1
|
Li M, Freeman S, Franco-Barraza J, Cai KQ, Kim A, Jin S, Cukierman E, Ye K. A bioprinted sea-and-island multicellular model for dissecting human pancreatic tumor-stroma reciprocity and adaptive metabolism. Biomaterials 2024; 310:122631. [PMID: 38815457 PMCID: PMC11186049 DOI: 10.1016/j.biomaterials.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable clinical challenge due to its intricate microenvironment characterized by desmoplasia and complex tumor-stroma interactions. Conventional models hinder studying cellular crosstalk for therapeutic development. To recapitulate key features of PDAC masses, this study creates a novel sea-and-island PDAC tumor construct (s&i PTC). The s&i PTC consists of 3D-printed islands of human PDAC cells positioned within an interstitial extracellular matrix (ECM) populated by human cancer-associated fibroblasts (CAFs). This design closely mimics the in vivo desmoplastic architecture and nutrient-poor conditions. The model enables studying dynamic tumor-stroma crosstalk and signaling reciprocity, revealing both known and yet-to-be-discovered multicellular metabolic adaptations. Using the model, we discovered the orchestrated dynamic alterations of CAFs under nutrient stress, resembling critical in vivo human tumor niches, such as the secretion of pro-tumoral inflammatory factors. Additionally, nutrient scarcity induces dynamic alterations in the ECM composition and exacerbates poor cancer cell differentiation-features well-established in PDAC progression. Proteomic analysis unveiled the enrichment of proteins associated with aggressive tumor behavior and ECM remodeling in response to poor nutritional conditions, mimicking the metabolic stresses experienced by avascular pancreatic tumor cores. Importantly, the model's relevance to patient outcomes is evident through an inverse correlation between biomarker expression patterns in the s&i PTCs and PDAC patient survival rates. Key findings include upregulated MMPs and key ECM proteins (such as collagen 11 and TGFβ) under nutrient-avid conditions, known to be regulated by CAFs, alongside the concomitant reduction in E-cadherin expression associated with a poorly differentiated PDAC state under nutrient deprivation. Furthermore, elevated levels of hyaluronic acid (HA) and integrins in response to nutrient deprivation underscore the model's fidelity to the PDAC microenvironment. We also observed increased IL-6 and reduced α-SMA expression under poor nutritional conditions, suggesting a transition of CAFs from myofibroblastic to inflammatory phenotypes under a nutrient stress akin to in vivo niches. In conclusion, the s&i PTC represents a significant advancement in engineering clinically relevant 3D models of PDAC masses. It offers a promising platform for elucidating tumor-stroma interactions and guiding future therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Ming Li
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sebastian Freeman
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Amy Kim
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA.
| | - Kaiming Ye
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA.
| |
Collapse
|
2
|
Lin C, Teng W, Tian Y, Li S, Xia N, Huang C. Immune landscape and response to oncolytic virus-based immunotherapy. Front Med 2024; 18:411-429. [PMID: 38453818 DOI: 10.1007/s11684-023-1048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024]
Abstract
Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Chaolong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Wenzhong Teng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yang Tian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Wedig J, Jasani S, Mukherjee D, Lathrop H, Matreja P, Pfau T, D'Alesio L, Guenther A, Fenn L, Kaiser M, Torok MA, McGue J, Sizemore GM, Noonan AM, Dillhoff ME, Blaser BW, Frankel TL, Culp S, Hart PA, Cruz-Monserrate Z, Mace TA. CD200 is overexpressed in the pancreatic tumor microenvironment and predictive of overall survival. Cancer Immunol Immunother 2024; 73:96. [PMID: 38619621 PMCID: PMC11018596 DOI: 10.1007/s00262-024-03678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic cancer is an aggressive disease with a 5 year survival rate of 13%. This poor survival is attributed, in part, to limited and ineffective treatments for patients with metastatic disease, highlighting a need to identify molecular drivers of pancreatic cancer to target for more effective treatment. CD200 is a glycoprotein that interacts with the receptor CD200R and elicits an immunosuppressive response. Overexpression of CD200 has been associated with differential outcomes, depending on the tumor type. In the context of pancreatic cancer, we have previously reported that CD200 is expressed in the pancreatic tumor microenvironment (TME), and that targeting CD200 in murine tumor models reduces tumor burden. We hypothesized that CD200 is overexpressed on tumor and stromal populations in the pancreatic TME and that circulating levels of soluble CD200 (sCD200) have prognostic value for overall survival. We discovered that CD200 was overexpressed on immune, stromal, and tumor populations in the pancreatic TME. Particularly, single-cell RNA-sequencing indicated that CD200 was upregulated on inflammatory cancer-associated fibroblasts. Cytometry by time of flight analysis of PBMCs indicated that CD200 was overexpressed on innate immune populations, including monocytes, dendritic cells, and monocytic myeloid-derived suppressor cells. High sCD200 levels in plasma correlated with significantly worse overall and progression-free survival. Additionally, sCD200 correlated with the ratio of circulating matrix metalloproteinase (MMP) 3: tissue inhibitor of metalloproteinase (TIMP) 3 and MMP11/TIMP3. This study highlights the importance of CD200 expression in pancreatic cancer and provides the rationale for designing novel therapeutic strategies that target this protein.
Collapse
Affiliation(s)
- Jessica Wedig
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, USA
| | - Shrina Jasani
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Debasmita Mukherjee
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, USA
| | - Hannah Lathrop
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Priya Matreja
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Timothy Pfau
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Liliana D'Alesio
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Abigail Guenther
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Lexie Fenn
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Morgan Kaiser
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Molly A Torok
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Jake McGue
- Department of Surgical Oncology, University of Michigan, Ann Arbor, USA
| | - Gina M Sizemore
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, USA
| | - Anne M Noonan
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Mary E Dillhoff
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Bradley W Blaser
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Hematology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Timothy L Frankel
- Department of Surgical Oncology, University of Michigan, Ann Arbor, USA
| | - Stacey Culp
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, USA
| | - Phil A Hart
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA
| | - Zobeida Cruz-Monserrate
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA
| | - Thomas A Mace
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA.
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Alonso A, de la Gala F, Vara E, Hortal J, Piñeiro P, Reyes A, Simón C, Garutti I. Lung and blood perioperative metalloproteinases in patients undergoing oncologic lung surgery: Prognostic implications. Thorac Cancer 2024; 15:307-315. [PMID: 38155459 PMCID: PMC10834222 DOI: 10.1111/1759-7714.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Metalloproteinases (MMPs) have been reported to be related to oncologic outcomes. The main goal of the study was to study the relationship between these proteins and the long-term prognosis of patients undergoing oncologic lung resection surgery. METHODS This was a substudy of the phase IV randomized control trial (NCT02168751). We analyzed MMP-2, -3, -7, and -9 in blood samples and bronchoalveolar lavage (LBA) and the relationship between MMPs and long postoperative outcomes (survival and disease-free time of oncologic recurrence). RESULTS Survival was longer in patients who had lower MMP-2 levels than those with higher MMP-2 in blood samples taken 6 h after surgery (6.8 vs. 5.22 years; p = 0.012) and MMP-3 (6.82 vs. 5.35 years; p = 0.03). In contrast, survival was longer when MMP-3 levels were higher in LBA from oncologic lung patients than those with lower MMP-3 (7.96 vs. 6.02 years; p = 0.005). Recurrence-free time was longer in patients who had lower MMP-3 levels in blood samples versus higher (5.97 vs. 4.23 years; p = 0.034) as well as lower MMP-7 (5.96 vs. 4.5 years; p = 0.041) or lower MMP-9 in LBA samples (6.21 vs. 4.18 years; p = 0.012). CONCLUSION MMPs were monitored during the perioperative period of oncologic lung resection surgery. These biomarkers were associated with mortality and recurrence-free time. The role of the different MMPs analyzed during the study do not have the same prognostic implications after this kind of surgery.
Collapse
Affiliation(s)
- Angel Alonso
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Francisco de la Gala
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Elena Vara
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Javier Hortal
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
- Department of Pharmacology, Faculty of Medicine complutense University of Madrid, Madrid, Spain
| | - Patricia Piñeiro
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Almudena Reyes
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Carlos Simón
- Department of Thoracic Surgery, Gregorio Marañon University General Hospital, Madrid, Spain
- Department of Surgery, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ignacio Garutti
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
- Department of Pharmacology, Faculty of Medicine complutense University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Galadima M, Teles M, Pastor J, Hernández-Losa J, Rodríguez-Gil JE, Rivera del Alamo MM. Programmed Death-Ligand (PD-L1), Epidermal Growth Factor (EGF), Relaxin, and Matrix Metalloproteinase-3 (MMP3): Potential Biomarkers of Malignancy in Canine Mammary Neoplasia. Int J Mol Sci 2024; 25:1170. [PMID: 38256245 PMCID: PMC10816983 DOI: 10.3390/ijms25021170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Gene expression has been suggested as a putative tool for prognosis and diagnosis in canine mammary neoplasia (CMNs). In the present study, 58 formalin-fixed paraffin-embedded (FFPE) paraffined canine mammary neoplasias from 27 different bitches were included. Thirty-seven tumours were classified as benign, whereas thirty-one were classified as different types of canine carcinoma. In addition, mammary samples from three healthy bitches were also included. The gene expression for vascular endothelial growth factor-α (VEGFα), CD20, progesterone receptor (PGR), hyaluronidase-1 (HYAL-1), programmed death-ligand 1 (PD-L1), epidermal growth factor (EGF), relaxin (RLN2), and matrix metalloproteinase-3 (MMP3) was assessed through RT-qPCR. All the assessed genes yielded a higher expression in neoplastic mammary tissue than in healthy tissue. All the evaluated genes were overexpressed in neoplastic mammary tissue, suggesting a role in the process of tumorigenesis. Moreover, PD-L1, EGF, relaxin, and MMP3 were significantly overexpressed in malignant CMNs compared to benign CMNs, suggesting they may be useful as malignancy biomarkers.
