1
|
Lin J, Zhou J, Xie G, Xie X, Luo Y, Liu J. Retracted article: Functional analysis of ceRNA network of lncRNA TSIX/miR-34a-5p/RBP2 in acute myocardial infarction based on GEO database. Bioengineered 2024; 15:2006865. [PMID: 34784842 PMCID: PMC10841007 DOI: 10.1080/21655979.2021.2006865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022] Open
Abstract
Jiezhong Lin, Jianyi Zhou, Guiting Xie, Xiongwei Xie, Yanfang Luo and Jinguang Liu. Functional analysis of ceRNA network of lncRNA TSIX/miR-34a-5p/RBP2 in acute myocardial infarction based on GEO database. 2021 Oct. doi: 10.1080/21655979.2021.2006865.Since publication, significant concerns have been raised about the compliance with ethical policies for human research and the integrity of the data reported in the article.When approached for an explanation, the authors provided some original data but were not able to provide all the necessary supporting information. As verifying the validity of published work is core to the scholarly record's integrity, we are retracting the article. All authors listed in this publication have been informed.We have been informed in our decision-making by our editorial policies and the COPE guidelines.The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted.'
Collapse
Affiliation(s)
- Jiezhong Lin
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Jianyi Zhou
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Guiting Xie
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Xiongwei Xie
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Yanfang Luo
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Jinguang Liu
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| |
Collapse
|
2
|
Ma Q, Zhang YH, Guo W, Feng K, Huang T, Cai YD. Machine Learning in Identifying Marker Genes for Congenital Heart Diseases of Different Cardiac Cell Types. Life (Basel) 2024; 14:1032. [PMID: 39202774 PMCID: PMC11355424 DOI: 10.3390/life14081032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Congenital heart disease (CHD) represents a spectrum of inborn heart defects influenced by genetic and environmental factors. This study advances the field by analyzing gene expression profiles in 21,034 cardiac fibroblasts, 73,296 cardiomyocytes, and 35,673 endothelial cells, utilizing single-cell level analysis and machine learning techniques. Six CHD conditions: dilated cardiomyopathy (DCM), donor hearts (used as healthy controls), hypertrophic cardiomyopathy (HCM), heart failure with hypoplastic left heart syndrome (HF_HLHS), Neonatal Hypoplastic Left Heart Syndrome (Neo_HLHS), and Tetralogy of Fallot (TOF), were investigated for each cardiac cell type. Each cell sample was represented by 29,266 gene features. These features were first analyzed by six feature-ranking algorithms, resulting in several feature lists. Then, these lists were fed into incremental feature selection, containing two classification algorithms, to extract essential gene features and classification rules and build efficient classifiers. The identified essential genes can be potential CHD markers in different cardiac cell types. For instance, the LASSO identified key genes specific to various heart cell types in CHD subtypes. FOXO3 was found to be up-regulated in cardiac fibroblasts for both Dilated and hypertrophic cardiomyopathy. In cardiomyocytes, distinct genes such as TMTC1, ART3, ARHGAP24, SHROOM3, and XIST were linked to dilated cardiomyopathy, Neo-Hypoplastic Left Heart Syndrome, hypertrophic cardiomyopathy, HF-Hypoplastic Left Heart Syndrome, and Tetralogy of Fallot, respectively. Endothelial cell analysis further revealed COL25A1, NFIB, and KLF7 as significant genes for dilated cardiomyopathy, hypertrophic cardiomyopathy, and Tetralogy of Fallot. LightGBM, Catboost, MCFS, RF, and XGBoost further delineated key genes for specific CHD subtypes, demonstrating the efficacy of machine learning in identifying CHD-specific genes. Additionally, this study developed quantitative rules for representing the gene expression patterns related to CHDs. This research underscores the potential of machine learning in unraveling the molecular complexities of CHD and establishes a foundation for future mechanism-based studies.
Collapse
Affiliation(s)
- Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China;
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China;
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
3
|
Haybar H, Sarbazjoda E, Purrahman D, Mahmoudian-Sani MR, Saki N. The prognostic potential of long noncoding RNA XIST in cardiovascular diseases: a review. Per Med 2024; 21:257-269. [PMID: 38889283 DOI: 10.1080/17410541.2024.2360380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
There is a significant mortality rate associated with cardiovascular disease despite advances in treatment. long Non-coding RNAs (lncRNAs) play a critical role in many biological processes and their dysregulation is associated with a wide range of diseases in which their downstream pathways are disrupted. A lncRNA X-inactive specific transcript (XIST) is well known as a factor that regulates the physiological process of chromosome dosage compensation for females. According to recent studies, lncRNA XIST is involved in a variety of cellular processes, including apoptosis, proliferation, invasion, metastasis, oxidative stress and inflammation, through molecular networks with microRNAs and their downstream targets in neoplastic and non-neoplastic diseases. Because these cellular processes play a role in the pathogenesis of cardiovascular diseases, we aim to investigate the role that lncRNA XIST plays in this process. Additionally, we wish to determine whether it is a prognostic factor or a potential therapeutic target in these diseases.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ehsan Sarbazjoda
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| |
Collapse
|
4
|
