1
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Yan P, Jimenez ER, Li Z, Bui T, Seehawer M, Nishida J, Foidart P, Stevens LE, Xie Y, Gomez MM, Park SY, Long HW, Polyak K. Midkine as a driver of age-related changes and increase in mammary tumorigenesis. Cancer Cell 2024; 42:1936-1954.e9. [PMID: 39366375 PMCID: PMC11560576 DOI: 10.1016/j.ccell.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Aging is a pivotal risk factor for cancer, yet the underlying mechanisms remain poorly defined. Here, we explore age-related changes in the rat mammary gland by single-cell multiomics. Our findings include increased epithelial proliferation, loss of luminal identity, and decreased naive B and T cells with age. We discover a luminal progenitor population unique to old rats with profiles reflecting precancerous changes and identify midkine (Mdk) as a gene upregulated with age and a regulator of age-related luminal progenitors. Midkine treatment of young rats mimics age-related changes via activating PI3K-AKT-SREBF1 pathway and promotes nitroso-N-methylurea-induced mammary tumorigenesis. Midkine levels increase with age in human blood and mammary epithelium, and higher MDK in normal breast tissue is associated with higher breast cancer risk in younger women. Our findings reveal a link between aging and susceptibility to tumor initiation and identify midkine as a mediator of age-dependent increase in breast tumorigenesis.
Collapse
Affiliation(s)
- Pengze Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ernesto Rojas Jimenez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Triet Bui
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jun Nishida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pierre Foidart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Miguel Munoz Gomez
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - So Yeon Park
- Department of Pathology, Seoul National University, Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Seoul National University, Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea; Harvard Stem Cell Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Olander A, Ramirez CM, Acosta VH, Medina P, Kaushik S, Jonsson VD, Sikandar SS. Pregnancy Reduces Il33+ Hybrid Progenitor Accumulation in the Aged Mammary Gland. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606240. [PMID: 39149387 PMCID: PMC11326159 DOI: 10.1101/2024.08.01.606240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Aging increases breast cancer risk while an early first pregnancy reduces a woman's life-long risk. Several studies have explored the effect of either aging or pregnancy on mammary epithelial cells (MECs), but the combined effect of both remains unclear. Here, we interrogate the functional and transcriptomic changes at single cell resolution in the mammary gland of aged nulliparous and parous mice to discover that pregnancy normalizes age-related imbalances in lineage composition, while also inducing a differentiated cell state. Importantly, we uncover a minority population of Il33-expressing hybrid MECs with high cellular potency that accumulate in aged nulliparous mice but is significantly reduced in aged parous mice. Functionally, IL33 treatment of basal, but not luminal, epithelial cells from young mice phenocopies aged nulliparous MECs and promotes formation of organoids with Trp53 knockdown. Collectively, our study demonstrates that pregnancy blocks the age-associated loss of lineage integrity in the basal layer through a decrease in Il33+ hybrid MECs, potentially contributing to pregnancy-induced breast cancer protection.
Collapse
Affiliation(s)
- Andrew Olander
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
| | - Cynthia M Ramirez
- Department of Applied Mathematics, University of California - Santa Cruz
| | - Veronica Haro Acosta
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
| | - Paloma Medina
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
- Department of Biomolecular Engineering, University of California - Santa Cruz
- Institute for the Biology of Stem Cells, University of California - Santa Cruz
| | - Sara Kaushik
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
| | - Vanessa D Jonsson
- Department of Biomolecular Engineering, University of California - Santa Cruz
- Genomics Institute, University of California - Santa Cruz
| | - Shaheen S Sikandar
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
- Genomics Institute, University of California - Santa Cruz
- Institute for the Biology of Stem Cells, University of California - Santa Cruz
| |
Collapse
|
4
|
Bai H, Liu X, Lin M, Meng Y, Tang R, Guo Y, Li N, Clarke MF, Cai S. Progressive senescence programs induce intrinsic vulnerability to aging-related female breast cancer. Nat Commun 2024; 15:5154. [PMID: 38886378 PMCID: PMC11183265 DOI: 10.1038/s41467-024-49106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Cancer incidence escalates exponentially with advancing age; however, the underlying mechanism remains unclear. In this study, we build a chronological molecular clock at single-cell transcription level with a mammary stem cell-enriched population to depict physiological aging dynamics in female mice. We find that the mammary aging process is asynchronous and progressive, initiated by an early senescence program, succeeded by an entropic late senescence program with elevated cancer associated pathways, vulnerable to cancer predisposition. The transition towards senescence program is governed by a stem cell factor Bcl11b, loss of which accelerates mammary ageing with enhanced DMBA-induced tumor formation. We have identified a drug TPCA-1 that can rejuvenate mammary cells and significantly reduce aging-related cancer incidence. Our findings establish a molecular portrait of progressive mammary cell aging and elucidate the transcriptional regulatory network bridging mammary aging and cancer predisposition, which has potential implications for the management of cancer prevalence in the aged.
