1
|
Hu MC, Reneau JA, Shi M, Takahashi M, Chen G, Mohammadi M, Moe OW. C-terminal fragment of fibroblast growth factor 23 improves heart function in murine models of high intact fibroblast growth factor 23. Am J Physiol Renal Physiol 2024; 326:F584-F599. [PMID: 38299214 PMCID: PMC11208029 DOI: 10.1152/ajprenal.00298.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
Cardiovascular disease (CVD) is the major cause of death in chronic kidney disease (CKD) and is associated with high circulating fibroblast growth factor (FGF)23 levels. It is unresolved whether high circulating FGF23 is a mere biomarker or pathogenically contributes to cardiomyopathy. It is also unknown whether the C-terminal FGF23 peptide (cFGF23), a natural FGF23 antagonist proteolyzed from intact FGF23 (iFGF23), retards CKD progression and improves cardiomyopathy. We addressed these questions in three murine models with high endogenous FGF23 and cardiomyopathy. First, we examined wild-type (WT) mice with CKD induced by unilateral ischemia-reperfusion and contralateral nephrectomy followed by a high-phosphate diet. These mice were continuously treated with intraperitoneal implanted osmotic minipumps containing either iFGF23 protein to further escalate FGF23 bioactivity, cFGF23 peptide to block FGF23 signaling, vehicle, or scrambled peptide as negative controls. Exogenous iFGF23 protein given to CKD mice exacerbated pathological cardiac remodeling and CKD progression, whereas cFGF23 treatment improved heart and kidney function, attenuated fibrosis, and increased circulating soluble Klotho. WT mice without renal insult placed on a high-phosphate diet and homozygous Klotho hypomorphic mice, both of whom develop moderate CKD and clear cardiomyopathy, were treated with cFGF23 or vehicle. Mice treated with cFGF23 in both models had improved heart and kidney function and histopathology. Taken together, these data indicate high endogenous iFGF23 is not just a mere biomarker but pathogenically deleterious in CKD and cardiomyopathy. Furthermore, attenuation of FGF23 bioactivity by cFGF23 peptide is a promising therapeutic strategy to protect the kidney and heart from high FGF23 activity.NEW & NOTEWORTHY There is a strong correlation between cardiovascular morbidity and high circulating fibroblast growth factor 23 (FGF23) levels, but causality was never proven. We used a murine chronic kidney disease (CKD) model to show that intact FGF23 (iFGF23) is pathogenic and contributes to both CKD progression and cardiomyopathy. Blockade of FGF23 signaling with a natural proteolytic product of iFGF23, C-terminal FGF23, alleviated kidney and cardiac histology, and function in three separate murine models of high endogenous FGF23.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - James A Reneau
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Mingjun Shi
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Masaya Takahashi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Gaozhi Chen
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Moosa Mohammadi
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Orson W Moe
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
2
|
Xie J, Zheng C, Shen M, Lu W, Li M, He M, Chen L, Ma S, Zhu Y, Lin H, Xiu J, Liao W, Bin J, Liao Y. Pregnancy-induced physiological hypertrophic preconditioning attenuates pathological myocardial hypertrophy by activation of FoxO3a. Cell Mol Life Sci 2023; 80:267. [PMID: 37626241 PMCID: PMC11072725 DOI: 10.1007/s00018-023-04909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Previous studies show a woman's pregnancy is correlated with post-reproductive longevity, and nulliparity is associated with higher risk of incident heart failure, suggesting pregnancy likely exerts a cardioprotection. We previously reported a cardioprotective phenomenon termed myocardial hypertrophic preconditioning, but it is unknown whether pregnancy-induced physiological hypertrophic preconditioning (PHP) can also protect the heart against subsequent pathological hypertrophic stress. We aimed to clarify the phenomenon of PHP and its mechanisms. The pluripara mice whose pregnancy-induced physiological hypertrophy regressed and the nulliparous mice underwent angiotensin II (Ang II) infusion or transverse aortic constriction (TAC). Echocardiography, invasive left ventricular hemodynamic measurement and histological analysis were used to evaluate cardiac remodeling and function. Silencing or overexpression of Foxo3 by adeno-associated virus was used to investigate the role of FoxO3a involved in the antihypertrophic effect. Compared with nulliparous mice, pathological cardiac hypertrophy induced by Ang II infusion, or TAC was significantly attenuated and heart failure induced by TAC was markedly improved in mice with PHP. Activation of FoxO3a was significantly enhanced in the hearts of postpartum mice. FoxO3a inhibited myocardial hypertrophy by suppressing signaling pathway of phosphorylated glycogen synthase kinase-3β (p-GSK3β)/β-catenin/Cyclin D1. Silencing or overexpression of Foxo3 attenuated or enhanced the anti-hypertrophic effect of PHP in mice with pathological stimulation. Our findings demonstrate that PHP confers resistance to subsequent hypertrophic stress and slows progression to heart failure through activation of FoxO3a/GSK3β pathway.
