1
|
Johansen AM, Forsythe SD, McGrath CT, Barker G, Jimenez H, Paluri RK, Pasche BC. TGFβ in Pancreas and Colorectal Cancer: Opportunities to Overcome Therapeutic Resistance. Clin Cancer Res 2024; 30:3676-3687. [PMID: 38916900 PMCID: PMC11371528 DOI: 10.1158/1078-0432.ccr-24-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
TGFβ is a pleiotropic signaling pathway that plays a pivotal role in regulating a multitude of cellular functions. TGFβ has a dual role in cell regulation where it induces growth inhibition and cell death; however, it can switch to a growth-promoting state under cancerous conditions. TGFβ is upregulated in colorectal cancer and pancreatic cancer, altering the tumor microenvironment and immune system and promoting a mesenchymal state. The upregulation of TGFβ in certain cancers leads to resistance to immunotherapy, and attempts to inhibit TGFβ expression have led to reduced therapeutic resistance when combined with chemotherapy and immunotherapy. Here, we review the current TGFβ inhibitor drugs in clinical trials for pancreatic and colorectal cancer, with the goal of uncovering advances in improving clinical efficacy for TGFβ combinational treatments in patients. Furthermore, we discuss the relevance of alterations in TGFβ signaling and germline variants in the context of personalizing treatment for patients who show lack of response to current therapeutics.
Collapse
Affiliation(s)
- Allan M Johansen
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Steven D Forsythe
- Neuroendocrine Therapy Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Callum T McGrath
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Grayson Barker
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Hugo Jimenez
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Ravi K Paluri
- Section of Hematology/Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Boris C Pasche
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| |
Collapse
|
2
|
Ma S, Ming Y, Wu J, Cui G. Cellular metabolism regulates the differentiation and function of T-cell subsets. Cell Mol Immunol 2024; 21:419-435. [PMID: 38565887 PMCID: PMC11061161 DOI: 10.1038/s41423-024-01148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
T cells are an important component of adaptive immunity and protect the host from infectious diseases and cancers. However, uncontrolled T cell immunity may cause autoimmune disorders. In both situations, antigen-specific T cells undergo clonal expansion upon the engagement and activation of antigens. Cellular metabolism is reprogrammed to meet the increase in bioenergetic and biosynthetic demands associated with effector T cell expansion. Metabolites not only serve as building blocks or energy sources to fuel cell growth and expansion but also regulate a broad spectrum of cellular signals that instruct the differentiation of multiple T cell subsets. The realm of immunometabolism research is undergoing swift advancements. Encapsulating all the recent progress within this concise review in not possible. Instead, our objective is to provide a succinct introduction to this swiftly progressing research, concentrating on the metabolic intricacies of three pivotal nutrient classes-lipids, glucose, and amino acids-in T cells. We shed light on recent investigations elucidating the roles of these three groups of metabolites in mediating the metabolic and immune functions of T cells. Moreover, we delve into the prospect of "editing" metabolic pathways within T cells using pharmacological or genetic approaches, with the aim of synergizing this approach with existing immunotherapies and enhancing the efficacy of antitumor and antiinfection immune responses.
Collapse
Affiliation(s)
- Sicong Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Yanan Ming
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Jingxia Wu
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China.
| | - Guoliang Cui
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China.
| |
Collapse
|
3
|
Yıldırım C. Galectin-9, a pro-survival factor inducing immunosuppression, leukemic cell transformation and expansion. Mol Biol Rep 2024; 51:571. [PMID: 38662155 DOI: 10.1007/s11033-024-09563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Leukemia is a malignancy of the bone marrow and blood originating from self-renewing cancerous immature blast cells or transformed leukocytes. Despite improvements in treatments, leukemia remains still a serious disease with poor prognosis because of disease heterogeneity, drug resistance and relapse. There is emerging evidence that differentially expression of co-signaling molecules play a critical role in tumor immune evasion. Galectin-9 (Gal-9) is one of the key proteins that leukemic cells express, secrete, and use to proliferate, self-renew, and survive. It also suppresses host immune responses controlled by T and NK cells, enabling leukemic cells to evade immune surveillance. The present review provides the molecular mechanisms of Gal-9-induced immune evasion in leukemia. Understanding the complex immune evasion machinery driven by Gal-9 expressing leukemic cells will enable the identification of novel therapeutic strategies for efficient immunotherapy in leukemic patients. Combined treatment approaches targeting T-cell immunoglobulin and mucin domain-3 (Tim-3)/Gal-9 and other immune checkpoint pathways can be considered, which may enhance the efficacy of host effector cells to attack leukemic cells.
Collapse
Affiliation(s)
- Cansu Yıldırım
- Atatürk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| |
Collapse
|
4
|
Karimi P, Fakharzadeh S, Kalanaky S, Hafizi M, Hashemi M, Mahdavi M, Nazaran MH. Immunologic Mechanisms of BCc1 Nanomedicine Synthesized by Nanochelating Technology in Breast Tumor-bearing Mice: Immunomodulation and Tumor Suppression. Anticancer Agents Med Chem 2024; 24:1442-1456. [PMID: 39069805 DOI: 10.2174/0118715206302153240723053521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The side effects of anti-cancer chemotherapy remain a concern for patients. So, designing alternative medications seems inevitable. In this research, the immunological mechanisms of BCc1 nanomedicine on tumor-bearing mice were investigated. METHODS BALB/c mice underwent tumor transplantation and were assigned into four groups. Group 1 was orally administered with PBS buffer, Group 2 was orally administered BCc1 10 mg/kg, and Group 3 was orally administered BCc1 40 mg/kg daily, respectively. In addition, a group of mice was administered Cyclophosphamide, 20 mg/kg daily. The weight and tumor volume of mice were evaluated bi-weekly. After 24 days of treatment, cytokines and CTL assay in the spleen cell and the tumor were assessed. Furthermore, the spleen, liver, kidney, lung, gut, and uterine tissue were stained with hematoxylin and eosin. Finally, the tumor samples were stained and analyzed for FOXP3. The survival rate of mice was recorded. RESULTS The results confirmed the histological safety of BCc1. This nanomedicine, especially BCc1 10 mg/kg, led to a strong IFN-γ response and suppressed TGF-β cytokine. The frequency of Treg in the tumor tissue of BCc1 nanomedicine groups was decreased. In addition, nanomedicine repressed tumor volume and tumor weight significantly, which was comparable to Cyclophosphamide. These immunologic events increased the survival rate of BCc1-treated groups. The results indicate that BCc1 nanomedicine can suppress tumor growth and thereby increase the survival rate of experimental mice. CONCLUSION It seems a modulation in the tumor microenvironment and polarization toward a Th1 response may be involved. So, BCc1 nanomedicine is efficient for human cancer therapy.