Tao X, Zhang W, Chen C, Tao Y, Tao Y, Chen Z, Zhang G. miR-101a-3p/ROCK2 axis regulates neuronal injury in Parkinson's disease models. Aging (Albany NY) 2024; 16:8732-8746. [PMID: 38775730 PMCID: PMC11164493 DOI: 10.18632/aging.205836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). This study focuses on deciphering the role of microRNA (miR)-101a-3p in the neuronal injury of PD and its regulatory mechanism. METHODS We constructed a mouse model of PD by intraperitoneal injection of 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP), and used 1-methyl-4-phenylpyridinium (MPP+) to treat Neuro-2a cells to construct an in-vitro PD model. Neurological dysfunction in mice was evaluated by swimming test and traction test. qRT-PCR was utilized to examine miR-101a-3p expression and ROCK2 expression in mouse brain tissues and Neuro-2a cells. Western blot was conducted to detect the expression of α-synuclein protein and ROCK2 in mouse brain tissues and Neuro-2a cells. The targeting relationship between miR-101a-3p and ROCK2 was determined by dual-luciferase reporter gene assay. The apoptosis of neuro-2a cells was assessed by flow cytometry. RESULTS Low miR-101a-3p expression and high ROCK2 expression were found in the brain tissues of PD mice and MPP+-treated Neuro-2a cells; PD mice showed decreased neurological disorders, and apoptosis of Neuro-2a cells was increased after MPP+ treatment, both of which were accompanied by increased accumulation of α-synuclein protein. After miR-101a-3p was overexpressed, the neurological function of PD mice was improved, and the apoptosis of Neuro-2a cells induced by MPP+ was alleviated, and the accumulation of α-synuclein protein was reduced; ROCK2 overexpression counteracted the protective effect of miR-101a-3p. Additionally, ROCK2 was identified as the direct target of miR-101a-3p. CONCLUSION MiR-101a-3p can reduce neuronal apoptosis and neurological deficit in PD mice by inhibiting ROCK2 expression, suggesting that miR-101a-3p is a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Xiang Tao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wenfei Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chen Chen
- Department of Orthodontics, Wuhan First Stomatological Hospital, Wuhan, Hubei 430060, China
| | - Yang Tao
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yun Tao
- Department of Stomatology, Wuhan Central Hospital, Wuhan, Hubei 430060, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ge Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
5
|
Qi L, Xing J, Yuan Y, Lei M. Noncoding RNAs in atherosclerosis: regulation and therapeutic potential. Mol Cell Biochem 2024; 479:1279-1295. [PMID: 37418054 PMCID: PMC11116212 DOI: 10.1007/s11010-023-04794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Atherosclerosis, a chronic disease of arteries, results in high mortality worldwide as the leading cause of cardiovascular disease. The development of clinically relevant atherosclerosis involves the dysfunction of endothelial cells and vascular smooth muscle cells. A large amount of evidence indicates that noncoding RNAs, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in various physiological and pathological processes. Recently, noncoding RNAs were identified as key regulators in the development of atherosclerosis, including the dysfunction of endothelial cells, and vascular smooth muscle cells and it is pertinent to understand the potential function of noncoding RNAs in atherosclerosis development. In this review, the latest available research relates to the regulatory role of noncoding RNAs in the progression of atherosclerosis and the therapeutic potential for atherosclerosis is summarized. This review aims to provide a comprehensive overview of the regulatory and interventional roles of ncRNAs in atherosclerosis and to inspire new insights for the prevention and treatment of this disease.
Collapse
MESH Headings
- Humans
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/therapy
- Atherosclerosis/pathology
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Luyao Qi
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China
| | - Jixiang Xing
- Peripheral Vascular Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300150, Tianjin, China
| | - Yuesong Yuan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, 250014, Jinan, Shandong, China
| | - Ming Lei
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China.
| |
Collapse
|
6
|
Chen J, Yang X, Li W, Lin Y, Lin R, Cai X, Yan B, Xie B, Li J. Endoplasmic reticulum stress-related gene expression causes the progression of dilated cardiomyopathy by inducing apoptosis. Front Genet 2024; 15:1366087. [PMID: 38699233 PMCID: PMC11063246 DOI: 10.3389/fgene.2024.1366087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Background: Previous studies have shown that endoplasmic reticulum stress (ERS) -induced apoptosis is involved in the pathogenesis of dilated cardiomyopathy (DCM). However, the molecular mechanism involved has not been fully characterized. Results: In total, eight genes were obtained at the intersection of 1,068 differentially expressed genes (DEGs) from differential expression analysis between DCM and healthy control (HC) samples, 320 module genes from weighted gene co-expression network analysis (WGCNA), and 2,009 endoplasmic reticulum stress (ERGs). These eight genes were found to be associated with immunity and angiogenesis. Four of these genes were related to apoptosis. The upregulation of MX1 may represent an autocompensatory response to DCM caused by a virus that inhibits viral RNA and DNA synthesis, while acting as an autoimmune antigen and inducing apoptosis. The upregulation of TESPA1 would lead to the dysfunction of calcium release from the endoplasmic reticulum. The upregulation of THBS4 would affect macrophage differentiation and apoptosis, consistent with inflammation and fibrosis of cardiomyocytes in DCM. The downregulation of MYH6 would lead to dysfunction of the sarcomere, further explaining cardiac remodeling in DCM. Moreover, the expression of genes affecting the immune micro-environment was significantly altered, including TGF-β family member. Analysis of the co-expression and competitive endogenous RNA (ceRNA) network identified XIST, which competitively binds seven target microRNAs (miRNAs) and regulates MX1 and THBS4 expression. Finally, bisphenol A and valproic acid were found to target MX1, MYH6, and THBS4. Conclusion: We have identified four ERS-related genes (MX1, MYH6, TESPA1, and THBS4) that are dysregulated in DCM and related to apoptosis. This finding should help deepen understanding of the role of endoplasmic reticulum stress-induced apoptosis in the development of DCM.