Collapse
Affiliation(s)
- Huiru Bai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoqin Liu
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Meizhen Lin
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yuan Meng
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Ruolan Tang
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Yajing Guo
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Michael F Clarke
- Institute of Stem Cell and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Shang Cai
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Bouamar H, Broome LE, Lathrop KI, Jatoi I, Brenner AJ, Nazarullah A, Gorena KM, Garcia M, Chen Y, Kaklamani V, Sun LZ. mTOR inhibition abrogates human mammary stem cells and early breast cancer progression markers. Breast Cancer Res 2023; 25:131. [PMID: 37904250 PMCID: PMC10614399 DOI: 10.1186/s13058-023-01727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Mammary physiology is distinguished in containing adult stem/progenitor cells that are actively amending the breast tissue throughout the reproductive lifespan of women. Despite their importance in both mammary gland development, physiological maintenance, and reproduction, the exact role of mammary stem/progenitor cells in mammary tumorigenesis has not been fully elucidated in humans or animal models. The implications of modulating adult stem/progenitor cells in women could lead to a better understanding of not only their function, but also toward possible breast cancer prevention led us to evaluate the efficacy of rapamycin in reducing mammary stem/progenitor cell activity and malignant progression markers. METHODS We analyzed a large number of human breast tissues for their basal and luminal cell composition with flow cytometry and their stem and progenitor cell function with sphere formation assay with respect to age and menopausal status in connection with a clinical study (NCT02642094) involving a low-dose (2 mg/day) and short-term (5-7 days) treatment of the mTOR inhibitor sirolimus. The expression of biomarkers in biopsies and surgical breast samples were measured with quantitative analysis of immunohistochemistry. RESULTS Sirolimus treatment significantly abrogated mammary stem cell activity, particularly in postmenopausal patients. It did not affect the frequency of luminal progenitors but decreased their self-renewal capacity. While sirolimus had no effect on basal cell population, it decreased luminal cell population, particularly in postmenopausal patients. It also significantly diminished prognostic biomarkers associated with breast cancer progression from ductal carcinoma in situ to invasive breast cancer including p16INK4A, COX-2, and Ki67, as well as markers of the senescence-associated secretary phenotype, thereby possibly functioning in preventing early breast cancer progression. CONCLUSION Overall, these findings indicate a link from mTOR signaling to mammary stem and progenitor cell activity and cancer progression. Trial registration This study involves a clinical trial registered under the ClinicalTrials.gov identifier NCT02642094 registered December 30, 2015.
Collapse
Affiliation(s)
- Hakim Bouamar
- Department of Cell Systems and Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Larry Esteban Broome
- Department of Cell Systems and Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kate Ida Lathrop
- Department of Medicine, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ismail Jatoi
- Department of Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Andrew Jacob Brenner
- Department of Medicine, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alia Nazarullah
- Department of Pathology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Karla Moncada Gorena
- Flow Cytometry Core Facility, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael Garcia
- Department of Medicine, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Department of Population Health Sciences, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Greheey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Virginia Kaklamani
- Department of Medicine, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Jenkins EC, Chattopadhyay M, Gomez M, Torre D, Ma'ayan A, Torres‐Martin M, Sia D, Germain D. Age alters the oncogenic trajectory toward luminal mammary tumors that activate unfolded proteins responses. Aging Cell 2022; 21:e13665. [PMID: 36111352 PMCID: PMC9577951 DOI: 10.1111/acel.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
A major limitation in the use of mouse models in breast cancer research is that most mice develop estrogen receptor-alpha (ERα)-negative mammary tumors, while in humans, the majority of breast cancers are ERα-positive. Therefore, developing mouse models that best mimic the disease in humans is of fundamental need. Here, using an inducible MMTV-rtTA/TetO-NeuNT mouse model, we show that despite being driven by the same oncogene, mammary tumors in young mice are ERα-negative, while they are ERα-positive in aged mice. To further elucidate the mechanisms for this observation, we performed RNAseq analysis and identified genes that are uniquely expressed in aged female-derived mammary tumors. We found these genes to be involved in the activation of the ERα axis of the mitochondrial UPR and the ERα-mediated regulation of XBP-1s, a gene involved in the endoplasmic reticulum UPR. Collectively, our results indicate that aging alters the oncogenic trajectory towards the ERα-positive subtype of breast cancers, and that mammary tumors in aged mice are characterized by the upregulation of multiple UPR stress responses regulated by the ERα.
