Balin
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Judith Miklossy
- International Alzheimer Research Centre, Prevention Alzheimer International Foundation, Martigny-Croix, Switzerland
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
37
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
38
|
Prasansuklab A, Theerasri A, Payne M, Ung AT, Tencomnao T. Acid-base fractions separated from Streblus asper leaf ethanolic extract exhibited antibacterial, antioxidant, anti-acetylcholinesterase, and neuroprotective activities. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:223. [PMID: 30041641 PMCID: PMC6057052 DOI: 10.1186/s12906-018-2288-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Streblus asper is a well-known plant native to Southeast Asia. Different parts of the plant have been traditionally used for various medicinal purposes. However, there is very little scientific evidence reporting its therapeutic benefits for potential treatment of Alzheimer's disease (AD). The study aimed to evaluate antibacterial, antioxidant, acetylcholinesterase (AChE) inhibition, and neuroprotective properties of S. asper leaf extracts with the primary objective of enhancing therapeutic applications and facilitating activity-guided isolation of the active chemical constituents. METHODS The leaves of S. asper were extracted in ethanol and subsequently fractionated into neutral, acid and base fractions. The phytochemical constituents of each fraction were analyzed using GC-MS. The antibacterial activity was evaluated using a broth microdilution method. The antioxidant activity was determined using DPPH and ABTS radical scavenging assays. The neuroprotective activity against glutamate-induced toxicity was tested on hippocampal neuronal HT22 cell line by evaluating the cell viability using MTT assay. The AChE inhibitory activity was screened by thin-layer chromatography (TLC) bioautographic method. RESULTS The partition of the S. asper ethanolic leaf extract yielded the highest mass of phytochemical constitutions in the neutral fraction and the lowest in the basic fraction. Amongst the three fractions, the acidic fraction showed the strongest antibacterial activity against gram-positive bacteria. The antioxidant activities of three fractions were found in the order of acidic > basic > neutral, whereas the decreasing order of neuroprotective activity was neutral > basic > acidic. TLC bioautography revealed one component in the neutral fraction exhibited anti-AChE activity. While in the acid fraction, two components showed inhibitory activity against AChE. GC-MS analysis of three fractions showed the presence of major phytochemical constituents including terpenoids, steroids, phenolics, fatty acids, and lipidic plant hormone. CONCLUSIONS Our findings have demonstrated the therapeutic potential of three fractions extracted from S. asper leaves as a promising natural source for neuroprotective agents with additional actions of antibacterials and antioxidants, along with AChE inhibitors that will benefit in the development of new natural compounds in therapies against AD.
Collapse
Affiliation(s)
- Anchalee Prasansuklab
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Atsadang Theerasri
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Matthew Payne
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Alison T. Ung
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
39
|
Fulop T, Witkowski JM, Bourgade K, Khalil A, Zerif E, Larbi A, Hirokawa K, Pawelec G, Bocti C, Lacombe G, Dupuis G, Frost EH. Can an Infection Hypothesis Explain the Beta Amyloid Hypothesis of Alzheimer's Disease? Front Aging Neurosci 2018; 10:224. [PMID: 30087609 PMCID: PMC6066504 DOI: 10.3389/fnagi.2018.00224] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia. The pathological hallmarks of the disease are extracellular senile plaques composed of beta-amyloid peptide (Aβ) and intracellular neurofibrillary tangles composed of pTau. These findings led to the "beta-amyloid hypothesis" that proposes that Aβ is the major cause of AD. Clinical trials targeting Aβ in the brain have mostly failed, whether they attempted to decrease Aβ production by BACE