Collapse
Affiliation(s)
- Jiahe Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
- Department of Cardiology, First Affiliated Hospital, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Mengjia Shen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Weiling Lu
- Department of Cardiology, First Affiliated Hospital, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Mingyuan He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jiancheng Xiu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Xu X, Zhang B, Wang Y, Shi S, Lv J, Fu Z, Gao X, Li Y, Wu H, Song Q. Renal fibrosis in type 2 cardiorenal syndrome: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2023; 164:114901. [PMID: 37224755 DOI: 10.1016/j.biopha.2023.114901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a state of coexisting heart failure and renal insufficiency in which acute or chronic dysfunction of the heart or kidney lead to acute or chronic dysfunction of the other organ.It was found that renal fibrosis is an important pathological process in the progression of type 2 CRS to end-stage renal disease, and progressive renal impairment accelerates the deterioration of cardiac function and significantly increases the hospitalization and mortality rates of patients. Previous studies have found that Hemodynamic Aiteration, RAAS Overactivation, SNS Dysfunction, Endothelial Dysfunction and Imbalance of natriuretic peptide system contribute to the development of renal disease in the decompensated phase of heart failure, but the exact mechanisms is not clear. Therefore, in this review, we focus on the molecular pathways involved in the development of renal fibrosis due to heart failure and identify the canonical and non-canonical TGF-β signaling pathways and hypoxia-sensing pathways, oxidative stress, endoplasmic reticulum stress, pro-inflammatory cytokines and chemokines as important triggers and regulators of fibrosis development, and summarize the therapeutic approaches for the above signaling pathways, including SB-525334 Sfrp1, DKK1, IMC, rosarostat, 4-PBA, etc. In addition, some potential natural drugs for this disease are also summarized, including SQD4S2, Wogonin, Astragaloside, etc.
Collapse
Affiliation(s)
- Xia Xu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajiao Wang
- College of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiya Gao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Chu YT, Chen BH, Chen HH, Lee JC, Kuo TJ, Chiu HC, Lu WH. Hypoxia-Induced Kidney Injury in Newborn Rats. TOXICS 2023; 11:260. [PMID: 36977025 PMCID: PMC10053593 DOI: 10.3390/toxics11030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Exposure to hypoxia during the early postnatal period can have adverse effects on vital organs. Neonatal Sprague-Dawley rats housed in a hypoxic chamber were compared to those in a normoxic chamber from postnatal days 0 to 7. Arterial blood was collected to evaluate renal function and hypoxia. Kidney morphology and fibrosis were evaluated using staining methods and immunoblotting. In the kidneys of the hypoxic group, protein expressions of hypoxia-inducible factor-1 were higher than those in the normoxic group. Hypoxic rats had higher levels of hematocrit, serum creatinine, and lactate than normoxic rats. Body weight was reduced, and protein loss of kidney tissue was observed in hypoxic rats compared to normoxic rats. Histologically, hypoxic rats showed glomerular atrophy and tubular injury. Renal fibrosis with collagen fiber deposition was observed in the hypoxic group. The expression of nicotinamide adenine dinucleotide phosphate oxidases was enhanced in the kidneys of hypoxic rats. Proteins involved in apoptosis were upregulated in the kidneys of hypoxic rats. An increase in the expression of pro-inflammatory cytokines was also observed in the kidneys of hypoxic rats. Hypoxic kidney injury in neonatal rats was associated with oxidative stress, inflammation, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Yi-Ting Chu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Bo-Hau Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 32551, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Jui-Chen Lee