Collapse
Affiliation(s)
- Jinhao Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xu Yang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Weiwen Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Run Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xianzhen Cai
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Baoxin Yan
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Bin Xie
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jilin Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
7
|
Almalki WH. Unraveling the role of Xist RNA in cardiovascular pathogenesis. Pathol Res Pract 2024; 253:154944. [PMID: 38006839 DOI: 10.1016/j.prp.2023.154944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Understanding the molecular pathways behind cardiovascular illnesses is crucial due to the enormous worldwide health burden they impose. New insights into the role played by Xist (X-inactive specific transcript) RNA in the onset and progression of cardiovascular diseases have emerged from recent studies. Since its discovery, Xist RNA has been known for its role in X chromosome inactivation during embryogenesis; however, new data suggest that its function extends well beyond the control of sex chromosomes. The regulatory roles of Xist RNA are extensive, encompassing epigenetic changes, gene expression, cellular identity, and sex chromosomal inactivation. There is potential for the involvement of this complex regulatory web in a wide range of illnesses, including cardiovascular problems. Atherosclerosis, hypertrophy, and cardiac fibrosis are all conditions linked to dysregulation of Xist RNA expression. Alterations in DNA methylation and histones are two examples of epigenetic changes that Xist RNA orchestrates, leading to modifications in gene expression patterns in different cardiovascular cells. Additionally, Xist RNA has been shown to contribute to the development of cardiovascular illnesses by modulating endothelial dysfunction, inflammation, and oxidative stress responses. New treatment approaches may become feasible with a thorough understanding of the complex function of Xist RNA in cardiovascular diseases. By focusing on Xist RNA and the regulatory network with which it interacts, we may be able to slow the progression of atherosclerosis, cardiac hypertrophy, and fibrosis, thereby opening novel therapeutic options for cardiovascular diseases amenable to precision medicine. This review summarizes the current state of knowledge concerning the impact of Xist RNA in cardiovascular disorders.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
8
|
Integrated Bioinformatics and Validation of lncRNA-Mediated ceRNA Network in Myocardial Ischemia/Reperfusion Injury. J Immunol Res 2022; 2022:7260801. [PMID: 36189147 PMCID: PMC9519285 DOI: 10.1155/2022/7260801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Myocardial ischemia/reperfusion (MI/R) injury is a common pathology in ischemia heart disease. Long noncoding RNAs (lncRNAs) are significant regulators related to many ischemia/reperfusion conditions. This study is aimed at exploring the molecule mechanism of lncRNA-mediated competing endogenous RNA (ceRNA) network in MI/R. Methods The dataset profiles of MI/R and normal tissues (GSE130217 and GSE124176) were obtained from the GEO database. Integrated bioinformatics were performed to screen out differentially expressed genes (DEGs). Thereafter, an lncRNA-mediated ceRNA network was constructed by the starBase database. The GO annotations and KEGG pathway analysis were conducted to study action mechanism and related pathways of DEGs in MI/R. A model of hypoxia/reoxygenation- (H/R-) treated HL-1 cell was performed to verify the expression of lncRNAs through qRT-PCR. Results 2406 differentially expressed- (DE-) mRNAs, 70 DE-lncRNAs, and 156 DE-miRNAs were acquired. These DEGs were conducted to construct an lncRNA-mediated ceRNA network, and a subnetwork including lncRNA Xist/miRNA-133c/mRNA (Slc30a9) was screen out. The functional enrichment analyses revealed that the lncRNAs involved in the ceRNA network might functions in oxidative stress and calcium signaling pathway. The lncRNA Xist expression is reduced under H/R conditions, followed by the increased level of miRNA-133c, thus downregulating the expression of Slc30a9. Conclusion In sum, the identified ceRNA network which included the lncRNA Xist/miR-133c/Slc30a9 axis might contribute a better understanding to the pathogenesis and development of MI/R injury and offer a novel targeted therapy way.
Collapse
|
9
|
Bo Z, Huang S, Li L, Chen L, Chen P, Luo X, Shi F, Zhu B, Shen L. EGR2 is a hub-gene in myocardial infarction and aggravates inflammation and apoptosis in hypoxia-induced cardiomyocytes. BMC Cardiovasc Disord 2022; 22:373. [PMID: 35971091 PMCID: PMC9377070 DOI: 10.1186/s12872-022-02814-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myocardial infarction (MI) is characterized by coronary artery occlusion, ischemia and hypoxia of myocardial cells, leading to irreversible myocardial damage. Therefore, it is urgent to explore the potential mechanism of myocardial injury during the MI process to develop effective therapies for myocardial cell rescue. Methods We downloaded the GSE71906 dataset from GEO DataSets, and the R software was used to identify the differentially expressed genes (DEGs) in mouse heart tissues of MI and sham controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to understand the significantly activated signaling pathways in MI. Protein–protein interaction (PPI) network was constructed to highlight the hub genes in DEGs. The Western Blot, qRT-PCR and TUNEL staining were used to explore the function of hub gene in hypoxia-induced cardiomyocytes in vitro. Results A total of 235 DEGs were identified in GSE71906 dataset. Functional enrichment analysis revealed that the upregulated genes were primarily associated with the inflammatory response and apoptosis. 20 hub genes were identified in PPI network, and the early growth response 2 (EGR2) was highlighted. In vitro. We confirmed the EGR2 was upregulated induced by hypoxia and revealed the upregulated EGR2 aggravates pro-inflammation and pro-apoptotic genes expression. In addition, EGR2 knockout mitigates hypoxia-induced inflammation and apoptosis in cardiomyocytes. Conclusion The present study identified the EGR2 was a hub gene in myocardial damage during MI process, the excessive EGR2 aggravates hypoxia-induced myocardial damage by accelerating inflammation and apoptosis in vitro. Therefore, targeting EGR2 offers a potential pharmacological strategy for myocardial cell rescue in MI. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02814-3.