Collapse
Affiliation(s)
- Makchit Galadima
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Josep Pastor
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| | - Javier Hernández-Losa
- Department of Pathology, Hospital Universitari Vall d’Hebron, VHIR, 08035 Barcelona, Spain;
| | - Joan Enric Rodríguez-Gil
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| | - Maria Montserrat Rivera del Alamo
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| |
Collapse
|
6
|
Wei C. The multifaceted roles of matrix metalloproteinases in lung cancer. Front Oncol 2023; 13:1195426. [PMID: 37766868 PMCID: PMC10520958 DOI: 10.3389/fonc.2023.1195426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Though the matrix metalloproteinases (MMPs) are widely investigated in lung cancer (LC), however, almost no review systematically clarify their multi-faced roles in LC. Methods We investigated the expression of MMPs and their effects on survival of patients with LC, the resistance mechanisms of MMPs in anti-tumor therapy, the regulatory networks of MMPs involved, the function of MMPs inducing CSCLs, MMPs-related tumor immunity, and effects of MMP polymorphisms on risk of LC. Results High expression of MMPs was mainly related to poor survival, high clinical stages and cancer metastasis. Role of MMPs in LC are multi-faced. MMPs are involved in drug resistance, induced CSCLs, participated in tumor immunity. Besides, MMPs polymorphisms may increase risk of LC. Conclusions MMPs might be promising targets to restore the anti-tumor immune response and enhance the killing function of nature immune cells in LC.
Collapse
Affiliation(s)
- Cui Wei
- Department of Emergency, The Third Hospital of Changsha, Changsha, China
| |
Collapse
|
7
|
Zhang Y, Li G, Zhao Y. Advances in the development of Rho GTPase inhibitors. Bioorg Med Chem 2023; 90:117337. [PMID: 37253305 DOI: 10.1016/j.bmc.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Rho guanosine triphosphatases (Rho GTPases), as members of the Ras superfamily, are GDP/GTP binding proteins that behave as molecular switches for the transduction of signals from external stimuli. Rho GTPases play essential roles in a number of cellular processes including cell cycle, cell polarity as well as cell migration. The dysregulations of Rho GTPases are related with various diseases, especially with cancers. Accumulating evidence supports that Rho GTPases play important roles in cancer development and progression. Rho GTPases become potential therapeutic targets for cancer therapy. And a number of inhibitors targeting Rho GTPases have been developed. In this review, we discuss their structural features, summarize their roles in cancer, and focus on the recent progress of their inhibitors, which are beneficial for the drug discovery targeting Rho GTPases.
Collapse
Affiliation(s)
- Yijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
8
|
Zhao Z, Cao Q, Zhu M, Wang C, Lu X. Causal relationships between serum matrix metalloproteinases and estrogen receptor-negative breast cancer: a bidirectional mendelian randomization study. Sci Rep 2023; 13:7849. [PMID: 37188722 DOI: 10.1038/s41598-023-34200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
To better clarify the causal effects between matrix metalloproteinases (MMPs) and estrogen-receptor (ER)-negative breast cancer (BC), we investigated the bidirectional causal relationship between MMPs and ER-negative BC by mendelian randomization (MR) analysis. Summary statistic data of five MMPs were extracted from European participants in 13 cohorts. Data of ER-negative BC collected from one of genome-wide association studies of European ancestry was used as experimental datasets and another four ER-negative BC datasets were used as validation sets. Inverse variance weighted method was used for main MR analysis and sensitivity analysis was also conducted. Serum level of MMP-1 has negative effect on ER-negative BC (odds ratio = 0.92, P = 0.0008) but the latter one was not the cause of the former one, which was supported by validation sets. No bidirectional causal effect was detected between the other four types of MMPs and ER-negative BC (P > 0.05). Sensitivity analysis indicated robustness of the above results without remarkable bias. To conclude, serum MMP-1 may be a protective factor against ER-negative BC. No reciprocal causality was found between the other kinds of MMPs and ER-negative BC. MMP-1 was indicated as a biomarker for risk of ER-negative BC.
Collapse
Affiliation(s)
- Zijun Zhao
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Qing Cao
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Ming Zhu
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Chaonan Wang
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xin Lu
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
9
|
Chen W, Ni D, Zhang H, Li X, Jiang Y, Wu J, Gu Y, Gao M, Shi W, Song J, Shi W. Over-expression of USP15/MMP3 predict poor prognosis and promote growth, migration in non-small cell lung cancer cells. Cancer Genet 2023; 272-273:9-15. [PMID: 36640492 DOI: 10.1016/j.cancergen.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Aberrant ubiquitin modifications caused by an imbalance in the activities of ubiquitinases and de-ubiquitinases are emerging as important mechanisms underlying non-small cell lung cancer (NSCLC) progression. The deubiquitinating enzyme ubiquitin-specific peptidase 15 (USP15) has been identified as an important factor in oncogenesis and a potential therapeutic target. However, the expression profile and function of USP15 in NSCLC remain elusive. In the present study, we investigated the expression pattern and the potential biological functions of USP15 in NSCLC both in cells and animal models. Our data revealed that USP15 was highly expressed in NSCLC tissues and cells compared with normal counterpart. We subsequently knocked down USP15 expression in two NSCLC cell lines, which significantly suppressed cell proliferation. In addition, knocking down USP15 expression reduced NSCLC cell migration and invasion according to the results from Matrigel-Transwell analysis. NSCLC animal model results showed that USP15 knockdown also reduced NSCLC size. Biochemical analysis revealed that USP15 knockdown inhibited matrix metalloproteinase (MMP)3 and MMP9 expression. Furthermore, high levels of USP15 and MMP3 expression were associated with poor prognosis in NSCLC. In conclusion, the results from the present study suggest that the high expression of USP15 promotes NSCLC tumorigenesis. Therefore, it is proposed that USP15 and MMPs may represent novel biomarkers for NSCLC progression and prognosis.
Collapse
Affiliation(s)
- Weiwei Chen
- Medical School of Nantong University, Nantong, 226007, China; Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, China; Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Daguang Ni
- Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Hailin Zhang
- Department of Pneumology, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Youqin Jiang
- Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Jixiang Wu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Yan Gu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Mingcheng Gao
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Woda Shi
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Jianxiang Song
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Wenyu Shi
- Medical School of Nantong University, Nantong, 226007, China; Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Ławicki P, Malinowski P, Motyka J, Ławicki M, Kicman A, Kulesza M, Gacuta E, Guszczyn T, Januszkiewicz M, Zbucka-Krętowska M, Ławicki S. Plasma Levels of Metalloproteinase 3 (MMP-3) and Metalloproteinase 7 (MMP-7) as New Candidates for Tumor Biomarkers in Diagnostic of Breast Cancer Patients. J Clin Med 2023; 12:jcm12072618. [PMID: 37048701 PMCID: PMC10094779 DOI: 10.3390/jcm12072618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a group of enzymes that mediate both physiological and pathological processes such as carcinogenesis. The role of matrix metalloproteinase-3 (MMP-3) and (MMP-7) in the pathogenesis of breast cancer (BC) has been demonstrated, suggesting that they may be considered as potential markers of this condition. The aim of this study was to assess plasma concentrations and diagnostic utility of MMP-3 and MMP-7 in 100 patients with early-stage breast cancer with Luminal A subtype or Luminal B HER-negative subtype, before and after surgical treatment, and in the following control groups: patients with a benign tumor (fibroadenoma) and healthy subjects. The concentrations of MMP-3 and MMP-7 were referenced to the levels of the widely recognized marker for BC diagnosis CA 15-3. MMP-3 and MMP-7 was measured by ELISA method and CA 15-3 by CMIA. Plasma levels of MMP-7 were significantly higher in Luminal A and Luminal B HER2-negative subtype breast cancer patients as compared to the healthy group. MMP-7 demonstrated comparable but mostly higher to CA 15-3 or MMP-3 values of diagnostic sensitivity, specificity, positive and negative predictive values and AUC (0.6888 for Luminal A subtype; 0.7612 for Luminal B HER2-negative; 0.7250 for BC total group, respectively) in the groups tested. The combined use of the tested parameters resulted in a further increase in diagnostic criteria and AUC. These results suggest the usefulness of combining MMP-7 with CA 15-3 in the diagnostics of breast cancer, especially in Luminal B HER2-negative subtypes patients, as a new candidate for tumor markers.
Collapse
|
11
|
Tedja R, Alvero AB, Fox A, Cardenas C, Pitruzzello M, Chehade H, Bawa T, Adzibolosu N, Gogoi R, Mor G. Generation of Stable Epithelial-Mesenchymal Hybrid Cancer Cells with Tumorigenic Potential. Cancers (Basel) 2023; 15:cancers15030684. [PMID: 36765641 PMCID: PMC9913490 DOI: 10.3390/cancers15030684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Cancer progression, invasiveness, and metastatic potential have been associated with the activation of the cellular development program known as epithelial-to-mesenchymal transition (EMT). This process is known to yield not only mesenchymal cells, but instead an array of cells with different degrees of epithelial and mesenchymal phenotypes with high plasticity, usually referred to as E/M hybrid cells. The characteristics of E/M hybrid cells, their importance in tumor progression, and the key regulators in the tumor microenvironment that support this phenotype are still poorly understood. METHODS In this study, we established an in vitro model of EMT and characterized the different stages of differentiation, allowing us to identify the main genomic signature associated with the E/M hybrid state. RESULTS We report that once the cells enter the E/M hybrid state, they acquire stable anoikis resistance, invasive capacity, and tumorigenic potential. We identified the hepatocyte growth factor (HGF)/c-MET pathway as a major driver that pushes cells in the E/M hybrid state. CONCLUSIONS Herein, we provide a detailed characterization of the signaling pathway(s) promoting and the genes associated with the E/M hybrid state.