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Tzu-Jiun Kuo
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Hsiang-Chin Chiu
- Department of Pediatrics, Pingtung Veterans General Hospital, Pingtung 91245, Taiwan
| | - Wen-Hsien Lu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
5
|
Wang Y, Mao X, Shi S, Xu X, Lv J, Zhang B, Wu H, Song Q. SGLT2 inhibitors in the treatment of type 2 cardiorenal syndrome: Focus on renal tubules. FRONTIERS IN NEPHROLOGY 2023; 2:1109321. [PMID: 37674989 PMCID: PMC10479647 DOI: 10.3389/fneph.2022.1109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/22/2022] [Indexed: 09/08/2023]
Abstract
The pathogenesis of type 2 cardiorenal syndrome (CRS) is mostly associated with reduced cardiac output, increased central venous pressure (CVP), activation of the renin-angiotensin-aldosterone system (RAAS), inflammation, and oxidative stress. As a drug to treat diabetes, sodium-glucose transporter 2 inhibitor (SGLT2i) has been gradually found to have a protective effect on the heart and kidney and has a certain therapeutic effect on CRS. In the process of chronic heart failure (CHF) leading to chronic renal insufficiency, the renal tubular system, as the main functional part of the kidney, is the first to be damaged, but this damage can be reversed. In this review, we focus on the protective mechanisms of SGLT2i targeting renal tubular in the treatment of CRS, including natriuresis and diuresis to relieve renal congestion, attenuate renal tubular fibrosis, improve energy metabolism of renal tubular, and slow tubular inflammation and oxidative stress. This may have beneficial effects on the treatment of CRS and is a direction for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqiao Song
- Guang ‘anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Barbuto S, Perrone V, Veronesi C, Dovizio M, Zappulo F, Vetrano D, Giannini S, Fusaro M, Ancona DD, Barbieri A, Ferrante F, Lena F, Palcic S, Re D, Rizzi FV, Cogliati P, Soro M, Esposti LD, Cianciolo G. Real-World Analysis of Outcomes and Economic Burden in Patients with Chronic Kidney Disease with and without Secondary Hyperparathyroidism among a Sample of the Italian Population. Nutrients 2023; 15:nu15020336. [PMID: 36678208 PMCID: PMC9867108 DOI: 10.3390/nu15020336] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
This real-world analysis evaluated the clinical and economic burden of non-dialysis-dependent CKD patients with and without secondary hyperparathyroidism (sHPT) in Italy. An observational retrospective study was conducted using administrative databases containing a pool of healthcare entities covering 2.45 million health-assisted individuals. Adult patients with hospitalization discharge diagnoses for CKD stages 3, 4, and 5 were included from 1 January 2012 to 31 March 2015 and stratified using the presence/absence of sHPT. Of the 5710 patients, 3119 were CKD-only (62%) and 1915 were CKD + sHPT (38%). The groups were balanced using Propensity Score Matching (PSM). Kaplan-Meier curves revealed that progression to dialysis and cumulative mortality had a higher incidence in the CKD + sHPT versus CKD-only group in CKD stage 3 patients and the overall population. The total direct healthcare costs/patient at one-year follow-up were significantly higher in CKD + sHPT versus CKD-only patients (EUR 8593 vs. EUR 5671, p < 0.001), mostly burdened by expenses for drugs (EUR 2250 vs. EUR 1537, p < 0.001), hospitalizations (EUR 4628 vs. EUR 3479, p < 0.001), and outpatient services (EUR 1715 vs. EUR 654, p < 0.001). These findings suggest that sHPT, even at an early CKD stage, results in faster progression to dialysis, increased mortality, and higher healthcare expenditures, thus indicating that timely intervention can ameliorate the management of CKD patients affected by sHPT.