inhibitors or by antibodies. These failures suggest a need to find new hypotheses to explain AD pathogenesis and generate new targets for intervention to prevent and treat the disease. Many years ago, the "infection hypothesis" was proposed, but received little attention. However, the recent discovery that Aβ is an antimicrobial peptide (AMP) acting against bacteria, fungi, and viruses gives increased credence to an infection hypothesis in the etiology of AD. We and others have shown that microbial infection increases the synthesis of this AMP. Here, we propose that the production of Aβ as an AMP will be beneficial on first microbial challenge but will become progressively detrimental as the infection becomes chronic and reactivates from time to time. Furthermore, we propose that host measures to remove excess Aβ decrease over time due to microglial senescence and microbial biofilm formation. We propose that this biofilm aggregates with Aβ to form the plaques in the brain of AD patients. In this review, we will develop this connection between Infection - Aβ - AD and discuss future possible treatments based on this paradigm.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Karine Bourgade
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Abdelouahed Khalil
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Echarki Zerif
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- Singapore Immunology Network, ASTAR, Biopolis, Singapore, Singapore
| | - Katsuiku Hirokawa
- Department of Pathology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Greater Sudbury, ON, Canada
| | - Christian Bocti
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Lacombe
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Programme of Immunology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H. Frost
- Department of Microbiology and Infectious Diseases, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
40
|
Sochocka M, Sobczyński M, Sender-Janeczek A, Zwolińska K, Błachowicz O, Tomczyk T, Ziętek M, Leszek J. Association between Periodontal Health Status and Cognitive Abilities. The Role of Cytokine Profile and Systemic Inflammation. Curr Alzheimer Res 2018; 14:978-990. [PMID: 28317488 PMCID: PMC5676025 DOI: 10.2174/1567205014666170316163340] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/28/2017] [Accepted: 03/11/2017] [Indexed: 11/22/2022]
Abstract
Background: Contemporary neurobiology, periodontal medicine, and immunology are now focusing on the relationship between chronic periodontitis and systemic diseases, which also include Alzheimer’s disease (AD). However a causative relationship between dementia and periodontitis has yet to be confirmed. Objective: The aim of the study was to determine whether periodontal health status and cognitive abilities are correlated with the relative changes in systemic measures of pro- and anti-inflammatory cytokines as a reflection of systemic inflammation. We hypothesized that poor periodontal health status may be associated with cognitive impairment and dementia via the exacerbation of systemic inflammation. Methods: Based on the periodontal and psychiatric examinations and the cytokine levels produced by unstimulated and LPS-stimulated PBL isolated from 128 participants, we have examined if the coexisting of these two clinically described conditions may have influence on the systemic inflammation. Mini-Mental State Examination (MMSE) and Bleeding on Probing (BoP) test results were combined into the one mathematical function U, which determines the severity of specific condition, called Cognitive and periodontal impairment state. Similarly, the levels of cytokines were combined into the one mathematical function V, whose value determines the level of Inflammatory state. The correlation between U and V was determined. Results: These results confirm that the presence of cognitive decline and the additional source of pro-inflammatory mediators, like periodontal health problems, aggravate the systemic inflammation. Conclusion: It is most likely that the comorbidity of these two disorders may deepen the cognitive impairment, and neurodegenerative lesions and advance to dementia and AD.