Collapse
Affiliation(s)
- Pegah Karimi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Medical Division, Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | |
Collapse
|
5
|
Rodrigues CF, Santos FA, Amorim LAA, da Silva ALC, Marques LGA, Rocha BAM. Galectin-9 is a target for the treatment of cancer: A patent review. Int J Biol Macromol 2024; 254:127768. [PMID: 38287577 DOI: 10.1016/j.ijbiomac.2023.127768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Galectins, which correspond to a group of proteins capable of recognizing and reversibly binding to β-galactoside carbohydrates, have been the subject of innovation and development of technological products. Galectins play biological roles, such as cell proliferation and apoptosis, and some studies showed differences in the concentrations of galectins dispersed in serum of patients with cancer. For this reason, different studies have evaluated the biotechnological potential of these proteins as biomarkers for the prognosis and/or diagnosis of physiological disorders. Thus, this review discusses recent technological advancements in targeting galectins for the treatment of cancer and using galectins for cancer prognosis and diagnosis. Data mining was performed using the search descriptors "Galectin 9* and cancer*" and the ESPACENET and Cortellis Drug Discovery Intelligence (CDDI) databases. PRISMA guidelines were followed as a basis for literature review which aimed to conduct a systematic study of galectin-9 patents related to cancer prognosis, diagnosis and treatment. Results showed the importance of galectin-9 protein patents in furthering biomedical advancements in the global fight against cancer.
Collapse
Affiliation(s)
| | - Francisco Alves Santos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | | | - André Luis Coelho da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil; Post Graduate Program in Biotechnology of Natural Resources, Federal University of Ceara, Fortaleza, Brazil
| | | | - Bruno Anderson Matias Rocha
- RENORBIO, Federal University of Ceara, Fortaleza, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil; Post Graduate Program in Biotechnology of Natural Resources, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
6
|
Abooali M, Yasinska IM, Schlichtner S, Ruggiero S, Berger SM, Cholewa D, Milošević M, Bartenstein A, Fasler-Kan E, Sumbayev VV. Activation of immune evasion machinery is a part of the process of malignant transformation of human cells. Transl Oncol 2024; 39:101805. [PMID: 37844478 PMCID: PMC10587773 DOI: 10.1016/j.tranon.2023.101805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Malignant transformation of human cells is associated with their re-programming which results in uncontrolled proliferation and in the same time biochemical activation of immunosuppressive pathways which form cancer immune evasion machinery. However, there is no conceptual understanding of whether immune evasion machinery pathways and expression of immune checkpoint proteins form a part of the process of malignant transformation or if they are triggered by T lymphocytes and natural killers (NK) attempting to attack cells which are undergoing or already underwent malignant transformation. To address this fundamental question, we performed experimental malignant transformation of BEAS-2B human bronchial epithelium cells and RC-124 non-malignant human kidney epithelial cells using bracken extracts containing carcinogenic alkaloid called ptaquiloside. This transformation led to a significant upregulation of cell proliferation velocity and in the same time led to a significant upregulation in expression of key immune checkpoint proteins - galectin-9, programmed death ligand 1 (PD-L1), indoleamine 2,3-dioxygenase (IDO1). Their increased expression levels were in line with upregulation of the levels and activities of HIF-1 transcription complex and transforming growth factor beta type 1 (TGF-β)-Smad3 signalling pathway. When co-cultured with T cells, transformed epithelial cells displayed much higher and more efficient immune evasion activity compared to original non-transformed cells. Therefore, this work resolved a very important scientific and clinical question and suggested that cancer immune evasion machinery is activated during malignant transformation of human cells regardless the presence of immune cells in microenvironment.
Collapse
Affiliation(s)
- Maryam Abooali
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom; DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ); German Center for Lung Research (DZL), Heidelberg, Germany; Department of Personalized Oncology, Medical Faculty Mannheim, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Dietmar Cholewa
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Milan Milošević
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Andreas Bartenstein
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland.
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.
| |
Collapse
|
7
|
Niu G, Zhao Y, Song H, Song Q, Yin X, Zhu Z, Xu J. Marein Ameliorates Myocardial Fibrosis by Inhibiting HIF-1α and TGF-β1/Smad2/3 Signaling Pathway in Isoproterenol-stimulated Mice and TGF-β1-stimulated Cardiac Fibroblasts. Curr Pharm Des 2024; 30:71-80. [PMID: 38151839 DOI: 10.2174/0113816128282062231218075341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Myocardial fibrosis significantly contributes to the pathogenesis and progression of heart failure. OBJECTIVE We probe into the impact of marein, a key bioactive compound in functional food Coreopsis tinctoria, on isoproterenol-stimulated myocardial fibrotic mice and transforming growth factor β1 (TGF-β1)-stimulated cardiac fibroblasts (CFs). METHODS Isoproterenol was administered to the experimental mice via subcutaneous injection, and simultaneous administration of marein (25-100 mg/kg) was performed via oral gavage. CFs were stimulated with TGF- β1 to trigger differentiation and collagen synthesis, followed by treatment with marein at concentrations of 5-20 μM. RESULTS Treatment with marein in mice and CFs resulted in a significant reduction in the protein expression levels of α-smooth muscle actin, collagen type I, and collagen type III. Additionally, marein treatment decreased the protein expression levels of TGF-β1, hypoxia-inducible factor-1α (HIF-1α), p-Smad2/3, and Smad2/3. Notably, molecular docking analysis revealed that marein directly targets HIF-1α. CONCLUSION Marein might exert a protective function in isoproterenol-stimulated myocardial fibrotic mice and TGF-β1-stimulated CFs, which might result from the reduction of TGF-β1 induced HIF-1α expression, then inhibiting p-Smad2/3 and Smad2/3 expressions.