Collapse
Affiliation(s)
- Zhixiang Bo
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Shuwen Huang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Li Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lin Chen
- Department of Surgery, Wushan County Hospital of Traditional Chinese Medicine, Chongqing, 400010, China
| | - Ping Chen
- Department of Gastroenterology, The Fifth People's Hospital of Chongqing, Chongqing, 400010, China
| | - Xiaoyi Luo
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Fang Shi
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Bing Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lin Shen
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
10
|
Yang Z, Gao Z, Yang Z, Zhang Y, Chen H, Yang X, Fang X, Zhu Y, Zhang J, Ouyang F, Li J, Cai G, Li Y, Lin X, Ni R, Xia C, Wang R, Shi X, Chu L. Lactobacillus Plantarum-derived extracellular vesicles protect against ischemic brain injury via the microRNA-101a-3p/c-Fos/TGF-β axis. Pharmacol Res 2022; 182:106332. [PMID: 35779817 DOI: 10.1016/j.phrs.2022.106332] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Currently, the reported source of extracellular vesicles (EVs) for the treatment of ischemic stroke(IS)is limited to mammals. Moreover, these EVs are restricted to clinical translation by the high cost of cell culture. In this respect, Lactobacillus Plantarum culture is advantaged by low cost and high yield. However, it is poorly understood whether Lactobacillus Plantarum-derived EVs (LEVs) are applicable for the treatment of IS. Here, our results demonstrated that LEVs reduced apoptosis in ischemic neuron both in vivo and in vitro. As revealed by high-throughput sequencing, miR-101a-3p expression was significantly elevated by LEV treatment in OGD/R-induced neurons, as confirmed in the tMCAO mice treated with LEVs. Mechanistically, c-Fos was directly targeted by miR-101a-3p. In addition, c-Fos determined ischemia-induced neuron apoptosis in vivo and in vitro through the TGF-β1 pathway, miR-101a-3p inhibition aggravated ischemia-induced neuron apoptosis in vitro and in vivo, and miR-101a-3p overexpression produced the opposite results. Hsa-miR-101-3p was downregulated in the plasma of patients with IS but upregulated in the patients with neurological recovery after rt-PA intravenous thrombolysis. In conclusion, Our results demonstrated for the first time that LEVs might inhibit neuron apoptosis via the miR-101a-3p/c-Fos/TGF-β axis, and has-miR-101-3p is a potential marker of neurological recovery in IS patients.
Collapse
Affiliation(s)
- Zhang Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China; Department of Translational Medicine Research Center,Guizhou Medical University, Guiyang, China
| | - Zidan Gao
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yifan Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Hongqun Chen
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Xuexia Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Xuming Fang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Yingwu Zhu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Jiayan Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Fu Ouyang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Jun Li
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Gang Cai
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Yuan Li
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Xiang Lin
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Ruihan Ni
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Chong Xia
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Ruihua Wang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Xiaofang Shi
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Lan Chu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China; Department of Translational Medicine Research Center,Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Wan J, Lin S, Yu Z, Song Z, Lin X, Xu R, Du S. Protective Effects of MicroRNA-200b-3p Encapsulated by Mesenchymal Stem Cells-Secreted Extracellular Vesicles in Myocardial Infarction Via Regulating BCL2L11. J Am Heart Assoc 2022; 11:e024330. [PMID: 35699193 PMCID: PMC9238663 DOI: 10.1161/jaha.121.024330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Extracellular vesicles (EVs) are a popular treatment candidate for myocardial injury. This work investigated the effects of mesenchymal stem cells (MSCs)-secreted EVs-derived miR-200b-3p on cardiomyocyte apoptosis and inflammatory response after myocardial infarction (MI) through targeting BCL2L11 (Bcl-2-like protein 11) . Methods and Results EVs from MSCs were isolated and identified. EVs from MSCs with transfection of miR-200b-3p for overexpression were injected into MI mice. The effect of miR-200b-3p on cardiac function, infarction area, myocardial fibrosis, cardiomyocyte apoptosis, and inflammatory response was determined in MI mice. The targeting relationship between miR-200b-3p and BCL2L11 was verified, and the interaction between BCL2L11 and NLR family pyrin domain containing 1 (NLRP1) was also verified. MI mice were injected with an overexpressing BCL2L11 lentiviral vector to clarify whether BCL2L11 can regulate the effect of miR-200b-3p on MI mice. EVs from MSCs were successfully extracted. MSCs-EVs improved cardiac function and reduced infarction area, apoptosis of cardiomyocytes, myocardial fibrosis, and inflammation in MI mice. Upregulation of miR-200b-3p further enhanced the effects of MSCs-EVs on the myocardial injury of MI mice. BCL2L11 was targeted by miR-200b-3p and bound to NLRP1. Upregulation of BCL2L11 negated the role of miR-200b-3p-modified MSCs-EVs in MI mice. Conclusions A summary was obtained that miR-200b-3p-encapsulated MSCs-EVs protect against MI-induced apoptosis of cardiomyocytes and inflammation via suppressing BCL2L11.
Collapse
Affiliation(s)
- Jun Wan
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Shaoyan Lin
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Zhuo Yu
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Zhengkun Song
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Xuefeng Lin
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Rongning Xu
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Songlin Du
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| |
Collapse
|
12
|
Zheng PF, Chen LZ, Liu P, Pan HW. A novel lncRNA-miRNA-mRNA triple network identifies lncRNA XIST as a biomarker for acute myocardial infarction. Aging (Albany NY) 2022; 14:4085-4106. [PMID: 35537778 PMCID: PMC9134965 DOI: 10.18632/aging.204075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/16/2022] [Indexed: 11/25/2022]
Abstract
Despite the well-established role of long non-coding RNAs (lncRNAs) across various biological processes, their mechanisms in acute myocardial infarction (AMI) are not fully elucidated. The GSE34198 dataset from the Gene Expression Omnibus (GEO) database, which comprised 49 specimens from individuals with AMI and 47 specimens from controls, was extracted and analysed using the weighted gene co-expression network analysis (WGCNA) package. Twenty-seven key genes were identified through a combination of the degree and gene significance (GS) values, and the CDC42 (degree = 64), JAK2 (degree = 41), and CHUK (degree = 30) genes were identified as having the top three-degree values among the 27 genes. Potential interactions between lncRNA, miRNAs and mRNAs were predicted using the starBase V3.0 database, and a lncRNA-miRNA-mRNA triple network containing the lncRNA XIST, twenty-one miRNAs and three hub genes (CDC42, JAK2 and CHUK) was identified. RT-qPCR validation showed that the expression of the JAK2 and CDC42 genes and the lncRNA XIST was noticeably increased in samples from patients with AMI compared to normal samples. Pearson's correlation analysis also proved that JAK2 and CDC42 expression levels correlated positively with lncRNA XIST expression levels. The area under ROC curve (AUC) of lncRNA XIST was 0.886, and the diagnostic efficacy of the lncRNA XIST was significantly better than that of JAK2 and CDC42. The results suggested that the lncRNA XIST appears to be a risk factor for AMI likely through its ability to regulate JAK2 and CDC42 gene expressions, and it is expected to be a novel and reliable biomarker for the diagnosis of AMI.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Cardiology Department, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China.,Clinical Research Center for Heart Failure in Hunan Province, Furong District, Changsha 410000, Hunan, China.,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China