Collapse
Affiliation(s)
- Marta Sochocka
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw. Poland
| | - Maciej Sobczyński
- Department of Genomics, Faculty of Biotechnology, University of Wroclaw, Wroclaw. Poland
| | | | - Katarzyna Zwolińska
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw. Poland
| | - Olga Błachowicz
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw. Poland
| | - Tomasz Tomczyk
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw. Poland
| | - Marek Ziętek
- Department of Periodontology, Wroclaw Medical University, Wroclaw. Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw. Poland
| |
Collapse
|
41
|
Zhang S, Chai R, Yang YY, Guo SQ, Wang S, Guo T, Xu SF, Zhang YH, Wang ZY, Guo C. Chronic diabetic states worsen Alzheimer neuropathology and cognitive deficits accompanying disruption of calcium signaling in leptin-deficient APP/PS1 mice. Oncotarget 2018; 8:43617-43634. [PMID: 28467789 PMCID: PMC5546429 DOI: 10.18632/oncotarget.17116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
The coincidences between Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) are so compelling that it is attractive to speculate that diabetic conditions might aggravate AD pathologies by calcium dysfunction, although the understanding of the molecular mechanisms involved remains elusive. The present work was undertaken to investigate whether calcium dyshomeostasis is associated with the exacerbated Alzheimer-like cognitive dysfunction observed in diabetic conditions in APP/PS1-ob/ob mice, which were generated by crossing ob/ob mice with APP/PS1 mice. We confirmed that the diabetic condition can aggravate not only Aβ deposition but also tau phosphorylation, synaptic loss, neuronal death, and inflammation, exacerbating cognitive impairment in AD mice. More importantly, we found that the diabetic condition dramatically elevated calcium levels in APP/PS1 mice, thereby stimulating the phosphorylation of the calcium-dependent kinases. Our findings suggest that controlling over-elevation of intracellular calcium may provide novel insights for approaching AD in diabetic patients and delaying AD progression.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Rui Chai
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ying-Ying Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shi-Qi Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shan Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tian Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shuang-Feng Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yan-Hui Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
42
|
Bastian FO. Combined Creutzfeldt-Jakob/ Alzheimer's Disease Cases are Important in Search for Microbes in Alzheimer's Disease. J Alzheimers Dis 2018; 56:867-873. [PMID: 28059790 DOI: 10.3233/jad-160999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The question whether Alzheimer's disease is infectious as brought up in the recent editorial published in the Journal of Alzheimer's Disease is complicated by the controversy whether the causal agent is a microbe or a misfolded host protein (amyloid). The replicating amyloid (prion) theory, based upon data from studies of Creutzfeldt-Jakob disease (CJD) and other transmissible spongiform encephalopathies (TSEs), has been challenged since the prion can be separated from TSE infectivity, and spiroplasma, a wall-less bacterium, has been shown to be involved in the pathogenesis of CJD. Further support for a microbial cause for AD comes from occurrence of mixed CJD/AD cases involving up to 15% of AD brains submitted to brain banks. The association of CJD with AD suggests a common etiology rather than simply being a medical curiosity. A co-infection with the transmissible agent of CJD, which we propose to be a Spiroplasma sp., would explain the diversity of bacteria shown to be associated with cases of AD.
Collapse
Affiliation(s)
- Frank O Bastian
- School of Animal Science, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.,Tulane Medical School, New Orleans, LA, USA.,Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
43
|
Doulberis M, Kotronis G, Thomann R, Polyzos SA, Boziki M, Gialamprinou D, Deretzi G, Katsinelos P, Kountouras J. Review: Impact of Helicobacter pylori on Alzheimer's disease: What do we know so far? Helicobacter 2018; 23. [PMID: 29181894 DOI: 10.1111/hel.12454] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Helicobacter pylori has changed radically gastroenterologic world, offering a new concept in patients' management. Over time, more medical data gave rise to diverse distant, extragastric manifestations and interactions of the "new" discovered bacterium. Special interest appeared within the field of neurodegenerative diseases and particularly Alzheimer's disease, as the latter and Helicobacter pylori infection are associated with a large public health burden and Alzheimer's disease ranks as the leading cause of disability. However, the relationship between Helicobacter pylori infection and Alzheimer's disease remains uncertain. METHODS We performed a narrative review regarding a possible connection between Helicobacter pylori and Alzheimer's disease. All accessible relevant (pre)clinical studies written in English were included. Both affected pathologies were briefly analyzed, and relevant studies are discussed, trying to focus on the possible pathogenetic role of this bacterium in Alzheimer's disease. RESULTS Data stemming from both epidemiologic studies and animal experiments seem to be rather encouraging, tending to confirm the hypothesis that Helicobacter pylori infection might influence the course of Alzheimer's disease pleiotropically. Possible main mechanisms may include the bacterium's access to the brain via the oral-nasal-olfactory pathway or by circulating monocytes (infected with Helicobacter pylori due to defective autophagy) through disrupted blood-brain barrier, thereby possibly triggering neurodegeneration. CONCLUSIONS Current data suggest that Helicobacter pylori infection might influence the pathophysiology of Alzheimer's disease. However, further large-scale randomized controlled trials are mandatory to clarify a possible favorable effect of Helicobacter pylori eradication on Alzheimer's disease pathophysiology, before the recommendation of short-term and cost-effective therapeutic regimens against Helicobacter pylori-related Alzheimer's disease.