Collapse
Affiliation(s)
- Guanghao Niu
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Ying Zhao
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, China
| | - Huafeng Song
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Quan Song
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Xiaoyun Yin
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Zengyan Zhu
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, China
| | - Junchi Xu
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| |
Collapse
|
8
|
Chen X, Liu Q, Wu E, Ma Z, Tuo B, Terai S, Li T, Liu X. The role of HMGB1 in digestive cancer. Biomed Pharmacother 2023; 167:115575. [PMID: 37757495 DOI: 10.1016/j.biopha.2023.115575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
High mobility group box protein B1 (HMGB1) belongs to the HMG family, is widely expressed in the nucleus of digestive mucosal epithelial cells, mesenchymal cells and immune cells, and binds to DNA to participate in genomic structural stability, mismatch repair and transcriptional regulation to maintain normal cellular activities. In the context of digestive inflammation and tumors, HMGB1 readily migrates into the extracellular matrix and binds to immune cell receptors to affect their function and differentiation, further promoting digestive tract tissue injury and tumor development. Notably, HMGB1 can also promote the antitumor immune response. Therefore, these seemingly opposing effects in tumors make targeted HMGB1 therapies important in digestive cancer. This review focuses on the role of HMGB1 in tumors and its effects on key pathways of digestive cancer and aims to provide new possibilities for targeted tumor therapy.
Collapse
Affiliation(s)
- Xiangqi Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Enqing Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Shuji Terai
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
9
|
Fu H, Vuononvirta J, Fanti S, Bonacina F, D'Amati A, Wang G, Poobalasingam T, Fankhaenel M, Lucchesi D, Coleby R, Tarussio D, Thorens B, Hearnden RJ, Longhi MP, Grevitt P, Sheikh MH, Solito E, Godinho SA, Bombardieri M, Smith DM, Cooper D, Iqbal AJ, Rathmell JC, Schaefer S, Morales V, Bianchi K, Norata GD, Marelli-Berg FM. The glucose transporter 2 regulates CD8 + T cell function via environment sensing. Nat Metab 2023; 5:1969-1985. [PMID: 37884694 PMCID: PMC10663157 DOI: 10.1038/s42255-023-00913-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Hongmei Fu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Juho Vuononvirta
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Fanti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences (DisFeB), Università Degli Studi di Milano, Milan, Italy
| | - Antonio D'Amati
- Section of Anatomical Pathology Department of Precision and Regenerative Medicine, University of Bari Medical School, Bari, Italy
| | - Guosu Wang
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thanushiyan Poobalasingam
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maria Fankhaenel
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Davide Lucchesi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rachel Coleby
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Tarussio
- Faculty of Biology and Medicine, Center for Integrative Genomics, Génopode Building - UNIL Sorge, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Faculty of Biology and Medicine, Center for Integrative Genomics, Génopode Building - UNIL Sorge, University of Lausanne, Lausanne, Switzerland
| | - Robert J Hearnden
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M Paula Longhi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paul Grevitt
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Madeeha H Sheikh
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Egle Solito
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Susana A Godinho
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michele Bombardieri
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David M Smith
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Dianne Cooper
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Schaefer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valle Morales
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katiuscia Bianchi
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences (DisFeB), Università Degli Studi di Milano, Milan, Italy
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Schlichtner S, Yasinska IM, Klenova E, Abooali M, Lall GS, Berger SM, Ruggiero S, Cholewa D, Milošević M, Gibbs BF, Fasler-Kan E, Sumbayev VV. L-Kynurenine participates in cancer immune evasion by downregulating hypoxic signaling in T lymphocytes. Oncoimmunology 2023; 12:2244330. [PMID: 37577144 PMCID: PMC10416736 DOI: 10.1080/2162402x.2023.2244330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant tumors often escape anticancer immune surveillance by suppressing the cytotoxic functions of T lymphocytes. While many of these immune evasion networks include checkpoint proteins, small molecular weight compounds, such as the amino acid L-kynurenine (LKU), could also substantially contribute to the suppression of anti-cancer immunity. However, the biochemical mechanisms underlying the suppressive effects of LKU on T-cells remain unclear. Here, we report for the first time that LKU suppresses T cell function as an aryl hydrocarbon receptor (AhR) ligand. The presence of LKU in T cells is associated with AhR activation, which results in competition between AhR and hypoxia-inducible factor 1 alpha (HIF-1α) for the AhR nuclear translocator, ARNT, leading to T cell exhaustion. The expression of indoleamine 2,3-dioxygenase 1 (IDO1, the enzyme that leads to LKU generation) is induced by the TGF-β-Smad-3 pathway. We also show that IDO-negative cancers utilize an alternative route for LKU production via the endogenous inflammatory mediator, the high mobility group box 1 (HMGB-1)-interferon-gamma (IFN-γ) axis. In addition, other IDO-negative tumors (like T-cell lymphomas) trigger IDO1 activation in eosinophils present in the tumor microenvironment (TME). These mechanisms suppress cytotoxic T cell function, and thus support the tumor immune evasion machinery.
