1
|
Afonso LG, Silva-Aguiar RP, Teixeira DE, Alves SAS, Schmaier AH, Pinheiro AAS, Peruchetti DB, Caruso-Neves C. The angiotensin II/type 1 angiotensin II receptor pathway is implicated in the dysfunction of albumin endocytosis in renal proximal tubule epithelial cells induced by high glucose levels. Biochim Biophys Acta Gen Subj 2024; 1868:130684. [PMID: 39084330 DOI: 10.1016/j.bbagen.2024.130684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
It is well-established that dysfunction of megalin-mediated albumin endocytosis by proximal tubule epithelial cells (PTECs) and the activation of the Renin-Angiotensin System (RAS) play significant roles in the development of Diabetic Kidney Disease (DKD). However, the precise correlation between these factors still requires further investigation. In this study, we aimed to elucidate the potential role of angiotensin II (Ang II), a known effector of RAS, as the mediator of albumin endocytosis dysfunction induced by high glucose (HG) in PTECs. To achieve this, we utilized LLC-PK1 and HK-2 cells, which are well-established in vitro models of PTECs. Using albumin-FITC or DQ-albumin as tracers, we observed that incubation of LLC-PK1 and HK-2 cells with HG (25 mM for 48 h) significantly reduced canonical receptor-mediated albumin endocytosis, primarily due to the decrease in megalin expression. HG increased the concentration of Ang II in the LLC-PK1 cell supernatant, a phenomenon associated with an increase in angiotensin-converting enzyme (ACE) expression and a decrease in prolyl carboxypeptidase (PRCP) expression. ACE type 2 (ACE2) expression remained unchanged. To investigate the potential impact of Ang II on HG effects, the cells were co-incubated with angiotensin receptor inhibitors. Only co-incubation with 10-7 M losartan (an antagonist for type 1 angiotensin receptor, AT1R) attenuated the inhibitory effect of HG on albumin endocytosis, as well as megalin expression. Our findings contribute to understanding the genesis of tubular albuminuria observed in the early stages of DKD, which involves the activation of the Ang II/AT1R axis by HG.
Collapse
Affiliation(s)
- Liz G Afonso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alvin H Schmaier
- Department of Medicine, Division of Hematology and Cell Therapy, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleaveland, USA
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Ciência e Tecnologia em Nanofarmacêutica, INCT-NANOBiofar, CNPq/MCTI, Belo Horizonte, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, CNPq/MCTI, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Kocyigit A, Kanımdan E, Yenigun VB, Ozman Z, Balıbey FB, Durmuş E, Yasar O. Olive Leaf Extract Downregulates the Protein Expression of Key SARS-CoV-2 Entry Enzyme ACE-2, TMPRSS2, and Furin. Chem Biodivers 2024; 21:e202400717. [PMID: 38837886 DOI: 10.1002/cbdv.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses ongoing global health challenges due to its propensity for mutations, which can undermine vaccine efficacy. With no definitive treatment available, urgent research into affordable and biocompatible therapeutic agents is extremely urgent. Angiotensin converting enzyme-2 (ACE-2), transmembrane protease serine subtype 2 (TMPRSS2), and Furin enzymes, which allow the virus to enter cells, are particularly important as potential drug targets among scientists. Olive leaf extract (OLE) has garnered attention for its potential against Coronavirus Disease-9 (COVID-19), yet its mechanism remains understudied. In this study, we aimed to investigate the effects of OLE on ACE-2, TMPRSS2, and Furin protein expressions by cell culture study. Total phenol, flavonoid content, and antioxidant capacity were measured by photometric methods, and oleuropein levels were measured by liquid LC-HR-MS. Cell viability was analyzed by ATP levels using a luminometric method. ACE-2, TMPRSS2, and Furin expressions were analyzed by the Western Blotting method. ACE-2, TMPRSS2, and Furin protein expression levels were significantly lower in a dose dependent manner and the highest inhibition was seen at 100 μg/ml OLE. The results showed that OLE may be a promising treatment candidate for COVID-19 disease. However, further studies need to be conducted in cells co-infected with the virus.
