1
|
Kan H, Zhao M, Wang W, Sun B. Understanding Propofol's Protective Mechanism in Tubular Epithelial Cells: Mitigating Pyroptosis via the miR-143-3p/ATPase Na + /K + Transporting Subunit Alpha 2 Pathway in Renal Ischemia-Reperfusion. Mol Biotechnol 2025; 67:1165-1177. [PMID: 38498283 DOI: 10.1007/s12033-024-01116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/02/2024] [Indexed: 03/20/2024]
Abstract
Propofol (Pro), a prevalent intravenous anesthetic, has recently been recognized for its potential in mitigating ischemia-reperfusion (I/R) injuries. Despite a plethora of evidence suggesting the beneficial effects of low-dose Pro in renal I/R injury (RI/R), its role in modulating pyroptosis in renal tubular epithelial cells consequent to RI/R has not been thoroughly elucidated. In our investigation, we explored the therapeutic potential of Pro against pyroptosis in renal tubular epithelial cells under the duress of RI/R, employing both in vivo and in vitro models, while deciphering the intricate molecular pathways involved. Our results demonstrate an elevation in the expression of miR-143-3p, contrasted by a diminution in ATPase Na + /K + Transporting Subunit Alpha 2 (ATP1A2) under RI/R conditions. Pro effectively mitigates apoptosis in renal tubular epithelial cells induced by RI/R, principally characterized by the inhibition of pro-inflammatory cytokines interleukin (IL-)-1β and IL-18, enhancement of cellular viability, reduction in the ratio of pyroptotic cells, and suppression of nucleotide-binding domain and leucine-rich repeat-related family, pyrin domain containing 3 inflammasome activation along with the expression of cleaved caspase-1, and gasdermin D. Both knockdown and overexpression studies of miR-143-3p revealed its pivotal role in modulating RI/R-induced tubular cell pyroptosis. Notably, Pro's capacity to inhibit pyroptosis in renal tubular epithelial cells was found to be reversible following ATP1A2 knockdown. Furthermore, our study unveils miR-143-3p as a targeted regulator of ATP1A2 expression. From a mechanistic standpoint, Pro's therapeutic efficacy is attributed to its regulatory influence on miR-143-3p and ATP1A2 expression levels. In conclusion, our findings pioneer the understanding that Pro can significantly ameliorate pyroptosis in renal tubular epithelial cells in the context of RI/R, predominantly through the modulation of the miR-143-3p/ATP1A2 axis. This novel insight furnishes robust empirical support for the development of targeted therapeutics and clinical strategies in addressing RI/R.
Collapse
Affiliation(s)
- Hongjun Kan
- Department of Anesthesiology, Shandong Second Provincial General Hospital, No.4 Duanxing West Road, Huaiyin District, Jinan City, 250022, Shandong Province, China
| | - Miaomiao Zhao
- Department of Paediatrics, Pediatrics, Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang City, 277100, Shandong Province, China
| | - Wei Wang
- Anesthesia and Perioperative Medicine, Zaozhuang Municipal Hospital, Zaozhuang City, 277000, Shandong Province, China
| | - Baozhong Sun
- Department of Anesthesiology, Shandong Second Provincial General Hospital, No.4 Duanxing West Road, Huaiyin District, Jinan City, 250022, Shandong Province, China.
| |
Collapse
|
2
|
Tan W, Qi L, Tan Z. Animal models of infection-induced acute lung injury. Exp Lung Res 2024; 50:221-241. [PMID: 39558475 DOI: 10.1080/01902148.2024.2428939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
Aim: Acute lung injury (ALI) is characterized by severe hypoxemia, reduced lung elasticity, and notable pulmonary edema, often caused by infections and potentially progressing to ARDS. This article explores animal models of ALI and clarifies its main pathogenic mechanisms. Materials and Methods: we reviewed 20 years of ALI animal model advancements via PubMed, assessing clinical symptoms, histopathology, and reproducibility, and provided guidance on selecting models aligned with ALI pathogenesis. Results: key proinflammatory mediators and interleukins play a significant role in ALI development, though their interactions are not fully understood. Preclinical models are essential for investigating ALI causes and testing treatments. Animal models mimic ALI from sources such as infections, drugs, and I/R events, but differences between mouse and human lungs necessitate careful validation of these findings. Conclusions: A comprehensive strategy is essential to address clinical treatment and drug R&D challenges to prevent severe complications and reduce mortality rates.