Collapse
Affiliation(s)
- Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
- Department of Personalized Medical Oncology, DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ); German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Inna M. Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
| | - Elena Klenova
- School of Biological Sciences, University of Essex, Colchester, UK
| | - Maryam Abooali
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
| | - Gurprit S. Lall
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
| | - Steffen M. Berger
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Dietmar Cholewa
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Milan Milošević
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Bernhard F. Gibbs
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Vadim V. Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
| |
Collapse
|
11
|
Zheng L, Xia J, Ge P, Meng Y, Li W, Li M, Wang M, Song C, Fan Y, Zhou Y. The interrelation of galectins and autophagy. Int Immunopharmacol 2023; 120:110336. [PMID: 37262957 DOI: 10.1016/j.intimp.2023.110336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
Autophagy is a vital physiological process that maintains intracellular homeostasis by removing damaged organelles and senescent or misfolded molecules. However, excessive autophagy results in cell death and apoptosis, which will lead to a variety of diseases. Galectins are a type of animal lectin that binds to β-galactosides and can bind to the cell surface or extracellular matrix glycans, affecting a variety of immune processes in vivo and being linked to the development of many diseases. In many cases, galectins and autophagy both play important regulatory roles in the cellular life course, yet our understanding of the relationship between them is still incomplete. Galectins and autophagy may share common etiological cofactors for some diseases. Hence, we summarize the relationship between galectins and autophagy, aiming to draw attention to the existence of multiple associations between galectins and autophagy in a variety of physiological and pathological processes, which provide new ideas for etiological diagnosis, drug development, and therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Lujuan Zheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Jing Xia
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Pengyu Ge
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuhan Meng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Weili Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Mingming Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Min Wang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuying Fan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
12
|
Sumbayev VV, Gibbs BF, Fasler-Kan E. Editorial: Pathological reactions of cytotoxic lymphoid cells as universal therapeutic targets in cancer and autoimmune disease. Front Med (Lausanne) 2023; 10:1186318. [PMID: 37181378 PMCID: PMC10167279 DOI: 10.3389/fmed.2023.1186318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Affiliation(s)
- Vadim V. Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Bernhard F. Gibbs
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Zhang C, Xu L, Ma Y, Huang Y, Zhou L, Le H, Chen Z. Increased TIM-3 expression in tumor-associated macrophages predicts a poorer prognosis in non-small cell lung cancer: a retrospective cohort study. J Thorac Dis 2023; 15:1433-1444. [PMID: 37065598 PMCID: PMC10089863 DOI: 10.21037/jtd-23-227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Background T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) is considered a key negative regulator in T-cell-mediated response. However, few studies have been reported on the relationship between TIM-3 expression in tumor-associated macrophages (TAMs) and clinicopathological characteristics of patients. This study evaluated the correlation between the expression of TIM-3 on the surface of TAMs macrophages in tumor matrix and the clinical outcome of patients with non-small cell lung cancer (NSCLC). Methods The expression of CD68, CD163 and TIM-3 in 248 NSCLC patients who underwent surgery in Zhoushan Hospital from January 2010 to January 2013 was detected by immunohistochemistry (IHC). From the date of operation to the date of death, overall survival (OS) was measured to analyze the relationship between the expression of Tim-3 and the prognosis of NSCLC patients. Results The study assessed 248 patients with NSCLC. TIM-3 expression in TAMs was more frequently identified in patients with higher carcinoembryonic antigen (CEA) levels, lymph node metastasis, higher grade, high CD68 expression, and high CD163 expression (P<0.05). The OS of the high TIM-3 expression groups was shorter than that of the low TIM-3 expression groups (P=0.01). Patients with high TIM-3 and CD68/CD163 expressions had the worst prognosis, whereas patients with low expressions of both TIM-3 and CD68/CD163 had the best prognosis (P<0.05). In NSCLC, the OS of the high TIM-3 expression groups was shorter than that of the low TIM-3 expression groups (P=0.01). In lung adenocarcinoma, the OS of the high TIM-3 expression groups was shorter than that of the low TIM-3 expression groups(P=0.03). Conclusions TIM-3 expression in TAMs may be a promising prognostic biomarker for NSCLC or adenocarcinoma. Our results demonstrated that high TIM-3 expression in TAMs was an independent predictor of worse prognosis in patients.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Cell Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
- Department of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Liyun Xu
- Department of Cell Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Yongbin Ma
- Department of Cell Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Yanyan Huang
- Department of Cell Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Lu Zhou
- Department of Cell Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Hanbo Le
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| | - Zhijun Chen
- Department of Clinical Medicine, Jiamusi University, Jiamusi, China
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| |
Collapse
|
14
|
Yang HL, Chang YH, Pandey S, Bhat AA, Vadivalagan C, Lin KY, Hseu YC. Antrodia camphorata and coenzyme Q 0 , a novel quinone derivative of Antrodia camphorata, impede HIF-1α and epithelial-mesenchymal transition/metastasis in human glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36947447 DOI: 10.1002/tox.23785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Antrodia camphorata (AC) and Coenzyme Q0 (CoQ0 ), a novel quinone derivative of AC, exhibits antitumor activities. The present study evaluated EMT/metastasis inhibition and autophagy induction aspects of AC and CoQ0 in human glioblastoma (GBM8401) cells. Our findings revealed that AC treatment (0-150 μg/mL) hindered tumor cell proliferation and migration/invasion in GBM8401 cells. Notably, AC treatment inhibited HIF-1α and EMT by upregulating epithelial marker protein E-cadherin while downregulating mesenchymal proteins Twist, Slug, Snail, and β-catenin. There was an appearance of the autophagy markers LC3-II and p62/SQSTM1, while ATG4B was downregulated by AC treatment. We also found that CoQ0 (0-10 μM) could inhibit migration and invasion in GBM8401 cells. In particular, E-cadherin was elevated and N-cadherin, Vimentin, Twist, Slug, and Snail, were reduced upon CoQ0 treatment. In addition, MMP-2/-9 expression and Wnt/β-catenin pathways were downregulated. Furthermore, autophagy inhibitors 3-MA or CQ reversed the CoQ0 -elicited suppression of migration/invasion and metastasis-related proteins (Vimentin, Snail, and β-catenin). Results suggested autophagy-mediated antiEMT and antimetastasis upon CoQ0 treatment. CoQ0 inhibited HIF-1α and metastasis in GBM8401 cells under normoxia and hypoxia. HIF-1α knockdown using siRNA accelerated CoQ0 -inhibited migration. Finally, CoQ0 exhibited a prolonged survival rate in GBM8401-xenografted mice. Treatment with Antrodia camphorata/CoQ0 inhibited HIF-1α and EMT/metastasis in glioblastoma.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Yao-Hsien Chang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Asif Ali Bhat
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, 41354, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
15
|
Schlichtner S, Yasinska IM, Lall GS, Berger SM, Ruggiero S, Cholewa D, Aliu N, Gibbs BF, Fasler-Kan E, Sumbayev VV. T lymphocytes induce human cancer cells derived from solid malignant tumors to secrete galectin-9 which facilitates immunosuppression in cooperation with other immune checkpoint proteins. J Immunother Cancer 2023; 11:jitc-2022-005714. [PMID: 36599470 DOI: 10.1136/jitc-2022-005714] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Galectin-9 is a member of the family of lectin proteins and crucially regulates human immune responses, particularly because of its ability to suppress the anticancer activities of T lymphocytes and natural killer cells. Recent evidence demonstrated that galectin-9 is highly expressed in a wide range of human malignancies including the most aggressive tumors, such as high-grade glioblastomas and pancreatic ductal adenocarcinomas, as well as common malignancies such as breast, lung and colorectal cancers. However, solid tumor cells at rest are known to secrete either very low amounts of galectin-9 or, in most of the cases, do not secrete it at all. Our aims were to elucidate whether T cells can induce galectin-9 secretion in human cancer cells derived from solid malignant tumors and whether this soluble form displays higher systemic immunosuppressive activity compared with the cell surface-based protein. METHODS A wide range of human cancer cell lines derived from solid tumours, keratinocytes and primary embryonic cells were employed, together with helper and cytotoxic T cell lines and human as well as mouse primary T cells. Western blot analysis, ELISA, quantitative reverse transcriptase-PCR, on-cell Western and other measurement techniques were used to conduct the study. Results were validated using in vivo mouse model. RESULTS We discovered that T lymphocytes induce galectin-9 secretion in various types of human cancer cells derived from solid malignant tumors. This was demonstrated to occur via two differential mechanisms: first by translocation of galectin-9 onto the cell surface followed by its proteolytic shedding and second due to autophagy followed by lysosomal secretion. For both mechanisms a protein carrier/trafficker was required, since galectin-9 lacks a secretion sequence. Secreted galectin-9 pre-opsonised T cells and, following interaction with other immune checkpoint proteins, their activity was completely attenuated. As an example, we studied the cooperation of galectin-9 and V-domain Ig-containing suppressor of T cell activation (VISTA) proteins in human cancer cells. CONCLUSION Our results underline a crucial role of galectin-9 in anticancer immune evasion. As such, galectin-9 and regulatory pathways controlling its production should be considered as key targets for immunotherapy in a large number of cancers.