Collapse
Affiliation(s)
- Abdurrahim Kocyigit
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakif University, Traditional and Complementary Medicine Advanced Research Applications and Research Center, Istanbul, Turkey
| | - Ebru Kanımdan
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakif University, Vocational School of Health Services, Istanbul, Turkey
| | - Vildan Betul Yenigun
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakif University, Vocational School of Health Services, Istanbul, Turkey
| | - Zeynep Ozman
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakıf University, Institute of Health Sciences, Medical Biochemistry, Turkey
| | - Fatmanur Babalı Balıbey
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Ezgi Durmuş
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakıf University, Institute of Health Sciences, Medical Biochemistry, Turkey
| | - Oznur Yasar
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
3
|
Wang Z, Fan H, Wu J. Food-Derived Up-Regulators and Activators of Angiotensin Converting Enzyme 2: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12896-12914. [PMID: 38810024 PMCID: PMC11181331 DOI: 10.1021/acs.jafc.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key enzyme in the renin-angiotensin system (RAS), also serving as an amino acid transporter and a receptor for certain coronaviruses. Its primary role is to protect the cardiovascular system via the ACE2/Ang (1-7)/MasR cascade. Given the critical roles of ACE2 in regulating numerous physiological functions, molecules that can upregulate or activate ACE2 show vast therapeutic value. There are only a few ACE2 activators that have been reported, a wide range of molecules, including food-derived compounds, have been reported as ACE2 up-regulators. Effective doses of bioactive peptides range from 10 to 50 mg/kg body weight (BW)/day when orally administered for 1 to 7 weeks. Protein hydrolysates require higher doses at 1000 mg/kg BW/day for 20 days. Phytochemicals and vitamins are effective at doses typically ranging from 10 to 200 mg/kg BW/day for 3 days to 6 months, while Traditional Chinese Medicine requires doses of 1.25 to 12.96 g/kg BW/day for 4 to 8 weeks. ACE2 activation is linked to its hinge-bending region, while upregulation involves various signaling pathways, transcription factors, and epigenetic modulators. Future studies are expected to explore novel roles of ACE2 activators or up-regulators in disease treatments and translate the discovery to bedside applications.
Collapse
Affiliation(s)
- Zihan Wang
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hongbing Fan
- Department
of Animal and Food Sciences, University
of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianping Wu
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
4
|
Reveret L, Leclerc M, Emond V, Tremblay C, Loiselle A, Bourassa P, Bennett DA, Hébert SS, Calon F. Higher angiotensin-converting enzyme 2 (ACE2) levels in the brain of individuals with Alzheimer's disease. Acta Neuropathol Commun 2023; 11:159. [PMID: 37784209 PMCID: PMC10544218 DOI: 10.1186/s40478-023-01647-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Cognitive decline due to Alzheimer's disease (AD) is frequent in the geriatric population, which has been disproportionately affected by the COVID-19 pandemic. In this study, we investigated the levels of angiotensin-converting enzyme 2 (ACE2), a regulator of the renin-angiotensin system and the main entry receptor of SARS-CoV-2 in host cells, in postmortem parietal cortex samples from two independent AD cohorts, totalling 142 persons. Higher concentrations of ACE2 protein (p < 0.01) and mRNA (p < 0.01) were found in individuals with a neuropathological diagnosis of AD compared to age-matched healthy control subjects. Brain levels of soluble ACE2 were inversely associated with cognitive scores (p = 0.02) and markers of pericytes (PDGFRβ, p = 0.02 and ANPEP, p = 0.007), but positively correlated with concentrations of soluble amyloid-β peptides (Aβ) (p = 0.01) and insoluble phospho-tau (S396/404, p = 0.002). However, no significant differences in ACE2 were observed in the 3xTg-AD mouse model of tau and Aβ neuropathology. Results from immunofluorescence and Western blots showed that ACE2 protein is predominantly localized in microvessels in the mouse brain whereas it is more frequently found in neurons in the human brain. The present data suggest that higher levels of soluble ACE2 in the human brain may contribute to AD, but their role in CNS infection by SARS-CoV-2 remains unclear.
Collapse
Affiliation(s)
- Louise Reveret
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Vincent Emond
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Cyntia Tremblay
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Andréanne Loiselle
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Philippe Bourassa
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sébastien S Hébert
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
- Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada.