| | - Lu-Zhu Chen
- Department of Cardiology, The Central Hospital of ShaoYang, Daxiang District, Shaoyang 422000, Hunan, China
| | - Peng Liu
- Department of Cardiology, The Central Hospital of ShaoYang, Daxiang District, Shaoyang 422000, Hunan, China
| | - Hong-Wei Pan
- Cardiology Department, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China.,Clinical Research Center for Heart Failure in Hunan Province, Furong District, Changsha 410000, Hunan, China.,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China
| |
Collapse
|
13
|
Roohaninasab M, Yavari SF, Babazadeh M, Hagh RA, Pazoki M, Amrovani M. Evaluating the Role of lncRNAs in the Incidence of Cardiovascular Diseases in Androgenetic Alopecia Patients. Cardiovasc Toxicol 2022; 22:603-619. [PMID: 35507254 DOI: 10.1007/s12012-022-09742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Hair loss occurs in patients with Androgenetic Alopecia (AGA). The pattern of hair loss is different between men and women. The main cause of hair loss is increased cell apoptosis and decreased regeneration, proliferation and differentiation processes in hair follicles. Long Non-Coding RNAs (lncRNAs) are one of the most important molecules that regulate the processes of apoptosis, regeneration, proliferation and differentiation in hair follicles. Since studies have shown that lncRNAs can be effective in the development of cardiotoxicity and induction of cardiovascular disease (CVD); so effective lncRNAs in the regulation of regeneration, proliferation, differentiation and apoptosis of hair follicles can be involved in the development of CVD in AGA patients with. Therefore, this study investigated the lncRNAs involved in increasing apoptosis and reducing the processes of regeneration, proliferation and differentiation of hair follicles. The aim of the current study was to evaluate the role of lncRNAs as a risk factor in the incidence of CVD in AGA patients; it will help to design treatment strategies by targeting signaling pathways without any cardiotoxicity complications.
Collapse
Affiliation(s)
- Masoumeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex, Iran University of Medical Sciences, Sattarkhan St, Tehran, 1445613131, Iran
| | - Shadnaz Fakhteh Yavari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,Parvaz Research Ideas Supporter Institute, Tehran, Iran
| | - Motahareh Babazadeh
- Department of Dermatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahboubeh Pazoki
- Department of Cardiology, Rasoul Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
14
|
LncRNA XIST facilitates hypoxia-induced myocardial cell injury through targeting miR-191-5p/TRAF3 axis. Mol Cell Biochem 2022; 477:1697-1707. [DOI: 10.1007/s11010-022-04385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/02/2022] [Indexed: 10/18/2022]
|
15
|
Li C, Xia J, Yao W, Yang G, Tian Y, Qi Y, Hao C. Mechanism of LncRNA XIST/ miR-101-3p/ZEB1 axis in EMT associated with silicosis. Toxicol Lett 2022; 360:11-19. [DOI: 10.1016/j.toxlet.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
|
16
|
Huang Y, Yang J, Liu X, Wang X, Zhu K, Ling Z, Zeng B, Chen N, Liu S, Wei F. Cationic Polymer Brush-Modified Carbon Nanotube-Meditated eRNA LINC02569 Silencing Attenuates Nucleus Pulposus Degeneration by Blocking NF-κB Signaling Pathway and Alleviate Cell Senescence. Front Cell Dev Biol 2022; 9:837777. [PMID: 35111765 PMCID: PMC8802762 DOI: 10.3389/fcell.2021.837777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Enhancer RNAs (eRNAs) are noncoding RNAs that synthesized at active enhancers. eRNAs have important regulatory characteristics and appear to be significant for maintenance of cell identity and information processing. Series of functional eRNAs have been identified as potential therapeutic targets for multiple diseases. Nevertheless, the role of eRNAs on intervertebral disc degeneration (IDD) is still unknown yet. Herein, we utilized the nucleus pulposus samples of patients and identified a key eRNA (LINC02569) with the Arraystar eRNA Microarray. LINC02569 mostly locates in nucleus and plays an important role in the progress of IDD by activating nuclear factor kappa-B (NF-κB) signaling pathway. We used a cationic polymer brush coated carbon nanotube (oCNT-pb)-based siRNA delivery platform that we previously designed, to transport LINC02569 siRNA (si-02569) to nucleus pulposus cells. The siRNA loaded oCNT-pb accumulated in nucleus pulposus cells with lower toxicity and higher transfection efficiency, compared with the traditional siRNA delivery system. Moreover, the results showed that the delivery of si-02569 significantly alleviated the inflammatory response in the nucleus pulposus cells via inhibiting P65 phosphorylation and preventing its transfer into the nucleus, and meanwhile alleviated cell senescence by decreasing the expression of P21. Altogether, our results highlight that eRNA (LINC02569) plays important role in the progression of IDD and could be a potential therapeutic target for alleviation of IDD.
Collapse
Affiliation(s)
- Yulin Huang
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiaming Yang
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Orthopaedic Research Institute, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhu
- Orthopaedic Section II, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baozhu Zeng
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ningning Chen
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shaoyu Liu
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fuxin Wei
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
17
|
Wu C, Liu B, Wang R, Li G. The Regulation Mechanisms and Clinical Application of MicroRNAs in Myocardial Infarction: A Review of the Recent 5 Years. Front Cardiovasc Med 2022; 8:809580. [PMID: 35111829 PMCID: PMC8801508 DOI: 10.3389/fcvm.2021.809580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Myocardial infarction (MI) is the most frequent end-point of cardiovascular pathology, leading to higher mortality worldwide. Due to the particularity of the heart tissue, patients who experience ischemic infarction of the heart, still suffered irreversible damage to the heart even if the vascular reflow by treatment, and severe ones can lead to heart failure or even death. In recent years, several studies have shown that microRNAs (miRNAs), playing a regulatory role in damaged hearts, bring light for patients to alleviate MI. In this review, we summarized the effect of miRNAs on MI with some mechanisms, such as apoptosis, autophagy, proliferation, inflammatory; the regulation of miRNAs on cardiac structural changes after MI, including angiogenesis, myocardial remodeling, fibrosis; the application of miRNAs in stem cell therapy and clinical diagnosis; other non-coding RNAs related to miRNAs in MI during the past 5 years.