Collapse
Affiliation(s)
- Wanying Tan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingjun Qi
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan academy of Chinese Medicine Sciences, Chengdu, China
| | - Zhenghuai Tan
- Affiliated Sichuan Gem Flower Hospital of North Sichuan Medical College, Chengdu, China
| |
Collapse
|
3
|
Dai YN, Wang LT, Zhang YS, Xue L, He PC, Tan N, Liu YH. Ticagrelor alleviates pyroptosis of myocardial ischemia reperfusion-induced acute lung injury in rats: a preliminary study. PeerJ 2024; 12:e16613. [PMID: 38188139 PMCID: PMC10771767 DOI: 10.7717/peerj.16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024] Open
Abstract
Pulmonary infection is highly prevalent in patients with acute myocardial infarction undergoing percutaneous coronary intervention. However, the potential mechanism is not well characterized. Myocardial ischemia-reperfusion injury (MIRI) induces acute lung injury (ALI) related to pulmonary infection and inflammation. Recent studies have shown that pyroptosis mediates ALI in several human respiratory diseases. It is not known whether MIRI induces pyroptosis in the lungs. Furthermore, ticagrelor is a clinically approved anti-platelet drug that reduces ALI and inhibits the expression levels of several pyroptosis-associated proteins, but the effects of ticagrelor on MIRI-induced ALI have not been reported. Therefore, we investigated whether ticagrelor alleviated ALI in the rat MIRI model, and its effects on pyroptosis in the lungs. Sprague-Dawley rats were randomly divided into four groups: control, MIRI, MIRI plus low ticagrelor (30 mg/kg), and MIRI plus high ticagrelor (100 mg/kg). Hematoxylin and Eosin (HE) staining was performed on the lung sections, and the HE scores were calculated to determine the extent of lung pathology. The wet-to-dry ratio of the lung tissues were also determined. The expression levels of pyroptosis-related proteins such as NLRP3, ASC, and Cleaved caspase-1 were estimated in the lung tissues using the western blot. ELISA was used to estimate the IL-1β levels in the lungs. Immunohistochemistry was performed to determine the levels of MPO-positive neutrophils as well as the total NLRP3-positive and Cleaved caspase-1-positive areas in the lung tissues. The lung tissues from the MIRI group rats showed significantly higher HE score, wet-to-dry ratio, and the MPO-positive area compared to the control group, but these effects were attenuated by pre-treatment with ticagrelor. Furthermore, lung tissues of the MIRI group rats showed significantly higher expression levels of pyroptosis-associated proteins, including NLRP3 (2.1-fold, P < 0.05), ASC (3.0-fold, P < 0.01), and Cleaved caspase-1 (9.0-fold, P < 0.01). Pre-treatment with the high-dose of ticagrelor suppressed MIRI-induced upregulation of NLRP3 (0.46-fold, P < 0.05), ASC (0.64-fold, P < 0.01), and Cleaved caspase-1 (0.80-fold, P < 0.01). Immunohistochemistry results also confirmed that pre-treatment with ticagrelor suppressed MIRI-induced upregulation of pyroptosis in the lungs. In summary, our data demonstrated that MIRI induced ALI and upregulated pyroptosis in the rat lung tissues. Pre-treatment with ticagrelor attenuated these effects.
Collapse
Affiliation(s)
- Yi-Ning Dai
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Li-Tao Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Ye-Shen Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Ling Xue
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Peng-Cheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Ning Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Yuan-Hui Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| |
Collapse
|
4
|
Zhang R, Gou W, Yi P, Qin Z, Zhu D, Jia J, Liu L, Jiang X, Feng J. Tetracaine hydrochloride induces macrophage pyroptosis through caspase‑1/11‑GSDMD signaling pathways. Exp Ther Med 2023; 26:428. [PMID: 37602302 PMCID: PMC10433433 DOI: 10.3892/etm.2023.12127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Tetracaine hydrochloride (TTC) is a long-lasting local anesthetic commonly used for topical anesthesia. Inappropriate dosage or allergic reactions to TTC can lead to local anesthetic toxicity. TTC exerts cytotoxic effects on certain cell types by inducing apoptosis and necrosis; however, the effects of TTC on macrophages are currently unclear. In the present study, the RAW 264.7 and BV2 cell lines, and murine peritoneal macrophages, were used to evaluate the cytotoxicity of TTC. The present study demonstrated that TTC caused a decrease in cell viability according to a Cell Counting Kit-8 assay, increased lactate dehydrogenase and IL-1β secretion according to ELISA, and induced morphological changes characteristic of pyroptosis according to western blotting. Moreover, TTC-induced macrophage pyroptosis was mediated by gasdermin (GSDM)D, and the cleavage of GSDMD was modulated by both caspase-1 and caspase-11. These results were experimentally validated using caspase-1 and caspase-11 inhibitors. Furthermore, it was observed that TTC and lipopolysaccharide (LPS) exerted similar effects on macrophages. However, the mechanism of induction of pyroptosis by TTC was different from that of LPS. The present study demonstrated that TTC alone could induce macrophage pyroptosis mediated by canonical and non-canonical inflammatory caspases. Therapies targeting pyroptosis may potentially provide a promising future strategy for the prevention and treatment of local anesthetic toxicity induced by TTC.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wanrong Gou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Peng Yi