Collapse
Affiliation(s)
- Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (R.T.); (G.M.)
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Carlos Cardenas
- Department of Obstetrics and Gynecology, Family HealthCare Network, Porterville, CA 93257, USA
| | - Mary Pitruzzello
- Department of Dermatology, Yale Medical School, New Haven, CT 06510, USA
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Tejeshwhar Bawa
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Gil Mor
- Department of Obstetrics and Gynecology, Family HealthCare Network, Porterville, CA 93257, USA
- Correspondence: (R.T.); (G.M.)
| |
Collapse
|
12
|
Wang Z, Jian M, Li X. Profiling of Multiple Matrix Metalloproteinases Activities in the Progression of Osteosarcoma by Peptide Microarray-Based Fluorescence Assay on Polymer Brush-Coated Zinc Oxide Nanorod Substrate. Methods Mol Biol 2023; 2578:161-175. [PMID: 36152286 DOI: 10.1007/978-1-0716-2732-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Peptide microarray provides the ability to miniaturize, parallelize, and automate high-throughput screening substrate specificities of enzymes, profiling of multiple enzyme activities, discovery of disease biomarkers, and development of drugs. Matrix metalloproteinases (MMPs) are demonstrated as important biomarkers of tumor invasion and metastasis. Herein, a peptide microarray-based fluorescence assay is proposed to profile multiple MMPs (MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, and MMP-13) activities in the culture medium of four human osteosarcoma (OS) cells and in the progression of OS by using the mouse-bearing xenograft OSs including U-2OS and Saos-2 human. This method has excellent selectivity and sensitivity, which enables to detect the activities of cellular secreted MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, and MMP-13 with limit of detection downs to 10 pM, 30 pM, 113 pM, 13 pM, 93 pM, and 12 pM, respectively. Furthermore, it is demonstrated that the activity pattern of MMPs is serum closely relevant to the disease progression and type of tumor.
Collapse
Affiliation(s)
- Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
13
|
Devel L, Guedeney N, Bregant S, Chowdhury A, Jean M, Legembre P. Role of metalloproteases in the CD95 signaling pathways. Front Immunol 2022; 13:1074099. [PMID: 36544756 PMCID: PMC9760969 DOI: 10.3389/fimmu.2022.1074099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
CD95L (also known as FasL or CD178) is a member of the tumor necrosis family (TNF) superfamily. Although this transmembrane ligand has been mainly considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells, more recent studies pointed out its role in the implementation of non-apoptotic signals. Accordingly, this ligand has been associated with the aggravation of inflammation in different auto-immune disorders and in the metastatic occurrence in different cancers. Although it remains to decipher all key factors involved in the ambivalent role of this ligand, accumulating clues suggest that while the membrane bound CD95L triggers apoptosis, its soluble counterpart generated by metalloprotease-driven cleavage is responsible for its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and ADAMs) involved in the CD95L shedding, the cleavage sites and the different stoichiometries and functions of the soluble CD95L remain to be elucidated. To better understand how soluble CD95L triggers signaling pathways from apoptosis to inflammation or cell migration, we propose herein to summarize the different metalloproteases that have been described to be able to shed CD95L, their cleavage sites and the biological functions associated with the released ligands. Based on these new findings, the development of CD95/CD95L-targeting therapeutics is also discussed.
Collapse
Affiliation(s)
- Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Nicolas Guedeney
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Animesh Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mickael Jean
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Patrick Legembre
- CRIBL UMR CNRS 7276 INSERM 1262, Université de Limoges, Rue Marcland, Limoges, France,*Correspondence: Patrick Legembre,
| |
Collapse
|
14
|
Jian M, Sun X, Cheng G, Zhang H, Li X, Song F, Liu Z, Wang Z. Discovery of Phenolic Matrix Metalloproteinase Inhibitors by Peptide Microarray for Osteosarcoma Treatment. JOURNAL OF NATURAL PRODUCTS 2022; 85:2424-2432. [PMID: 36122348 DOI: 10.1021/acs.jnatprod.2c00626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because of the abnormal upregulation of matrix metalloproteinase (MMP) activities in tumors, MMP inhibitors (MMPIs) are validated anticancer drug candidates. We identified several MMPIs including mangiferin as an MMP-9 inhibitor with a half maximal inhibitory concentration (IC50) value of 250 nM, isosilybin as an MMP-13 inhibitor with an IC50 value of 250 nM, and isoliquiritigenin as a broad-spectrum MMPI (with IC50 values of 16 nM for MMP-1, 10 nM for MMP-2, 81 nM for MMP-3, 8 nM for MMP-7, 10 nM for MMP-9, and 14 nM for MMP-13) through studying the interactions of 6 MMPs secreted by U-2OS cells with 51 phenolic natural products on the peptide microarray platform. In addition, the inhibitory mechanisms of as-discovered MMPIs were evaluated by a molecular docking simulation. The antitumor efficiencies of MMPIs were demonstrated by both a cell scratch test and growth suppression of mouse-born OS tumors. The results of the cell scratch test suggested that isoliquiritigenin significantly inhibited the migration of U-2OS cells. In addition, administration of isoliquiritigenin significantly reduced the tumor size (by about 80%) and prolonged the survival time (by more than 70 days). This study suggests that the discovery of MMPIs from phenolic natural products is a meaningful way to screen anticancer agents.
Collapse
Affiliation(s)
- Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Guorong Cheng
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Fengrui Song
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
15
|
Xu Z, Guan J, Xu J, Tu J, Cheng J. Clinical Value of Pleural Effusion and Serum MMP-3 and CYFRA21-1 Combined with ADA in Differential Diagnosis of Pleural Exudative Effusion. Emerg Med Int 2022; 2022:1615058. [PMID: 36072615 PMCID: PMC9444443 DOI: 10.1155/2022/1615058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The aim of the study is to investigate the clinical value of matrix metalloproteinases-3 (MMP-3) and cytokeratin 19 fragment antigen 21-1 (CYFRA21-1) combined with adenosine deaminase (ADA) in pleural effusion and serum in benign and malignant pleural exudative effusion (PEE). Methods A total of 119 adult patients with PEE admitted in our hospital from May 2018 to October 2021 were selected. According to the patient's condition, the patients were divided into the benign group (n = 75) and the malignant group (n = 44). The levels of MMP-3, CYFRA21-1, and ADA in pleural effusion and serum were detected. The receiver operating characteristic (ROC) curve was used to analyze the individual and combined predictive value of MMP-3, CYFRA21-1, and ADA levels. Results In the malignant group, the pleural effusion and serum MMP-3 and CYFRA21-1 levels were higher than those in the benign group and the ADA levels were lower than those in the benign group (P < 0.05). In the malignant group, the positive detection rate of pleural effusion and serum MMP-3 and CYFRA21-1 was higher than that in the benign group and the positive detection rate of pleural effusion and serum ADA were lower than that in the benign group (P < 0.05). The AUC of pleural effusion MMP-3, serum MMP-3 and the combination of them in the diagnosis of PEE were 0.764, 0.722 and 0.810, respectively. The AUC of pleural effusion CYFRA21-1 and serum CYFRA21-1 and combination of them in the diagnosis of PEE were 0.776, 0.748 and 0.822, respectively. The AUC of pleural effusion ADA, serum ADA and their combination in differential diagnosis of PEE were 0.762, 0.737 and 0.836, respectively. The AUC of pleural effusion and serum of MMP-3 and CYFRA21-1 combined with ADA for differential diagnosis of PEE was 0.923. Conclusions The diagnostic efficacy of MMP-3 combined with CYFRA21-1 and ADA in pleural effusion and serum for benign and malignant PEE are better than single index, which has certain clinical values for the selection of early intervention scheme for PEE patients.