Collapse
|
18
|
Zhang Y, Tang Y, Yan J. LncRNA-XIST Promotes Proliferation and Migration in ox-LDL Stimulated Vascular Smooth Muscle Cells through miR-539-5p/SPP1 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9911982. [PMID: 35028010 PMCID: PMC8752241 DOI: 10.1155/2022/9911982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) are untranslated transcripts greater than 200 nucleotides in length. Despite not being translated, they play a role in the regulation of transcription, translation, and other cellular processes and have been identified as key regulator in the progression of atherosclerosis. This study focused on the lncRNA X-inactive specific transcript (XIST), which participates in the regulation of X chromosome inactivation. XIST is produced by the XIST gene and is located on human chromosome Xql3.2. We also focused on discovering the possible role and mechanism of lncRNA XIST in oxidized low-density lipoprotein- (ox-LDL-) stimulated vascular smooth muscle cells (VSMCs), which could further help evalute its possible a role in the progression of atherosclerosis. XIST was overexpressed in ox-LDL-stimulated VSMCs, while the expression of miR-539-5p was decreased. XIST knockdown hindered the proliferation and migration of ox-LDL-treated VSMCs. XIST inhibits the miR-539-5p expression through direct interaction. Besides, miR-539-5p inhibitors can partially reverse the effect of XIST depletion on the proliferation and migration of VSMCs induced by ox-LDL stimulation. Further mechanistic analysis showed that secreted phosphoprotein 1 (SPP1) is the target of miR-539-5p, and XIST acts as a competing endogenous RNA for miR-539-5p to enhance the expression of SPP1. In addition, miR-539-5p inhibitor exerts its proliferation and migration effects by activating the miR-539-5p/SPP1 axis in VSMCs stimulated by ox-LDL. In conclusion, our study findings show that XIST inhibition can inhibit the proliferation and migration of atherosclerosis vascular smooth muscle cells, which provides a new theoretical basis for atherosclerosis treatment.
Collapse
Affiliation(s)
- Yi Zhang
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Tang
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Yan
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022; 49:9. [PMID: 34791505 PMCID: PMC8651226 DOI: 10.3892/ijmm.2021.5064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine‑tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non‑coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
Collapse
Affiliation(s)
- Stefanos Leptidis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Flora Bacopoulou
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, 'Attikon' Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
20
|
Bai Q, Li Y, Song K, Huang J, Qin L. Knockdown of XIST up-regulates 263294miR-340-5p to relieve myocardial ischaemia-reperfusion injury via inhibiting cyclin D1. ESC Heart Fail 2021; 9:1050-1060. [PMID: 34970865 PMCID: PMC8934972 DOI: 10.1002/ehf2.13766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Aim Long non‐coding RNAs (lncRNAs) are known to participate in various human diseases, while the role of X inactive‐specific transcript (XIST) binding microRNA‐340‐5p (miR‐340‐5p) remains seldom studied. We aim to identify the role of the XIST/miR‐340‐5p/cyclin D1 (CCND1) axis in the myocardial ischaemia–reperfusion injury (MIRI). Methods and results The mouse MIRI models were established. The expression of XIST, miR‐340‐5p, and CCND1 in mouse myocardial tissues in MIRI mice was assessed. The MIRI mice were respectively treated with altered XIST, miR‐340‐5p, or CCND1. The changes of myocardial enzyme activity were assessed, and the cardiac function was evaluated. Myocardial pathological changes, cardiomyocyte apoptosis and related apoptotic factors, oxidative stress and inflammatory factors were observed in myocardial tissues in mice with MIRI. The binding relationships between XIST and miR‐340‐5p, and between miR‐340‐5p and CCND1 were confirmed. XIST and CCND1 were up‐regulated while miR‐340‐5p was down‐regulated in MIRI mice. Silenced XIST could elevated miR‐340‐5p expression and reduced CCND1 expression, so as to promoted cardiac function and suppressed myocardial enzyme activity, ameliorated pathological changes, decelerated cardiomyocyte apoptosis by elevating Bcl‐2 but reducing the levels of Bax and Caspase‐3, attenuated inflammatory response by repressing IL‐6 and TNF‐α levels, and mitigated oxidative stress by reducing MDA contents and increasing CAT, GSH‐Px, and SOD levels in MIRI mice. XIST sponged miR‐340‐5p and miR‐340‐5p targeted CCND1. Conclusions Knockdown of XIST up‐regulates miR‐340‐5p to relieve MIRI via inhibiting CCND1.