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhengshan Qin
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Danli Zhu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xian Jiang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Anesthesiology, Luzhou People's Hospital, Luzhou, Sichuan 646000, P.R. China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
5
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
6
|
Liu J, Wu J, Qiao C, He Y, Xia S, Zheng Y, Lv H. Impact of chronic cold exposure on lung inflammation, pyroptosis and oxidative stress in mice. Int Immunopharmacol 2023; 115:109590. [PMID: 36577159 DOI: 10.1016/j.intimp.2022.109590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022]
Abstract
Chronic cold exposure, which is the main inducer of lung diseases in high latitudes, affects production efficiency and restricts the development of aquaculture. Although the relationship between cold exposure and susceptibility to the lungs is widely accepted, but the influence between them has not been fully explored. The aim of this study is to understand the underlying mechanism. In the present study, the mice, which are used to establish cold stress (CS)-induced lung injury model, are exposed to cold temperature (4 °C) for 3 h each day for 4 weeks. The results indicate that the expression of heat shock protein 70 (HSP70) is augmented by cold exposure. In addition, chronic cold exposure aggravate the formation of malondialdehyde (MDA) and lead to a significant decrease in the contents of micrococcus catalase (CAT) and glutathione (GSH). Moreover, chronic cold exposure significantly exacerbates the expression of inflammation- and apoptosis-related proteins. The activation of Bax and caspase-3 are significantly augmented. However, that of Bcl-2 is decreased. These results are different from those in room team. The results show that chronic cold exposure plays an important roles in the activation of multiple signaling pathways, such as pyroptosis-related, inflammation-related and oxidative stress-regulated signaling pathways. In summary, these investigations support that chronic cold exposure increase the risk of lung injury by activating inflammation, oxidative stress and pyroptosis.
Collapse
Affiliation(s)
- Jiahe Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jingjing Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chunyu Qiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuxi He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shijie Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuwei Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
7
|
Zeng X, Li J, Yang F, Xia R. The effect of narcotics on ferroptosis-related molecular mechanisms and signalling pathways. Front Pharmacol 2022; 13:1020447. [PMID: 36313359 PMCID: PMC9606818 DOI: 10.3389/fphar.2022.1020447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Ferroptosis is a novel programmed cell death form characterized by iron-mediated reactive oxygen species-induced lipid peroxidation and subsequent cell damage that is distinct from apoptosis, necroptosis, pyroptosis, and autophagy. Most studies on ferroptosis are based on its function and mechanism, but there have been relatively few studies on the effects of drugs, especially anaesthetics, on ferroptosis. Therefore, we summarized the recent literature on the effects of anaesthetics on ferroptosis to understand the underlying mechanism. In particular, we focused on the targets of various anaesthetics in different mechanisms of ferroptosis and the effects of ferroptosis induction or inhibition by narcotics on various diseases. The aims of this review are to provide a relatively reasonable drug regimen for clinicians, to explore potential ferroptosis protection drugs and targets, to reduce perioperative complications and to improve the postoperative performance of patients, especially those who are critically ill.
Collapse
Affiliation(s)
- Xiaoqin Zeng
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jingda Li
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fuyuan Yang
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| | - Rui Xia
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| |
Collapse
|
8
|
Chang YT, Lai CS, Lu CT, Wu CY, Shen CH. Effect of Total Intravenous Anesthesia on Postoperative Pulmonary Complications in Patients Undergoing Microvascular Reconstruction for Head and Neck Cancer: A Randomized Clinical Trial. JAMA Otolaryngol Head Neck Surg 2022; 148:2795921. [PMID: 36107412 PMCID: PMC9478882 DOI: 10.1001/jamaoto.2022.2552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/08/2022] [Indexed: 09/17/2023]
Abstract
