1
|
Subhadra M, Mir DA, Ankita K, Sindunathy M, Kishore HD, Ravichandiran V, Balamurugan K. Exploring diabesity pathophysiology through proteomic analysis using Caenorhabditis elegans. Front Endocrinol (Lausanne) 2024; 15:1383520. [PMID: 39539936 PMCID: PMC11557309 DOI: 10.3389/fendo.2024.1383520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Diabesity, characterized by obesity-driven Type 2 diabetes mellitus (T2DM), arises from intricate genetic and environmental interplays that induce various metabolic disorders. The systemic lipid and glucose homeostasis is controlled by an intricate cross-talk of internal glucose/insulin and fatty acid molecules to maintain a steady state of internal environment. Methods In this study, Caenorhabditis elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients to delve into the mechanistic foundations of diabesity. Various assays were conducted to measure intracellular triglyceride levels, lifespan, pharyngeal pumping rate, oxidative stress indicators, locomotor behavior, and dopamine signaling. Proteomic analysis was also performed to identify differentially regulated proteins and dysregulated KEGG pathways, and microscopy and immunofluorescence staining were employed to assess collagen production and anatomical integrity. Results Worms raised on diets high in glucose and cholesterol exhibited notably increased intracellular triglyceride levels, a decrease in both mean and maximum lifespan, and reduced pharyngeal pumping. The diabesity condition induced oxidative stress, evident from heightened ROS levels and distinct FT-IR spectroscopy patterns revealing lipid and protein alterations. Furthermore, impaired dopamine signaling and diminished locomotors behavior in diabesity-afflicted worms correlated with reduced motility. Through proteomic analysis, differentially regulated proteins encompassing dysregulated KEGG pathways included insulin signaling, Alzheimer's disease, and nicotinic acetylcholine receptor signaling pathways were observed. Moreover, diabesity led to decreased collagen production, resulting in anatomical disruptions validated through microscopy and immunofluorescence staining. Discussion This underscores the impact of diabesity on cellular components and structural integrity in C. elegans, providing insights into diabesity-associated mechanisms.
Collapse
Affiliation(s)
- Malaimegu Subhadra
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Dilawar Ahmad Mir
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Koley Ankita
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Hambram David Kishore
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | | |
Collapse
|
2
|
Wu YW, Chen JW, Tsai HY, Huang JH, Chang CC, Chang TT. Inhibition of Adipocyte-Derived FABP4 Reduces Adipocyte Inflammation, Improves Angiogenesis, and Facilitates Wound Healing in Metabolic Dysfunctions. J Invest Dermatol 2024:S0022-202X(24)02086-4. [PMID: 39260685 DOI: 10.1016/j.jid.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Dermal white adipose tissue may participate in the wound-healing process. Obesity-mediated chronic low-grade inflammation impairs wound healing by suppressing vascularity. Given that FABP4 is upregulated in the skin tissue of animals with obesity, this study aimed to investigate the effects of FABP4 inhibition on wound healing in mice with high-fat diet-induced metabolic dysfunction in vivo. The interaction between adipocyte-derived FABP4 and vascular endothelial cell function was also investigated. In mice with high-fat diet-induced metabolic dysfunction, FABP4 inhibition increased angiogenesis and facilitated wound healing with reduced wound inflammation. FABP4 inhibition not only attenuated systemic inflammation, decreased body weight, and reduced insulin resistance but also improved the sizes of adipocytes and hypoxic conditions in dermal white adipose tissue. In vitro hypoxia was used to induce adipocyte inflammation, and the supernatants from hypoxia-stimulated adipocytes impaired the function and angiogenetic capability of human dermal microvascular endothelial cells (HDMECs). Both of them were improved by FABP4 inhibition. Altogether, FABP4 inhibition reduced systemic and adipocyte inflammation, improved vascular endothelial cell function, and facilitated wound healing in metabolic dysfunctions. Given the complex involvement of wound healing, future studies may be required to validate FABP4 as a potential therapeutic target for wound repair in metabolic dysfunctions.
