1
|
Zhu Y, Yang H, Xue Z, Tang H, Chen X, Liao Y. Mesenchymal stem cells-derived small extracellular vesicles and apoptotic extracellular vesicles for wound healing and skin regeneration: a systematic review and meta-analysis of preclinical studies. J Transl Med 2025; 23:364. [PMID: 40128791 PMCID: PMC11934660 DOI: 10.1186/s12967-024-05744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/07/2024] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Studies examining the therapeutic potential of Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) in wound healing and skin regeneration have progressed rapidly. Prior to considering clinical translation, a systematic and comprehensive understanding of these experimental details and the overall impact of MSC-EVs on skin regeneration is necessary. METHODS 83 studies were identified in Web of Science, Embase, and PubMed that satisfied a set of prespecified inclusion criteria. A random effects meta-analysis was conducted for wound closure rate, scar width, blood vessel density and collagen deposition. CONCLUSIONS Our findings demonstrate clear potential of MSC-EVs to be developed as therapy for wound healing and skin regeneration both in diabetic and non-diabetic animal models. Moreover, subgroup analyses demonstrated that apoptotic small extracellular vesicles (ApoSEVs) showed better efficacy than apoptotic bodies (ApoBDs) and small extracellular vesicles (sEVs) in wound closure outcome and collagen deposition, while sEVs displayed better than ApoEVs in revascularization. Among frequently used routes of administration, subcutaneous injection displayed a greater improvement to wound closure, collagen deposition and revascularization as compared to dressing/covering. Among easier-access source of MSCs, ADSCs demonstrated the best effect in wound closure rate and collagen deposition, as compared, BMMSCs displayed better in revascularization. Additionally, high heterogeneity observed in collection conditions, separation methods, storage methods, modifications, treatment dose, administration route, and frequency of MSC-EVs underscores the urgent need for standardization in these areas, prior to clinical translation. PROTOCOL REGISTRATION PROSPERO CRD42024499172.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Han Yang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhixin Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Haojing Tang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China.
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China.
| |
Collapse
|
2
|
Gowtham A, Kaundal RK. Exploring the ncRNA landscape in exosomes: Insights into wound healing mechanisms and therapeutic applications. Int J Biol Macromol 2025; 292:139206. [PMID: 39732230 DOI: 10.1016/j.ijbiomac.2024.139206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have emerged as crucial modulators in cellular signaling, influencing wound healing processes. Stem cell-derived exosomes, which serve as vehicles for these ncRNAs, show remarkable therapeutic potential due to their ability to modulate wound healing stages, from initial inflammation to collagen formation. These ncRNAs act as molecular signals, regulating gene expression and protein synthesis necessary for cellular responses in healing. Wound healing is a complex, staged process involving inflammation, hemostasis, fibroblast proliferation, angiogenesis, and tissue remodeling. Stem cell-derived exosomal ncRNAs enhance these stages by reducing excessive inflammation, promoting anti-inflammatory responses, guiding fibroblast and keratinocyte maturation, enhancing vascularization, and ensuring organized collagen deposition. Their molecular cargo, particularly ncRNAs, specifically targets pathways to aid chronic wound repair and support scarless regeneration. This review delves into the unique composition and signaling roles of Stem cell-derived exosomes and ncRNAs, highlighting their impact across wound healing stages and their potential as innovative therapeutics. Understanding the interaction between exosomal ncRNAs and cellular signaling pathways opens new avenues in regenerative medicine, positioning Stem cell-derived exosomes and their ncRNAs as promising molecular-level interventions in wound healing.
Collapse
Affiliation(s)
- A Gowtham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
3
|
Li H, Zhang P, Lin M, Li K, Zhang C, He X, Gao K. Pyroptosis: candidate key targets for mesenchymal stem cell-derived exosomes for the treatment of bone-related diseases. Stem Cell Res Ther 2025; 16:68. [PMID: 39940049 DOI: 10.1186/s13287-025-04167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Bone-related diseases impact a large portion of the global population and, due to their high disability rates and limited treatment options, pose significant medical and economic challenges. Mesenchymal stem cells (MSCs) can differentiate into multiple cell types and offer strong regenerative potential, making them promising for treating various diseases. However, issues with the immune response and cell survival limit the effectiveness of cell transplantation. This has led to increased interest in cell-free stem cell therapy, particularly the use of exosomes, which is the most studied form of this approach. Exosomes are extracellular vesicles that contain proteins, lipids, and nucleic acids and play a key role in cell communication and material exchange. Pyroptosis, a form of cell death involved in innate immunity, is also associated with many diseases. Studies have shown that MSC-derived exosomes have therapeutic potential for treating a range of conditions by regulating inflammation and pyroptosis. This study explored the role of MSC-derived exosomes in modulating pyroptosis to improve the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Haiming Li
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Peng Zhang
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Minghui Lin
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Kang Li
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Cunxin Zhang
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Xiao He
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Kai Gao
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China.