Collapse
Affiliation(s)
- Michael Doulberis
- Department of Internal Medicine, Bürgerspital Hospital, Solothurn, Switzerland
| | - Georgios Kotronis
- Department of Internal Medicine, Agios Pavlos General Hospital, Thessaloniki, Macedonia, Greece
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Hospital, Solothurn, Switzerland
| | - Stergios A Polyzos
- Department of Internal Medicine, Ippokration Hospital, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Marina Boziki
- Department of Internal Medicine, Ippokration Hospital, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Dimitra Gialamprinou
- Department of Pediatrics, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Multiple Sclerosis Unit, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Panagiotis Katsinelos
- Department of Internal Medicine, Ippokration Hospital, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Ippokration Hospital, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| |
Collapse
|
44
|
Carter CJ, France J, Crean S, Singhrao SK. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases. Front Aging Neurosci 2017; 9:408. [PMID: 29311898 PMCID: PMC5732932 DOI: 10.3389/fnagi.2017.00408] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis. Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis/host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb (P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database (P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis/host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor.
Collapse
Affiliation(s)
| | - James France
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - StJohn Crean
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - Sim K Singhrao
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
45
|
Eze IC, Esse C, Bassa FK, Koné S, Acka F, Yao L, Imboden M, Jaeger FN, Schindler C, Dosso M, Laubhouet-Koffi V, Kouassi D, N'Goran EK, Utzinger J, Bonfoh B, Probst-Hensch N. Côte d'Ivoire Dual Burden of Disease (CoDuBu): Study Protocol to Investigate the Co-occurrence of Chronic Infections and Noncommunicable Diseases in Rural Settings of Epidemiological Transition. JMIR Res Protoc 2017; 6:e210. [PMID: 29079553 PMCID: PMC5681722 DOI: 10.2196/resprot.8599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Individual-level concomitance of infectious diseases and noncommunicable diseases (NCDs) is poorly studied, despite the reality of this dual disease burden for many low- and middle-income countries (LMICs). OBJECTIVE This study protocol describes the implementation of a cohort and biobank aiming for a better understanding of interrelation of helminth and Plasmodium infections with NCD phenotypes like metabolic syndrome, hypertension, and diabetes. METHODS A baseline cross-sectional population-based survey was conducted over one year, in the Taabo health and demographic surveillance system (HDSS) in south-central Côte d'Ivoire. We randomly identified 1020 consenting participants aged ≥18 years in three communities (Taabo-Cité, Amani-Ménou, and Tokohiri) reflecting varying stages of epidemiological transition. Participants underwent health examinations consisting of NCD phenotyping (anthropometry, blood pressure, renal function, glycemia, and lipids) and infectious disease testing (infections with soil-transmitted helminths, schistosomes, and Plasmodium). Individuals identified to have elevated blood pressure, glucose, lipids, or with infections were referred to the central/national health center for diagnostic confirmation and treatment. Aliquots of urine, stool, and venous blood were stored in a biobank for future exposome/phenome research. In-person interviews on sociodemographic attributes, risk factors for infectious diseases and NCDs, medication, vaccinations, and health care were also conducted. Appropriate statistical techniques will be applied in exploring the concomitance of infectious diseases and NCDs and their determinants. Participants' consent for follow-up contact was obtained. RESULTS Key results from this baseline study, which will be published in peer-reviewed literature, will provide information on the prevalence and co-occurrence of infectious diseases, NCDs, and their risk factors. The Taabo HDSS consists of rural and somewhat more urbanized areas, allowing for comparative studies at different levels of epidemiological transition. An HDSS setting is ideal as a basis for longitudinal studies since their sustainable field work teams hold close contact with the local population. CONCLUSIONS The collaboration between research institutions, public health organizations, health care providers, and staff from the Taabo HDSS in this study assures that the synthesized evidence will feed into health policy towards integrated infectious disease-NCD management. The preparation of health systems for the dual burden of disease is pressing in low- and middle-income countries. The established biobank will strengthen the local research capacity and offer opportunities for biomarker studies to deepen the understanding of the cross-talk between infectious diseases and NCDs. TRIAL REGISTRATION International Standard Randomized Controlled Trials Number (ISRCTN): 87099939; http://www.isrctn.com/ISRCTN87099939 (Archived by WebCite at http://www.webcitation.org/6uLEs1EsX).