Collapse
Affiliation(s)
- Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jaw-Wen Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Faucalty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hao-Yuan Tsai
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jih-Hsin Huang
- Division of Cardiovascular Surgery, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Chi Chang
- Faucalty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Ting Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Ghanbari M, Salkovskiy Y, Carlson MA. The rat as an animal model in chronic wound research: An update. Life Sci 2024; 351:122783. [PMID: 38848945 PMCID: PMC11581782 DOI: 10.1016/j.lfs.2024.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The increasing global prevalence of chronic wounds underscores the growing importance of developing effective animal models for their study. This review offers a critical evaluation of the strengths and limitations of rat models frequently employed in chronic wound research and proposes potential improvements. It explores these models in the context of key comorbidities, including diabetes, venous and arterial insufficiency, pressure-induced blood flow obstruction, and infections. Additionally, the review examines important wound factors including age, sex, smoking, and the impact of anesthetic and analgesic drugs, acknowledging their substantial effects on research outcomes. A thorough understanding of these variables is crucial for refining animal models and can provide valuable insights for future research endeavors.
Collapse
Affiliation(s)
- Mahboubeh Ghanbari
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Yury Salkovskiy
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Mark A Carlson
- Department of Surgery, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Pang J, Urao N, Koh TJ. Diet-Induced Obesity Increases Monocyte/Macrophage Proliferation during Skin Wound Healing in Mice. Cells 2024; 13:401. [PMID: 38474365 PMCID: PMC10930651 DOI: 10.3390/cells13050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is associated with low-grade chronic inflammation and impaired glucose metabolism, both of which are detrimental to wound healing. C-C motif chemokine receptor 2 (CCR2) plays an important role in cell recruitment during healing, and our recent studies revealed the significance of CCR2-CCL2 signaling in promoting the proliferation of pro-inflammatory monocytes/macrophages in wounds. Therefore, we sought to determine whether diet-induced obesity increases monocyte/macrophage proliferation and their accumulation in skin wounds. We first confirmed that wound closure was delayed in obese CCR2RFP/+ mice fed with a high-fat diet (HFD) compared to mice fed with a normal diet (ND). Using in vivo imaging and flow cytometry analysis, we found that HFD mice had significantly increased accumulation of CCR2+ monocytes/macrophages, particularly pro-inflammatory CCR2+Ly6C+ cells in wounds compared to their ND counterparts. Importantly, HFD mice exhibited an increased proliferation of wound CCR2+Ly6C+ compared to ND mice. Together, our data suggest that obesity leads to an increased proliferation and accumulation of pro-inflammatory CCR2+Ly6C+ monocytes/macrophages in skin wounds, which may contribute to delayed healing.
Collapse
Affiliation(s)
- Jingbo Pang
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W. Taylor Street, Chicago, IL 60612, USA
| | - Norifumi Urao
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W. Taylor Street, Chicago, IL 60612, USA
| |
Collapse
|
5
|
de Carvalho Faria RV, Duarte MS, de Souza Nogueira J, Gregório BM, Romana-Souza B. Nrf2 activation by hydroxytyrosol and dimethyl fumarate ameliorates skin tissue repair in high-fat diet-fed mice by promoting M2 macrophage polarization and normalizing inflammatory response and oxidative damage. J Biochem Mol Toxicol 2024; 38:e23652. [PMID: 38348708 DOI: 10.1002/jbt.23652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Hydroxytyrosol (HT) or dimethyl fumarate (DMF), activators of nuclear factor erythroid 2-related factor 2 (Nrf2), may reduce obesity in high-fat diet (HFD)-fed animals; nevertheless, the role of these activators on skin tissue repair of HFD-fed animals was not reported. This study investigated whether HT or DMF could improve skin wound healing of HFD-fed obese animals. Mice were fed with an HFD, treated with HT or DMF, and full-thickness skin wounds were created. Macrophages isolated from control and obese animals were treated in vitro with HT. DMF, but not HT, reduced the body weight of HFD-fed mice. Collagen deposition and wound closure were improved by HT or DMF in HFD-fed animals. HT or DMF increased anti-inflammatory macrophage phenotype and protein Nrf2 levels in wounds of HFD-fed mice. Lipid peroxidation and protein tumor necrosis factor-α levels were reduced by HT or DMF in wounds of HFD-fed animals. In in vitro, HT stimulated Nrf2 activation in mouse macrophages isolated from obese animals. In conclusion, HT or DMF improves skin wound healing of HFD-fed mice by reducing oxidative damage and inflammatory response. HT or DMF may be used as a therapeutic strategy to improve the skin healing process in individuals with obesity.