Collapse
Affiliation(s)
- Qijun Bai
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, Henan, 450000, China
| | - Yan Li
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, Henan, 450000, China
| | - Kunpeng Song
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, Henan, 450000, China
| | - Jie Huang
- Department of Geriatric Medicine, Zhengzhou Central Hospital, Zhengzhou, Henan, China
| | - Li Qin
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, Henan, 450000, China
| |
Collapse
|
21
|
Saliani M, Mirzaiebadizi A, Mosaddeghzadeh N, Ahmadian MR. RHO GTPase-Related Long Noncoding RNAs in Human Cancers. Cancers (Basel) 2021; 13:5386. [PMID: 34771549 PMCID: PMC8582479 DOI: 10.3390/cancers13215386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
RHO GTPases are critical signal transducers that regulate cell adhesion, polarity, and migration through multiple signaling pathways. While all these cellular processes are crucial for the maintenance of normal cell homeostasis, disturbances in RHO GTPase-associated signaling pathways contribute to different human diseases, including many malignancies. Several members of the RHO GTPase family are frequently upregulated in human tumors. Abnormal gene regulation confirms the pivotal role of lncRNAs as critical gene regulators, and thus, they could potentially act as oncogenes or tumor suppressors. lncRNAs most likely act as sponges for miRNAs, which are known to be dysregulated in various cancers. In this regard, the significant role of miRNAs targeting RHO GTPases supports the view that the aberrant expression of lncRNAs may reciprocally change the intensity of RHO GTPase-associated signaling pathways. In this review article, we summarize recent advances in lncRNA research, with a specific focus on their sponge effects on RHO GTPase-targeting miRNAs to crucially mediate gene expression in different cancer cell types and tissues. We will focus in particular on five members of the RHO GTPase family, including RHOA, RHOB, RHOC, RAC1, and CDC42, to illustrate the role of lncRNAs in cancer progression. A deeper understanding of the widespread dysregulation of lncRNAs is of fundamental importance for confirmation of their contribution to RHO GTPase-dependent carcinogenesis.
Collapse
Affiliation(s)
- Mahsa Saliani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Wang J, Fu Z, Wang M, Lu J, Yang H, Lu H. Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis. Neurochem Res 2021; 46:2167-2180. [PMID: 34037903 DOI: 10.1007/s11064-021-03354-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells was applied to mimic cerebral I/R injury in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed in mice to mimic cerebral I/R injury in vivo. Real-time PCR, fluorescence in situ hybridization (FISH) assay, and western blotting assay were carried out to detect the expression levels of XIST, miR-362, and Rho-related coiled-coil containing protein kinase 2 (ROCK2). The functional experiments were measured by CCK-8 assay, immumofluorescence assay, ELISA assay, TUNEL, and TTC staining. Results displayed that XIST was elevated in PC12 cells with OGD/R, as well as in the ischemic penumbra of mice with MCAO/R. In vitro, knockdown of XIST facilitated cell survival, inhibited apoptosis, and alleviated inflammation injury in OGDR PC12 cells. In vivo, inhibition of XIST remarkably reduced the neurological impairments, promoted neuron proliferation, and suppressed apoptosis in MCAO mice. Mechanistically, XIST acted as a competing endogenous RNA of miR-362 to regulate the downstream gene ROCK2. In conclusion, depletion of XIST attenuated I/R-induced neurological impairment and inflammatory response via the miR-362/ROCK2 axis. These findings offer a potential novel strategy for ischemic stroke therapy.
Collapse
Affiliation(s)
- Jingtao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Zhenqiang Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Menghan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Jingjing Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Hecheng Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
23
|
Dual Role of Mitophagy in Cardiovascular Diseases. J Cardiovasc Pharmacol 2021; 78:e30-e39. [PMID: 34232224 DOI: 10.1097/fjc.0000000000001046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 01/13/2023]
Abstract
ABSTRACT Mitophagy is involved in the development of various cardiovascular diseases, such as atherosclerosis, heart failure, myocardial ischemia/reperfusion injury, and hypertension. Mitophagy is essential for maintaining intracellular homeostasis and physiological function in most cardiovascular origin cells, such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells. Mitophagy is crucial to ensuring energy supply by selectively removing dysfunctional mitochondria, maintaining a balance in the number of mitochondria in cells, ensuring the integrity of mitochondrial structure and function, maintaining homeostasis, and promoting cell survival. Substantial research has indicated a "dual" effect of mitophagy on cardiac function, with inadequate and increased mitochondrial degradation both likely to influence the progression of cardiovascular disease. This review summarizes the main regulatory pathways of mitophagy and emphasizes that an appropriate amount of mitophagy can prevent endothelial cell injury, vascular smooth muscle cell proliferation, macrophage polarization, and cardiomyocyte apoptosis, avoiding further progression of cardiovascular diseases.
Collapse
|
24
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
25
|
Geng J, Zhao H, Liu X, Geng J, Gao Y, He B. MiR-101a-3p Attenuated Pilocarpine-Induced Epilepsy by Downregulating c-FOS. Neurochem Res 2021; 46:1119-1128. [PMID: 33559830 DOI: 10.1007/s11064-021-03245-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 01/07/2023]
Abstract
This study aimed to explore the effects and function of microRNA-101a-3p (miR-101a-3p) in epilepsy. Rat model of pilocarpine-induced epilepsy was established and the seizure frequency was recorded. Expression of miR-101a-3p and c-Fos in hippocampus tissues of Rat models were detected by qRT-PCR and western blot. Besides, we established a hippocampal neuronal culture model of acquired epilepsy using Mg2+ free medium to evaluate the effects of miR-101a-3p and c-Fos in vitro. Cells were transfected with miR-101a-3p mimic, si-c-FOS, miR-101a-3p + c-FOS and its corresponding controls. MTT assay was used to detect cell viability upon transfection. Flow cytometry was performed to determine the apoptosis rate. Western blot was performed to measure the protein expression of apoptosis-related proteins (Bcl-2, Bax, and cleaved caspase 3), autophagy-related proteins (LC3 and Beclin1) and c-FOS. The targeting relationship between miR-101a-3p and c-FOS was predicted and verified by TargetScan software and dual-luciferase reporter assay. The role of miR-101a-3p was validated using epilepsy rat models in vivo. Another Rat models of pilocarpine-induced epilepsy with miR-NC or miR-101a-3p injection were established to evaluate the effect of miR-101a-3p overexpression on epilepsy in vivo. MiR-101a-3p was downregulated while c-FOS was increased in hippocampus tissues of Rat model of pilocarpine-induced epilepsy. Overexpression of miR-101a-3p or c-FOS depletion promoted cell viability, inhibited cell apoptosis and autophagy. C-FOS was a target of miR-101a-3p and miR-101a-3p negatively regulated c-FOS expression to function in epilepsy. Overexpression of miR-101a-3p attenuated pilocarpine-induced epilepsy in Rats in vivo. This study indicated that miR-101a-3p could attenuate pilocarpine-induced epilepsy by repressing c-Fos expression.