Collapse
Affiliation(s)
- Simona Barbuto
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Valentina Perrone
- CliCon S.r.l., Società Benefit, Health, Economics & Outcomes Research, 40137 Bologna, Italy
| | - Chiara Veronesi
- CliCon S.r.l., Società Benefit, Health, Economics & Outcomes Research, 40137 Bologna, Italy
| | - Melania Dovizio
- CliCon S.r.l., Società Benefit, Health, Economics & Outcomes Research, 40137 Bologna, Italy
| | - Fulvia Zappulo
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Daniele Vetrano
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sandro Giannini
- Clinica Medica 1, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 56124 Pisa, Italy
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | | | | | - Fulvio Ferrante
- UOC Farmacia, Ufficio di Farmacovigilanza, ASL Frosinone, 03100 Frosinone, Italy
| | - Fabio Lena
- U.O.C. Politiche del Farmaco, USL Toscana Sud Est, 58100 Grosseto, Italy
| | - Stefano Palcic
- SC Farmacia Ospedaliera e Territoriale—Area Giuliana, Azienda Sanitaria Universitaria Integrata Giuliano-Isontina (ASUGI), 34128 Trieste, Italy
| | - Davide Re
- Servizio Farmaceutico Territoriale, ASL Teramo, 64100 Teramo, Italy
| | | | | | | | - Luca Degli Esposti
- CliCon S.r.l., Società Benefit, Health, Economics & Outcomes Research, 40137 Bologna, Italy
- Correspondence:
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
7
|
Ma S, Chen L, Yan J, Shen M, Zhang R, Li M, He M, Chen K, Zhu Y, Lin H, Wang Y, Liao W, Bin J, Zheng C, Liao Y. Dapagliflozin attenuates residual cardiac remodeling after surgical ventricular reconstruction in mice with an enlarged heart after myocardial infarction. Biomed Pharmacother 2022; 156:113765. [PMID: 36228368 DOI: 10.1016/j.biopha.2022.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Severe heart failure refractory to conventional therapy requires alternative treatment modalities. Surgical ventricular reconstruction (SVR) has been used to reverse cardiac remodeling in post-myocardial infarction (MI) patients with large left ventricular (LV) aneurysm, however, residual LV remodeling and dysfunction remain postoperatively. It is unclear whether SVR recovers response to drug treatment and whether the sodium-glucose co-transporter 2 inhibitor dapagliflozin (DAPA) reverses residual LV remodeling after SVR. METHODS Adult male C57 mice were subjected to MI or sham surgery. Four-week later, MI mice with LV aneurysm underwent modified SVR or second open-chest sham operation and were randomized to DAPA or vehicle for four-week. Cardiac remodeling, LV function, and the underlying mechanisms were evaluated by echocardiography, invasive LV hemodynamic measurements, mRNA sequencing, and bioinformatics analysis. RESULTS SVR significantly decreased LV volume; increased myocardial strain, LV pressure change rates and end-systolic elastance; and decreased heart-to-body weight ratio and myocardial fibrosis. However, significant residual cardiac remodeling remained. DAPA significantly attenuated residual cardiac remodeling and improved LV function in SVR mice but did not have curative effects in non-SVR mice. Of the 1532 genes differentially expressed in SVR and MI mice, 1037 were associated with cardiac metabolism; Src, Crebbp, Fn1, Grb2, and Mapk14 were the top 5 hub genes. Unlike sham surgery, MI upregulated those 5 genes, and treatment with SVR + DAPA normalized their expression. CONCLUSIONS SVR restores therapeutic response in the post-MI heart with large LV aneurysm, and DAPA attenuates residual cardiac remodeling after SVR by normalizing some cardiac metabolism-related hub genes.