Collapse
Affiliation(s)
- Zhiyang Xu
- Department of Thoracic Surgery, The Third Clinical Medical College of Fujian Medical University, The First Hospital of Putian, Putian 351100, Fujian, China
| | - Jun Guan
- Department of Thoracic Surgery, The Third Clinical Medical College of Fujian Medical University, The First Hospital of Putian, Putian 351100, Fujian, China
| | - Jianxin Xu
- Department of Thoracic Surgery, The Third Clinical Medical College of Fujian Medical University, The First Hospital of Putian, Putian 351100, Fujian, China
| | - Jiahua Tu
- Department of Thoracic Surgery, The Third Clinical Medical College of Fujian Medical University, The First Hospital of Putian, Putian 351100, Fujian, China
| | - Jiangdong Cheng
- Department of Thoracic Surgery, The Third Clinical Medical College of Fujian Medical University, The First Hospital of Putian, Putian 351100, Fujian, China
| |
Collapse
|
16
|
IRF8: Mechanism of Action and Health Implications. Cells 2022; 11:cells11172630. [PMID: 36078039 PMCID: PMC9454819 DOI: 10.3390/cells11172630] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a transcription factor of the IRF protein family. IRF8 was originally identified as an essentialfactor for myeloid cell lineage commitment and differentiation. Deletion of Irf8 leads to massive accumulation of CD11b+Gr1+ immature myeloid cells (IMCs), particularly the CD11b+Ly6Chi/+Ly6G− polymorphonuclear myeloid-derived suppressor cell-like cells (PMN-MDSCs). Under pathological conditions such as cancer, Irf8 is silenced by its promoter DNA hypermethylation, resulting in accumulation of PMN-MDSCs and CD11b+ Ly6G+Ly6Clo monocytic MDSCs (M-MDSCs) in mice. IRF8 is often silenced in MDSCs in human cancer patients. MDSCs are heterogeneous populations of immune suppressive cells that suppress T and NK cell activity to promote tumor immune evasion and produce growth factors to exert direct tumor-promoting activity. Emerging experimental data reveals that IRF8 is also expressed in non-hematopoietic cells. Epithelial cell-expressed IRF8 regulates apoptosis and represses Osteopontin (OPN). Human tumor cells may use the IRF8 promoter DNA methylation as a mechanism to repress IRF8 expression to advance cancer through acquiring apoptosis resistance and OPN up-regulation. Elevated OPN engages CD44 to suppress T cell activation and promote tumor cell stemness to advance cancer. IRF8 thus is a transcription factor that regulates both the immune and non-immune components in human health and diseases.
Collapse
|
17
|
Zhang D, Zhang T, Zhang Y, Li Z, Li H, Zhang Y, Liu C, Han Z, Li J, Zhu J. Screening the components of Saussurea involucrata for novel targets for the treatment of NSCLC using network pharmacology. BMC Complement Med Ther 2022; 22:53. [PMID: 35227278 PMCID: PMC8886885 DOI: 10.1186/s12906-021-03501-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saussurea involucrata (SAIN), also known as Snow lotus (SI), is mainly distributed in high-altitude areas such as Tibet and Xinjiang in China. To identify novel targets for the prevention or treatment of lung adenocarcinoma and lung squamous cell carcinoma (LUAD&LUSC), and to facilitate better alternative new drug discovery as well as clinical application services, the therapeutic effects of SAIN on LUAD&LUSC were evaluated by gene differential analysis of clinical samples, compound target molecular docking, and GROMACS molecular dynamics simulation. RESULTS Through data screening, alignment, analysis, and validation it was confirmed that three of the major active ingredients in SAIN, namely quercetin (Q), luteolin (L), and kaempferol (K), mainly act on six protein targets, which mainly regulate signaling pathways in cancer, transcriptional misregulation in cancer, EGFR tyrosine kinase inhibitor resistance, adherens junction, IL-17 signaling pathway, melanoma, and non-small cell lung cancer. In addition, microRNAs in cancer exert preventive or therapeutic effects on LUAD&LUSC. Molecular dynamics (MD) simulations of Q, L, or K in complex with EGFR, MET, MMP1, or MMP3 revealed the presence of Q in a very stable tertiary structure in the human body. CONCLUSION There are three active compounds of Q, L, and K in SAIN, which play a role in the treatment and prevention of non-small cell lung cancer (NSCLC) by directly or indirectly regulating the expression of genes such as MMP1, MMP3, and EGFR.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Life Sciences, Shihezi University, Xiangyang street, Shihezi, 832003, PR China
| | - Tieying Zhang
- School of Life Sciences, Shihezi University, Xiangyang street, Shihezi, 832003, PR China
| | - Yao Zhang
- School of Life Sciences, Shihezi University, Xiangyang street, Shihezi, 832003, PR China
| | - Zhongqing Li
- School of Life Sciences, Shihezi University, Xiangyang street, Shihezi, 832003, PR China
| | - He Li
- School of Life Sciences, Shihezi University, Xiangyang street, Shihezi, 832003, PR China
| | - Yueyang Zhang
- School of Life Sciences, Shihezi University, Xiangyang street, Shihezi, 832003, PR China
| | - Chenggong Liu
- School of Life Sciences, Shihezi University, Xiangyang street, Shihezi, 832003, PR China
| | - Zichao Han
- School of Life Sciences, Shihezi University, Xiangyang street, Shihezi, 832003, PR China
| | - Jin Li
- School of Life Sciences, Shihezi University, Xiangyang street, Shihezi, 832003, PR China.
| | - Jianbo Zhu
- School of Life Sciences, Shihezi University, Xiangyang street, Shihezi, 832003, PR China.
| |
Collapse
|
18
|
Kadamb R, Leibovitch BA, Farias EF, Dahiya N, Suryawanshi H, Bansal N, Waxman S. Invasive phenotype in triple negative breast cancer is inhibited by blocking SIN3A-PF1 interaction through KLF9 mediated repression of ITGA6 and ITGB1. Transl Oncol 2021; 16:101320. [PMID: 34968869 PMCID: PMC8718897 DOI: 10.1016/j.tranon.2021.101320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
We show that the PAH2 domain of SIN3A is a target when it is inhibited from binding to PF1 results in inhibition of invasive phenotype in TNBC. Epigenetic repression of integrins expression and downstream pathways results from enhanced binding of KLF9 /SIN3A repressor complex to their promoters. Genome wide transcriptomic analysis showed downregulation of multiple invasion related genes. Tumor growth and lung metastasis were markedly decreased in vivo. Our studies highlight that PF1 might serve as a gatekeeper for trafficking SID protein binding to PAH2 of SIN3A and has functional role in presentation of different regulatory complexes. Blocking the function of PAH2 offers a promising targeted therapy approach for inhibiting the invasive phenotype in TNBC.
SIN3A, a scaffold protein has regulatory functions in tumor biology. Through its Paired amphipathic helix (PAH2) domain, SIN3A interacts with PHF12 (PF1), a protein with SIN3 interaction domain (SID) that forms a complex with MRG15 and KDM5A/B. These components are often overexpressed in cancer. In the present study, we evaluated the role of SIN3A and its interacting partner PF1 in mediating inhibition of tumor growth and invasion in triple negative breast cancer (TNBC). We found profound inhibition of invasion, migration, and induction of cellular senescence by specific disruption of the PF1/SIN3A PAH2 domain interaction in TNBC cells expressing PF1-SID transcript or peptide treatment. Genome-wide transcriptomic analysis by RNA-seq revealed that PF1-SID downregulates several gene sets and pathways linked to invasion and migration. Integrin α6 (ITGA6) and integrin ß1 (ITGB1) and their downstream target proteins were downregulated in PF1-SID cells. We further determined increased presence of SIN3A and transcriptional repressor, KLF9, on promoters of ITGA6 and ITGB1 in PF1-SID cells. Knockdown of KLF9 leads to re-expression of ITGA6 and ITGB1 and restoration of the invasive phenotype, functionally linking KLF9 to this process. Overall, these data demonstrate that specific disruption of PF1/SIN3A, inhibits tumor growth, migration, and invasion. Also, PF1-SID not only inhibits tumor growth by senescence induction and reduced proliferation, but it also targets cancer stem cell gene expression and blocks mammosphere formation. Overall, these data demonstrate a mechanism whereby invasion and metastasis of TNBC can be suppressed by inhibiting SIN3A-PF1 interaction and enhancing KLF9 mediated suppression of ITGA6 and ITGB1.
Collapse
Affiliation(s)
- Rama Kadamb
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Boris A Leibovitch
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eduardo F Farias
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nisha Dahiya
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Nidhi Bansal
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel Waxman
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Rutland CS, Cockcroft JM, Lothion-Roy J, Harris AE, Jeyapalan JN, Simpson S, Alibhai A, Bailey C, Ballard-Reisch AC, Rizvanov AA, Dunning MD, de Brot S, Mongan NP. Immunohistochemical Characterisation of GLUT1, MMP3 and NRF2 in Osteosarcoma. Front Vet Sci 2021; 8:704598. [PMID: 34414229 PMCID: PMC8369506 DOI: 10.3389/fvets.2021.704598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OSA) is an aggressive bone malignancy. Unlike many other malignancies, OSA outcomes have not improved in recent decades. One challenge to the development of better diagnostic and therapeutic methods for OSA has been the lack of well characterized experimental model systems. Spontaneous OSA in dogs provides a good model for the disease seen in people and also remains an important veterinary clinical challenge. We recently used RNA sequencing and qRT-PCR to provide a detailed molecular characterization of OSA relative to non-malignant bone in dogs. We identified differential mRNA expression of the solute carrier family 2 member 1 (SLC2A1/GLUT1), matrix metallopeptidase 3 (MMP3) and nuclear factor erythroid 2–related factor 2 (NFE2L2/NRF2) genes in canine OSA tissue in comparison to paired non-tumor tissue. Our present work characterizes protein expression of GLUT1, MMP3 and NRF2 using immunohistochemistry. As these proteins affect key processes such as Wnt activation, heme biosynthesis, glucose transport, understanding their expression and the enriched pathways and gene ontologies enables us to further understand the potential molecular pathways and mechanisms involved in OSA. This study further supports spontaneous OSA in dogs as a model system to inform the development of new methods to diagnose and treat OSA in both dogs and people.