Collapse
Affiliation(s)
- Edmund Charles Jenkins
- Department of Medicine, Division of Hematology/Oncology, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Mrittika Chattopadhyay
- Department of Medicine, Division of Hematology/Oncology, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Maria Gomez
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Denis Torre
- Department of Pharmacological Sciences, Mount Sinai Center for BioinformaticsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for BioinformaticsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Miguel Torres‐Martin
- Clinical Genomics Research GroupGermans Trias I Pujol Research Institute (IGTP)BarcelonaSpain
| | - Daniela Sia
- Department of Medicine, Division of Liver Diseases, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Doris Germain
- Department of Medicine, Division of Hematology/Oncology, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
7
|
Shalabi SF, LaBarge MA. Cellular and molecular mechanisms of breast cancer susceptibility. Clin Sci (Lond) 2022; 136:1025-1043. [PMID: 35786748 DOI: 10.1042/cs20211158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
There is a plethora of recognized risk factors for breast cancer (BC) with poorly understood or speculative biological mechanisms. The lack of prevention options highlights the importance of understanding the mechanistic basis of cancer susceptibility and finding new targets for breast cancer prevention. Until now, we have understood risk and cancer susceptibility primarily through the application of epidemiology and assessing outcomes in large human cohorts. Relative risks are assigned to various human behaviors and conditions, but in general the associations are weak and there is little understanding of mechanism. Aging is by far the greatest risk factor for BC, and there are specific forms of inherited genetic risk that are well-understood to cause BC. We propose that bringing focus to the biology underlying these forms of risk will illuminate biological mechanisms of BC susceptibility.
Collapse
Affiliation(s)
- Sundus F Shalabi
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
- Medical Research Center, Al-Quds University, Jerusalem, Palestine
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
- Center for Cancer and Aging, Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
- Center for Cancer Biomarkers Research (CCBIO), Bergen, Norway
| |
Collapse
|
8
|
Caruso JA, Tlsty TD. Remaining true to one's identity. NATURE AGING 2021; 1:757-759. [PMID: 37117630 PMCID: PMC10835580 DOI: 10.1038/s43587-021-00113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The ability to remain true to cellular identity and function is lost during aging and carcinogenesis when DNA damage triggers inflammation that progressively erodes homeostatic cues. Shalabi et al. show that these losses are accelerated in patients with germline cancer mutations in DNA repair genes and are independent of chronological age.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
| | - Thea D Tlsty
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Gao H, Liu Y, Zheng M, Zhao F, Wang H, Yu J, Jiang H, Wang D, Dong Q. Characterization of murine mammary stem/progenitor cells in a D-galactose-induced aging model. Aging (Albany NY) 2021; 13:11762-11773. [PMID: 33878032 PMCID: PMC8109064 DOI: 10.18632/aging.202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 12/09/2022]
Abstract
Aging plays an important role in many diseases, including breast cancer. Aged mammary stem/progenitor cells are perceived to be the cells of origin in breast tumorigenesis; however, the extensive use of mice who have aged naturally for research is hampered by cost, time, disease complications, and high mortality. In this study, we characterized murine mammary stem/progenitor cells in a D-galactose-induced accelerated aging model and compared them with findings from our earlier study on mice from natural aging. Our results showed that mammary glands in the D-galactose-induced aging model mimic natural aging in terms of pathological changes, epithelial cell composition, and mammary stem/progenitor cell function. These changes are accompanied by elevated inflammatory responses both systemically in the blood and locally in the mammary glands, which is similar in mice who age naturally. Our study for the first time evaluated the mammary glands and mammary stem/progenitor function in a D-galactose-induced aging model in rodents, and our findings suggest that D-galactose treatment can be used as a surrogate to study the role aged stem/progenitor cells play in breast tumorigenesis.