Importance Free flap surgery is a lengthy procedure with massive tissue destruction and reconstruction, which makes postoperative pulmonary complications (PPCs) a noticeable issue among patients with head and neck cancer. Propofol-based total intravenous anesthesia (TIVA) has better survival outcomes than inhalational anesthesia (INH) in several types of cancer surgery. A previous retrospective study found that patients in the TIVA group had a lower PPC rate, which may be correlated with a lower intraoperative fluid requirement. We hypothesize that the protective effect remains among patients undergoing free flap surgery for head and neck cancer in a prospective and goal-directed fluid therapy setting. Objective To assess the effect of TIVA vs INH on PPCs in patients undergoing microvascular reconstruction for head and neck cancer. Design, Setting, and Participants This prospective, 2-arm, randomized clinical trial was conducted at a tertiary hospital in Taiwan; a total of 78 patients 18 years and older with American Society of Anesthesiologists physical status classification 1 to 3 who were scheduled for elective free flap surgery under general anesthesia were included. The trial started in October 2017, completed in October 2019, and finished analysis in January 2022. Interventions Patients were enrolled and randomized to the TIVA or INH group. All patients received goal-directed fluid therapy and hemodynamic management if they had a mean arterial pressure (MAP) below 75 mm Hg or a reduction of 10% from baseline MAP. Main Outcomes and Measures The primary outcome was a composite of PPCs. The secondary outcomes were the differences in intraoperative hemodynamic values (mean arterial pressure, MAP; cardiac index, CI; systemic vascular resistance index, SVRI; and stroke volume variation, SVV). Results A total of 70 patients (65 men [93%]; 5 women [7%]) completed the trial; median (IQR) age was 52.0 (48-59) years in the TIVA group and 57.0 (46-64) years in the INH group. The demographic characteristics were similar between the 2 groups, except that patients in the TIVA group had a slightly lower body mass index. Patients in the TIVA group had a lower risk of developing PPCs (unadjusted odds ratio, 0.25; 95% CI, 0.08-0.80). The TIVA group had significantly higher MAP, lower CI, and higher SVRI than the INH group after the third hour of monitoring. The TIVA group showed a relatively stable hourly MAP, CI, SVRI, and SVV across time points, while the INH group showed a more varying pattern. The generalized estimating equation showed no clinical differences in the trend of hemodynamic parameters across time between groups. Conclusions and Relevance In this randomized clinical trial, using propofol-based TIVA reduced the incidence of PPCs in free flap surgery. This finding may be related to more stable hemodynamic manifestations and a lower total balance of fluid throughout the surgery. Trial Registration ClinicalTrials.gov Identifier: NCT03263078.
Collapse
Affiliation(s)
- Yi-Ting Chang
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Sheng Lai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Yeu Wu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Hui Shen
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
XueFu ZhuYu Decoction Alleviates Cardiopulmonary Bypass-Induced NLRP3 Inflammasome-Dependent Pyroptosis by Inhibiting IkB-α/NF-κB Pathway in Acute Lung Injury Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6248870. [PMID: 36124015 PMCID: PMC9482486 DOI: 10.1155/2022/6248870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022]
Abstract
XueFu ZhuYu Decoction (XFZYD) is an effective prescription that is widely used to improve blood circulation by removing blood stasis. This study aimed to investigate the effects and the underlying molecular mechanisms of XFZYD on lung pyroptosis in cardiopulmonary bypass- (CPB-) induced acute lung injury (ALI) rats. A rat model of ALI was induced by CPB treatment after XFZYD, Ac-YVAD-CMK, and Bay-11-7082 administration. The respiratory index (RI) and oxygenation index (OI) were determined at each time point. The levels of interleukin (IL)-1β, IL-6, IL-18, and TNF-α in serum and lung were measured by enzyme-linked immunosorbent assays (ELISA). Moreover, the protein levels, neutrophil counts, and total cell of bronchoalveolar lavage fluid (BALF) were detected. Additionally, Myeloperoxidase (MPO) expression was detected by immunohistochemical assay. Lung injury was evaluated with the wet/dry (W/D) ratio and pathologic changes, respectively. Besides, the expression of NLRP3 inflammasome and IkB-α/NF-κB pathway proteins was estimated by immunofluorescence, quantitative real-time PCR (qRT-PCR), and Western blotting assays, respectively. XFZYD pretreatment significantly ameliorated pulmonary ventilation function and reduced the CPB-induced lung histopathological injury, inflammatory cell infiltration in BALF and lung, and the apoptosis of lung cells. Interestingly, XFZYD decreased the CPB-induced NLRP3, ASC, Caspase-1 p20, Pro-GSDMD, GSDMD p30, IL-18, IL-1β p-P65, and p-IKBα mRNA or protein levels in lung tissues in ALI model rats. In summary, these findings suggest that XFZYD effectively mitigates NLRP3 inflammasome-dependent pyroptosis in CPB-induced ALI model rats, possibly by inhibiting the IkB-α/NF-κB pathway in the lung.