Collapse
Affiliation(s)
- Catrin S Rutland
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - James M Cockcroft
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jennifer Lothion-Roy
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Anna E Harris
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Jennie N Jeyapalan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Siobhan Simpson
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aziza Alibhai
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Clara Bailey
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Albert A Rizvanov
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Mark D Dunning
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Willows Veterinary Centre and Referral Service, Solihull, United Kingdom
| | - Simone de Brot
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
20
|
Argote Camacho AX, González Ramírez AR, Pérez Alonso AJ, Rejón García JD, Olivares Urbano MA, Torné Poyatos P, Ríos Arrabal S, Núñez MI. Metalloproteinases 1 and 3 as Potential Biomarkers in Breast Cancer Development. Int J Mol Sci 2021; 22:ijms22169012. [PMID: 34445715 PMCID: PMC8396449 DOI: 10.3390/ijms22169012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer continues to be one of the main causes of morbidity and mortality globally and was the leading cause of cancer death in women in Spain in 2020. Early diagnosis is one of the most effective methods to lower the incidence and mortality rates of breast cancer. The human metalloproteinases (MMP) mainly function as proteolytic enzymes degrading the extracellular matrix and plays important roles in most steps of breast tumorigenesis. This retrospective cohort study shows the immunohistochemical expression levels of MMP-1, MMP-2, MMP-3, and MMP-9 in 154 women with breast cancer and 42 women without tumor disease. The samples of breast tissue are assessed using several tissue matrices (TMA). The percentages of staining (≤50%–>50%) and intensity levels of staining (weak, moderate, or intense) are considered. The immunohistochemical expression of the MMP-1-intensity (p = 0.043) and MMP-3 percentage (p = 0.018) and intensity, (p = 0.025) present statistically significant associations with the variable group (control–case); therefore, expression in the tumor tissue samples of these MMPs may be related to the development of breast cancer. The relationships between these MMPs and some clinicopathological factors in breast cancer are also evaluated but no correlation is found. These results suggest the use of MMP-1 and MMP-3 as potential biomarkers of breast cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Pablo Torné Poyatos
- Department of Surgery and Its Specialties, University of Granada, 18012 Granada, Spain;
| | - Sandra Ríos Arrabal
- Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain;
- Correspondence: (S.R.A.); (M.I.N.); Tel.: +34-958-242077 (S.R.A.); +34-958-242077 (M.I.N.)
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain;
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute, ibs.Granada, 18012 Granada, Spain
- Correspondence: (S.R.A.); (M.I.N.); Tel.: +34-958-242077 (S.R.A.); +34-958-242077 (M.I.N.)
| |
Collapse
|
21
|
Pulido T, Velarde MC, Alimirah F. The senescence-associated secretory phenotype: Fueling a wound that never heals. Mech Ageing Dev 2021; 199:111561. [PMID: 34411604 DOI: 10.1016/j.mad.2021.111561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Wound healing is impaired with advanced age and certain chronic conditions, such as diabetes and obesity. Moreover, common cancer treatments, including chemotherapy and radiation, can cause unintended tissue damage and impair wound healing. Available wound care treatments are not always effective, as some wounds fail to heal or recur after treatment. Hence, a more thorough understanding of the pathophysiology of chronic, nonhealing wounds may offer new ideas for the development of effective wound care treatments. Cancers are sometimes referred to as wounds that never heal, sharing mechanisms similar to wound healing. We describe in this review how cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to chronic wounds versus cancer.
Collapse
Affiliation(s)
- Tanya Pulido
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| | | |
Collapse
|
22
|
Enhanced Expression but Decreased Specific Activity of Matrix Metalloproteinase 10 (MMP-10) in Comparison with Matrix Metalloproteinase 3 (MMP-3) in Human Urinary Bladder Carcinoma. J Clin Med 2021; 10:jcm10163683. [PMID: 34441979 PMCID: PMC8397099 DOI: 10.3390/jcm10163683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
Human urinary bladder cancer is a huge worldwide oncological problem causing many deaths every year. The degradation of extracellular matrix (ECM) induced by molecules such as matrix metalloproteinases (MMPs) is one of the main factors influencing the process of metastasis origination. The MMP expression is tied to tumor aggressiveness, stage, and patient prognosis. The cleavage of constituent proteins is initiated and prolonged by matrix metalloproteinases, such as MMP-3 and MMP-10. The aim of this study was to evaluate the expression and activity of both MMPs in human urinary bladder cancer occurring at various stages of the disease. Tissue samples from patients with urinary bladder cancer were analyzed. Samples were collected from patients with a low- and high-grade cancer. Control tissue was collected from the site opposite to the tumor. DNA content, MMPs content, and activity of MMP-3 and MMP-10 were measured using ELISA and Western blot techniques. MMP-3 and MMP-10 occur in high molecular complexes in human urinary bladder in healthy and cancerous tissues. Particularly, in high-grade tumors, the content of MMP-10 prevails over MMP-3. The actual and specific activities vary in both grades of urinary bladder cancer; however, the highest activity for MMP-3 and MMP-10 was found in low-grade tissues. In conclusion, MMP-10 had a higher content, but a lower activity in all investigated tissues compared to MMP-3. Generally, obtained results demonstrated a contrary participation of MMP-3 and MMP-10 in ECM remodeling what may be crucial in the pathogenesis of human urinary bladder carcinoma.
Collapse
|
23
|
Shantha Kumara HMC, Miyagaki H, Herath SA, Pettke E, Yan X, Cekic V, Whelan RL. Plasma MMP-2 and MMP-7 levels are elevated first month after surgery and may promote growth of residual metastases. World J Gastrointest Oncol 2021; 13:879-892. [PMID: 34457193 PMCID: PMC8371512 DOI: 10.4251/wjgo.v13.i8.879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MMP-2 also known as gelatinase A and MMP-7 (matrilysin) are members of the zinc-dependent family of MMPs (Matrix metalloproteinase). MMP-2 and MMP-7 are remodeling enzymes that digest extracellular matrix; MMP-2 is extensively expressed during development and is upregulated at sites of tissue damage, inflammation, and in stromal cells of metastatic tumors. MMP-7 is expressed in the epithelial cells and in a variety of cancers including colon tumors. Plasma MMP-2 and MMP-7 levels were assessed before and after minimally invasive colorectal resection for cancer pathology.
AIM To determine plasma MMP-2 and MMP-7 levels before and after minimally invasive colorectal resection for cancer pathology.
METHODS Patients enrolled in a plasma bank for whom plasma was available were eligible. Plasma obtained from preoperative (Preop) and postoperative blood samples was used. Only colorectal cancer (CRC) patients who underwent elective minimally invasive cancer resection with preop, post-operative day (POD) 1, 3 and at least 1 late postop sample (POD 7-34) were included. Late samples were bundled into 7 d blocks (POD 7-13, 14-20, etc.) and treated as single time points. Plasma MMP-2 and MMP-7 levels were determined via enzyme-linked immunosorbent assay in duplicate.
RESULTS Total 88 minimally invasive CRC resection CRC patients were studied (right colectomy, 37%; sigmoid, 24%; and LAR/AR 18%). Cancer stages were: 1, 31%; 2, 30%; 3, 34%; and 4, 5%. Mean Preop MMP-2 plasma level (ng/mL) was 179.3 ± 40.9 (n = 88). Elevated mean levels were noted on POD1 (214.3 ± 51.2, n = 87, P < 0.001), POD3 (258.0 ± 63.9, n = 80, P < 0.001), POD7-13 (229.9 ± 62.3, n = 65, P < 0.001), POD 14-20 (234.9 ± 47.5, n = 25, P < 0.001), POD 21-27 (237.0 ± 63.5, n = 17, P < 0.001,) and POD 28-34 (255.4 ± 59.7, n = 15, P < 0.001). Mean Preop MMP-7 level was 3.9 ± 1.9 (n = 88). No significant differences were noted on POD 1 or 3, however, significantly elevated levels were noted on POD 7-13 (5.7 ± 2.5, n = 65, P < 0.001), POD 14-20 (5.9 ± 2.5, n = 25, P < 0.001), POD 21-27 (6.1 ± 3.6, n = 17, P = 0.002) and on POD 28-34 (6.8 ± 3.3, n = 15 P < 0.001,) vs preop levels.
CONCLUSION MMP-2 levels are elevated for 5 wk and MMP-7 levels elevated for weeks 2-6. The etiology of these changes in unclear, trauma and wound healing likely play a role. These changes may promote residual tumor growth and metastasis.
Collapse
Affiliation(s)
- HMC Shantha Kumara
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Hiromichi Miyagaki
- Department of Gastroenterological Surgery, Osaka University, Suita 565-0862, Osaka, Japan
| | - Sajith A Herath
- Analytic Department, Novartis, Morris Plains, NJ 07905, United States
| | - Erica Pettke
- Department of Surgery, Swedish Medical Center, Seattle, WA 98122, United States
| | - Xiaohong Yan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Vesna Cekic
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Richard L Whelan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States
| |
Collapse
|
24
|
Chin LT, Liu KW, Chen YH, Hsu SC, Huang L. Cell-based assays and molecular simulation reveal that the anti-cancer harmine is a specific matrix metalloproteinase-3 (MMP-3) inhibitor. Comput Biol Chem 2021; 94:107556. [PMID: 34384998 DOI: 10.1016/j.compbiolchem.2021.107556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
The biological activities of harmine have been a much clearer picture in recent years, which include anti-tumor, anti-inflammation and cytotoxic properties. Numerous in vitro and in vivo animal models have confirmed its activities, but its mode of action remains a relative unsolved issue. We therefore investigated harmine for its effects on MMP-3 and the molecular interaction was also simulated. The human glioma cancer cell line, U-87 MG cells, was subjected to different concentrations (1-10 μM) of harmine for 24 h. Methylthiazol tetrazolium (MTT) test, half maximal inhibitory concentration (IC50), western blot analysis, enzyme-linked immunosorbent assay and molecular docking through BIOVIA DiscoveryStudio™ were performed. These results showed that although harmine stimulation in vitro has very little or no effects on MMP-3 expression by U-87 MG cells, the treatment of harmine decreases MMP-3 activity in a dose dependent manner. It was further calculated that 7.9 μM is the IC50 towards MMP-3. Using a molecular dynamic simulation approach, we identified the N2, methyl of C1 and benzene ring of harmine interact with Zn2+ (2.4 Å), His205 (2.4 Å) and His211 (2.4 Å) as well as Val163 (2.7 Å) at the active site of MMP-3, respectively, and thus conferred a striking specific binding advantage. Taken altogether, the present study evidences that harmine acts as an MMP-3 inhibitor specially targeting the enzymatic active site and possibly efficiently ameliorates MMP-3-driven malignant and inflammatory diseases.