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| |
Collapse
|
4
|
Morabbi A, Karimian M. Therapeutic potential of exosomal lncRNAs derived from stem cells in wound healing: focusing on mesenchymal stem cells. Stem Cell Res Ther 2025; 16:62. [PMID: 39934913 DOI: 10.1186/s13287-025-04200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The self-renewal ability and multipotency of stem cells give them great potential for use in wound healing. Stem cell-derived exosomes, owing to their close biological resemblance to their parent cells, offer a more efficient, safer, and economical approach for facilitating cellular communication and interactions within different environments. This potential makes them particularly valuable in the treatment of both acute and chronic wounds, such as lacerations, burns, and diabetic ulcers. Long non-coding RNAs (lncRNAs) enclosed in exosomes, as one of the leading actors of these extracellular microvesicles, through interaction with miRNAs and regulation of various signaling pathways involved in inflammation, angiogenesis, cell proliferation, and migration, could heal the wounds. Exosome-derived lncRNAs from stem cells facilitate extracellular matrix remodeling through interaction between macrophages and fibroblasts. Moreover, alongside regulating the expression of inflammatory cytokines, controlling reactive oxygen species levels, and enhancing autophagic activity, they also modulate immune responses to support wound healing. Regulating the expression of genes and signaling pathways related to angiogenesis, by increasing blood supply and accelerating the delivery of essential substances to the wound environment, is another effect exosomal lncRNAs derived from stem cells for wound healing. These lncRNAs can also enhance skin wound healing by regulating homeostasis, increasing the proliferation and differentiation of cells involved in the wound-healing process, and enhancing fibroblast viability and migration to the injury site. Ultimately, exosome-derived lncRNAs from stem cells offer valuable and novel insights into the molecular mechanisms underlying improved wound healing. They can pave the way for potential therapeutic strategies, fostering further research for a better future. Meanwhile, exosomes derived from mesenchymal stem cells, due to their exceptional regenerative properties, as well as the lncRNAs derived from these exosomes, have emerged as one of the innovative tools in wound healing. This review article aims to narrate the cellular and molecular roles of exosome-derived lncRNAs from stem cells in enhancing wound healing with a focus on mesenchymal stem cells.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
5
|
Chen L, Wang J. Unveiling the Molecular Mechanisms of Rosacea: Insights From Transcriptomics and In Vitro Experiments. J Cosmet Dermatol 2025; 24:e16753. [PMID: 39823143 PMCID: PMC11739675 DOI: 10.1111/jocd.16753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Rosacea is a prevalent inflammatory skin condition, but its molecular mechanisms and treatment responses remain poorly understood. AIMS This study aims to investigate the molecular mechanisms underlying rosacea and explore drug response through transcriptomic analysis and in vitro experiments. PATIENTS/METHODS We performed high-throughput RNA sequencing to analyze gene expression patterns in rosacea patients. In vitro experiments, including RT-qPCR, Western blot, ELISA, scratch, and Transwell assays, were used to evaluate gene and protein expression and cell behavior in HaCaT cells under simulated rosacea conditions. RESULTS Transcriptomic analysis revealed significantly elevated expression of inflammatory-related genes in rosacea patients. In vitro, HaCaT cells exhibited enhanced proliferation and migration abilities, accompanied by increased expression of pro-inflammatory genes and proteins. Specifically, Toll-like receptor 2 (TLR2) and S100A9 proteins were upregulated, potentially promoting these processes. CONCLUSIONS Our study elucidates the molecular mechanisms of rosacea, highlighting the role of inflammatory pathways and altered cell behavior in the disease. TLR2 and S100A9 may contribute to disease progression, offering potential targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Luzhu Chen
- Department of Plastic and Cosmetic Surgery, Hubei Provincial Hospital of Traditional Chinese MedicineThe Affiliated Hospital of Hubei University of Chinese MedicineWuhanChina
| | - Juan Wang
- Department of Plastic and Cosmetic Surgery, Hubei Provincial Hospital of Traditional Chinese MedicineThe Affiliated Hospital of Hubei University of Chinese MedicineWuhanChina
| |
Collapse
|
6
|
Luo W, Li N, Liu J, Li D, Li Y, Ma Q, Lin C, Lu L, Lin S. Bulk and Single-Cell Transcriptome Analyses Unravel Gene Signatures of Mitochondria-Associated Programmed Cell Death in Diabetic Foot Ulcer. J Cell Mol Med 2024; 28:e70319. [PMID: 39730319 DOI: 10.1111/jcmm.70319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024] Open
Abstract
Mitochondrial programmed cell death (PCD) plays a critical role in the pathogenesis of diabetic foot ulcers (DFU). In this study, we performed a comprehensive transcriptome analysis to identify potential hub genes and key cell types associated with PCD and mitochondria in DFU. Using intersection analysis of PCD- and mitochondria-related genes, we identified candidate hub genes through protein-protein interaction and random forest analysis. At the single-cell level, key cell types were further validated based on the expression of hub genes. Additionally, we explored the transcription factors (TFs) regulating hub gene expression and the cellular heterogeneity of DFU. Finally, the expression of key hub genes and TFs was validated in clinical specimens. Our results identified BCL2 and LIPT1 as significantly downregulated hub genes in DFU, with Keratinocytes, as the key cell type. Immunohistochemistry confirmed downregulation of BCL2 and LIPT1 in DFU samples (p < 0.05). Additionally, TFs CEBPD and IRF1 were significantly upregulated in DFU, as confirmed by real-time polymerase chain reaction analysis (p < 0.05).