Collapse
|
10
|
Yi S, Tao X, Wang Y, Cao Q, Zhou Z, Wang S. Effects of propofol on macrophage activation and function in diseases. Front Pharmacol 2022; 13:964771. [PMID: 36059940 PMCID: PMC9428246 DOI: 10.3389/fphar.2022.964771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Macrophages work with monocytes and dendritic cells to form a monocyte immune system, which constitutes a powerful cornerstone of the immune system with their powerful antigen presentation and phagocytosis. Macrophages play an essential role in infection, inflammation, tumors and other pathological conditions, but these cells also have non-immune functions, such as regulating lipid metabolism and maintaining homeostasis. Propofol is a commonly used intravenous anesthetic in the clinic. Propofol has sedative, hypnotic, anti-inflammatory and anti-oxidation effects, and it participates in the body’s immunity. The regulation of propofol on immune cells, especially macrophages, has a profound effect on the occurrence and development of human diseases. We summarized the effects of propofol on macrophage migration, recruitment, differentiation, polarization, and pyroptosis, and the regulation of these propofol-regulated macrophage functions in inflammation, infection, tumor, and organ reperfusion injury. The influence of propofol on pathology and prognosis via macrophage regulation is also discussed. A better understanding of the effects of propofol on macrophage activation and function in human diseases will provide a new strategy for the application of clinical narcotic drugs and the treatment of diseases.
Collapse
Affiliation(s)
- Shuyuan Yi
- School of Anesthesiology, Weifang Medical University, Weifang, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyi Tao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| |
Collapse
|
11
|
Shao RG, Xie QW, Pan LH, Lin F, Qin K, Ming SP, Li JJ, Du XK. Necrostatin-1 attenuates Caspase-1-dependent pyroptosis induced by the RIPK1/ZBP1 pathway in ventilator-induced lung injury. Cytokine 2022; 157:155950. [PMID: 35780712 DOI: 10.1016/j.cyto.2022.155950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is a complex pathophysiological process leading to acute respiratory distress syndrome (ARDS) and poor outcomes in affected patients. As a form of programmed cell death, pyroptosis is proposed to play an important role in the development of ARDS. Here we investigated whether treating mice with the specific RIPK1 inhibitor Necrostatin-1 (Nec-1) before mechanical ventilation could inhibit pyroptosis and alleviate lung injury in a mouse model. METHODOLOGYS Anesthetized C57BL/6J mice received a transtracheal injection of Nec-1 (5 mg/kg) or vehicle (DMSO) 30 min before the experiment which was ventilated for up to 4 h. Lung damage was assessed macroscopically and histologically with oedema measured as the wet/dry ratio of lung tissues. The release of inflammatory mediators into bronchoalveolar lavage fluid (BALF) was assessed by ELISA measurements of TNF-α,interleukin-1β (IL-1β), and IL-6. The expression of RIPK1, ZBP1, caspase-1, and activated (cleaved) caspase-1 were analyzed using western blot and immunohistochemistry, and the levels of gasdermin-D (GSDMD) and IL-1β were analyzed by immunofluorescence staining. RESULTS High tidal ventilation produced time-dependent inflammation and lung injury in mice which could be significantly reduced by pretreatment with Nec-1. Notably, Nec-1 reduced the expression of key pyroptosis mediator proteins in lung tissues exposed to mechanical ventilation, including caspase-1, cleaved caspase-1, and GSDMD together with inhibiting the release of inflammatory cytokines. CONCLUSION Nec-1 pretreatment alleviates pulmonary inflammatory responses and protects the lung from mechanical ventilation damage. The beneficial effects were mediated at least in part by inhibiting caspase-1-dependent pyroptosis through the RIPK1/ZBP1 pathway.
Collapse
Affiliation(s)
- Rong-Ge Shao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China; Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Qiu-Wen Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China; Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Ling-Hui Pan
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Fei Lin
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Ke Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Shao-Peng Ming
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Jin-Ju Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China; Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xue-Ke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China; Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China.