Collapse
Affiliation(s)
| | - Matheus Silva Duarte
- Histology and Embryology Department, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeane de Souza Nogueira
- Laboratory of Histocompatibility and Cryopreservation, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Martins Gregório
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Romana-Souza
- Histology and Embryology Department, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Arnke K, Pfister P, Reid G, Vasella M, Ruhl T, Seitz AK, Lindenblatt N, Cinelli P, Kim BS. Impact of a High-Fat Diet at a Young Age on Wound Healing in Mice. Int J Mol Sci 2023; 24:17299. [PMID: 38139127 PMCID: PMC10743676 DOI: 10.3390/ijms242417299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
As the prevalence of juvenile-onset obesity rises globally, the multitude of related health consequences gain significant importance. In this context, obesity is associated with impaired cutaneous wound healing. In experimental settings, mice are the most frequently used model for investigating the effect of high-fat diet (HFD) chow on wound healing in wild-type or genetically manipulated animals, e.g., diabetic ob/ob and db/db mice. However, these studies have mainly been performed on adult animals. Thus, in the present study, we introduced a mouse model for a juvenile onset of obesity. We exposed 4-week-old mice to an investigational feeding period of 9 weeks with an HFD compared to a regular diet (RD). At a mouse age of 13 weeks, we performed excisional and incisional wounding and measured the healing rate. Wound healing was examined by serial photographs with daily wound size measurements of the excisional wounds. Histology from incisional wounds was performed to quantify granulation tissue (thickness, quality) and angiogenesis (number of blood vessels per mm2). The expression of extracellular matrix proteins (collagen types I/III/IV, fibronectin 1, elastin), inflammatory cytokines (MIF, MIF-2, IL-6, TNF-α), myofibroblast differentiation (α-SMA) and macrophage polarization (CD11c, CD301b) in the incisional wounds were evaluated by RT-qPCR and by immunohistochemistry. There was a marked delay of wound closure in the HFD group with a decrease in granulation tissue quality and thickness. Additionally, inflammatory cytokines (MIF, IL-6, TNF-α) were significantly up-regulated in HFD- when compared to RD-fed mice measured at day 3. By contrast, MIF-2 and blood vessel expression were significantly reduced in the HFD animals, starting at day 1. No significant changes were observed in macrophage polarization, collagen expression, and levels of TGF-β1 and PDGF-A. Our findings support that an early exposition to HFD resulted in juvenile obesity in mice with impaired wound repair mechanisms, which may be used as a murine model for obesity-related studies in the future.
Collapse
Affiliation(s)
- Kevin Arnke
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
- Center for Surgical Research, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland;
| | - Pablo Pfister
- Department of Surgery, Triemli City Hospital Zurich, 8063 Zurich, Switzerland
| | - Gregory Reid
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Mauro Vasella
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Ann-Kathrin Seitz
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Paolo Cinelli
- Center for Surgical Research, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland;
- Department of Trauma Surgery, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| |
Collapse
|
7
|
Khan MS, Azam M, Khan MN, Syed F, Ali SHB, Malik TA, Alnasser SMA, Ahmad A, Karimulla S, Qamar R. Identification of contributing factors, microorganisms and antimicrobial resistance involved in the complication of diabetic foot ulcer treatment. Microb Pathog 2023; 184:106363. [PMID: 37730169 DOI: 10.1016/j.micpath.2023.106363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Diabetic foot ulcer (DFU) is a neurological and peripherical complication of diabetes with unknown etiology that is often associated with polymicrobial infections. The present study was conducted to investigate the contributing factors in 285 DFU patients, which included 200 patients with diabetic foot infections (DFI). Identification and characterization of infecting bacterial isolates were done followed by assessment of their pattern of susceptibility to commonly used antibiotics. Among the studied subjects, type 2 diabetes mellitus (T2DM), ulcer type, depth, grade, loss of sensation, infection type, affected foot, recurrence, smoking status, Body Mass Index (BMI), and obesity levels revealed significant disease risk association. Ulcer grades 1 and 2 were more common in males while grade 3 in females. Recurrent infections were significantly higher in females (P = 0.03). Diabetic duration, hyperglycemia, ulcer type, infection type and BMI were positively correlated with delayed wound healing. In DFI samples, 40.2% consisted of gram-negative bacteria, with Pseudomonas aeruginosa (37.5%) being the most common, while in the 60% gram-positive isolates Staphylococcus aureus (40.5%) was the predominant species. Staphylococcus epidermidis was found more frequently in females (P = 0.05). The isolated bacterial strains presented higher resistance against the tested antibiotics; however, ceftriaxone was effective against most of the pathogens. In the current study T2DM along with diabetes duration, obesity, ulcer severity with polymicrobial infection was found to play a strong role in DFI development, where gender predisposition was also observed in ulcer grade and infection. DFI was correlated with loss of sensation, infection type, affected foot, smoking status, BMI and obesity levels.