Collapse
Affiliation(s)
- Wenqiang Luo
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Ning Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Jin Liu
- Department of Orthopedics, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shanwei, Guangdong, P. R. China
| | - Duoyu Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yongheng Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Qing Ma
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, P. R. China
| | - Liang Lu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Sipeng Lin
- Department of Orthopedics, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shanwei, Guangdong, P. R. China
| |
Collapse
|
7
|
Zhang T, Zhang Y, Li X, Zhang F, Cheng Z, Shi Y, Zhou X, Wang X. An anti-sense lncRNA of the A-FABP gene regulates the proliferation of hair follicle stem cells via the chi-miR-335-5p/DKK1/β-catenin axis. Int J Biol Macromol 2024; 283:137511. [PMID: 39547602 DOI: 10.1016/j.ijbiomac.2024.137511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Hair follicle development relies on both the epithelial-mesenchymal interaction (EMI) and the proliferation of hair follicle stem cells (HFSCs). This intricate process involves numerous regulatory molecules. Increasing evidence suggests that long non-coding RNAs (lncRNAs) play a crucial role in hair follicle development. However, the functions and molecular mechanisms of many lncRNAs in hair follicle development of cashmere goats remain unclear. Based on our previous lncRNA sequencing results in cashmere goats, an unannotated lncRNA differentially expressed at various stages of hair follicle development, named FABP_AS, was detected. Consequently, we aimed at exploring the function and molecular mechanisms of FABP_AS. We constructed a CRISPR/Cas9 knockout system to specifically knock down FABP_AS, providing a reference model for target lncRNA knockout in animal primary cells. Functional experiment results demonstrated that FABP_AS significantly inhibited HFSCs proliferation. Mechanism experiment results revealed that FABP_AS competitively bond to chi-miR-335-5p, promoted DKK1 gene expression, and reduced Wnt/β-catenin signaling pathway activity. In summary, our findings indicated that FABP_AS acted as a miRNA sponge, sequestering chi-miR-335-5p away from the DKK1 gene, thereby suppressing HFSCs proliferation, which would lay the groundwork for a better understanding of the molecular mechanisms of hair follicle development and provide therapeutic targets for hair loss.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuelang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Xiang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zixi Cheng
- School of Electronic Science & Engineering, Southeast University, Nanjing 211000, China
| | - Yujie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiongbo Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
8
|
Harithpriya K, Kaussikaa S, Kavyashree S, Geetha A, Ramkumar KM. Pathological insights into cell death pathways in diabetic wound healing. Pathol Res Pract 2024; 264:155715. [PMID: 39550997 DOI: 10.1016/j.prp.2024.155715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Diabetic foot ulcers (DFUs) are a microvascular complication that affects almost 21 % of the diabetic population. DFUs are characterized by lower limb abnormalities, chronic inflammation, and a heightened hypoxic environment. The challenge of healing these chronic wounds arises from impaired blood flow, neuropathy, and dysregulated cell death processes. The pathogenesis of DFUs involves intricate mechanisms of programmed cell death (PCD) in different cell types, which include keratinocytes, fibroblasts, and endothelial cells. The modes of cell death comprise apoptosis, autophagy, ferroptosis, pyroptosis, and NETosis, each defined by distinct biochemical hallmarks. These diverse mechanisms contribute to tissue injury by inducing neutrophil extracellular traps and generating cellular stressors like endoplasmic reticulum stress, oxidative stress, and inflammation. Through a comprehensive review of experimental studies identified from literature databases, this review synthesizes current knowledge on the critical signaling cascades implicated in programmed cell death within the context of diabetic foot ulcer pathology.
Collapse
Affiliation(s)
- Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, TN 603210, United States
| | - Srinivasan Kaussikaa
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, TN 603210, United States
| | - Srikanth Kavyashree
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, TN 603210, United States
| | - Avs Geetha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, TN 603210, United States
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, TN 603210, United States.
| |
Collapse
|
9
|
Aliniay-Sharafshadehi S, Yousefi MH, Ghodratie M, Kashfi M, Afkhami H, Ghoreyshiamiri SM. Exploring the therapeutic potential of different sources of mesenchymal stem cells: a novel approach to combat burn wound infections. Front Microbiol 2024; 15:1495011. [PMID: 39678916 PMCID: PMC11638218 DOI: 10.3389/fmicb.2024.1495011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
The most prevalent and harmful injuries are burns, which are still a major global health problem. Burn injuries can cause issues because they boost the inflammatory and metabolic response, which can cause organ malfunction and systemic failure. On the other hand, a burn wound infection creates an environment that is conducive to the growth of bacteria and might put the patient at risk for sepsis. In addition, scarring is unavoidable, and this results in patients having functional and cosmetic issues. Wound healing is an amazing phenomenon with a complex mechanism that deals with different types of cells and biomolecules. Cell therapy using stem cells is one of the most challenging treatment methods that accelerates the healing of burn wounds. Since 2000, the use of mesenchymal stem cells (MSCs) in regenerative medicine and wound healing has increased. They can be extracted from various tissues, such as bone marrow, fat, the umbilical cord, and the amniotic membrane. According to studies, stem cell therapy for burn wounds increases angiogenesis, has anti-inflammatory properties, slows the progression of fibrosis, and has an excellent ability to differentiate and regenerate damaged tissue. Figuring out the main preclinical and clinical problems that stop people from using MSCs and then suggesting the right ways to improve therapy could help show the benefits of MSCs and move stem cell-based therapy forward. This review's objective was to assess mesenchymal stem cell therapy's contribution to the promotion of burn wound healing.