Collapse
Affiliation(s)
- Jiefeng Geng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Rd, Zhengzhou, 450052, Henan, China.
| | - Haibiao Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Rd, Zhengzhou, 450052, Henan, China
| | - Xing Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junjie Geng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Rd, Zhengzhou, 450052, Henan, China
| | - Yuyuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Rd, Zhengzhou, 450052, Henan, China
| | - Bingzheng He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Rd, Zhengzhou, 450052, Henan, China
| |
Collapse
|
26
|
Bai XF, Niu RZ, Liu J, Pan XD, Wang F, Yang W, Wang LQ, Sun LZ. Roles of noncoding RNAs in the initiation and progression of myocardial ischemia-reperfusion injury. Epigenomics 2021; 13:715-743. [PMID: 33858189 DOI: 10.2217/epi-2020-0359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The morbidity and mortality of myocardial ischemia-reperfusion injury (MIRI) have increased in modern society. Noncoding RNAs (ncRNAs), including lncRNAs, circRNAs, piRNAs and miRNAs, have been reported in a variety of studies to be involved in pathological initiation and developments of MIRI. Hence this review focuses on the current research regarding these ncRNAs in MIRI. We comprehensively introduce the important features of lncRNAs, circRNAs, piRNA and miRNAs and then summarize the published studies of ncRNAs in MIRI. A clarification of lncRNA-miRNA-mRNA, lncRNA-transcription factor-mRNA and circRNA-miRNA-mRNA axes in MIRI follows, to further elucidate the crucial roles of ncRNAs in MIRI. Bioinformatics analysis has revealed the biological correlation of mRNAs with MIRI. We provide a comprehensive perspective for the roles of these ncRNAs and their related networks in MIRI, providing a theoretical basis for preclinical and clinical studies on ncRNA-based gene therapy for MIRI treatment.
Collapse
Affiliation(s)
- Xiang-Feng Bai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Rui-Ze Niu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jia Liu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xu-Dong Pan
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Feng Wang
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lu-Qiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Li-Zhong Sun
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
27
|
Xu X, Zhang P, Li X, Liang Y, Ouyang K, Xiong J, Wang D, Duan L. MicroRNA expression profiling in an ovariectomized rat model of postmenopausal osteoporosis before and after estrogen treatment. Am J Transl Res 2020; 12:4251-4263. [PMID: 32913502 PMCID: PMC7476138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a common disease that seriously threatens human health. Estrogen deficiency plays an essential role in the pathogenesis of PMOP. MicroRNAs (miRNAs) are involved in the development and progression of PMOP. Therefore, identification of miRNAs in PMOP due to estrogen deficiency may contribute to earlier diagnosis and better treatment of this disease. The rat model of PMOP was established by ovariectomy. After one month of treatment, the knee joints were evaluated by microcomputed tomography and histological analysis. The plasma estrogen levels were quantified by enzyme-linked immunosorbent assays (ELISAs). MiRNA levels were analyzed by high-throughput sequencing and validated using quantitative real-time PCR (qRT-PCR). Two months after ovariectomy, osteoporosis occurred in the subchondral bone of the rats in the PMOP group, while fewer symptoms of osteoporosis occurred in the subchondral bone of the rats with estrogen replacement therapy. Cartilage degeneration was detected in the PMOP group. MiR-29a-3p, miR-93-5p, and miR-486 expression decreased in the PMOP group compared to the control group. After estrogen treatment for one month, the plasma levels of miR-29a-3p, miR-93-5p, and miR-486 recovered to the normal levels. Estrogen eliminated the expression changes in miR-29a-3p, miR-93-5p, and miR-486. The identification of these differentially expressed miRNAs will help elucidate the crucial role of miRNAs in the pathogenesis of PMOP. Our data could lead to the potential utilization of miRNAs in the diagnosis of PMOP and provide a possible therapeutic target for treatment of this disease.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhen 518055, Guangdong, China
- Guangzhou Medical UniversityGuangzhou 511436, Guangdong Province, China
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhen 518055, Guangdong, China
| | - Xingfu Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
- Guangzhou Medical UniversityGuangzhou 511436, Guangdong Province, China
| | - Yujie Liang
- Shenzhen Kangning Hospital, Shenzhen Mental Health CenterShenzhen 518035, Guangdong Province, China
| | - Kan Ouyang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| | - Jianyi Xiong
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| | - Daping Wang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| |
Collapse
|
28
|
Bektik E, Cowan DB, Wang DZ. Long Non-Coding RNAs in Atrial Fibrillation: Pluripotent Stem Cell-Derived Cardiomyocytes as a Model System. Int J Mol Sci 2020; 21:ijms21155424. [PMID: 32751460 PMCID: PMC7432754 DOI: 10.3390/ijms21155424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is a type of sustained arrhythmia in humans often characterized by devastating alterations to the cardiac conduction system as well as the structure of the atria. AF can lead to decreased cardiac function, heart failure, and other complications. Long non-coding RNAs (lncRNAs) have been shown to play important roles in the cardiovascular system, including AF; however, a large group of lncRNAs is not conserved between mouse and human. Furthermore, AF has complex networks showing variations in mechanisms in different species, making it challenging to utilize conventional animal models to investigate the functional roles and potential therapeutic benefits of lncRNAs for AF. Fortunately, pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) offer a reliable platform to study lncRNA functions in AF because of certain electrophysiological and molecular similarities with native human CMs. In this review, we first summarize the broad aspects of lncRNAs in various heart disease settings, then focus on their potential roles in AF development and pathophysiology. We also discuss current uses of PSCs in AF research and describe how these studies could be developed into novel therapeutics for AF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Emre Bektik
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Douglas B. Cowan
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Correspondence:
| |
Collapse
|