| |
Collapse
|
12
|
Zhou P, Song NC, Zheng ZK, Li YQ, Li JS. MMP2 and MMP9 contribute to lung ischemia-reperfusion injury via promoting pyroptosis in mice. BMC Pulm Med 2022; 22:230. [PMID: 35705936 PMCID: PMC9202153 DOI: 10.1186/s12890-022-02018-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/01/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Lung ischemia-reperfusion injury (LIRI) is a cause of poor prognosis in several lung diseases and after lung transplantation. In LIRI, matrix metalloproteinases and pyroptosis indicators change in parallel, both of them involvement of inflammatory modulation, but it is unclear whether they are related to each other. METHODS We analyzed the matrix metalloproteinases (MMPs) changes from RNA sequencing (RNA-Seq) data of human transplantation and rat ischemia-reperfusion lung tissues in the Group on Earth Observations (GEO) database. Then established the mouse LIRI model to validate the changes. Further, the severity of lung injury was measured after intervening the matrix metalloproteinases changes with their selective inhibitor during Lung ischemia-reperfusion. Meanwhile, lung, pyroptosis was assessed by assaying the activity of Caspase-1 and interleukin 1β (IL-1β) before and after intervening the matrix metalloproteinases changes. RESULTS The RNA-Seq data revealed that matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9) mRNA expression was elevated both in human lung transplantation and rat lung ischemia-reperfusion tissues, consistent with the change in our mouse model. At the same time, the activity of Caspase-1 and IL-1β were increased after LIRI. While, the lung injury was attenuated for the use of MMP2 and MMP9 selective inhibitor SB-3CT. Likewise, lung pyroptosis alleviated when treatment the mice with SB-3CT in LIRI. CONCLUSION We conclude that MMP2 and MMP9 are involved in the process of LIRI, the mechanism of which is related to the promotion of lung pyroptosis.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nai-Cheng Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Kun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi-Qing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jin-Song Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Liu Z, Li C, Li Y, Yu L, Qu M. Propofol Reduces Renal Ischemia Reperfusion-mediated Necroptosis by Up-regulation of SIRT1 in Rats. Inflammation 2022; 45:2038-2051. [PMID: 35460396 DOI: 10.1007/s10753-022-01673-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Abstract
Propofol (Pro) is well known to regulate the asleep-awake-asleep technique. Increasing indication recommends that Pro also has promising properties such as anti-oxidant and anti-inflammation belongings in several disease models. It has been described that Pro has beneficial properties against renal ischemia/reperfusion (rI/R)-mediated acute lung injury (ALI). Nevertheless, pathogenesis underlying the beneficial action of Pro on the remote ALI mediated by rI/R remains unwell unstated. In this research, we displayed that Pro administration remarkably inhibits rI/R-mediated pro-inflammatory cytokines production. Increased levels of oxidative stress were mainly decreased by Pro. Pro administration ameliorated apoptosis-related caspase-3 activation. Furthermore, the levels of crucial necroptosis-associated protein were reduced by Pro. Sirtuin 1 (SIRT1) inhibitor attenuated the aforementioned changes of Pro. In conclusion, these results propose that Pro attenuates rI/R-induced inflammation, oxidative stress, apoptosis, and necroptosis by up-regulation of SIRT1 in rats. Our findings disclose an original pathogenesis underlying the beneficial effect of Pro against rI/R-mediated ALI and reinforce the knowledge that Pro might be a hopeful beneficial agent for the rI/R-mediated ALI.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China.
| | - Chunlei Li
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| | - Min Qu
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| |
Collapse
|
14
|
Ultrasound Evaluation of the Diaphragm in Clinical Anesthesia. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2163225. [PMID: 35281531 PMCID: PMC8913060 DOI: 10.1155/2022/2163225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
When the human body is anesthetized, the human nerve tissue will be greatly affected, which also affects the breathing of the human body. The respiration during anesthesia is a lack of initiative, and the energy efficiency of the diaphragm in the lungs is very important to the safety of anesthesia. In this paper, the application of the ultrasound evaluation of the diaphragm in clinical anesthesia was studied. In this paper, 24 patients who underwent lung examination under medical anesthesia at our hospital were evaluated by the ultrasound vertical mixed echo method. Through patient voluntary selection and consent, 16 patients were examined with B-mode ultrasound and the other 8 patients with M-mode ultrasound to compare the effects of different ultrasounds on diaphragm image quality. In addition, this paper also analyzes the differences between different ultrasounds and the strengths and weaknesses of diaphragmatic ultrasound evaluation in clinical anesthesia. The suggestions of using different ultrasounds in ultrasonic evaluation are given. The study showed that 16 cases of B-mode ultrasound evaluation of the diaphragm obtained ultrasound images which showed a large field of vision, acoustic frequency between 7 and 18 MHz, and thickness difference between 0.35 and 0.52 cm. In 8 patients with the diaphragm evaluated by M-mode ultrasound, the local features of M-mode ultrasound images were clearer than those of B-mode ultrasound images, but the visual field area was smaller, the acoustic frequency was between 10 and 15 MHz, and the thickness difference was between 0.12 and 0.18 cm. Based on the above data, this paper suggests that, in the ultrasonic evaluation of the diaphragm, B-mode ultrasound should be used to check the patients first, and then M-mode ultrasound should be used to check the parts with poor quality so that the accurate diaphragm quality of patients can be obtained in the vast majority of patients.