Collapse
Affiliation(s)
- Shahrzad Aliniay-Sharafshadehi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Ghodratie
- Department of Medical Microbiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mojtaba Kashfi
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
10
|
Tang F, Tian L, Zhu X, Yang S, Zeng H, Yang Y. METTL3-mediated m6A modification enhances lncRNA H19 stability to promote endothelial cell inflammation and pyroptosis to aggravate atherosclerosis. FASEB J 2024; 38:e70090. [PMID: 39432244 PMCID: PMC11580722 DOI: 10.1096/fj.202401337rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
This study explored the impact of N6-methyladenosine (m6A) modification on the regulation of long noncoding RNA (lncRNA) and atherosclerosis progression. An atherosclerosis cell model was established by treating human aortic endothelial cells (HAECs) with oxidized low-density lipoprotein. Additionally, an atherosclerotic animal model was developed using ApoE-/- C57BL/6 male mice fed a high-fat diet. Both models were employed to assess the expression changes of proteins associated with m6A modification. First, the effect of m6A modification writer protein methyltransferase-like 3 (METTL3) knockdown on changes in the level of pyroptosis in HAECs was investigated, and bioinformatic analysis confirmed that lncRNA H19 (H19) was the potential target of m6A modification. RNA-binding protein immunoprecipitation assays were subsequently performed to explore the interaction between H19 and the m6A writer protein METTL3, as well as the reader protein recombinant insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Finally, the effect of H19 expression on pyroptosis levels in HAECs was evaluated. In the aortas of atherosclerosis mice, overall m6A levels were significantly elevated compared with controls (p < .05), with METTL3 and METTL14 mRNA and protein levels notably increased (p < .05). Similarly, ox-LDL-treated HAECs showed a significant rise in m6A levels, along with increased METTL3 and METTL14 expression (p < .05). METTL3 knockdown in HAECs led to decreased pyroptosis, as evidenced by reduced lactate dehydrogenase release and lower levels of IL-1β, IL-18, and IL-6 (p < .05). Overexpression of H19 reversed these effects, indicating METTL3's role in promoting atherosclerosis by stabilizing H19 through m6A modification. H19 was the primary target lncRNA molecule of METTL3-mediated m6A modification in the pathogenesis of atherosclerosis. METTL3-mediated m6A modification regulated H19 expression, thereby aggravating atherosclerosis by activating pyroptosis.
Collapse
Affiliation(s)
- Feng Tang
- Department of CardiologyThe Second People's Hospital of GuiyangGuiyangGuizhouChina
| | - Long‐hai Tian
- Department of CardiologyGuizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Xiao‐han Zhu
- Department of CardiologyThe Second People's Hospital of GuiyangGuiyangGuizhouChina
| | - Sen Yang
- Department of CardiologyThe Second People's Hospital of GuiyangGuiyangGuizhouChina
| | - Huan Zeng
- Department of CardiologyThe Second People's Hospital of GuiyangGuiyangGuizhouChina
| | - Yong‐yao Yang
- Department of CardiologyGuizhou Provincial People's HospitalGuiyangGuizhouChina
| |
Collapse
|
11
|
Aghayants S, Zhu J, Yu J, Tao R, Li S, Zhou S, Zhou Y, Zhu Z. The emerging modulators of non-coding RNAs in diabetic wound healing. Front Endocrinol (Lausanne) 2024; 15:1465975. [PMID: 39439564 PMCID: PMC11493653 DOI: 10.3389/fendo.2024.1465975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Diabetic wound healing is a complex physiological process often hindered by the underlying metabolic dysfunctions associated with diabetes. Despite existing treatments, there remains a critical need to explore innovative therapeutic strategies to improve patient outcomes. This article comprehensively examines the roles of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating key phases of the wound healing process: inflammation, angiogenesis, re-epithelialization, and tissue remodeling. Through a deep review of current literature, we discuss recent discoveries of ncRNAs that have been shown to either promote or impair the wound healing process in diabetic wound healing, which were not covered in earlier reviews. This review highlights the specific mechanisms by which these ncRNAs impact cellular behaviors and pathways critical to each healing stage. Our findings indicate that understanding these recently identified ncRNAs provides new insights into their potential roles in diabetic wound healing, thereby contributing valuable knowledge for future research directions in this field.