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
5
|
García-Escobar A, Vera-Vera S, Tébar-Márquez D, Jurado-Román A, Jiménez-Valero S, Galeote G, Cabrera JÁ, Moreno R. The role of vitamin D/calmodulin/calcium signalling/ACE2 pathway in COVID-19. THE BRITISH JOURNAL OF CARDIOLOGY 2023; 30:11. [PMID: 38911688 PMCID: PMC11189159 DOI: 10.5837/bjc.2023.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
There has been suggestion that vitamin D may play a role in protection against severe infection with COVID-19, defined as the need of intensive care unit admission. In this article a potential mechanism involving angiotensin-converting enzyme 2 (ACE2) is proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - José Ángel Cabrera
- Cardiologist Cardiology Department, Quirónsalud University Hospital, Diego de Velázquez 1, 28223 Madrid, Spain
| | - Raul Moreno
- Cardiologist Cardiology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
6
|
Mailisa W, Annisa WD, Permatasari FA, Amalia R, Ivansyah AL, Iskandar F, Rachmawati H. In Vitro and Silico Studies on the N-Doped Carbon Dots Potential in ACE2 Expression Modulation. ACS OMEGA 2023; 8:10077-10085. [PMID: 36969408 PMCID: PMC10035003 DOI: 10.1021/acsomega.2c07398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The alteration of ACE2 expression level, which has been studied in many diseases, makes the topic of ACE2 inducer potential crucial to be explored. The ACE2 inducer could further be designed to control the ACE2 expression level, which is appropriate to a specific case. An in vitro study of well-characterized carbon dots (CDs), made from citric acid and urea, was performed to determine their ability to modulate the ACE2 receptor. Gene expression of ACE2 was quantified using concentrations adjusted for IC50 results from CDs viability assays in HEK 293 and A549 cell lines. RT-qPCR was used to assess the expression of the ACE2 gene and its induction effect in normal cell lines (HEK-293A). According to the results of the tests, ACE2 is expressed in HEK-293A cell lines, and diminazene aceturate can increase ACE2 expression. The effect of CDs on ACE2 gene expression was further examined on the cell lines that had previously been induced with diminazene aceturate, which resulted in upregulation of the ACE2 expression level. An in silico study has been done by using a molecular docking approach. The molecular docking results show that CDs can make strong interactions with ACE2 amino acid residues through hydrophobic interaction, π-π interaction, π-cation interaction, and ionic interaction.
Collapse
Affiliation(s)
- Wiska Mailisa
- Research
Group of Pharmaceutics - School of Pharmacy, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia
| | - Windy Dwi Annisa
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia
| | - Fitri Aulia Permatasari
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Research
Center for Chemistry, National Research
and Innovation Agency, BRIN, Kawasan
Puspiptek 15314, Banten, Indonesia
| | - Riezki Amalia
- Department
of Pharmacology and Clinical Pharmacy, Padjadjaran
University, Jl. Raya Bandung - Sumedang KM 21, Jatinangor 45363, Indonesia
| | - Atthar Luqman Ivansyah
- Analytical
Chemistry Research Group, Department of Chemistry, Faculty of Mathematics
and Natural Sciences, Institut Teknologi
Bandung, Jalan Ganesha
No.10, Bandung 40132, West Java, Indonesia
| | - Ferry Iskandar
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Collaboration
Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Heni Rachmawati
- Research
Group of Pharmaceutics - School of Pharmacy, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia
| |
Collapse
|
7
|
Angiotensin-converting Enzyme-2 (ACE2) Expression in Pediatric Liver Disease. Appl Immunohistochem Mol Morphol 2022; 30:647-653. [PMID: 36222506 DOI: 10.1097/pai.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/20/2022] [Indexed: 11/25/2022]
Abstract
The membrane protein angiotensin-converting enzyme-2 (ACE2) has gained notoriety as the receptor for severe acute respiratory syndrome coronavirus 2. Prior evidence has shown ACE2 is expressed within the liver but its function has not been fully discerned. Here, we utilized novel methodology to assess ACE2 expression in pediatric immune-mediated liver disease to better understand its presence in liver diseases and its role during infections such as COVID-19. We stained liver tissue with ACE2-specific immunofluorescent antibodies, analyzed via confocal microscopy. Computational deep learning-based segmentation models identified nuclei and cells, allowing the quantification of mean cellular and cytosolic immunofluorescent. Spatial transcriptomics provided high-throughput gene expression analysis in tissue to determine cellular composition for ACE2 expression. ACE2 plasma expression was quantified via enzyme-linked immunosorbent assay. High ACE2 expression was seen at the apical surface of cholangiocytes, with lower expression within hepatocyte cytosol and nonparenchymal cells (P<0.001). Children with liver disease had higher ACE2 hepatic expression than pediatric control tissue (P<0.001). Adult control tissue had higher expression than pediatric control (P<0.001). Plasma ACE2 was not found to be statistically different between samples. Spatial transcriptomics identified cell composition of ACE2-expressing spots containing antibody-secreting cells. Our results show ACE2 expression throughout the liver, with strongest localization to cholangiocyte membranes. Machine learning can be used to rapidly identify hepatic cellular components for histologic analysis. ACE2 expression in the liver may be increased in pediatric liver disease. Future work is needed to better understand the role of ACE2 in chronic disease and acute infections.