Collapse
Affiliation(s)
- Muhammad Shakil Khan
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Maleeha Azam
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-I-Azam University Islamabad, Pakistan
| | - Foha Syed
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syeda Hafiza Benish Ali
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | | | - Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al-Batin, 39524, Saudi Arabia
| | - Shaik Karimulla
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al-Batin, 39524, Saudi Arabia
| | - Reheel Qamar
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan; Pakistan Academy of Sciences, Pakistan; Science and Technology Sector, Islamic World Educational, Scientific and Cultural Organization (ICESCO), Rabat, Morocco.
| |
Collapse
|
8
|
Gawronska-Kozak B, Kopcewicz M, Machcinska-Zielinska S, Walendzik K, Wisniewska J, Drukała J, Wasniewski T, Rutkowska J, Malinowski P, Pulinski M. Gender Differences in Post-Operative Human Skin. Biomedicines 2023; 11:2653. [PMID: 37893027 PMCID: PMC10604277 DOI: 10.3390/biomedicines11102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Although the impact of age, gender, and obesity on the skin wound healing process has been extensively studied, the data related to gender differences in aspects of skin scarring are limited. The present study performed on abdominal human intact and scar skin focused on determining gender differences in extracellular matrix (ECM) composition, dermal white adipose tissue (dWAT) accumulation, and Foxn1 expression as a part of the skin response to injury. Scar skin of men showed highly increased levels of COLLAGEN 1A1, COLLAGEN 6A3, and ELASTIN mRNA expression, the accumulation of thick collagen I-positive fibers, and the accumulation of α-SMA-positive cells in comparison to the scar skin of women. However, post-injured skin of women displayed an increase (in comparison to post-injured men's skin) in collagen III accumulation in the scar area. On the contrary, women's skin samples showed a tendency towards higher levels of adipogenic-related genes (PPARγ, FABP4, LEPTIN) than men, regardless of intact or scar skin. Intact skin of women showed six times higher levels of LEPTIN mRNA expression in comparison to men intact (p < 0.05), men post-injured (p < 0.05), or women post-injured scar (p < 0.05) skin. Higher levels of FOXN1 mRNA and protein were also detected in women than in men's skin. In conclusion, the present data confirm and extend (dWAT layer) the data related to the presence of differences between men and women in the skin, particularly in scar tissues, which may contribute to the more effective and gender-tailored improvement of skin care interventions.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Sylwia Machcinska-Zielinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Tomasz Wasniewski
- Department of Obstetrics, Perinatology and Gynecology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Joanna Rutkowska
- Department of Internal Medicine, Clinic of Endocrinology, Diabetology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Piotr Malinowski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Michał Pulinski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
9
|
Pinnaratip R, Zhang Z, Smies A, Forooshani PK, Tang X, Rajachar RM, Lee BP. Utilizing Robust Design to Optimize Composite Bioadhesive for Promoting Dermal Wound Repair. Polymers (Basel) 2023; 15:1905. [PMID: 37112052 PMCID: PMC10144490 DOI: 10.3390/polym15081905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Catechol-modified bioadhesives generate hydrogen peroxide (H2O2) during the process of curing. A robust design experiment was utilized to tune the H2O2 release profile and adhesive performance of a catechol-modified polyethylene glycol (PEG) containing silica particles (SiP). An L9 orthogonal array was used to determine the relative contributions of four factors (the PEG architecture, PEG concentration, phosphate-buffered saline (PBS) concentration, and SiP concentration) at three factor levels to the performance of the composite adhesive. The PEG architecture and SiP wt% contributed the most to the variation in the results associated with the H2O2 release profile, as both factors affected the crosslinking of the adhesive matrix and SiP actively degraded the H2O2. The predicted values from this robust design experiment were used to select the adhesive formulations that released 40-80 µM of H2O2 and evaluate their ability to promote wound healing in a full-thickness murine dermal wound model. The treatment with the composite adhesive drastically increased the rate of the wound healing when compared to the untreated controls, while minimizing the epidermal hyperplasia. The release of H2O2 from the catechol and soluble silica from the SiP contributed to the recruitment of keratinocytes to the wound site and effectively promoted the wound healing.