Collapse
Affiliation(s)
- Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Clémence Esse
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Institut d'Ethnosociologie, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Fidèle K Bassa
- Unite de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Siaka Koné
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Felix Acka
- Institut National de Santé Publique, Abidjan, Côte d'Ivoire
| | - Loukou Yao
- Ligue Ivoirienne contre l'Hypertension Artérielle et les Maladies Cardiovasculaire, Abidjan, Côte d'Ivoire
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fabienne N Jaeger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Mireille Dosso
- Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Véronique Laubhouet-Koffi
- Ligue Ivoirienne contre l'Hypertension Artérielle et les Maladies Cardiovasculaire, Abidjan, Côte d'Ivoire
| | - Dinard Kouassi
- Institut National de Santé Publique, Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Unite de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Bassirou Bonfoh
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
46
|
Lau A, Bourkas M, Lu YQQ, Ostrowski LA, Weber-Adrian D, Figueiredo C, Arshad H, Shoaei SZS, Morrone CD, Matan-Lithwick S, Abraham KJ, Wang H, Schmitt-Ulms G. Functional Amyloids and their Possible Influence on Alzheimer Disease. Discoveries (Craiova) 2017; 5:e79. [PMID: 32309597 PMCID: PMC7159844 DOI: 10.15190/d.2017.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Amyloids play critical roles in human diseases but have increasingly been recognized to also exist naturally. Shared physicochemical characteristics of amyloids and of their smaller oligomeric building blocks offer the prospect of molecular interactions and crosstalk amongst these assemblies, including the propensity to mutually influence aggregation. A case in point might be the recent discovery of an interaction between the amyloid β peptide (Aβ) and somatostatin (SST). Whereas Aβ is best known for its role in Alzheimer disease (AD) as the main constituent of amyloid plaques, SST is intermittently stored in amyloid-form in dense core granules before its regulated release into the synaptic cleft. This review was written to introduce to readers a large body of literature that surrounds these two peptides. After introducing general concepts and recent progress related to our understanding of amyloids and their aggregation, the review focuses separately on the biogenesis and interactions of Aβ and SST, before attempting to assess the likelihood of encounters of the two peptides in the brain, and summarizing key observations linking SST to the pathobiology of AD. While the review focuses on Aβ and SST, it is to be anticipated that crosstalk amongst functional and disease-associated amyloids will emerge as a general theme with much broader significance in the etiology of dementias and other amyloidosis.