Collapse
Affiliation(s)
- Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Gurprit S Lall
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Steffen M Berger
- Department of Pediatric Surgery and Department of Biomedical Research, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Sabrina Ruggiero
- Department of Pediatric Surgery and Department of Biomedical Research, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Dietmar Cholewa
- Department of Pediatric Surgery and Department of Biomedical Research, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Nijas Aliu
- Department of Human Genetics, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Bernhard F Gibbs
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery and Department of Biomedical Research, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| |
Collapse
|
16
|
Oravecz O, Romero R, Tóth E, Kapitány J, Posta M, Gallo DM, Rossi SW, Tarca AL, Erez O, Papp Z, Matkó J, Than NG, Balogh A. Placental galectins regulate innate and adaptive immune responses in pregnancy. Front Immunol 2022; 13:1088024. [PMID: 36643922 PMCID: PMC9832025 DOI: 10.3389/fimmu.2022.1088024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Galectins are master regulators of maternal immune responses and placentation in pregnancy. Galectin-13 (gal-13) and galectin-14 (gal-14) are expressed solely by the placenta and contribute to maternal-fetal immune tolerance by inducing the apoptosis of activated T lymphocytes and the polarization of neutrophils toward an immune-regulatory phenotype.Furthermore, their decreased placental expression is associated with pregnancy complications, such as preeclampsia and miscarriage. Yet, our knowledge of the immunoregulatory role of placental galectins is incomplete. Methods This study aimed to investigate the effects of recombinant gal-13 and gal-14 on cell viability, apoptosis, and cytokine production of peripheral blood mononuclear cells (PBMCs) and the signaling pathways involved. Results Herein, we show that gal-13 and gal-14 bind to the surface of non-activated PBMCs (monocytes, natural killer cells, B cells, and T cells) and increase their viability while decreasing the rate of their apoptosis without promoting cell proliferation. We also demonstrate that gal-13 and gal-14 induce the production of interleukin (IL)-8, IL-10, and interferon-gamma cytokines in a concentration-dependent manner in PBMCs. The parallel activation of Erk1/2, p38, and NF-ĸB signaling evidenced by kinase phosphorylation in PBMCs suggests the involvement of these pathways in the regulation of the galectin-affected immune cell functions. Discussion These findings provide further evidence on how placenta-specific galectins assist in the establishment and maintenance of a proper immune environment during a healthy pregnancy.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States
| | - Eszter Tóth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Kapitány
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Dahiana M. Gallo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | | | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Zoltán Papp
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - János Matkó
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary,*Correspondence: Nándor Gábor Than,
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
17
|
Corvino D, Kumar A, Bald T. Plasticity of NK cells in Cancer. Front Immunol 2022; 13:888313. [PMID: 35619715 PMCID: PMC9127295 DOI: 10.3389/fimmu.2022.888313] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are crucial to various facets of human immunity and function through direct cytotoxicity or via orchestration of the broader immune response. NK cells exist across a wide range of functional and phenotypic identities. Murine and human studies have revealed that NK cells possess substantial plasticity and can alter their function and phenotype in response to external signals. NK cells also play a critical role in tumor immunity and form the basis for many emerging immunotherapeutic approaches. NK cells can directly target and lyse malignant cells with their inherent cytotoxic capabilities. In addition to direct targeting of malignant cells, certain subsets of NK cells can mediate antibody-dependent cellular cytotoxicity (ADCC) which is integral to some forms of immune checkpoint-blockade immunotherapy. Another important feature of various NK cell subsets is to co-ordinate anti-tumor immune responses by recruiting adaptive and innate leukocytes. However, given the diverse range of NK cell identities it is unsurprising that both pro-tumoral and anti-tumoral NK cell subsets have been described. Here, NK cell subsets have been shown to promote angiogenesis, drive inflammation and immune evasion in the tumor microenvironment. To date, the signals that drive tumor-infiltrating NK cells towards the acquisition of a pro- or anti-tumoral function are poorly understood. The notion of tumor microenvironment-driven NK cell plasticity has substantial implications for the development of NK-based immunotherapeutics. This review will highlight the current knowledge of NK cell plasticity pertaining to the tumor microenvironment. Additionally, this review will pose critical and relevant questions that need to be addressed by the field in coming years.