Collapse
Affiliation(s)
- Li-Te Chin
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, 11400, Taiwan, ROC
| | - Ke-Wei Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC
| | - Yi-Han Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC
| | - Shu-Ching Hsu
- Synergy Biomedical Corp., Hsinchu City, 30054, Taiwan, ROC
| | - Lin Huang
- Synergy Biomedical Corp., Hsinchu City, 30054, Taiwan, ROC.
| |
Collapse
|
25
|
Nikulin S, Zakharova G, Poloznikov A, Raigorodskaya M, Wicklein D, Schumacher U, Nersisyan S, Bergquist J, Bakalkin G, Astakhova L, Tonevitsky A. Effect of the Expression of ELOVL5 and IGFBP6 Genes on the Metastatic Potential of Breast Cancer Cells. Front Genet 2021; 12:662843. [PMID: 34149804 PMCID: PMC8206645 DOI: 10.3389/fgene.2021.662843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/20/2021] [Indexed: 12/09/2022] Open
Abstract
Breast cancer (BC) is the leading cause of death from malignant neoplasms among women worldwide, and metastatic BC presents the biggest problems for treatment. Previously, it was shown that lower expression of ELOVL5 and IGFBP6 genes is associated with a higher risk of the formation of distant metastases in BC. In this work, we studied the change in phenotypical traits, as well as in the transcriptomic and proteomic profiles of BC cells as a result of the stable knockdown of ELOVL5 and IGFBP6 genes. The knockdown of ELOVL5 and IGFBP6 genes was found to lead to a strong increase in the expression of the matrix metalloproteinase (MMP) MMP1. These results were in good agreement with the correlation analysis of gene expression in tumor samples from patients and were additionally confirmed by zymography. The knockdown of ELOVL5 and IGFBP6 genes was also discovered to change the expression of a group of genes involved in the formation of intercellular contacts. In particular, the expression of the CDH11 gene was markedly reduced, which also complies with the correlation analysis. The spheroid formation assay showed that intercellular adhesion decreased as a result of the knockdown of the ELOVL5 and IGFBP6 genes. Thus, the obtained data indicate that malignant breast tumors with reduced expression of the ELOVL5 and IGFBP6 genes can metastasize with a higher probability due to a more efficient invasion of tumor cells.
Collapse
Affiliation(s)
- Sergey Nikulin
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | | | - Andrey Poloznikov
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Maria Raigorodskaya
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- Scientific Research Centre Bioclinicum, Moscow, Russia
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Jonas Bergquist
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Lidiia Astakhova
- Scientific Research Centre Bioclinicum, Moscow, Russia
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
26
|
Maiti A, Okano I, Oshi M, Okano M, Tian W, Kawaguchi T, Katsuta E, Takabe K, Yan L, Patnaik SK, Hait NC. Altered Expression of Secreted Mediator Genes That Mediate Aggressive Breast Cancer Metastasis to Distant Organs. Cancers (Basel) 2021; 13:cancers13112641. [PMID: 34072157 PMCID: PMC8199412 DOI: 10.3390/cancers13112641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Heterogeneity is the characteristic of breast tumors, making it difficult to understand the molecular mechanism. Alteration of gene expression in the primary tumor versus the metastatic lesion remains challenging for getting any specific targeted therapy. To better understand how gene expression profile changes during metastasis, we compare the primary tumor and distant metastatic tumor gene expression using primary breast tumors compared with its metastatic variant in animal models. Our RNA sequencing data from cells revealed that parental cell and the metastatic variant cell are different in gene expression while gene signature significantly altered during metastasis to distant organs than primary breast tumors. We found that secreted mediators encoding genes (ANGPTL7, MMP3, LCN2, S100A8, and ESM1) are correlated with poor prognosis in the clinical setting as divulged from METABRIC and TCGA-BRCA cohort data analysis. Abstract Due to the heterogeneous nature of breast cancer, metastasis organotropism has been poorly understood. This study assessed the specific cancer-related gene expression changes occurring with metastatic breast cancer recurrence to distant organs compared with non-metastatic breast cancer. We found that several secreted mediators encoding genes notably, LCN2 and S100A8 overexpressed at the distant metastatic site spine (LCN2, 5-fold; S100A8, 6-fold) and bone (LCN2, 5-fold; S100A8, 3-fold) vs. primary tumors in the syngeneic implantation/tumor-resection metastasis mouse model. In contrast, the ESM-1 encoding gene is overexpressed in the primary tumors and markedly downregulated at distant metastatic sites. Further digging into TCAGA-BRCA, SCAN-B, and METABRIC cohorts data analysis revealed that LCN2, S100A8, and ESM-1 mediators encoding individual gene expression scores were strongly associated with disease-specific survival (DSS) in the METABRIC cohort (hazard ratio (HR) > 1, p < 0.0004). The gene expression scores predicted worse clinically aggressive tumors, such as high Nottingham histological grade and advanced cancer staging. Higher gene expression score of ESM-1 gene was strongly associated with worse overall survival (OS) in the triple-negative breast cancer (TNBC) and hormonal receptor (HR)-positive/HER2-negative subtype in METABRIC cohort, HER2+ subtype in TCGA-BRCA and SCAN-B breast cancer cohorts. Our data suggested that mediators encoding genes with prognostic and predictive values may be clinically useful for breast cancer spine, bone, and lung metastasis, particularly in more aggressive subtypes such as TNBC and HER2+ breast cancer.
Collapse
Affiliation(s)
- Aparna Maiti
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence: (A.M.); (N.C.H.); Tel.: +1-(716)-845-3505 (A.M.); +1-(716)-845-8527 (N.C.H.); Fax: +1-(716)-845-1668 (N.C.H.)
| | - Ichiro Okano
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Maiko Okano
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Wanqing Tian
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (W.T.); (L.Y.)
| | - Tsutomu Kawaguchi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (W.T.); (L.Y.)
| | - Santosh K. Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Nitai C. Hait
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence: (A.M.); (N.C.H.); Tel.: +1-(716)-845-3505 (A.M.); +1-(716)-845-8527 (N.C.H.); Fax: +1-(716)-845-1668 (N.C.H.)
| |
Collapse
|
27
|
Longmate WM, Miskin RP, Van De Water L, DiPersio CM. Epidermal Integrin α3β1 Regulates Tumor-Derived Proteases BMP-1, Matrix Metalloprotease-9, and Matrix Metalloprotease-3. JID INNOVATIONS : SKIN SCIENCE FROM MOLECULES TO POPULATION HEALTH 2021; 1:100017. [PMID: 34909716 PMCID: PMC8659409 DOI: 10.1016/j.xjidi.2021.100017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 10/28/2022]
Abstract
As the major cell surface receptors for the extracellular matrix, integrins regulate adhesion and migration and have been shown to drive tumor growth and progression. Previous studies showed that mice lacking integrin α3β1 in the epidermis fail to form skin tumors during two-step chemical tumorigenesis, indicating a protumorigenic role for α3β1. Furthermore, genetic ablation of α3β1 in established skin tumors caused their rapid regression, indicating an essential role in the maintenance of tumor growth. In this study, analysis of immortalized keratinocyte lines and their conditioned media support a role for α3β1 in regulating the expression of several extracellular proteases of the keratinocyte secretome, namely BMP-1, matrix metalloprotease (MMP)-9, and MMP-3. Moreover, immunofluorescence revealed reduced levels of each protease in α3β1-deficient tumors, and RNA in situ hybridization showed that their expression was correspondingly reduced in α3β1-deficient tumor cells in vivo. Bioinformatic analysis confirmed that the expression of BMP1, MMP9, and MMP3 genes correlate with the expression of ITGA3 (gene encoding the integrin α3 subunit) in human squamous cell carcinoma and that high ITGA3 and MMP3 associate with poor survival outcome in these patients. Overall, our findings identify α3β1 as a regulator of several proteases within the secretome of epidermal tumors and as a potential therapeutic target.