Collapse
Affiliation(s)
- Sis Aghayants
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengzhi Zhou
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Liu S, Zhao H, Jiang T, Wan G, Yan C, Zhang C, Yang X, Chen Z. The Angiogenic Repertoire of Stem Cell Extracellular Vesicles: Demystifying the Molecular Underpinnings for Wound Healing Applications. Stem Cell Rev Rep 2024; 20:1795-1812. [PMID: 39001965 DOI: 10.1007/s12015-024-10762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Stem cells-derived extracellular vesicles (SC-EVs) have emerged as promising therapeutic agents for wound repair, recapitulating the biological effects of parent cells while mitigating immunogenic and tumorigenic risks. These EVs orchestrate wound healing processes, notably through modulating angiogenesis-a critical event in tissue revascularization and regeneration. This study provides a comprehensive overview of the multifaceted mechanisms underpinning the pro-angiogenic capacity of EVs from various stem cell sources within the wound microenvironment. By elucidating the molecular intricacies governing their angiogenic prowess, we aim to unravel the mechanistic repertoire underlying their remarkable potential to accelerate wound healing. Additionally, methods to enhance the angiogenic effects of SC-EVs, current limitations, and future perspectives are highlighted, emphasizing the significant potential of this rapidly advancing field in revolutionizing wound healing strategies.
Collapse
Affiliation(s)
- Shuoyuan Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huayuan Zhao
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chi Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Zhang CH, Lu DC, Liu Y, Wang L, Sethi G, Ma Z. The role of extracellular vesicles in pyroptosis-mediated infectious and non-infectious diseases. Int Immunopharmacol 2024; 138:112633. [PMID: 38986299 DOI: 10.1016/j.intimp.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Pyroptosis, a lytic and pro-inflammatory cell death, is important in various pathophysiological processes. Host- and bacteria-derived extracellular vesicles (EVs), as natural nanocarriers messengers, are versatile mediators of intercellular communication between different types of cells. Recently, emerging research has suggested that EVs exhibit multifaceted roles in disease progression by manipulating pyroptosis. This review focuses on new findings concerning how EVs shape disease progression in infectious and non-infectious diseases by regulating pyroptosis. Understanding the characteristics and activity of EVs-mediated pyroptotic death may conducive to the discovery of novel mechanisms and more efficient therapeutic targets in infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; Department of Oncology, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing 404100, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ying Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
15
|
Xie P, Xue X, Li X. Recent Progress in Mesenchymal Stem Cell-Derived Exosomes for Skin Wound Repair. Cell Biochem Biophys 2024; 82:1651-1663. [PMID: 38811472 DOI: 10.1007/s12013-024-01328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Exosomes are nanometer-sized, lipid bilayer membrane vesicles that are secreted by various cell types. Mesenchymal stem cells (MSCs) have been shown to exert therapeutic effects through the secretion of exosomes via a paracrine pathway. Functions: Recent studies have demonstrated that MSC-derived exosomes (MSC-Exos) can effectively transport various bioactive substances, including proteins, mRNAs, microRNAs, long non-coding RNAs, circular RNAs, and lipids, into target cells. This process regulates multiple aspects during wound repair, such as the inflammatory response, cell proliferation, migration, differentiation, angiogenesis, and matrix remodeling. POTENTIAL APPLICATIONS By promoting wound healing and inhibiting scar formation, MSC-Exos have shown great promise for clinical applications in wound repair. This review highlights the recent advances in our understanding of the role and mechanism of MSC-Exos during wound repair, providing insights into their potential use in future therapeutic strategies.
Collapse
Affiliation(s)
- Peilin Xie
- Department of Plastic Surgery, People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Xiaodong Xue
- Department of Plastic Surgery, People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Xiaodong Li
- Center for Cosmetic Surgery, General Hospital of Lanzhou Petrochemical Company (The Fourth Affiliated Hospital of Gansu University of Chinese Medicine), Lanzhou, 730060, Gansu, China.
| |
Collapse
|
16
|
Li Y, Zhu Z, Li S, Xie X, Qin L, Zhang Q, Yang Y, Wang T, Zhang Y. Exosomes: compositions, biogenesis, and mechanisms in diabetic wound healing. J Nanobiotechnology 2024; 22:398. [PMID: 38970103 PMCID: PMC11225131 DOI: 10.1186/s12951-024-02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Diabetic wounds are characterized by incomplete healing and delayed healing, resulting in a considerable global health care burden. Exosomes are lipid bilayer structures secreted by nearly all cells and express characteristic conserved proteins and parent cell-associated proteins. Exosomes harbor a diverse range of biologically active macromolecules and small molecules that can act as messengers between different cells, triggering functional changes in recipient cells and thus endowing the ability to cure various diseases, including diabetic wounds. Exosomes accelerate diabetic wound healing by regulating cellular function, inhibiting oxidative stress damage, suppressing the inflammatory response, promoting vascular regeneration, accelerating epithelial regeneration, facilitating collagen remodeling, and reducing scarring. Exosomes from different tissues or cells potentially possess functions of varying levels and can promote wound healing. For example, mesenchymal stem cell-derived exosomes (MSC-exos) have favorable potential in the field of healing due to their superior stability, permeability, biocompatibility, and immunomodulatory properties. Exosomes, which are derived from skin cellular components, can modulate inflammation and promote the regeneration of key skin cells, which in turn promotes skin healing. Therefore, this review mainly emphasizes the roles and mechanisms of exosomes from different sources, represented by MSCs and skin sources, in improving diabetic wound healing. A deeper understanding of therapeutic exosomes will yield promising candidates and perspectives for diabetic wound healing management.