Collapse
|
15
|
Xin Y, Zhang Y, Deng S, Hu X. Vagus Nerve Stimulation Attenuates Acute Skeletal Muscle Injury Induced by Hepatic Ischemia/Reperfusion Injury in Rats. Front Pharmacol 2022; 12:756997. [PMID: 35046803 PMCID: PMC8762262 DOI: 10.3389/fphar.2021.756997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Vagus nerve stimulation (VNS) has a protective effect on distal organ injury after ischemia/reperfusion (I/R) injury. We aimed to investigate the protective efficacy of VNS on hepatic I/R injury-induced acute skeletal muscle injury and explore its underlying mechanisms. To test this hypothesis, male Sprague-Dawley rats were randomly divided into three groups: sham group (sham operation, n = 6); I/R group (hepatic I/R with sham VNS, n = 6); and VNS group (hepatic I/R with VNS, n = 6). A hepatic I/R injury model was prepared by inducing hepatic ischemia for 1 h (70%) followed by hepatic reperfusion for 6 h. VNS was performed during the entire hepatic I/R process. Tissue and blood samples were collected at the end of the experiment for biochemical assays, molecular biological preparations, and histological examination. Our results showed that throughout the hepatic I/R process, VNS significantly reduced inflammation, oxidative stress, and apoptosis, while significantly increasing the protein levels of silent information regulator 1 (SIRT1) and decreasing the levels of acetylated forkhead box O1 and Ac-p53, in the skeletal muscle. These data suggest that VNS can alleviate hepatic I/R injury-induced acute skeletal muscle injury by suppressing inflammation, oxidative stress, and apoptosis, potentially via the SIRT1 pathway.
Collapse
Affiliation(s)
- Ying Xin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yifeng Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Simin Deng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinqun Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Liu Z, Meng Y, Wei Q, Miao Y, Yu L, Li Y, Zhang B. The Protective Activity of Penehyclidine Hydrochloride against Renal Ischemia/Reperfusion-Mediated NLRP3 Inflammasome Activation is Induced by SIRT1. J INVEST SURG 2021; 35:1050-1061. [PMID: 34696682 DOI: 10.1080/08941939.2021.1995541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: The activation of alveolar macrophages (AMs) modulated via leucine-rich repeat (NLR) pyrin domain containing 3 (NLRP3) inflammasome activation is key to the progression of renal ischemia/reperfusion (rI/R)-mediated acute lung injury (ALI). Sirtuin-1 (SIRT1) can attenuate NLRP3 inflammasome activation during I/R stress and may be an important mechanism underlying ALI pathogenesis. Penehyclidine hydrochloride (PHC), an anticholinergic drug, exerts protective effects against rI/R-mediated ALI. This study aimed to decipher the effects of PHC on SIRT1 activation and the underlying mechanism of the protective activity of PHC against rI/R-mediated ALI.Materials and methods: We used an ALI rat model and the rat AMs cell line NR8383 to assess the degree of lung injury in vivo and in vitro.Results: The results show that PHC attenuates rI/R-mediated lung injury indices, myeloperoxidase, and apoptosis in vivo. It decreases the rI/R-mediated release of prostaglandin E2 and nitric oxide, mitochondrial reactive oxygen species production, and the activity of NADPH oxidase-4 in vitro. PHC ameliorates the rI/R-induced activation of the thioredoxin-interacting protein, caspase 1 (P10 unit), and NLRP3 inflammasome, along with reduced activation of interleukin-1β and interleukin-18 in vitro. We show that PHC alleviates the rI/R-induced reduction of SIRT1 and the depletion of SIRT1 eliminates the ameliorating activity of PHC on the NLRP3 inflammasome activation in vitro. Conclusions: In summary, the findings suggest that PHC ameliorates the rI/R-mediated ALI through the SIRT1-mediated NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanli Meng
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qianjie Wei
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yu Miao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yuqing Li
- Department of Anesthesiology, Botou Hospital, Cangzhou, Hebei, China
| | - Bing Zhang
- Department of Anesthesiology, Botou Hospital, Cangzhou, Hebei, China
| |
Collapse
|
17
|
Chen X, Huang J. Mangiferin inhibits hypoxia/reoxygenation-induced alveolar epithelial cell injury via the SIRT1/AMPK signaling pathway. Exp Ther Med 2021; 22:1220. [PMID: 34603517 PMCID: PMC8453333 DOI: 10.3892/etm.2021.10654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) is one of the complications that can occur after lung transplantation and may lead to morbidity and mortality. Mangiferin (MAF) is a naturally occurring glucosyl xanthone that has been documented to possess anti-inflammatory, immunomodulatory and potent antioxidant effects. The purpose of the present study was to investigate the effect of MAF on LIRI using a hypoxia-reoxygenation (H/R) cell model. In the present study, the viability of lung alveolar epithelial cells (A549) and H/R-A549 were detected by MTT assay. ELISA was used to evaluate the expression levels of IL-6 and IL-1β. TUNEL assay and western blotting were used to evaluate the apoptosis. In addition, H/R-A549 cells were treated with sirtinol, which is known inhibitor of sirtuin 1 (SIRT1) activity, to determine the effects of MAF on proteins associated with the SIRT1/5'AMP-activate protein kinase (AMPK) signaling pathway using western blotting. The