Collapse
|
8
|
Clerbaux LA, Fillipovska J, Muñoz A, Petrillo M, Coecke S, Amorim MJ, Grenga L. Mechanisms Leading to Gut Dysbiosis in COVID-19: Current Evidence and Uncertainties Based on Adverse Outcome Pathways. J Clin Med 2022; 11:5400. [PMID: 36143044 PMCID: PMC9505288 DOI: 10.3390/jcm11185400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Alteration in gut microbiota has been associated with COVID-19. However, the underlying mechanisms remain poorly understood. Here, we outlined three potential interconnected mechanistic pathways leading to gut dysbiosis as an adverse outcome following SARS-CoV-2 presence in the gastrointestinal tract. Evidence from the literature and current uncertainties are reported for each step of the different pathways. One pathway investigates evidence that intestinal infection by SARS-CoV-2 inducing intestinal inflammation alters the gut microbiota. Another pathway links the binding of viral S protein to angiotensin-converting enzyme 2 (ACE2) to the dysregulation of this receptor, essential in intestinal homeostasis-notably for amino acid metabolism-leading to gut dysbiosis. Additionally, SARS-CoV-2 could induce gut dysbiosis by infecting intestinal bacteria. Assessing current evidence within the Adverse Outcome Pathway framework justifies confidence in the proposed mechanisms to support disease management and permits the identification of inconsistencies and knowledge gaps to orient further research.
Collapse
Affiliation(s)
| | | | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Maria-Joao Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Oerias, Portugal
- Católica Medical School, Católica Biomedical Research Centre, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé, Commissariat à l’Énergie Atomique et Aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paris-Saclay, 30200 Bagnols-sur-Cèze, France
| |
Collapse
|
9
|
Paul A, Kumar S, Kaoud TS, Pickett MR, Bohanon AL, Zoldan J, Dalby KN, Parekh SH. Biomechanical Dependence of SARS-CoV-2 Infections. ACS APPLIED BIO MATERIALS 2022; 5:2307-2315. [PMID: 35486915 PMCID: PMC9063985 DOI: 10.1021/acsabm.2c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Older people have been disproportionately vulnerable to the current SARS-CoV-2 pandemic, with an increased risk of severe complications and death compared to other age groups. A mix of underlying factors has been speculated to give rise to this differential infection outcome including changes in lung physiology, weakened immunity, and severe immune response. Our study focuses on the impact of biomechanical changes in lungs that occur as individuals age, that is, the stiffening of the lung parenchyma and increased matrix fiber density. We used hydrogels with an elastic modulus of 0.2 and 50 kPa and conventional tissue culture surfaces to investigate how infection rate changes with parenchymal tissue stiffness in lung epithelial cells challenged with SARS-CoV-2 Spike (S) protein pseudotyped lentiviruses. Further, we employed electrospun fiber matrices to isolate the effect of matrix density. Given the recent data highlighting the importance of alternative virulent strains, we included both the native strain identified in early 2020 and an early S protein variant (D614G) that was shown to increase the viral infectivity markedly. Our results show that cells on softer and sparser scaffolds, closer resembling younger lungs, exhibit higher infection rates by the WT and D614G variant. This suggests that natural changes in lung biomechanics do not increase the propensity for SARS-CoV-2 infection and that other factors, such as a weaker immune system, may contribute to increased disease burden in the elderly.