Collapse
Affiliation(s)
- Dillon Corvino
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Ananthi Kumar
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bald
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Pally D, Banerjee M, Hussain S, Kumar RV, Petersson A, Rosendal E, Gunnarsson L, Peterson K, Leffler H, Nilsson UJ, Bhat R. Galectin-9 Signaling Drives Breast Cancer Invasion through Extracellular Matrix. ACS Chem Biol 2022; 17:1376-1386. [PMID: 35605245 DOI: 10.1021/acschembio.1c00902] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aberrations in glycan and lectin expression and function represent one of the earliest hallmarks of cancer. Among galectins, a conserved family of β-galactoside-binding lectins, the role of Galectin-9 in immune-tumor interactions is well-established, although its effect on cancer cell behavior remains unclear. In this study, we assayed for, and observed, an association between Galectin-9 expression and invasiveness of breast cancer cells in vitro and in vivo. Genetic perturbation and pharmacological inhibition using novel cognate inhibitors confirmed a positive correlation between Galectin-9 levels and the adhesion of invasive cancer cells to─and their invasion through─constituted organomimetic extracellular matrix microenvironments. Signaling experiments and unbiased quantitative proteomics revealed Galectin-9 induction of Focal Adhesion Kinase activity and S100A4 expression, respectively. FAK inhibition decreased S100A4 mRNA levels. Our results provide crucial insights into how elevated Galectin-9 expression potentiates the invasiveness of breast cancer cells during early steps of invasion.
Collapse
Affiliation(s)
- Dharma Pally
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Mallar Banerjee
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Shahid Hussain
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Rekha V. Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560029, Karnataka, India
| | | | - Ebba Rosendal
- Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | | | | | - Hakon Leffler
- Microbiology, Immunology, and Glycobiology, Department of Experimental Medicine, Lund University, SE-221 00 Lund, Sweden
| | - Ulf J. Nilsson
- Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Centre of BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
19
|
Kang S, Li Y, Qiao J, Meng X, He Z, Gao X, Yu L. Antigen-Specific TCR-T Cells for Acute Myeloid Leukemia: State of the Art and Challenges. Front Oncol 2022; 12:787108. [PMID: 35356211 PMCID: PMC8959347 DOI: 10.3389/fonc.2022.787108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The cytogenetic abnormalities and molecular mutations involved in acute myeloid leukemia (AML) lead to unique treatment challenges. Although adoptive T-cell therapies (ACT) such as chimeric antigen receptor (CAR) T-cell therapy have shown promising results in the treatment of leukemias, especially B-cell malignancies, the optimal target surface antigen has yet to be discovered for AML. Alternatively, T-cell receptor (TCR)-redirected T cells can target intracellular antigens presented by HLA molecules, allowing the exploration of a broader territory of new therapeutic targets. Immunotherapy using adoptive transfer of WT1 antigen-specific TCR-T cells, for example, has had positive clinical successes in patients with AML. Nevertheless, AML can escape from immune system elimination by producing immunosuppressive factors or releasing several cytokines. This review presents recent advances of antigen-specific TCR-T cells in treating AML and discusses their challenges and future directions in clinical applications.
Collapse
Affiliation(s)
- Synat Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yisheng Li
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Jingqiao Qiao
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xiangyu Meng
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Ziqian He
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.,Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
20
|
Schlichtner S, Yasinska IM, Ruggiero S, Berger SM, Aliu N, Prunk M, Kos J, Meyer NH, Gibbs BF, Fasler-Kan E, Sumbayev VV. Expression of the Immune Checkpoint Protein VISTA Is Differentially Regulated by the TGF-β1 - Smad3 Signaling Pathway in Rapidly Proliferating Human Cells and T Lymphocytes. Front Med (Lausanne) 2022; 9:790995. [PMID: 35223897 PMCID: PMC8866318 DOI: 10.3389/fmed.2022.790995] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/17/2022] [Indexed: 01/25/2023] Open
Abstract
Immune checkpoint proteins play crucial roles in human embryonic development but are also used by cancer cells to escape immune surveillance. These proteins and biochemical pathways associated with them form a complex machinery capable of blocking the ability of cytotoxic immune lymphoid cells to attack cancer cells and, ultimately, to fully suppress anti-tumor immunity. One of the more recently discovered immune checkpoint proteins is V-domain Ig-containing suppressor of T cell activation (VISTA), which plays a crucial role in anti-cancer immune evasion pathways. The biochemical mechanisms underlying regulation of VISTA expression remain unknown. Here, we report for the first time that VISTA expression is controlled by the transforming growth factor beta type 1 (TGF-β)-Smad3 signaling pathway. However, in T lymphocytes, we found that VISTA expression was differentially regulated by TGF-β depending on their immune profile. Taken together, our results demonstrate the differential biochemical control of VISTA expression in human T cells and various types of rapidly proliferating cells, including cancer cells, fetal cells and keratinocytes.
Collapse
Affiliation(s)
- Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Nijas Aliu
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Mateja Prunk
- Department of Biotechnology, JoŽef Stefan Institute, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, JoŽef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany.,Division of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Bernhard F Gibbs
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland.,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
21
|
Jiao J, Jiao D, Yang F, Zhang J, Li Y, Han D, Zhang K, Wang Y, Zhang R, Yang AG, Wang A, Wen W, Qin W. Galectin-9 expression predicts poor prognosis in hepatitis B virus-associated hepatocellular carcinoma. Aging (Albany NY) 2022; 14:1879-1890. [PMID: 35202002 PMCID: PMC8908941 DOI: 10.18632/aging.203909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022]
Abstract
Objectives: The aim of this study was to explore the expression of Galectin-9 in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC), evaluate its clinicopathological significance, and investigate whether Galecin-9 expression has prognostic value in HBV-associated HCC. Methods: Immunohistochemistry staining was performed to examine the expression of Galectin-9 in paraffin-embedded tissues from 140 cases of HBV-associated HCC specimens. The association between Gal-9 expression, clinicopathological features and prognosis was analyzed by Kaplan-Meier method, log-rank test and Cox regression analysis. Dual immunofluorescence (IF) staining was performed to identify the cell types that have positive Gal-9 expression. Results: Among the 140 cases of HBV-associated HCC, 39 (27.9%) cases showed high Gal-9 expression (score≥6), 21 (15%) cases showed moderate Gal-9 expression (6>score≥3), 33 (23.6%) cases showed weak Gal-9 expression (3>score>0), and 47 (33.6%) cases had no detectable Gal-9 expression (score=0). Positive Gal-9 expression (score>0) was associated with lymph node metastasis (P=0.029), Ki-67 proliferation index (P=0.009) and poor prognosis. Univariate and multivariate analyses showed that Gal-9 expression could be used as an independent prognostic marker for HBV-associated HCC. Dual IF staining indicated that Gal-9 was mainly expressed in CD68+CD163+ Kupffer cells (KCs) in HBV-associated HCC. Conclusions: Gal-9 was specifically expressed in certain HBV-associated HCC. Positive Gal-9 expression was significantly associated with poor prognosis, and Gal-9 could be used as a prognostic marker in HBV-associated HCC. Specific expression of Gal-9 on KCs indicated it may have immunosuppressive function in HBV-associated HCC.