Collapse
Affiliation(s)
- Yichuan Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Xiaohang Xie
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Qin
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, 437000, China
| | - Yan Yang
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ting Wang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College of Huazhong, University of Science and Technology, Wuhan, 430030, China.
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Li H, Zhao J, Cao L, Luo Q, Zhang C, Zhang L. The NLRP3 inflammasome in burns: a novel potential therapeutic target. BURNS & TRAUMA 2024; 12:tkae020. [PMID: 38957662 PMCID: PMC11218784 DOI: 10.1093/burnst/tkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 07/04/2024]
Abstract
Burns are an underestimated serious injury negatively impacting survivors physically, psychologically and economically, and thus are a considerable public health burden. Despite significant advancements in burn treatment, many burns still do not heal or develop serious complications/sequelae. The nucleotide-binding oligomerization domain-like receptors (NLRs) family pyrin domain-containing 3 (NLRP3) inflammasome is a critical regulator of wound healing, including burn wound healing. A better understanding of the pathophysiological mechanism underlying the healing of burn wounds may help find optimal therapeutic targets to promote the healing of burn wounds, reduce complications/sequelae following burn, and maximize the restoration of structure and function of burn skin. This review aimed to summarize current understanding of the roles and regulatory mechanisms of the NLRP3 inflammasome in burn wound healing, as well as the preclinical studies of the involvement of NLRP3 inhibitors in burn treatment, highlighting the potential application of NLRP3-targeted therapy in burn wounds.
Collapse
Affiliation(s)
- Haihong Li
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Junhong Zhao
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei Province, China
| | - Leilei Cao
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Qizhi Luo
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Beijing 100048, China
| | - Lei Zhang
- Department of Psychiatry and Clinical Psychology, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| |
Collapse
|
18
|
Zhang B, Bi Y, Wang K, Guo X, Liu Z, Li J, Wu M. Stem Cell-Derived Extracellular Vesicles: Promising Therapeutic Opportunities for Diabetic Wound Healing. Int J Nanomedicine 2024; 19:4357-4375. [PMID: 38774027 PMCID: PMC11108067 DOI: 10.2147/ijn.s461342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
Wound healing is a sophisticated and orderly process of cellular interactions in which the body restores tissue architecture and functionality following injury. Healing of chronic diabetic wounds is difficult due to impaired blood circulation, a reduced immune response, and disrupted cellular repair mechanisms, which are often associated with diabetes. Stem cell-derived extracellular vesicles (SC-EVs) hold the regenerative potential, encapsulating a diverse cargo of proteins, RNAs, and cytokines, presenting a safe, bioactivity, and less ethical issues than other treatments. SC-EVs orchestrate multiple regenerative processes by modulating cellular communication, increasing angiogenesis, and promoting the recruitment and differentiation of progenitor cells, thereby potentiating the reparative milieu for diabetic wound healing. Therefore, this review investigated the effects and mechanisms of EVs from various stem cells in diabetic wound healing, as well as their limitations and challenges. Continued exploration of SC-EVs has the potential to revolutionize diabetic wound care.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yajun Bi
- Department of Pediatrics, Dalian Municipal Women and Children’s Medical Center (Group), Dalian Medical University, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Kang Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jia Li
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
19
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. The Mechanism of Pyroptosis and Its Application Prospect in Diabetic Wound Healing. J Inflamm Res 2024; 17:1481-1501. [PMID: 38463193 PMCID: PMC10924950 DOI: 10.2147/jir.s448693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Pyroptosis defines a form of pro-inflammatory-dependent programmed cell death triggered by gasdermin proteins, which creates cytoplasmic pores and promotes the activation and accumulation of immune cells by releasing several pro-inflammatory mediators and immunogenic substances upon cell rupture. Pyroptosis comprises canonical (mediated by Caspase-1) and non-canonical (mediated by Caspase-4/5/11) molecular signaling pathways. Numerous studies have explored the contributory roles of inflammasome and pyroptosis in the progression of multiple pathological conditions such as tumors, nerve injury, inflammatory diseases and metabolic disorders. Accumulating evidence indicates that the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome results in the activation of pyroptosis and inflammation. Current evidence suggests that pyroptosis-dependent cell death plays a progressive role in the development of diabetic complications including diabetic wound healing (DWH) and diabetic foot ulcers (DFUs). This review presents a brief overview of the molecular mechanisms underlying pyroptosis and addresses the current research on pyroptosis-dependent signaling pathways in the context of DWH. In this review, we also present some prospective therapeutic compounds/agents that can target pyroptotic signaling pathways, which may serve as new strategies for the effective treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chuxiao Shao