Collapse
Affiliation(s)
- Alexandra Paul
- Department of Biomedical Engineering,
University of Texas at Austin, Austin, Texas 78712,
United States
- Department of Biology and Biological Engineering,
Chalmers University of Technology, SE-412 98 Gothenburg,
Sweden
| | - Sachin Kumar
- Department of Biomedical Engineering,
University of Texas at Austin, Austin, Texas 78712,
United States
- Centre for Biomedical Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016,
India
- All India Institute of Medical
Sciences, Ansari Nagar, New Delhi 110029, India
| | - Tamer S. Kaoud
- Division of Chemical Biology and Medicinal Chemistry,
University of Texas at Austin, Austin, Texas 78712,
United States
| | - Madison R. Pickett
- Department of Biomedical Engineering,
University of Texas at Austin, Austin, Texas 78712,
United States
| | - Amanda L. Bohanon
- Division of Chemical Biology and Medicinal Chemistry,
University of Texas at Austin, Austin, Texas 78712,
United States
| | - Janet Zoldan
- Department of Biomedical Engineering,
University of Texas at Austin, Austin, Texas 78712,
United States
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry,
University of Texas at Austin, Austin, Texas 78712,
United States
| | - Sapun H. Parekh
- Department of Biomedical Engineering,
University of Texas at Austin, Austin, Texas 78712,
United States
| |
Collapse
|
10
|
Daskalova E, Delchev S, Vladimirova-Kitova L, Bivolarski I, Pencheva M, Denev P. Aronia melanocarpa Fruit Juice Modulates ACE2 Immunoexpression and Diminishes Age-Related Remodeling of Coronary Arteries in Rats. Foods 2022; 11:1220. [PMID: 35563943 PMCID: PMC9105828 DOI: 10.3390/foods11091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the study is to evaluate the effect of Aronia melanocarpa fruit juice (AMJ) supplementation on age-related coronary arteries remodeled in aged rat hearts. Male Wistar rats (n = 24) were divided into three groups: (1) young controls (CY), aged 2 months, without AMJ supplementation; (2) old controls (CO), aged 27 months, without AMJ supplementation; and (3) the AMJ group (A), which used 27-month old animals, supplemented orally with AMJ for 105 days. AMJ supplementation did not influence the wall-to-diameter parameter (Kernohan index) of the coronary arteries of test animals. Aged rats supplemented with AMJ showed a significant decrease in the amount of collagen fibers in their coronary tunica media, as compared with the old controls. The intensity of the immunoreaction for alpha smooth muscle actin (αSMA) in the coronary tunica media was significantly lower in the supplemented group than in the old controls. The intensity of the angiotensin-converting enzyme 2 (ACE2) immunoreaction in the coronary tunica media of the supplemented group was significantly higher than the one observed in the old controls. These results indicate the positive effects of AMJ supplementation on the age-dependent remodeling of coronary arteries and support for the preventive potential of antioxidant-rich functional food supplementation in age-related diseases.
Collapse
Affiliation(s)
- Elena Daskalova
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (E.D.); (S.D.)
| | - Slavi Delchev
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (E.D.); (S.D.)