Collapse
Affiliation(s)
- Jianhua Jiao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingliang Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.,Department of Health Services, Health Service Training Base, Fourth Military Medical University, Xi'an 710032, China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an 710032, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an 710032, China
| | - Anhui Wang
- Department of Epidemiology, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
22
|
Ayyadurai VAS, Deonikar P, McLure KG, Sakamoto KM. Molecular Systems Architecture of Interactome in the Acute Myeloid Leukemia Microenvironment. Cancers (Basel) 2022; 14:756. [PMID: 35159023 PMCID: PMC8833542 DOI: 10.3390/cancers14030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
A molecular systems architecture is presented for acute myeloid leukemia (AML) to provide a framework for organizing the complexity of biomolecular interactions. AML is a multifactorial disease resulting from impaired differentiation and increased proliferation of hematopoietic precursor cells involving genetic mutations, signaling pathways related to the cancer cell genetics, and molecular interactions between the cancer cell and the tumor microenvironment, including endothelial cells, fibroblasts, myeloid-derived suppressor cells, bone marrow stromal cells, and immune cells (e.g., T-regs, T-helper 1 cells, T-helper 17 cells, T-effector cells, natural killer cells, and dendritic cells). This molecular systems architecture provides a layered understanding of intra- and inter-cellular interactions in the AML cancer cell and the cells in the stromal microenvironment. The molecular systems architecture may be utilized for target identification and the discovery of single and combination therapeutics and strategies to treat AML.
Collapse
Affiliation(s)
- V. A. Shiva Ayyadurai
- Systems Biology Group, International Center for Integrative Systems, Cambridge, MA 02138, USA;
| | - Prabhakar Deonikar
- Systems Biology Group, International Center for Integrative Systems, Cambridge, MA 02138, USA;
| | | | - Kathleen M. Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
23
|
Exploring Response to Immunotherapy in Non-Small Cell Lung Cancer Using Delta-Radiomics. Cancers (Basel) 2022; 14:cancers14020350. [PMID: 35053513 PMCID: PMC8773717 DOI: 10.3390/cancers14020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 01/16/2023] Open
Abstract
Delta-radiomics is a branch of radiomics in which features are confronted after time or after introducing an external factor (such as treatment with chemotherapy or radiotherapy) to extrapolate prognostic data or to monitor a certain condition. Immune checkpoint inhibitors (ICIs) are currently revolutionizing the treatment of non-small cell lung cancer (NSCLC); however, there are still many issues in defining the response to therapy. Contrast-enhanced CT scans of 33 NSCLC patients treated with ICIs were analyzed; altogether, 43 lung lesions were considered. The radiomic features of the lung lesions were extracted from CT scans at baseline and at first reassessment, and their variation (delta, Δ) was calculated by means of the absolute difference and relative reduction. This variation was related to the final response of each lesion to evaluate the predictive ability of the variation itself. Twenty-seven delta features have been identified that are able to discriminate radiologic response to ICIs with statistically significant accuracy. Furthermore, the variation of nine features significantly correlates with pseudo-progression.
Collapse
|
24
|
Wei X, Hou Y, Long M, Jiang L, Du Y. Molecular mechanisms underlying the role of hypoxia-inducible factor-1 α in metabolic reprogramming in renal fibrosis. Front Endocrinol (Lausanne) 2022; 13:927329. [PMID: 35957825 PMCID: PMC9357883 DOI: 10.3389/fendo.2022.927329] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Renal fibrosis is the result of renal tissue damage and repair response disorders. If fibrosis is not effectively blocked, it causes loss of renal function, leading to chronic renal failure. Metabolic reprogramming, which promotes cell proliferation by regulating cellular energy metabolism, is considered a unique tumor cell marker. The transition from oxidative phosphorylation to aerobic glycolysis is a major feature of renal fibrosis. Hypoxia-inducible factor-1 α (HIF-1α), a vital transcription factor, senses oxygen status, induces adaptive changes in cell metabolism, and plays an important role in renal fibrosis and glucose metabolism. This review focuses on the regulation of proteins related to aerobic glycolysis by HIF-1α and attempts to elucidate the possible regulatory mechanism underlying the effects of HIF-1α on glucose metabolism during renal fibrosis, aiming to provide new ideas for targeted metabolic pathway intervention in renal fibrosis.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Department of Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yujun Du,
| |
Collapse
|
25
|
Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021; 13:6231. [PMID: 34944851 PMCID: PMC8699358 DOI: 10.3390/cancers13246231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
A lack of explicit early clinical signs and effective screening measures mean that ovarian cancer (OC) often presents as advanced, incurable disease. While conventional treatment combines maximal cytoreductive surgery and platinum-based chemotherapy, patients frequently develop chemoresistance and disease recurrence. The clinical application of immune checkpoint blockade (ICB) aims to restore anti-cancer T-cell function in the tumour microenvironment (TME). Disappointingly, even though tumour infiltrating lymphocytes are associated with superior survival in OC, ICB has offered limited therapeutic benefits. Herein, we discuss specific TME features that prevent ICB from reaching its full potential, focussing in particular on the challenges created by immune, genomic and metabolic alterations. We explore both recent and current therapeutic strategies aiming to overcome these hurdles, including the synergistic effect of combination treatments with immune-based strategies and review the status quo of current clinical trials aiming to maximise the success of immunotherapy in OC.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Michele Cummings
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| | - Amudha Thangavelu
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Georgios Theophilou
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Diederick de Jong
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| |
Collapse
|
26
|
Schlichtner S, Meyer NH, Yasinska IM, Aliu N, Berger SM, Gibbs BF, Fasler-Kan E, Sumbayev VV. Functional role of galectin-9 in directing human innate immune reactions to Gram-negative bacteria and T cell apoptosis. Int Immunopharmacol 2021; 100:108155. [PMID: 34543981 DOI: 10.1016/j.intimp.2021.108155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Galectin-9 is a member of the galectin family of proteins, which were first identified to specifically bind to carbohydrates containing β-galactosides. Galectin-9 is conserved through evolution and recent evidence demonstrated its involvement in innate immune reactions to bacterial infections as well as the suppression of cytotoxic immune responses of T and natural killer cells. However, the molecular mechanisms underlying such differential immunological functions of galectin-9 remain largely unknown. In this work we confirmed that soluble galectin-9 derived from macrophages binds to Gram-negative bacteria by interacting with lipopolysaccharide (LPS), which forms their cell wall. This opsonisation effect most likely interferes with the mobility of bacteria leading to their phagocytosis by innate immune cells. Galectin-9-dependent opsonisation also promotes the innate immune reactions of macrophages to these bacteria and significantly enhances the production of pro-inflammatory cytokines - interleukin (IL) 6, IL-1β and tumour necrosis factor alpha (TNF-α). In contrast, galectin-9 did not bind peptidoglycan (PGN), which forms the cell wall of Gram-positive bacteria. Moreover, galectin-9 associated with cellular surfaces (studied in primary human embryonic cells) was not involved in the interaction with bacteria or bacterial colonisation. However, galectin-9 expressed on the surface of primary human embryonic cells, as well as soluble forms of galectin-9, were able to target T lymphocytes and caused apoptosis in T cells expressing granzyme B. Furthermore, "opsonisation" of T cells by galectin-9 led to the translocation of phosphatidylserine onto the cell surface and subsequent phagocytosis by macrophages through Tim-3, the receptor, which recognises both galectin-9 and phosphatidylserine as ligands.