Collapse
Key Words
- CM, conditioned medium
- ECM, extracellular matrix
- IMK, immortalized mouse keratinocyte
- ISH, in situ hybridization
- KC, keratinocyte
- MK, mouse keratinocyte
- MMP, matrix metalloprotease
- SCC, squamous cell carcinoma
- TME, tumor microenvironment
- TMK, transformed mouse keratinocyte
Collapse
Affiliation(s)
| | - Rakshitha Pandulal Miskin
- The Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Livingston Van De Water
- Department of Surgery, Albany Medical College, Albany, New York, USA,The Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - C. Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, New York, USA,Department of Molecular and Cellular Physiology (MCP), Albany Medical College, Albany, New York, USA,Correspondence: C. Michael DiPersio, Department of Surgery, Albany Medical College, Mail Code 8, Room MR-421, 47 New Scotland Avenue, Albany, New York 12208-3479, USA.
| |
Collapse
|
28
|
Kreus M, Lehtonen S, Skarp S, Kaarteenaho R. Extracellular matrix proteins produced by stromal cells in idiopathic pulmonary fibrosis and lung adenocarcinoma. PLoS One 2021; 16:e0250109. [PMID: 33905434 PMCID: PMC8078755 DOI: 10.1371/journal.pone.0250109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) and lung cancer share common risk factors, epigenetic and genetic alterations, the activation of similar signaling pathways and poor survival. The aim of this study was to examine the gene expression profiles of stromal cells from patients with IPF and lung adenocarcinoma (ADC) as well as from normal lung. The gene expression levels of cultured stromal cells derived from non-smoking patients with ADC from the tumor (n = 4) and the corresponding normal lung (n = 4) as well as from patients with IPF (n = 4) were investigated with Affymetrix microarrays. The expression of collagen type IV alpha 1 chain, periostin as well as matrix metalloproteinase-1 and -3 in stromal cells and lung tissues were examined with quantitative real-time reverse transcriptase polymerase chain reaction and immunohistochemistry, respectively. Twenty genes were similarly up- or down-regulated in IPF and ADC compared to control, while most of the altered genes in IPF and ADC were differently expressed, including several extracellular matrix genes. Collagen type IV alpha 1 chain as well as matrix metalloproteinases-1 and -3 were differentially expressed in IPF compared to ADC. Periostin was up-regulated in both IPF and ADC in comparison to control. All studied factors were localized by immunohistochemistry in stromal cells within fibroblast foci in IPF and stroma of ADC. Despite the similarities found in gene expressions of IPF and ADC, several differences were also detected, suggesting that the molecular changes occurring in these two lung illnesses are somewhat different.
Collapse
Affiliation(s)
- Mervi Kreus
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
- * E-mail:
| | - Siri Lehtonen
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
- Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
| | - Sini Skarp
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
29
|
Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers (Basel) 2021; 13:1441. [PMID: 33809973 PMCID: PMC8005147 DOI: 10.3390/cancers13061441] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue functionality and integrity demand continuous changes in distribution of major components in the extracellular matrices (ECMs) under normal conditions aiming tissue homeostasis. Major matrix degrading proteolytic enzymes are matrix metalloproteinases (MMPs), plasminogen activators, atypical proteases such as intracellular cathepsins and glycolytic enzymes including heparanase and hyaluronidases. Matrix proteases evoke epithelial-to-mesenchymal transition (EMT) and regulate ECM turnover under normal procedures as well as cancer cell phenotype, motility, invasion, autophagy, angiogenesis and exosome formation through vital signaling cascades. ECM remodeling is also achieved by glycolytic enzymes that are essential for cancer cell survival, proliferation and tumor progression. In this article, the types of major matrix remodeling enzymes, their effects in cancer initiation, propagation and progression as well as their pharmacological targeting and ongoing clinical trials are presented and critically discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| |
Collapse
|
30
|
Miao H, Lu J, Guo Y, Qiu H, Zhang Y, Yao X, Li X, Lu Y. LncRNA TP73-AS1 enhances the malignant properties of pancreatic ductal adenocarcinoma by increasing MMP14 expression through miRNA -200a sponging. J Cell Mol Med 2021; 25:3654-3664. [PMID: 33683827 PMCID: PMC8034458 DOI: 10.1111/jcmm.16425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an invasive and aggressive cancer that remains a major threat to human health across the globe. Despite advances in cancer treatments and diagnosis, the prognosis of PDAC patients remains poor. New and more effective PDAC therapies are therefore urgently required. In this study, we identified a novel host factor, namely the LncRNA TP73-AS1, as overexpressed in PDAC tissues compared to adjacent healthy tissue samples. The overexpression of TP-73-AS1 was found to correlate with both PDAC stage and lymph node metastasis. To reveal its role in PDCA, we targeted TP73-AS1 using LnRNA inhibitors in a range of pancreatic cancer (PC) cell lines. We found that the inhibition of TP73-AS1 led to a loss of MMP14 expression in PC cells and significantly inhibited their migratory and invasive capacity. No effects of TP73-AS1 on cell survival or proliferation were observed. Mechanistically, we found that TP73-AS1 suppressed the expression of the known oncogenic miR-200a. Taken together, these data highlight the prognostic potential of TP73-AS1 for PC patients and highlight it as a potential anti-PDAC therapeutic target.
Collapse
Affiliation(s)
- Haiyan Miao
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Department of General Surgery, The Sixth People's Hospital of Nantong, Nantong, China
| | - Jingjing Lu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yibing Guo
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongquan Qiu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Zhang
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xihao Yao
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaohong Li
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuhua Lu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Visitor scholar of Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
31
|
Azarbarzin S, Hosseinpour-Feizi MA, Banan Khojasteh SM, Baradaran B, Safaralizadeh R. MicroRNA -383-5p restrains the proliferation and migration of breast cancer cells and promotes apoptosis via inhibition of PD-L1. Life Sci 2020; 267:118939. [PMID: 33359245 DOI: 10.1016/j.lfs.2020.118939] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
AIMS MicroRNAs (miRs) play pivotal roles in breast cancer development. The dysregulation of miRs has been associated with PD-L1-mediated immune suppression. This study aimed to examine the effect of transfected miR-383-5p on breast cancer cells and T-cells and its association with clinicopathological features in affected patients. MAIN METHODS Initially, miR-383-5p and PD-L1 expression levels were investigated in breast cancer tissues. Then, MDA-MB-231 cells were transfected with miR-383-5p mimics to perform analyses. Cell viability was investigated using the MTT assay, and the annexin V/PI staining assay was performed to examine apoptosis induction. Furthermore, the effect of miR-383-5p on cell migration and cell cycle progression was analyzed using the wound-healing assay and flow cytometry, respectively. Gene and protein expressions were studied using qRT-PCR and western blotting. Finally, the effect of miR-383-5p on T-cells, which were co-cultured with cancer cells, was investigated. KEY FINDINGS Compared to non-malignant tissues, PD-L1 was up-regulated, and miR-383-5p expression was downregulated in breast cancer tissues. Moreover, miR-383-5p reduced breast cancer cell viability via inducing apoptosis and modulating the expression of apoptosis-related genes. Besides, miR-383-5p could inhibit the migration of breast cancer cells via down-regulating metastasis-related genes. Besides, transfected miR-383-5p induced the secretion of pro-inflammatory cytokines from T-cells. Furthermore, the results showed that miR-383-5p might exert its tumor-suppressive effect via inhibiting the PI3K/AKT/mTOR pathway. The inhibitory effect of transfected miR-383-5p on the PI3K/AKT/mTOR pathway might be the underlying mechanism for inhibiting tumoral PD-L1 expression. SIGNIFICANCE Overall, miR-383-5p can be a promising therapeutic agent for treating breast cancer.
Collapse
Affiliation(s)
- Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
32
|
Hu HF, Xu WW, Zhang WX, Yan X, Li YJ, Li B, He QY. Identification of miR-515-3p and its targets, vimentin and MMP3, as a key regulatory mechanism in esophageal cancer metastasis: functional and clinical significance. Signal Transduct Target Ther 2020; 5:271. [PMID: 33243974 PMCID: PMC7693265 DOI: 10.1038/s41392-020-00275-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis is the main factor of treatment failure in cancer patients, but the underlying mechanism remains to be elucidated and effective new treatment strategies are urgently needed. This study aims to explore novel key metastasis-related microRNAs (miRNAs) in esophageal squamous cell carcinoma (ESCC). By comparing miRNA profiles of the highly metastatic ESCC cell sublines, we established through serial in vivo selection with the parental cells, we found that the expression level of miR-515-3p was lower in ESCC tumor tissues than adjacent normal tissues, further decreased in metastatic tumors, and moreover, markedly associated with advanced stage, metastasis and patient survival. The in vitro and in vivo assays suggested that miR-515-3p could increase the expression of the epithelial markers as well as decrease the expression of the mesenchymal markers, and more importantly, suppress invasion and metastasis of ESCC cells. Mechanistically, we revealed that miR-515-3p directly regulated vimentin and matrix metalloproteinase-3 (MMP3) expression by binding to the coding sequence and 3'untranslated region, respectively. In addition, the data from whole-genome methylation sequencing and methylation-specific PCR indicated that the CpG island within miR-515-3p promoter was markedly hypermethylated in ESCC cell lines and ESCC tumor tissues, which may lead to deregulation of miR-515-3p expression in ESCC. Furthermore, our preclinical experiment provides solid evidence that systemic delivery of miR-515-3p oligonucleotide obviously suppressed the metastasis of ESCC cells in nude mice. Taken together, this study demonstrates that miR-515-3p suppresses tumor metastasis and thus represents a promising prognostic biomarker and therapeutic strategy in ESCC.