Collapse
Affiliation(s)
- Rattapol Pinnaratip
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Ariana Smies
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Pegah Kord Forooshani
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Xiaoqing Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Rupak M Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
- Marine Ecology and Telemetry Research (MarEcoTel), Seabeck, WA 98380, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| |
Collapse
|
10
|
Malyško-Ptašinskė V, Staigvila G, Novickij V. Invasive and non-invasive electrodes for successful drug and gene delivery in electroporation-based treatments. Front Bioeng Biotechnol 2023; 10:1094968. [PMID: 36727038 PMCID: PMC9885012 DOI: 10.3389/fbioe.2022.1094968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Electroporation is an effective physical method for irreversible or reversible permeabilization of plasma membranes of biological cells and is typically used for tissue ablation or targeted drug/DNA delivery into living cells. In the context of cancer treatment, full recovery from an electroporation-based procedure is frequently dependent on the spatial distribution/homogeneity of the electric field in the tissue; therefore, the structure of electrodes/applicators plays an important role. This review focuses on the analysis of electrodes and in silico models used for electroporation in cancer treatment and gene therapy. We have reviewed various invasive and non-invasive electrodes; analyzed the spatial electric field distribution using finite element method analysis; evaluated parametric compatibility, and the pros and cons of application; and summarized options for improvement. Additionally, this review highlights the importance of tissue bioimpedance for accurate treatment planning using numerical modeling and the effects of pulse frequency on tissue conductivity and relative permittivity values.
Collapse
Affiliation(s)
| | - Gediminas Staigvila
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
- Department of Immunology, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
11
|
Wiśniewska J, Słyszewska M, Kopcewicz M, Walendzik K, Machcińska S, Stałanowska K, Gawrońska-Kozak B. Comparative studies on the effect of pig adipose-derived stem cells (pASCs) preconditioned with hypoxia or normoxia on skin wound healing in mice. Exp Cell Res 2022; 418:113263. [PMID: 35718003 DOI: 10.1016/j.yexcr.2022.113263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
Adipose-derived stem cells (ASCs) from human and animal fat have emerged as therapeutic alternatives for damaged tissues. Pre-conditioning of ASCs with hypoxia results in their functional enhancement, which might facilitate the process of healing. However, there is still a critical need for large-scale preclinical studies to reinforce the translation of these findings into clinical practice for humans and in veterinary medicine. Here, we adapted a full-thickness excisional skin wound mouse model to evaluate and compare the effect of pig adipose-derived stem cells (pASCs) cultured under normoxia (pASCs-Nor) or hypoxia (pASCs-Hyp) on the healing process. We show that pASCs-Hyp accelerated re-epithelialization, increased hyaluronic acid (HA) content, and decreased scar elevation index (SEI) during the late stage of healing (day 21). Transplantation of pASCs-Hyp also promoted expression of angiogenic marker VegfA and decreased levels of pro-scarring Tgfβ1. Mice tolerated xenotransplantation of the pASCs with no impact on macrophage (CD68 -positive cell) content. However, wounds treated with pASCs-Hyp exhibited decreased elasticity at the early stage of healing and increased expression of Wnt signaling members including Wnt10a, Wnt11, and β-catenin, which are associated with scar-forming wound repair. In conclusion, pASCs treatment may provide a critical step toward the evaluation of pASCs as therapeutically relevant cells in the context of wound healing.
Collapse
Affiliation(s)
- Joanna Wiśniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Magda Słyszewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Sylwia Machcińska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Barbara Gawrońska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
12
|
Li Z, Xuan Y, Ghatak S, Guda PR, Roy S, Sen CK. Modeling the gene delivery process of the needle array-based tissue nanotransfection. NANO RESEARCH 2022; 15:3409-3421. [PMID: 36275042 PMCID: PMC9581438 DOI: 10.1007/s12274-021-3947-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/17/2021] [Accepted: 10/24/2021] [Indexed: 05/14/2023]
Abstract
Hollow needle array-based tissue nanotransfection (TNT) presents an in vivo transfection approach that directly translocate exogeneous genes to target tissues by using electric pulses. In this work, the gene delivery process of TNT was simulated and experimentally validated. We adopted the asymptotic method and cell-array-based model to investigate the electroporation behaviors of cells within the skin structure. The distribution of nonuniform electric field across the skin results in various electroporation behavior for each cell. Cells underneath the hollow microchannels of the needle exhibited the highest total pore numbers compared to others due to the stronger localized electric field. The percentage of electroporated cells within the skin structure, with pore radius over 10 nm, increases from 25% to 82% as the applied voltage increases from 100 to 150 V/mm. Furthermore, the gene delivery behavior across the skin tissue was investigated through the multilayer-stack-based model. The delivery distance increased nonlinearly as the applied voltage and pulse number increased, which mainly depends on the diffusion characteristics and electric conductivity of each layer. It was also found that the skin is required to be exfoliated prior to the TNT procedure to enhance the delivery depth. This work provides the foundation for transition from the study of murine skin to translation use in large animals and human settings.