Collapse
Affiliation(s)
- Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Junyu Yan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mengjia Shen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Rui Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mingyuan He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuegang Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
8
|
Zhang Y, Zhang J, Feng D, Zhou H, Gui Z, Zheng M, Hang Z, Wang Z, Wang Z, Gu M, Tan R. IRF1/ZNF350/GPX4-mediated ferroptosis of renal tubular epithelial cells promote chronic renal allograft interstitial fibrosis. Free Radic Biol Med 2022; 193:579-594. [PMID: 36356714 DOI: 10.1016/j.freeradbiomed.2022.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Renal interstitial fibrosis and tubular atrophy are essential pathological characteristics of chronic renal allograft dysfunction (CAD). Herein, we revealed that ferroptosis of renal tubular epithelial cells (RTECs) might contribute to renal tubular injury in CAD. Mechanistically, TNF-α induced ferroptosis by inhibiting GPX4 transcription through upregulating IRF1 in RTECs. IRF1 could bind with ZNF350 to form a transcription factor complex, which directly binds to the GPX4 promoter region to inhibit GPX4 transcription. Ferroptotic RTECs might secrete profibrotic factors, including PDGF-BB and IL-6, to activate neighboring fibroblasts to transform into myofibroblasts or induce EMT in adjacent RTECs. In conclusion, our results confirmed a novel role of ferroptosis in renal tubular injury and interstitial fibrosis, thereby providing insights into the pathogenesis of chronic renal allograft interstitial fibrosis during CAD.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dengyuan Feng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeping Gui
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhou Hang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Li D, Tian K, Guo J, Wang Q, Qin Z, Lu Y, Xu Y, Scott N, Charles CJ, Liu G, Zhang J, Cui X, Tang J. Growth factors: avenues for the treatment of myocardial infarction and potential delivery strategies. Regen Med 2022; 17:561-579. [PMID: 35638395 DOI: 10.2217/rme-2022-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death worldwide. Despite recent advances in clinical management, reoccurence of heart failure after AMI remains high, in part because of the limited capacity of cardiac tissue to repair after AMI-induced cell death. Growth factor-based therapy has emerged as an alternative AMI treatment strategy. Understanding the underlying mechanisms of growth factor cardioprotective and regenerative actions is important. This review focuses on the function of different growth factors at each stage of the cardiac repair process. Recent evidence for growth factor therapy in preclinical and clinical trials is included. Finally, different delivery strategies are reviewed with a view to providing workable strategies for clinical translation.
Collapse
Affiliation(s)
- Demin Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Kang Tian
- Department of Bone and Joint, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Jiacheng Guo
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhen Qin
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yongzheng Lu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yanyan Xu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Nicola Scott
- Department of Medicine, Christchurch Heart Institute, University of Otago, Christchurch, 8011, New Zealand
| | - Chris J Charles
- Department of Orthopedic Surgery and Musculoskeletal Medicine, Christchurch Regenerative Medicine and Tissue Engineering Group, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Jinying Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Xiaolin Cui
- Department of Bone and Joint, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China.,Department of Orthopedic Surgery and Musculoskeletal Medicine, Christchurch Regenerative Medicine and Tissue Engineering Group, University of Otago, Christchurch, 8011, New Zealand
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| |
Collapse
|
10
|
Roehm B, McAdams M, Hedayati SS. Novel Biomarkers of Kidney Disease in Advanced Heart Failure: Beyond GFR and Proteinuria. Curr Heart Fail Rep 2022; 19:223-235. [PMID: 35624386 DOI: 10.1007/s11897-022-00557-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Kidney disease is a common finding in patients with heart failure and can significantly impact treatment decisions and outcomes. Abnormal kidney function is currently determined in clinical practice using filtration markers in the blood to estimate glomerular filtration rate, but the manifestations of kidney disease in the setting of heart failure are much more complex than this. In this manuscript, we review novel biomarkers that may provide a more well-rounded assessment of kidney disease in patients with heart failure. RECENT FINDINGS Galectin-3, ST2, FGF-23, suPAR, miRNA, GDF-15, and NAG may be prognostic of kidney disease progression. L-FABP and suPAR may help predict acute kidney injury (AKI). ST2 and NAG may be helpful in diuretic resistance. Several biomarkers may be useful in determining prognosis of long-term kidney disease progression, prediction of AKI, and development of diuretic resistance. Further research into the mechanisms of kidney disease in heart failure utilizing many of these biomarkers may lead to the identification of therapeutic targets.
Collapse
Affiliation(s)
- Bethany Roehm
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 6201 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Meredith McAdams
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 6201 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - S Susan Hedayati
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 6201 Harry Hines Boulevard, Dallas, TX, 75390, USA
| |
Collapse
|
11
|
Hanudel MR, Czaya B, Wong S, Jung G, Chua K, Qiao B, Gabayan V, Ganz T. Renoprotective effects of ferric citrate in a mouse model of chronic kidney disease. Sci Rep 2022; 12:6695. [PMID: 35461329 PMCID: PMC9035171 DOI: 10.1038/s41598-022-10842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn chronic kidney disease, ferric citrate has been shown to be an effective phosphate binder and source of enteral iron; however, the effects of ferric citrate on the kidney have been less well-studied. Here, in Col4α3 knockout mice—a murine model of progressive chronic kidney disease, we evaluated the effects of five weeks of 1% ferric citrate dietary supplementation. As expected, ferric citrate lowered serum phosphate concentrations and increased serum iron levels in the Col4α3 knockout mice. Consistent with decreased enteral phosphate absorption and possibly improved iron status, ferric citrate greatly reduced circulating fibroblast growth factor 23 levels. Interestingly, ferric citrate also lessened systemic inflammation, improved kidney function, reduced albuminuria, and decreased kidney inflammation and fibrosis, suggesting renoprotective effects of ferric citrate in the setting of chronic kidney disease. The factors mediating possible ferric citrate renoprotection, the mechanisms by which they may act, and whether ferric citrate affects chronic kidney disease progression in humans deserves further study.