Collapse
Affiliation(s)
- Angus Lau
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Matthew Bourkas
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Yang Qing Qin Lu
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Lauren Anne Ostrowski
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Danielle Weber-Adrian
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Carlyn Figueiredo
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hamza Arshad
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Seyedeh Zahra Shams Shoaei
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Christopher Daniel Morrone
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Stuart Matan-Lithwick
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Karan Joshua Abraham
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Gerold Schmitt-Ulms
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
47
|
de Korwin JD, Ianiro G, Gibiino G, Gasbarrini A. Helicobacter pylori infection and extragastric diseases in 2017. Helicobacter 2017; 22 Suppl 1. [PMID: 28891133 DOI: 10.1111/hel.12411] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The huge variety of extragastric diseases linked to Helicobacter pylori infection is widely known, and new studies are conducted every year on this topic. Neurological disorders and metabolic syndrome are some of the main issues debated in the most recent literature. Articles on the association of H. pylori with skin diseases, inflammatory bowel diseases, immunologic impairment, kidney dysfunction, allergic asthma, and respiratory diseases have been published as well. In this perspective, eradication therapy for this infection could become a mandatory measure in prevention strategy.
Collapse
Affiliation(s)
- Jean-Dominique de Korwin
- Department of Internal Medicine, University of Lorraine and University Hospital of Nancy, Nancy, France
| | - Gianluca Ianiro
- Department of Internal Medicine, Gastroenterology and Hepatology, Agostino Gemelli Hospital, Catholic University of Rome, Milano, Italy
| | - Giulia Gibiino
- Department of Internal Medicine, Gastroenterology and Hepatology, Agostino Gemelli Hospital, Catholic University of Rome, Milano, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine, Gastroenterology and Hepatology, Agostino Gemelli Hospital, Catholic University of Rome, Milano, Italy
| |
Collapse
|
48
|
Matos AM, Cristóvão JS, Yashunsky DV, Nifantiev NE, Viana AS, Gomes CM, Rauter AP. Synthesis and effects of flavonoid structure variation on amyloid-β aggregation. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractDietary flavonoids and synthetic derivatives have a well-known potential for biomedical applications. In this perspective, we report herein new methodologies to access chrysin and 5,7-dihydroxychromone, and these structures were combined with those of naturally occurring quercetin, luteolin, (+)-dihydroquercetin and apigenin to assemble a set of polyphenols with structure variations for in vitro testing over the aggregation of Alzheimer’s disease (AD) amyloid peptide Aβ1−42. Using thioflavin-T (ThT) monitored kinetics and subsequent mechanistic analysis by curve fitting, we show that catechol-type flavonoids reduce Aβ1−42 fibril content by 30% at molar ratios over 10. Without affecting secondary nucleation, these compounds accelerate primary nucleation events responsible for early primary oligomer formation, putatively redirecting the latter into off-pathway aggregates. Atomic force microscopy (AFM) imaging of reaction end-points allowed a comprehensive topographical analysis of amyloid aggregate populations formed in the presence of each compound. Formation of Aβ1−42 small oligomers, regarded as the most toxic amyloid structures, seems to be limited by flavonoids with a C2 phenyl group, while flavonol 3-OH is not a beneficial structural feature. Overall, the diversity of structural variations within flavonoids opens avenues for their development as chemical tools in the treatment of AD by tackling the formation and distribution of neurotoxic oligomers species.
Collapse
Affiliation(s)
- Ana M. Matos
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n° 6, 6-A, CEDOC II, 1150-082, Lisboa, Portugal
| | - Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky, Prospect 47, 119991 Moscow, Russian Federation
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky, Prospect 47, 119991 Moscow, Russian Federation
| | - Ana S. Viana
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Amélia P. Rauter
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
49
|
Emery DC, Shoemark DK, Batstone TE, Waterfall CM, Coghill JA, Cerajewska TL, Davies M, West NX, Allen SJ. 16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer's Post-Mortem Brain. Front Aging Neurosci 2017; 9:195. [PMID: 28676754 PMCID: PMC5476743 DOI: 10.3389/fnagi.2017.00195] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
The neurological deterioration associated with Alzheimer's disease (AD), involving accumulation of amyloid-beta peptides and neurofibrillary tangles, is associated with evident neuroinflammation. This is now seen to be a significant contributor to pathology. Recently the tenet of the privileged status of the brain, regarding microbial compromise, has been questioned, particularly in terms of neurodegenerative diseases. It is now being considered that microbiological incursion into the central nervous system could be either an initiator or significant contributor to these. This is a novel study using 16S ribosomal gene-specific Next generation sequencing (NGS) of extracted brain tissue. A comparison was made of the bacterial species content of both frozen and formaldehyde fixed sections of a small cohort of Alzheimer-affected cases with those of cognitively unimpaired (normal). Our findings suggest an increase in bacterial populations in Alzheimer brain tissue compared with normal.