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Peiwu Geng
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Shuanghu Wang
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Department of Wound Healing, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
20
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
21
|
Zhou Y, Yan J, Qiao L, Zeng J, Cao F, Sheng X, Qi X, Long C, Liu B, Wang X, Yao H, Xiao L. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Ameliorate Aging-Induced BTB Impairment in Porcine Testes by Activating Autophagy and Inhibiting ROS/NLRP3 Inflammasomes via the AMPK/mTOR Signaling Pathway. Antioxidants (Basel) 2024; 13:183. [PMID: 38397781 PMCID: PMC10886345 DOI: 10.3390/antiox13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
As a pivotal player in spermatogenesis, the blood-testis barrier (BTB) made from junction apparatus coexisting in Sertoli cells (SCs) is impaired with an increase in age and ultimately induces spermatogenic dysfunction or even infertility. It has been corroborated that bone marrow mesenchymal stem cell (BMSC) transplantation can efficiently repair and regenerate the testicular function. As vital mediators of cell-to-cell communication, MSC-derived exosomes (Exos) can directly serve as therapeutic agents for tissue repair and regeneration. However, the therapeutic value of BMSC-Exos in aging-induced BTB damage remains to be confirmed. In this study, we explored that the old porcine testes had defective autophagy, which aggravated BTB disruption in SCs. BMSC-Exos could decrease ROS production and NLRP3 inflammasome activation but enhanced autophagy and tight junction (TJ) function in D-gal-triggered aging porcine SCs and mouse model testes, according to in vitro and in vivo experiments. Furthermore, rapamycin, NAC, MCC950, and IL-1Ra restored the TJ function in D-gal-stimulated aging porcine SCs, while BMSC-Exos' stimulatory effect on TJ function was inhibited by chloroquine. Moreover, the treatment with BMSC-Exos enhanced autophagy in D-gal-induced aging porcine SCs by means of the AMPK/mTOR signal transduction pathway. These findings uncovered through the present study that BMSC-Exos can enhance the BTB function in aging testes by improving autophagy via the AMPK/mTOR signaling pathway, thereby suppressing ROS production and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yi Zhou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (J.Y.); (J.Z.); (F.C.); (X.S.); (X.Q.); (C.L.); (B.L.); (X.W.)
| | - Jiale Yan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (J.Y.); (J.Z.); (F.C.); (X.S.); (X.Q.); (C.L.); (B.L.); (X.W.)
| | - Limin Qiao
- Department of Animal Husbandry and Veterinary, Beijing Vocational College of Agriculture, Beijing 102445, China;
| | - Jiaqin Zeng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (J.Y.); (J.Z.); (F.C.); (X.S.); (X.Q.); (C.L.); (B.L.); (X.W.)
| | - Fuyu Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (J.Y.); (J.Z.); (F.C.); (X.S.); (X.Q.); (C.L.); (B.L.); (X.W.)
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (J.Y.); (J.Z.); (F.C.); (X.S.); (X.Q.); (C.L.); (B.L.); (X.W.)
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (J.Y.); (J.Z.); (F.C.); (X.S.); (X.Q.); (C.L.); (B.L.); (X.W.)
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (J.Y.); (J.Z.); (F.C.); (X.S.); (X.Q.); (C.L.); (B.L.); (X.W.)
| | - Bingying Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (J.Y.); (J.Z.); (F.C.); (X.S.); (X.Q.); (C.L.); (B.L.); (X.W.)
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (J.Y.); (J.Z.); (F.C.); (X.S.); (X.Q.); (C.L.); (B.L.); (X.W.)
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (J.Y.); (J.Z.); (F.C.); (X.S.); (X.Q.); (C.L.); (B.L.); (X.W.)
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (J.Y.); (J.Z.); (F.C.); (X.S.); (X.Q.); (C.L.); (B.L.); (X.W.)
| |
Collapse
|
22
|
Lin SQ, Wang K, Pan XH, Ruan GP. Mechanisms of Stem Cells and Their Secreted Exosomes in the Treatment of Autoimmune Diseases. Curr Stem Cell Res Ther 2024; 19:1415-1428. [PMID: 38311916 DOI: 10.2174/011574888x271344231129053003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 02/06/2024]
Abstract
Stem cells play a therapeutic role in many diseases by virtue of their strong self-renewal and differentiation abilities, especially in the treatment of autoimmune diseases. At present, the mechanism of the stem cell treatment of autoimmune diseases mainly relies on their immune regulation ability, regulating the number and function of auxiliary cells, anti-inflammatory factors and proinflammatory factors in patients to reduce inflammation. On the other hand, the stem cell- derived secretory body has weak immunogenicity and low molecular weight, can target the site of injury, and can extend the length of its active time in the patient after combining it with the composite material. Therefore, the role of secretory bodies in the stem cell treatment of autoimmune diseases is increasingly important.