Collapse
Affiliation(s)
- Zhigang Li
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Xuan
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Poornachander R. Guda
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Gawronska-Kozak B, Walendzik K, Machcinska S, Padzik A, Kopcewicz M, Wiśniewska J. Dermal White Adipose Tissue (dWAT) Is Regulated by Foxn1 and Hif-1α during the Early Phase of Skin Wound Healing. Int J Mol Sci 2021; 23:257. [PMID: 35008683 PMCID: PMC8745105 DOI: 10.3390/ijms23010257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
Dermal white adipose tissue (dWAT) is involved in the maintenance of skin homeostasis. However, the studies concerning its molecular regulation are limited. In the present paper, we ask whether the introduction of two transcription factors, Foxn1 and Hif-1α, into the post-wounded skin of Foxn1-/- mice regulates dWAT during wound healing (days 3 and 6). We have chosen lentivirus vectors (LVs) as a tool to deliver Foxn1 and Hif-1α into the post-wounded skin. We documented that combinations of both transgenes reduces the number, size and diameter of dermal adipocytes at the wound bed area. The qRT-PCR analysis of pro-adipogenic genes, revealed that LV-Hif-1α alone, or combined with LV-Foxn1, increases the mRNA expression of Pparγ, Glut 4 and Fasn at post-wounding day 6. However, the most spectacular stimulatory effect of Foxn1 and/or Hif-1α was observed for Igf2, the growth factor participating in adipogenic signal transduction. Our data also shows that Foxn1/Hif-1α, at post-wounding day 3, reduces levels of CD68 and MIP-1γ mRNA expression and the percentage of CD68 positive cells in the wound site. In conclusion, the present data are the first to document that Foxn1 and Hif-1α cooperatively (1) regulate dWAT during the proliferative phase of skin wound healing through the Igf2 signaling pathway, and (2) reduce the macrophages content in the wound site.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Artur Padzik
- Virus Vector Core, Turku Centre for Biotechnology BioCity, 20520 Turku, Finland;
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Joanna Wiśniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| |
Collapse
|
14
|
Später T, Marschall JE, Brücker LK, Nickels RM, Metzger W, Mai AS, Menger MD, Laschke MW. Adipose Tissue-Derived Microvascular Fragments From Male and Female Fat Donors Exhibit a Comparable Vascularization Capacity. Front Bioeng Biotechnol 2021; 9:777687. [PMID: 34778238 PMCID: PMC8578922 DOI: 10.3389/fbioe.2021.777687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue-derived microvascular fragments (MVF) represent effective vascularization units for tissue engineering. Most experimental studies exclusively use epididymal fat tissue of male donor mice as a source for MVF isolation. However, in future clinical practice, MVF-based approaches may be applied in both male and female patients. Therefore, we herein compared the vascularization capacity of MVF isolated from the epididymal and peri-ovarian fat tissue of male and female donor mice. Freshly isolated MVF from male and female donors did not differ in their number, length distribution, viability and cellular composition. After their assembly into spheroids, they also exhibited a comparable in vitro sprouting activity. Moreover, they could be seeded onto collagen-glycosaminoglycan matrices, which were implanted into full-thickness skin defects within mouse dorsal skinfold chambers. Repetitive intravital fluorescence microscopy as well as histological and immunohistochemical analyses revealed a comparable vascularization and incorporation of implants seeded with MVF of male and female origin. Taken together, these findings demonstrate that the vascularization capacity of MVF is not gender-specific.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Julia E Marschall
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Lea K Brücker
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Ruth M Nickels
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Ann-Sophie Mai
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
15
|