Collapse
Affiliation(s)
- David C. Emery
- School of Clinical Sciences, Faculty of Health Sciences, University of BristolBristol, United Kingdom
| | | | - Tom E. Batstone
- School of Biological Sciences, Life Sciences, University of BristolBristol, United Kingdom
| | - Christy M. Waterfall
- School of Biological Sciences, Life Sciences, University of BristolBristol, United Kingdom
| | - Jane A. Coghill
- School of Biological Sciences, Life Sciences, University of BristolBristol, United Kingdom
| | | | - Maria Davies
- School of Oral and Dental SciencesBristol, United Kingdom
| | - Nicola X. West
- School of Oral and Dental SciencesBristol, United Kingdom
| | - Shelley J. Allen
- School of Clinical Sciences, Faculty of Health Sciences, University of BristolBristol, United Kingdom
| |
Collapse
|
50
|
Wang L, Hu W, Miao D, Zhang Q, Wang C, Pan E, Wu M. Relationship between serum uric acid and ischemic stroke in a large type 2 diabetes population in China: A cross-sectional study. J Neurol Sci 2017; 376:176-180. [PMID: 28431608 DOI: 10.1016/j.jns.2017.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate the relationship of serum UA and ischemic stroke in type 2 diabetes patients in China. METHOD We examined the above relationship using the data of the project "Comprehensive Research on the Prevention and Control of the Diabetes" (CRPCD) study. A total of 19,442 participants were enrolled in the cross-sectional study. The enrolled participants were divided into quintiles of the serum UA levels with cut off values for two age groups (<60 versus ≥60years). Binary logistic regression analyses were used to evaluate whether the levels of serum UA were independently associated with ischemic stroke in type 2 diabetes. RESULTS The serum UA levels were significantly higher in the participants with age≥60years than those with age<60years (P=0.000). In the age group of <60years, the odds ratio for ischemic stroke with type 2 diabetes in quintile 5 over quintile 1 was 2.420 (95% CI, 1.566-3.470) in the unadjusted model and 1.765 (95% CI, 1.097-2.840) after controlling potential confounders. However, the reverse results were observed in the age group of ≥60years. The odds ratio in quintile 4 over quintile 1 in model 3 and model 4 were 0.767 (95% CI, 0.630-0.934) and 0.782 (95% CI, 0.640-0.957). CONCLUSION Our results indicated that serum UA levels were independently positively associated with ischemic stroke in patients aged <60years, but the association was U-shaped in patients aged ≥60years.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, China
| | - Wei Hu
- Department of Chronic Disease Prevention and Control, Huai'an City Center for Disease Control and Prevention, Huai'an, Jiangsu, China
| | - Dandan Miao
- Department of Chronic Disease Prevention and Control, Huai'an City Center for Disease Control and Prevention, Huai'an, Jiangsu, China
| | - Qin Zhang
- Department of Chronic Disease Prevention and Control, Huai'an City Center for Disease Control and Prevention, Huai'an, Jiangsu, China
| | - Chuang Wang
- Department of Chronic Disease Prevention and Control, Huai'an City Center for Disease Control and Prevention, Huai'an, Jiangsu, China
| | - Enchun Pan
- Department of Chronic Disease Prevention and Control, Huai'an City Center for Disease Control and Prevention, Huai'an, Jiangsu, China.
| | - Ming Wu
- Department of Chronic Disease Prevention and Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China.
| |
Collapse
|