Collapse
Affiliation(s)
- Shu-Qian Lin
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Kai Wang
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Xing-Hua Pan
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, China
| | - Guang-Ping Ruan
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, China
| |
Collapse
|
23
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
24
|
Kim S. LncRNA-miRNA-mRNA regulatory networks in skin aging and therapeutic potentials. Front Physiol 2023; 14:1303151. [PMID: 37881693 PMCID: PMC10597623 DOI: 10.3389/fphys.2023.1303151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Skin aging is a complex process influenced by intrinsic and extrinsic factors. Although dermatology offers advanced interventions, molecular mechanisms in skin aging remain limited. Competing endogenous RNAs (ceRNAs), a subset of coding or non-coding RNAs, regulate gene expression through miRNA competition. Several ceRNA networks investigated up to now offer insights into skin aging and wound healing. In skin aging, RP11-670E13.6-miR-663a-CDK4/CD6 delays senescence induced by UVB radiation. Meg3-miR-93-5p-epiregulin contributes to UVB-induced inflammatory skin damage. Predicted ceRNA networks reveal UVA-induced photoaging mechanisms. SPRR2C sequesters miRNAs in epidermal aging-associated alteration of calcium gradient. H19-miR-296-5p-IGF2 regulates dermal fibroblast senescence. PVT1-miR-551b-3p-AQP3 influences skin photoaging. And bioinformatics analyses identify critical genes and compounds for skin aging interventions. In skin wound healing, MALAT1-miR-124 aids wound healing by activating the Wnt/β-catenin pathway. Hair follicle MSC-derived H19 promotes wound healing by inhibiting pyroptosis. And the SAN-miR-143-3p-ADD3 network rejuvenates adipose-derived mesenchymal stem cells in wound healing. Thus, ceRNA networks provide valuable insights into the molecular underpinnings of skin aging and wound healing, offering potential therapeutic strategies for further investigation. This comprehensive review serves as a foundational platform for future research endeavors in these crucial areas of dermatology.
Collapse
Affiliation(s)
- Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|
25
|
Song J, Zhu K, Wang H, Wu M, Wu Y, Zhang Q. Deciphering The Emerging Role of Programmed Cell Death in Diabetic Wound Healing. Int J Biol Sci 2023; 19:4989-5003. [PMID: 37781514 PMCID: PMC10539695 DOI: 10.7150/ijbs.88461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Diabetic wounds are characterized by delayed and incomplete healing. As one of the most common complications of diabetes, diabetic wounds can be fatal in some cases. Programmed cell death (PCD) is an active and ordered cell death mode determined by genes, including apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis. It is currently believed that PCD plays a crucial role in diabetic wound healing. Diabetic hyperglycemic environments can lead to abnormal PCD in various cells during healing processes, thereby affecting the activity and function of cells and interfering with diabetic wound healing. Therefore, this review focuses on the new roles and mechanisms of PCD in diabetic wound healing. Moreover, the challenges and perspectives related to PCD in diabetic wound healing are presented, which will bring new insights to improve diabetic wound healing.
Collapse
Affiliation(s)
| | | | - Haiping Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
26
|
Sousa P, Lopes B, Sousa AC, Moreira A, Coelho A, Alvites R, Alves N, Geuna S, Maurício AC. Advancements and Insights in Exosome-Based Therapies for Wound Healing: A Comprehensive Systematic Review (2018-June 2023). Biomedicines 2023; 11:2099. [PMID: 37626596 PMCID: PMC10452374 DOI: 10.3390/biomedicines11082099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Exosomes have shown promising potential as a therapeutic approach for wound healing. Nevertheless, the translation from experimental studies to commercially available treatments is still lacking. To assess the current state of research in this field, a systematic review was performed involving studies conducted and published over the past five years. A PubMed search was performed for English-language, full-text available papers published from 2018 to June 2023, focusing on exosomes derived from mammalian sources and their application in wound healing, particularly those involving in vivo assays. Out of 531 results, 148 papers were selected for analysis. The findings revealed that exosome-based treatments improve wound healing by increasing angiogenesis, reepithelization, collagen deposition, and decreasing scar formation. Furthermore, there was significant variability in terms of cell sources and types, biomaterials, and administration routes under investigation, indicating the need for further research in this field. Additionally, a comparative examination encompassing diverse cellular origins, types, administration pathways, or biomaterials is imperative. Furthermore, the predominance of rodent-based animal models raises concerns, as there have been limited advancements towards more complex in vivo models and scale-up assays. These constraints underscore the substantial efforts that remain necessary before attaining commercially viable and extensively applicable therapeutic approaches using exosomes.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal;
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
27
|
Obesity and Wound Healing: Focus on Mesenchymal Stem Cells. Life (Basel) 2023; 13:life13030717. [PMID: 36983872 PMCID: PMC10059997 DOI: 10.3390/life13030717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Chronic wounds represent nowadays a major challenge for both clinicians and researchers in the regenerative setting. Obesity represents one of the major comorbidities in patients affected by chronic ulcers and therefore diverse studies aimed at assessing possible links between these two morbid conditions are currently ongoing. In particular, adipose tissue has recently been described as having metabolic and endocrine functions rather than serving as a mere fat storage deposit. In this setting, adipose-derived stem cells, a peculiar subset of mesenchymal stromal/stem cells (MSCs) located in adipose tissue, have been demonstrated to possess regenerative and immunological functions with a key role in regulating both adipocyte function and skin regeneration. The aim of the present review is to give an overview of the most recent findings on wound healing, with a special focus on adipose tissue biology and obesity.
Collapse
|