Collapse
Affiliation(s)
- Hui Gao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China.,Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yahui Liu
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Min Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Fan Zhao
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hongzhu Wang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jiajian Yu
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hao Jiang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Danhan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiaoxiang Dong
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China.,Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| |
Collapse
|
10
|
Caponnetto F, Manini I, Bulfoni M, Zingaretti N, Miotti G, Di Loreto C, Cesselli D, Mariuzzi L, Parodi PC. Human Adipose-Derived Stem Cells in Madelung's Disease: Morphological and Functional Characterization. Cells 2020; 10:cells10010044. [PMID: 33396896 PMCID: PMC7824042 DOI: 10.3390/cells10010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Madelung Disease (MD) is a syndrome characterized by the accumulation of aberrant symmetric adipose tissue deposits. The etiology of this disease is yet to be elucidated, even though the presence of comorbidities, either genetic or environmental, has been reported. For this reason, establishing an in vitro model for MD is considered crucial to get insights into its physiopathology. We previously established a protocol for isolation and culture of stem cells from diseased tissues. Therefore, we isolated human adipose-derived stem cells (ASC) from MD patients and compared these cells with those isolated from healthy subjects in terms of surface phenotype, growth kinetic, adipogenic differentiation potential, and molecular alterations. Moreover, we evaluated the ability of the MD-ASC secretome to affect healthy ASC. The results reported a difference in the growth kinetic and surface markers of MD-ASC compared to healthy ASC but not in adipogenic differentiation. The most commonly described mitochondrial mutations were not observed. Still, MD-ASC secretome was able to shift the healthy ASC phenotype to an MD phenotype. This work provides evidence of the possibility of exploiting a patient-based in vitro model for better understanding MD pathophysiology, possibly favoring the development of novel target therapies.
Collapse
Affiliation(s)
- Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Correspondence: ; Tel.: +39-04-3255-9412
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Michela Bulfoni
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
| | - Nicola Zingaretti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (G.M.)
| | - Giovanni Miotti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (G.M.)
| | - Carla Di Loreto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Daniela Cesselli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Laura Mariuzzi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Pier Camillo Parodi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (G.M.)
| |
Collapse
|
11
|
Aging-Associated Alterations in Mammary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing. Cell Rep 2020; 33:108566. [PMID: 33378681 PMCID: PMC7898263 DOI: 10.1016/j.celrep.2020.108566] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is closely associated with increased susceptibility to breast cancer, yet there have been limited systematic studies of aging-induced alterations in the mammary gland. Here, we leverage high-throughput single-cell RNA sequencing to generate a detailed transcriptomic atlas of young and aged murine mammary tissues. By analyzing epithelial, stromal, and immune cells, we identify age-dependent alterations in cell proportions and gene expression, providing evidence that suggests alveolar maturation and physiological decline. The analysis also uncovers potential pro-tumorigenic mechanisms coupled to the age-associated loss of tumor suppressor function and change in microenvironment. In addition, we identify a rare, age-dependent luminal population co-expressing hormone-sensing and secretory-alveolar lineage markers, as well as two macrophage populations expressing distinct gene signatures, underscoring the complex heterogeneity of the mammary epithelia and stroma. Collectively, this rich single-cell atlas reveals the effects of aging on mammary physiology and can serve as a useful resource for understanding aging-associated cancer risk. Using single-cell RNA-sequencing, Li et al. compare mammary epithelia and stroma in young and aged mice. Age-dependent changes at cell and gene levels provide evidence suggesting alveolar maturation, functional deterioration, and potential pro-tumorigenic and inflammatory alterations. Additionally, identification of heterogeneous luminal and macrophage subpopulations underscores the complexity of mammary lineages.