van de Vyver M, Boodhoo K, Frazier T, Hamel K, Kopcewicz M, Levi B, Maartens M, Machcinska S, Nunez J, Pagani C, Rogers E, Walendzik K, Wisniewska J, Gawronska-Kozak B, Gimble JM. Histology Scoring System for Murine Cutaneous Wounds. Stem Cells Dev 2021; 30:1141-1152. [PMID: 34130483 DOI: 10.1089/scd.2021.0124] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Monitoring wound progression over time is a critical aspect for studies focused on in-depth molecular analysis or on evaluating the efficacy of potential novel therapies. Histopathological analysis of wound biopsies can provide significant insight into healing dynamics, yet there is no standardized and reproducible scoring system currently available. The purpose of this study was to develop and statistically validate a scoring system based on parameters in each phase of healing that can be easily and accurately assessed using either Hematoxylin & Eosin (H&E) or Masson's Trichrome (MT) staining. These parameters included re-epithelization, epithelial thickness index, keratinization, granulation tissue thickness, remodeling, and the scar elevation index. The initial phase of the study was to (1) optimize and clarify healing parameters to limit investigator bias and variability; (2) compare the consistency of parameters assessed using H&E versus MT staining. During the validation phase of this study, the accuracy and reproducibility of this scoring system was independently iterated upon and validated in four different types of murine skin wound models (Excisional; punch biopsy; pressure ulcers; burn wounds). A total of n = 54 histology sections were randomized, blinded, and assigned to two groups of independent investigators (n = 5 per group) for analysis. The sensitivity of each parameter (ranging between 80% and 95%) is reported with illustrations on the appropriate assessment method using ImageJ software. In the validated scoring system, the lowest score (score:0) is associated with an open/unhealed wound as is evident immediately and within the first day postinjury, whereas the highest score (score:12) is associated with a completely closed and healed wound without excessive scarring. This study defines and describes the minimum recommended criteria for assessing wound healing dynamics using the SPOT skin wound score. The acronym SPOT refers to the academic and scientific institutions that were involved in the development of the scoring system, namely, Stellenbosch University, Polish Academy of Sciences, Obatala Sciences, and the University of Texas Southwestern.
Collapse
Affiliation(s)
- Mari van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kiara Boodhoo
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Katie Hamel
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michelle Maartens
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Johanna Nunez
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chase Pagani
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Emma Rogers
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jeffrey M Gimble
- Obatala Sciences, Inc., New Orleans, Louisiana, USA.,Department of Medicine, Structural and Cellular Biology, and Surgery, Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
16
|
Machcinska S, Kopcewicz M, Bukowska J, Walendzik K, Gawronska-Kozak B. Impairment of the Hif-1α regulatory pathway in Foxn1-deficient (Foxn1 -/- ) mice affects the skin wound healing process. FASEB J 2021; 35:e21289. [PMID: 33475195 DOI: 10.1096/fj.202001907r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia and hypoxia-regulated factors (eg, hypoxia-inducible factor-1α [Hif-1α], factor inhibiting Hif-1α [Fih-1], thioredoxin-1 [Trx-1], aryl hydrocarbon receptor nuclear translocator 2 [Arnt-2]) have essential roles in skin wound healing. Using Foxn1-/- mice that can heal skin injuries in a unique scarless manner, we investigated the interaction between Foxn1 and hypoxia-regulated factors. The Foxn1-/- mice displayed impairments in the regulation of Hif-1α, Trx-1, and Fih-1 but not Arnt-2 during the healing process. An analysis of wounded skin showed that the skin of the Foxn1-/- mice healed in a scarless manner, displaying rapid re-epithelialization and an increase in transforming growth factor β (Tgfβ-3) and collagen III expression. An in vitro analysis revealed that Foxn1 overexpression in keratinocytes isolated from the skin of the Foxn1-/- mice led to reduced Hif-1α expression in normoxic but not hypoxic cultures and inhibited Fih-1 expression exclusively under hypoxic conditions. These data indicate that in the skin, Foxn1 affects hypoxia-regulated factors that control the wound healing process and suggest that under normoxic conditions, Foxn1 is a limiting factor for Hif-1α.