Collapse
|
12
|
Seitz T, Hellerbrand C. Role of fibroblast growth factor signalling in hepatic fibrosis. Liver Int 2021; 41:1201-1215. [PMID: 33655624 DOI: 10.1111/liv.14863] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Fibrotic remodelling is a highly conserved protective response to tissue injury and it is essential for the maintenance of structural and functional tissue integrity. Also hepatic fibrosis can be considered as a wound-healing response to liver injury, reflecting a balance between liver repair and scar formation. In contrast, pathological fibrosis corresponds to impaired wound healing. Usually, the liver regenerates after acute injury. However, if the damaging mechanisms persist, the liver reacts with progressive and uncontrolled accumulation of extracellular matrix proteins. Eventually, excessive fibrosis can lead to cirrhosis and hepatic failure. Furthermore, cirrhosis is the major risk factor for the development of hepatocellular cancer (HCC). Therefore, hepatic fibrosis is the most critical pathological factor that determines the morbidity and mortality of patients with chronic liver disease. Still, no effective anti-fibrogenic therapies exist, despite the very high medical need. The regulation of fibroblast growth factor (FGF) signalling is a prerequisite for adequate wound healing, repair and homeostasis in various tissues and organs. The FGF family comprises 22 proteins that can be classified into paracrine, intracrine and endocrine factors. Most FGFs signal through transmembrane tyrosine kinase FGF receptors (FGFRs). Although FGFRs are promising targets for the treatment of HCC, the expression and function of FGFR-ligands in hepatic fibrosis is still poorly understood. This review summarizes the latest advances in our understanding of FGF signalling in hepatic fibrosis. Furthermore, the potential of FGFs as targets for the treatment of hepatic fibrosis and remaining challenges for the field are discussed.
Collapse
Affiliation(s)
- Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Clemens Z, Sivakumar S, Pius A, Sahu A, Shinde S, Mamiya H, Luketich N, Cui J, Dixit P, Hoeck JD, Kreuz S, Franti M, Barchowsky A, Ambrosio F. The biphasic and age-dependent impact of klotho on hallmarks of aging and skeletal muscle function. eLife 2021; 10:e61138. [PMID: 33876724 PMCID: PMC8118657 DOI: 10.7554/elife.61138] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is accompanied by disrupted information flow, resulting from accumulation of molecular mistakes. These mistakes ultimately give rise to debilitating disorders including skeletal muscle wasting, or sarcopenia. To derive a global metric of growing 'disorderliness' of aging muscle, we employed a statistical physics approach to estimate the state parameter, entropy, as a function of genes associated with hallmarks of aging. Escalating network entropy reached an inflection point at old age, while structural and functional alterations progressed into oldest-old age. To probe the potential for restoration of molecular 'order' and reversal of the sarcopenic phenotype, we systemically overexpressed the longevity protein, Klotho, via AAV. Klotho overexpression modulated genes representing all hallmarks of aging in old and oldest-old mice, but pathway enrichment revealed directions of changes were, for many genes, age-dependent. Functional improvements were also age-dependent. Klotho improved strength in old mice, but failed to induce benefits beyond the entropic tipping point.
Collapse
Affiliation(s)
- Zachary Clemens
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Sruthi Sivakumar
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Abish Pius
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Amrita Sahu
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Sunita Shinde
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Hikaru Mamiya
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Nathaniel Luketich
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Jian Cui
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Purushottam Dixit
- Department of Physics, University of FloridaGainesvilleUnited States
| | - Joerg D Hoeck
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Sebastian Kreuz
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Michael Franti
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Fabrisia Ambrosio
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
- McGowan Institute for Regenerative Medicine, University of PittsburghPittsburghUnited States
| |
Collapse
|