Collapse
|
12
|
Age-associated genes in human mammary gland drive human breast cancer progression. Breast Cancer Res 2020; 22:64. [PMID: 32539762 PMCID: PMC7294649 DOI: 10.1186/s13058-020-01299-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Aging is a comorbidity of breast cancer suggesting that aging-associated transcriptome changes may promote breast cancer progression. However, the mechanism underlying the age effect on breast cancer remains poorly understood. Method We analyzed transcriptomics of the matched normal breast tissues from the 82 breast cancer patients in The Cancer Genome Atlas (TCGA) dataset with linear regression for genes with age-associated expression that are not associated with menopause. We also analyzed differentially expressed genes between the paired tumor and non-tumor breast tissues in TCGA for the identification of age and breast cancer (ABC)-associated genes. A few of these genes were selected for further investigation of their malignancy-regulating activities with in vitro and in vivo assays. Results We identified 148 upregulated and 189 downregulated genes during aging. Overlapping of tumor-associated genes between normal and tumor tissues with age-dependent genes resulted in 14 upregulated and 24 downregulated genes that were both age and breast cancer associated. These genes are predictive in relapse-free survival, indicative of their potential tumor promoting or suppressive functions, respectively. Knockdown of two upregulated genes (DYNLT3 and P4HA3) or overexpression of the downregulated ALX4 significantly reduced breast cancer cell proliferation, migration, and clonogenicity. Moreover, knockdown of P4HA3 reduced growth and metastasis whereas overexpression of ALX4 inhibited the growth of xenografted breast cancer cells in mice. Conclusion Our study suggests that transcriptome alterations during aging may contribute to breast tumorigenesis. DYNLT3, P4HA3, and ALX4 play significant roles in breast cancer progression.
Collapse
|
13
|
Interleukin-8 Dedifferentiates Primary Human Luminal Cells to Multipotent Stem Cells. Mol Cell Biol 2020; 40:MCB.00508-19. [PMID: 32015100 DOI: 10.1128/mcb.00508-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/02/2020] [Indexed: 11/20/2022] Open
Abstract
During aging, cellular plasticity and senescence play important roles in tissue regeneration and the pathogenesis of different diseases, including cancer. We have recently shown that senescent breast luminal cells can activate their adjacent stromal fibroblasts. In the present report, we present clear evidence that these senescence-related active fibroblasts can dedifferentiate proliferating primary human luminal cells to multipotent stem cells in an interleukin-8 (IL-8)-dependent manner. This was confirmed using recombinant IL-8, while the truncated protein was not active. This IL-8-related dedifferentiation of luminal cells was mediated through the STAT3-dependent downregulation of p16INK4A and the microRNA miR-141. Importantly, these in vitro-generated mammary stem cells exhibited high molecular and cellular similarities to human mammary stem cells. They have also shown a long-term mammary gland-reconstituting ability and the capacity to produce milk postdelivery. Thereby, these IL-8-generated mammary stem cells could be of great value for autologous cell therapy procedures and also for biomedical research as well as drug development.
Collapse
|
14
|
Tang C, van den Bijgaart RJ, Looman MW, Tel-Karthaus N, de Graaf AM, Gilfillan S, Colonna M, Ansems M, Adema GJ. DC-SCRIPT deficiency delays mouse mammary gland development and branching morphogenesis. Dev Biol 2019; 455:42-50. [DOI: 10.1016/j.ydbio.2019.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 01/09/2023]
|
15
|
Nerger BA, Nelson CM. 3D culture models for studying branching morphogenesis in the mammary gland and mammalian lung. Biomaterials 2018; 198:135-145. [PMID: 30174198 DOI: 10.1016/j.biomaterials.2018.08.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/20/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
The intricate architecture of branched tissues and organs has fascinated scientists and engineers for centuries. Yet-despite their ubiquity-the biophysical and biochemical mechanisms by which tissues and organs undergo branching morphogenesis remain unclear. With the advent of three-dimensional (3D) culture models, an increasingly powerful and diverse set of tools are available for investigating the development and remodeling of branched tissues and organs. In this review, we discuss the application of 3D culture models for studying branching morphogenesis of the mammary gland and the mammalian lung in the context of normal development and disease. While current 3D culture models lack the cellular and molecular complexity observed in vivo, we emphasize how these models can be used to answer targeted questions about branching morphogenesis. We highlight the specific advantages and limitations of using 3D culture models to study the dynamics and mechanisms of branching in the mammary gland and mammalian lung. Finally, we discuss potential directions for future research and propose strategies for engineering the next generation of 3D culture models for studying tissue morphogenesis.
Collapse
Affiliation(s)
- Bryan A Nerger
- Department of Chemical & Biological Engineering, Princeton, NJ, 08544, USA
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton, NJ, 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|