Collapse
Affiliation(s)
- Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
17
|
Neuropeptide Substance P Enhances Skin Wound Healing In Vitro and In Vivo under Hypoxia. Biomedicines 2021; 9:biomedicines9020222. [PMID: 33671499 PMCID: PMC7926396 DOI: 10.3390/biomedicines9020222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023] Open
Abstract
Pressure ulcers (PUs) or sores are a secondary complication of diabetic neuropathy and traumatic spinal cord injury (SCI). PUs tend to occur in soft tissues located around bony prominences and may heal slowly or not at all. A common mechanism underlying impaired healing of PUs may be dysfunction of the local neurovascular system including deficiency of essential neuropeptides, such as substance P (SP). Previous studies indicate that disturbance in cutaneous sensory innervation leads to a defect in all stages of wound healing, as is the case after SCI. It is hypothesized that nerve fibers enhance wound healing by promoting initial inflammation via the releasing of neuropeptides such as SP. Therefore, we investigated whether exogenous SP improves skin wound healing using in vitro and in vivo models. For in vitro studies, the effects of SP on keratinocyte proliferation and wound closure after a scratch injury were studied under normoxia (pO2 ~21%) or hypoxia (pO2 ~1%) and in presence of normal serum (10% v/v) or low serum (1% v/v) concentrations. Hypoxia and low serum both significantly slowed cell proliferation and wound closure. Under combined low serum and hypoxia, used to mimic the nutrient- and oxygen-poor environment of chronic wounds, SP (10−7 M) significantly enhanced cell proliferation and wound closure rate. For in vivo studies, two full-thickness excisional wounds were created with a 5 mm biopsy punch on the dorsum on either side of the midline of 15-week-old C57BL/6J male and female mice. Immediately, wounds were treated topically with one dose of 0.5 μg SP or PBS vehicle. The data suggest a beneficial role in wound closure and reepithelization, and thus enhanced wound healing, in male and female mice. Taken together, exogenously applied neuropeptide SP enhanced wound healing via cell proliferation and migration in vitro and in vivo. Thus, exogenous SP may be a useful strategy to explore further for treating PUs in SCI and diabetic patients.
Collapse
|
18
|
Walendzik K, Bukowska J, Kopcewicz M, Machcinska S, Gimble JM, Gawronska-Kozak B. Age, Diet and Epidermal Signaling Modulate Dermal Fibroblasts' Adipogenic Potential. Int J Mol Sci 2020; 21:ijms21238955. [PMID: 33255750 PMCID: PMC7728337 DOI: 10.3390/ijms21238955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
The recognition of a distinct fat depot, the dermal white adipose tissue (dWAT), points out the complexity of the interaction among skin resident cells: keratinocytes, dermal fibroblasts (DFs) and adipocytes in response to physiological (diet, age) and pathological (injury) stimulations. dWAT has been recognized as a significant contributor to thermoregulation, hair cycle, immune response, wound healing and scarring. In this study, we examined age- and diet-related changes in dWAT modulation and DFs' adipogenic potential. The data showed that diet modulates dWAT expansion predominantly by hypertrophy, whereas age affects the pool of adipocyte progenitor cells in the skin indicating its role in dWAT hyperplasia. Analysis of DFs' migratory abilities in the model of skin explants isolated from the skin of young, old, low (LFD)- or high (HFD)-fat diet C56BL/6 mice revealed that HFD, regardless of animal age has the most profound stimulatory impact of DF migration. We determined that the adipogenic potential of DFs is comparable to stromal vascular fraction (SVF) of inguinal fat depot and ear mesenchymal stem cells (EMSC). We also showed the stimulatory role of epidermally expressed transcription factor Foxn1 on adipogenic signaling: bone morphogenetic protein 2 (Bmp2) and insulin-like growth factor 2 (Igf2) in keratinocytes.
Collapse
Affiliation(s)
- Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Jeffrey M. Gimble
- LaCell LLC, New Orleans, LA 70112, USA;
- Obatala Sciences Inc., 2000 Lakeshore Drive, #4020, New Orleans, LA 70148, USA
- Departments of Medicine, Structural and Cellular Biology, and Surgery and Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70118, USA
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
- Correspondence: ; Tel.: +48-89-5234634; Fax: +48-89-5240124
| |
Collapse
|
19
|
The Cutaneous Wound Innate Immunological Microenvironment. Int J Mol Sci 2020; 21:ijms21228748. [PMID: 33228152 PMCID: PMC7699544 DOI: 10.3390/ijms21228748] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
The skin represents the first line of defense and innate immune protection against pathogens. Skin normally provides a physical barrier to prevent infection by pathogens; however, wounds, microinjuries, and minor barrier impediments can present open avenues for invasion through the skin. Accordingly, wound repair and protection from invading pathogens are essential processes in successful skin barrier regeneration. To repair and protect wounds, skin promotes the development of a specific and complex immunological microenvironment within and surrounding the disrupted tissue. This immune microenvironment includes both innate and adaptive processes, including immune cell recruitment to the wound and secretion of extracellular factors that can act directly to promote wound closure and wound antimicrobial defense. Recent work has shown that this immune microenvironment also varies according to the specific context of the wound: the microbiome, neuroimmune signaling, environmental effects, and age play roles in altering the innate immune response to wounding. This review will focus on the role of these factors in shaping the cutaneous microenvironment and how this ultimately impacts the immune response to wounding.
Collapse
|