results showed that 20 µM MAF exerted a protective effect on A549 cells against H/R mediating no clear cytotoxic effects. In terms of inflammation, MAF reduced IL-6, IL-1β, cyclooxygenase-2 and inducible nitric oxide synthase expression, which was accompanied by activation of the SIRT1/AMPK signaling pathway. In addition, compared with those in the group treated with sirtinol, expression of SIRT1, Bcl-2 and AMPK activity were elevated in MAF-treated H/R-A549 cells, whereas the expression of Bax, cleaved caspase-3 and cleaved caspase-9 was suppressed. TUNEL analysis of H/R-A549 cells treated with MAF in combination with sirtinol revealed that treatment with sirtinol blocked the SIRT1/AMPK signaling pathway and increased the apoptosis rate compared with the MAF group. Taken together, results of the present study revealed that MAF could inhibit lung H/R cell injury through the SIRT1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xianfeng Chen
- Department of Traditional Chinese Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Juanjuan Huang
- Department of Traditional Chinese Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
18
|
Han X, Ding C, Sang X, Peng M, Yang Q, Ning Y, Lv Q, Shan Q, Hao M, Wang K, Wu X, Zhang H, Cao G. Targeting Sirtuin1 to treat aging-related tissue fibrosis: From prevention to therapy. Pharmacol Ther 2021; 229:107983. [PMID: 34480962 DOI: 10.1016/j.pharmthera.2021.107983] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Fibrosis, which is characterized by excessive extracellular matrix (ECM) deposition, is a wound-healing response to organ injury and may promote cancer and failure in various organs, such as the heart, liver, lung, and kidney. Aging associated with oxidative stress and inflammation exacerbates cellular dysfunction, tissue failure, and body function disorders, all of which are closely related to fibrosis. Sirtuin-1 (SIRT1) is a class III histone deacetylase that regulates growth, transcription, aging, and metabolism in various organs. This protein is downregulated in organ injury and fibrosis associated with aging. Its expression and distribution change with age in different organs and play critical roles in tissue oxidative stress and inflammation. This review first described the background on fibrosis and regulatory functions of SIRT1. Second, we summarized the relationships of SIRT1 with other proteins and its protective action during fibrosis in the heart, liver, lung and kidney. Third, the activation of SIRT1 in therapies of tissue fibrosis, especially in liver fibrosis and aging-related tissue injury, was analyzed. In conclusion, SIRT1 targeting may be a new therapeutic strategy in fibrosis.
Collapse
Affiliation(s)
- Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - XiaNan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - MengYun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - QiYuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - KuiLong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyan Zhang
- Cancer Hospital of The University of Chinese Academy of Sciences, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
19
|
Liu Z, Meng Y, Miao Y, Yu L, Wei Q, Li Y, Zhang B, Yu Q. Propofol ameliorates renal ischemia/reperfusion injury by enhancing macrophage M2 polarization through PPARγ/STAT3 signaling. Aging (Albany NY) 2021; 13:15511-15522. [PMID: 34111028 PMCID: PMC8221315 DOI: 10.18632/aging.203107] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/13/2021] [Indexed: 12/26/2022]
Abstract
Propofol (Pro) confers protection against renal ischemia/reperfusion (rI/R) injury through incompletely characterized mechanisms. Since Pro has shown net anti-inflammatory properties as part of its beneficial effects, we examined the potential role of Pro in the modulation of macrophage polarization status during both rI/R injury in vivo and exposure of cultured peritoneal macrophages (PMs) to hypoxia/reoxygenation (H/R). Rats were subjected to 45-min r/IR surgery or a sham procedure and administered PBS (vehicle) or Pro during the ischemia stage. Pro administration attenuated rI/R-induced kidney damage and renal TNF-α, IL-6, and CXCL-10 expression. Enhanced macrophage M2 polarization, evidenced by reduced iNOS and increased Arg1 and Mrc1 mRNA levels, was further detected after Pro treatment both in the kidney, after rI/R in vivo, and in H/R-treated PMs. Pro administration also repressed phosphorylated signal transducer and activator of transcription 1 (p-STAT1) and increased p-STAT3, p-STAT6, and peroxisome proliferator-activated receptor-γ (PPARγ) mRNA levels in H/R-exposed PMs. Importantly, siRNA-mediated PPARγ silencing repressed Pro-mediated STAT3 activation in PMs and restored proinflammatory cytokine levels and prevented macrophage M2 marker expression in both rI/R-treated rats and cultured PMs. These findings suggest that Pro confers renoprotection against rI/R by stimulating PPARγ/STAT3-dependent macrophage conversion to the M2 phenotype.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanli Meng
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yu Miao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qianjie Wei
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yuqing Li
- Department of Anesthesiology, Botou Hospital, Botou, Cangzhou, Hebei, China
| | - Bing Zhang
- Department of Anesthesiology, Botou Hospital, Botou, Cangzhou, Hebei, China
| | - Qiannan Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|