Collapse
Affiliation(s)
- Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany; Division of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Nijas Aliu
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Bernhard F Gibbs
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland; Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.
| |
Collapse
|
27
|
Zhao L, Cheng S, Fan L, Zhang B, Xu S. TIM-3: An update on immunotherapy. Int Immunopharmacol 2021; 99:107933. [PMID: 34224993 DOI: 10.1016/j.intimp.2021.107933] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/12/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
T cell immunoglobulin and mucin domain 3 (TIM-3) was originally found to be expressed on the surface of Th1 cells, acting as a negative regulator and binding to the ligand galectin-9 to mediate Th1 cell the apoptosis. Recent studies have shown that TIM-3 is also expressed on other immune cells, such as macrophages, dendritic cells, and monocytes. In addition, TIM-3 ligands also include Psdter, High Mobility Group Box 1 (HMGB1) and Carcinoembryonic antigen associated cell adhesion molecules (Ceacam-1), which have different effects upon biding to different ligands on immune cells. Studies have shown that TIM-3 plays an important role in autoimmune diseases, chronic viral infections and tumors. A large amount of experimental data supports TIM-3 as an immune checkpoint, and targeting TIM-3 is a promising treatment method in current immunotherapy, especially the new combination of other immune checkpoint blockers. In this review, we summarize the role of TIM-3 in different diseases and its possible signaling pathway mechanisms, providing new insights for better breakthrough immunotherapy.
Collapse
Affiliation(s)
- Lizhen Zhao
- Department of Laboratory Medicine, The Third People's Hospital of Qingdao, Qingdao, Shandong 266071, China
| | - Shaoyun Cheng
- Department of Laboratory Medicine, The Third People's Hospital of Qingdao, Qingdao, Shandong 266071, China
| | - Lin Fan
- Department of Laboratory Medicine, The Third People's Hospital of Qingdao, Qingdao, Shandong 266071, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China.
| | - Shengwei Xu
- Department of Laboratory Medicine, The Third People's Hospital of Qingdao, Qingdao, Shandong 266071, China.
| |
Collapse
|
28
|
Teo Hansen Selnø A, Schlichtner S, Yasinska IM, Sakhnevych SS, Fiedler W, Wellbrock J, Berger SM, Klenova E, Gibbs BF, Fasler-Kan E, Sumbayev VV. High Mobility Group Box 1 (HMGB1) Induces Toll-Like Receptor 4-Mediated Production of the Immunosuppressive Protein Galectin-9 in Human Cancer Cells. Front Immunol 2021; 12:675731. [PMID: 34234778 PMCID: PMC8255966 DOI: 10.3389/fimmu.2021.675731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 01/19/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a non-histone protein which is predominantly localised in the cell nucleus. However, stressed, dying, injured or dead cells can release this protein into the extracellular matrix passively. In addition, HMGB1 release was observed in cancer and immune cells where this process can be triggered by various endogenous as well as exogenous stimuli. Importantly, released HMGB1 acts as a so-called "danger signal" and could impact on the ability of cancer cells to escape host immune surveillance. However, the molecular mechanisms underlying the functional role of HMGB1 in determining the capability of human cancer cells to evade immune attack remain unclear. Here we report that the involvement of HMGB1 in anti-cancer immune evasion is determined by Toll-like receptor (TLR) 4, which recognises HMGB1 as a ligand. We found that HGMB1 induces TLR4-mediated production of transforming growth factor beta type 1 (TGF-β), displaying autocrine/paracrine activities. TGF-β induces production of the immunosuppressive protein galectin-9 in cancer cells. In TLR4-positive cancer cells, HMGB1 triggers the formation of an autocrine loop which induces galectin-9 expression. In malignant cells lacking TLR4, the same effect could be triggered by HMGB1 indirectly through TLR4-expressing myeloid cells present in the tumour microenvironment (e. g. tumour-associated macrophages).
Collapse
Affiliation(s)
- Anette Teo Hansen Selnø
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Svetlana S Sakhnevych
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steffen M Berger
- Department of Pediatric Surgery, Department of Biomedical Research, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Elena Klenova
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Bernhard F Gibbs
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.,Division of Experimental Allergy and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Department of Biomedical Research, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
29
|
Targeting galectins in T cell-based immunotherapy within tumor microenvironment. Life Sci 2021; 277:119426. [PMID: 33785342 DOI: 10.1016/j.lfs.2021.119426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023]
Abstract
Over the past few years, tumor immunotherapy has emerged as an innovative tumor treatment and owned incomparable advantages over other tumor therapy. With unique complexity and uncertainty, immunotherapy still need helper to apply in the clinic. Galectins, modulated in tumor microenvironment, can regulate the disorders of innate and adaptive immune system resisting tumor growth. Considering the role of galectins in tumor immunosuppression, combination therapy of targeted anti-galectins and immunotherapy may be a promising tumor treatment. This brief review summarizes the expression and immune functions of different galectins in tumor microenvironment and discusses the potential value of anti-galectins in combination with checkpoint inhibitors in tumor immunotherapy.
Collapse
|