| | - Lyudmila Vladimirova-Kitova
- First Department of Internal Diseases—Section of Cardiology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Iliya Bivolarski
- Department of General and Clinical Pathology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Science, 4000 Plovdiv, Bulgaria
| |
Collapse
|
11
|
Silva MG, Falcoff NL, Corradi GR, Alfie J, Seguel RF, Tabaj GC, Iglesias LI, Nuñez M, Guman GR, Gironacci MM. Renin-angiotensin system blockade on angiotensin-converting enzyme 2 and TMPRSS2 in human type II pneumocytes. Life Sci 2022; 293:120324. [PMID: 35032553 PMCID: PMC8754457 DOI: 10.1016/j.lfs.2022.120324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
AIMS Angiotensin-converting enzyme (ACE) 2 is the receptor for severe acute respiratory syndrome coronavirus 2 which causes coronavirus disease 2019 (COVID-19). Viral cellular entry requires ACE2 and transmembrane protease serine 2 (TMPRSS2). ACE inhibitors (ACEIs) or angiotensin (Ang) receptor blockers (ARBs) influence ACE2 in animals, though evidence in human lungs is lacking. We investigated ACE2 and TMPRSS2 in type II pneumocytes, the key cells that maintain lung homeostasis, in lung parenchymal of ACEI/ARB-treated subjects compared to untreated control subjects. MAIN METHODS Ang II and Ang-(1-7) levels and ACE2 and TMPRSS2 protein expression were measured by radioimmunoassay and immunohistochemistry, respectively. KEY FINDINGS We found that the ratio Ang-(1-7)/Ang II, a surrogate marker of ACE2 activity, as well as the amount of ACE2-expressing type II pneumocytes were not different between ACEI/ARB-treated and untreated subjects. ACE2 protein content correlated positively with smoking habit and age. The percentage of TMPRSS2-expressing type II pneumocytes was higher in males than females and in subjects under 60 years of age but it was not different between ACEI/ARB-treated and untreated subjects. However, there was a positive association of TMPRSS2 protein content with age and smoking in ACEI/ARB-treated subjects, with high TMPRSS2 protein levels most evident in ACEI/ARB-treated older adults and smokers. SIGNIFICANCE ACEI/ARB treatment influences human lung TMPRSS2 but not ACE2 protein content and this effect is dependent on age and smoking habit. This finding may help explain the increased susceptibility to COVID-19 seen in smokers and older patients with treated cardiovascular-related pathologies.
Collapse
Affiliation(s)
- Mauro G. Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Nora L. Falcoff
- Servicio Unificado de Patología Hospital Prov de Tórax “Dr. A. Cetrángolo” y Municipal de Vicente López “Prof. B. Houssay”, Buenos Aires, Argentina
| | - Gerardo R. Corradi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - José Alfie
- Servicio de Hipertensión Arterial, Hospital Italiano, Buenos Aires, Argentina
| | - Rolando F. Seguel
- Servicio de Neumonología Hospital Prov de Tórax “Dr. A. Cetrángolo”, Buenos Aires, Argentina
| | - Gabriela C. Tabaj
- Servicio de Neumonología Hospital Prov de Tórax “Dr. A. Cetrángolo”, Buenos Aires, Argentina
| | - Laura I. Iglesias
- Servicio Unificado de Patología Hospital Prov de Tórax “Dr. A. Cetrángolo” y Municipal de Vicente López “Prof. B. Houssay”, Buenos Aires, Argentina
| | - Myriam Nuñez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Matemáticas, Buenos Aires, Argentina
| | - Gabriela R. Guman
- Servicio Unificado de Patología Hospital Prov de Tórax “Dr. A. Cetrángolo” y Municipal de Vicente López “Prof. B. Houssay”, Buenos Aires, Argentina
| | - Mariela M. Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina,Corresponding author
| |
Collapse
|
12
|
García-Escobar A, Vera-Vera S, Jurado-Román A, Jiménez-Valero S, Galeote G, Moreno R. Calcium Signaling Pathway Is Involved in the Shedding of ACE2 Catalytic Ectodomain: New Insights for Clinical and Therapeutic Applications of ACE2 for COVID-19. Biomolecules 2022; 12:biom12010076. [PMID: 35053224 PMCID: PMC8774087 DOI: 10.3390/biom12010076] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is a type I integral membrane that exists in two forms: the first is a transmembrane protein; the second is a soluble catalytic ectodomain of ACE2. The catalytic ectodomain of ACE2 undergoes shedding by a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), in which calmodulin mediates the calcium signaling pathway that is involved in ACE2 release, resulting in a soluble catalytic ectodomain of ACE2 that can be measured as soluble ACE2 plasma activity. The shedding of the ACE2 catalytic ectodomain plays a role in cardiac remodeling and endothelial dysfunction and is a predictor of all-cause mortality, including cardiovascular mortality. Moreover, considerable evidence supports that the ACE2 catalytic ectodomain is an essential entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Additionally, endotoxins and the pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor-alpha (TNFα) all enhanced soluble catalytic ectodomain ACE2 shedding from the airway epithelia, suggesting that the shedding of ACE2 may represent a mechanism by which viral entry and infection may be controlled such as some types of betacoronavirus. In this regard, ACE2 plays an important role in inflammation and thrombotic response, and its down-regulation may aggravate COVID-19 via the renin-angiotensin system, including by promoting pathological changes in lung injury. Soluble forms of ACE2 have recently been shown to inhibit SARS-CoV-2 infection. Furthermore, given that vitamin D enhanced the shedding of ACE2, some studies reported that vitamin D treatment is associated with prognosis improvement in COVID-19. This is an updated review on the evidence, clinical, and therapeutic applications of ACE2 for COVID-19.
Collapse
Affiliation(s)
- Artemio García-Escobar
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-917-27-70-00
| | - Silvio Vera-Vera
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alfonso Jurado-Román
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Santiago Jiménez-Valero
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Guillermo Galeote
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raúl Moreno
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Miličić Stanić B, Maddox S, de Souza AMA, Wu X, Mehranfard D, Ji H, Speth RC, Sandberg K. Male bias in ACE2 basic science research: missed opportunity for discovery in the time of COVID-19. Am J Physiol Regul Integr Comp Physiol 2021; 320:R925-R937. [PMID: 33848207 PMCID: PMC8203415 DOI: 10.1152/ajpregu.00356.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
Throughout the world, including the United States, men have worse outcomes from COVID-19 than women. SARS-CoV-2, the causative virus of the COVID-19 pandemic, uses angiotensin-converting enzyme 2 (ACE2) to gain cellular entry. ACE2 is a member of the renin-angiotensin system (RAS) and plays an important role in counteracting the harmful effects mediated by the angiotensin type 1 receptor. Therefore, we conducted Ovid MEDLINE and Embase database searches of basic science studies investigating the impact of the biological variable of sex on ACE2 expression and regulation from 2000, the year ACE2 was discovered, through December 31, 2020. Out of 2,131 publications, we identified 853 original research articles on ACE2 conducted in primary cells, tissues, and/or whole mammals excluding humans. The majority (68.7%) of these studies that cited the sex of the animal were conducted in males, while 11.2% were conducted solely in females; 9.26% compared ACE2 between the sexes, while 10.8% did not report the sex of the animals used. General findings are that sex differences are tissue-specific and when present, are dependent upon gonadal state. Renal, cardiac, and adipose ACE2 is increased in both sexes under experimental conditions that model co-morbidities associated with worse COVID-19 outcomes including hypertension, obesity, and renal and cardiovascular diseases; however, ACE2 protein was generally higher in the males. Studies in Ace2 knockout mice indicate ACE2 plays a greater role in protecting the female from developing hypertension than the male. Studying the biological variable of sex in ACE2 research provides an opportunity for discovery in conditions involving RAS dysfunction and will shed light on sex differences in COVID-19 severity.
Collapse
Affiliation(s)
- Branka Miličić Stanić
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| | - Sydney Maddox
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| | - Aline M A de Souza
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| | - Xie Wu
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| | - Danial Mehranfard
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
| | - Hong Ji
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, District of Columbia
| | - Kathryn Sandberg
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| |
Collapse
|
14
|
Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021; 136:111193. [PMID: 33461019 PMCID: PMC7836742 DOI: 10.1016/j.biopha.2020.111193] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a pandemic affecting millions of individuals has raised great concern throughout the world, and the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was identified as the causative agent for COVID-19. The multifunctional protein angiotensin converting enzyme 2 (ACE2) is accepted as its primary target for entry into host cells. In its enzymatic function, ACE2, like its homologue ACE, regulates the renin-angiotensin system (RAS) critical for cardiovascular and renal homeostasis in mammals. Unlike ACE, however, ACE2 drives an alternative RAS pathway by degrading Ang-II and thus operates to balance RAS homeostasis in the context of hypertension, heart failure, and cardiovascular as well as renal complications of diabetes. Outside the RAS, ACE2 hydrolyzes key peptides, such as amyloid-β, apelin, and [des-Arg9]-bradykinin. In addition to its enzymatic functions, ACE2 is found to regulate intestinal amino acid homeostasis and the gut microbiome. Although the non-enzymatic function of ACE2 as the entry receptor for SARS-CoV-2 has been well established, the contribution of enzymatic functions of ACE2 to the pathogenesis of COVID-19-related lung injury has been a matter of debate. A complete understanding of this central enzyme may begin to explain the various symptoms and pathologies seen in SARS-CoV-2 infected individuals, and may aid in the development of novel treatments for COVID-19.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|