Collapse
Affiliation(s)
- Hui-Fang Hu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Wen Wen Xu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine and MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wei-Xia Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Xin Yan
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yang-Jia Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|
33
|
Balkhi S, Mashayekhi F, Salehzadeh A, Saedi HS. Matrix metalloproteinase (MMP)-1 and MMP-3 gene variations affect MMP-1 and -3 serum concentration and associates with breast cancer. Mol Biol Rep 2020; 47:9637-9644. [PMID: 33170424 DOI: 10.1007/s11033-020-05962-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
Matrix metallopeptidases (MMPs) 1 and 3 have been shown to contribute to the initiation, and progression of different cancers, including breast cancer (BC). In this study, we aimed to examine the relations between polymorphisms of MMP1 (rs1799750) and MMP3 (rs632478) and their circulating levels with BC. The polymorphisms were genotyped by PCR-based Restriction Fragment Length Polymorphism (RFLP) and Allele-Specific PCR (AS-PCR) among 100 patients and 100 controls. MMP1 and MMP3 serum levels were measured by enzyme-linked immunosorbent assay (ELISA). Genotype distributions of MMP1 and MMP3 genes showed significant difference between patients and controls. The distribution of 2G/2G, 1G/2G and 1G/1G genotypes for MMP1 was 74%, 2% and 24% in the patients and 38%, 2% and 60% in the controls, respectively (P = 0.0001). For MMP3 the distribution of C/C, A/C and A/A genotypes was 28%, 54% and 18% in patients and 48%, 40% and 12% in controls, respectively (P = 0.01). For MMP1, the 2G/2G genotype was linked with a higher risk of BC when compared with that of the 1G/1G genotype (OR = 4.86; 95% CI = 2.63-8.99; P = 0.0001). For MMP3, in co-dominant model, there was a higher risk of BC in A/A and A/C genotype carriers (A/A: OR = 2.57; 95% CI = 1.08-6.11; P = 0.03) (A/C: OR = 2.31 95% CI = 1.24-4.30; P = 0.008). We also showed that MMP1 and MMP3 serum level was significantly increased in BC patients compared to controls. MMP1 and MMP3 genetic variations and their circulating levels are both significantly related to BC.
Collapse
Affiliation(s)
- Sahar Balkhi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hamid Saeedi Saedi
- Department of Radiation Oncology, Cancer Research Center, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| |
Collapse
|
34
|
Celik ZB, Cankara FN, Gunaydin C. Alterations in the matrix metalloproteinase-3 promoter methylation after common chemotherapeutics: in vitro study of paclitaxel, cisplatin and methotrexate in the MCF-7 and SH-SY5Y cell lines. Mol Biol Rep 2020; 47:8987-8995. [PMID: 33136246 DOI: 10.1007/s11033-020-05955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Cancer treatment is a complex process due to the several encountered obstacles during therapy, such as metastasis, angiogenesis, and drug resistance. The methylation status of elements that are thought to play crucial roles in these mechanisms is considered valuable targets. Matrix metalloproteinase-3 (MMP-3), one of the possible targets, is a well-known endopeptidase and secreted by several types of cancer cells. Paclitaxel, cisplatin, and methotrexate are frequently used for several malignancies, individually or in combination. Therefore, the aims of this study is that demonstration of possible effects of different doses of single or jointly application of these agents with maintaining their antiproliferative activity in clinically relevant cell lines, as well as revealing epigenetic results of this pharmacological alteration with exploring promoter methylation status of the MMP-3 gene. Cell viability was determined with Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Further methylation-specific PCR (MSP) experiments for determining the promoter methylation status of MMP-3 were performed according to the obtained IC50 values of the drug treatments. The MMP-3 promoter methylation status was analayzed with MSP and determined with agarose gel electrophoresis. As a result, methotrexate and paclitaxel treatment significantly methylated the MMP-3 promoter; however, cisplatin caused MMP-3 promoter unmethylation in MCF-7 and SH-SY5Y cells. Our study indicates that decreasing the dose of clinically prevalent chemotherapeutic agents while maintaining the same tumor-killing potency might be a rational strategy for treatment. In addition to avoiding adverse effects of these compounds, decreasing treatment doses will bring substantial benefits for patient life-quality.
Collapse
Affiliation(s)
- Zulfinaz Betul Celik
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayıs University, 55270, Samsun, Turkey.
| | - Fatma Nihan Cankara
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Caner Gunaydin
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, 55270, Samsun, Turkey
| |
Collapse
|
35
|
Piskór BM, Przylipiak A, Dąbrowska E, Niczyporuk M, Ławicki S. Matrilysins and Stromelysins in Pathogenesis and Diagnostics of Cancers. Cancer Manag Res 2020; 12:10949-10964. [PMID: 33154674 PMCID: PMC7608139 DOI: 10.2147/cmar.s235776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases which are widely studied in terms of their role in the physiological and pathological processes in the organism. In this article, we consider usefulness of matrilysins and stromelysins in pathogenesis and diagnostic of the most common malignancies in the world, e.g., lung, breast, prostate, and colorectal cancers. In all of the mentioned cancers, matrilysins and stromelysins have a pivotal role in their development and also may have diagnostic utility. Influence to the cancerous process is connected with specific dependencies between these enzymes and components of the extracellular matrix (ECM), non-matrix components like cell surface components. All the information provided below allows to take a closer look at matrilysins and stromelysins and their functions in the cancer development.
Collapse
Affiliation(s)
- Barbara Maria Piskór
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Przylipiak
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Emilia Dąbrowska
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Marek Niczyporuk
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Civilization Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
36
|
Poole AT, Sitko CA, Le C, Naus CC, Hill BM, Bushnell EAC, Chen VC. Examination of sulfonamide-based inhibitors of MMP3 using the conditioned media of invasive glioma cells. J Enzyme Inhib Med Chem 2020; 35:672-681. [PMID: 32156166 PMCID: PMC7144313 DOI: 10.1080/14756366.2020.1715387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest and the most common primary malignant brain tumour. The median survival for patients with GBM is around one year due to the nature of glioma cells to diffusely invade that make the complete surgical resection of tumours difficult. Based upon the connexin43 (Cx43) model of glioma migration we have developed a computational framework to evaluate MMP inhibition in materials relevant to GBM. Using the ilomastat Leu-Trp backbone, we have synthesised novel sulphonamides and monitored the performance of these compounds in conditioned media expressing MMP3. From the results discussed herein we demonstrate the performance of sulfonamide based MMPIs included AP-3, AP-6, and AP-7.
Collapse
Affiliation(s)
- Alisha T Poole
- Department of Chemistry, Brandon University, Brandon, Canada
| | | | - Caitlin Le
- Department of Chemistry, Brandon University, Brandon, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, Vancouver, Canada
| | - Bryan M Hill
- Department of Chemistry, Brandon University, Brandon, Canada
| | | | - Vincent C Chen
- Department of Chemistry, Brandon University, Brandon, Canada
| |
Collapse
|
37
|
Rho GTPases: Big Players in Breast Cancer Initiation, Metastasis and Therapeutic Responses. Cells 2020; 9:cells9102167. [PMID: 32992837 PMCID: PMC7600866 DOI: 10.3390/cells9102167] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases, a family of the Ras GTPase superfamily, are key regulators of the actin cytoskeleton. They were originally thought to primarily affect cell migration and invasion; however, recent advances in our understanding of the biology and function of Rho GTPases have demonstrated their diverse roles within the cell, including membrane trafficking, gene transcription, migration, invasion, adhesion, survival and growth. As these processes are critically involved in cancer initiation, metastasis and therapeutic responses, it is not surprising that studies have demonstrated important roles of Rho GTPases in cancer. Although the majority of data indicates an oncogenic role of Rho GTPases, tumor suppressor functions of Rho GTPases have also been revealed, suggesting a context and cell-type specific function for Rho GTPases in cancer. This review aims to summarize recent progresses in our understanding of the regulation and functions of Rho GTPases, specifically in the context of breast cancer. The potential of Rho GTPases as therapeutic targets and prognostic tools for breast cancer patients are also discussed.
Collapse
|
38
|
Sirait-Fischer E, Olesch C, Fink AF, Berkefeld M, Huard A, Schmid T, Takeda K, Brüne B, Weigert A. Immune Checkpoint Blockade Improves Chemotherapy in the PyMT Mammary Carcinoma Mouse Model. Front Oncol 2020; 10:1771. [PMID: 33014872 PMCID: PMC7513675 DOI: 10.3389/fonc.2020.01771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the success of immune checkpoint blockade in cancer, the number of patients that benefit from this revolutionary treatment option remains low. Therefore, efforts are being undertaken to sensitize tumors for immune checkpoint blockade, which includes combining immune checkpoint blocking agents such as anti-PD-1 antibodies with standard of care treatments. Here we report that a combination of chemotherapy (doxorubicin) and immune checkpoint blockade (anti-PD-1 antibodies) induces superior tumor control compared to chemotherapy and immune checkpoint blockade alone in the murine autochthonous polyoma middle T oncogene-driven (PyMT) mammary tumor model. Using whole transcriptome analysis, we identified a set of genes that were upregulated specifically upon chemoimmunotherapy. This gene signature and, more specifically, a condensed four-gene signature predicted favorable survival of human mammary carcinoma patients in the METABRIC cohort. Moreover, PyMT tumors treated with chemoimmunotherapy contained higher levels of cytotoxic lymphocytes, particularly natural killer cells (NK cells). Gene set enrichment analysis and bead-based ELISA measurements revealed increased IL-27 production and signaling in PyMT tumors upon chemoimmunotherapy. Moreover, IL-27 signaling improved NK cell cytotoxicity against PyMT cells in vitro. Taken together, our data support recent clinical observations indicating a benefit of chemoimmunotherapy compared to monotherapy in breast cancer and suggest potential underlying mechanisms.
Collapse
Affiliation(s)
- Evelyn Sirait-Fischer
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Annika F Fink
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Matthias Berkefeld
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Arnaud Huard
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Kazuhiko Takeda
- Research Center of Oncology, ONO Pharmaceutical Co., LTD, Osaka, Japan
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology TMP of the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
39
|
Molecular Characterisation of Canine Osteosarcoma in High Risk Breeds. Cancers (Basel) 2020; 12:cancers12092405. [PMID: 32854182 PMCID: PMC7564920 DOI: 10.3390/cancers12092405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Dogs develop osteosarcoma (OSA) and the disease process closely resembles that of human OSA. OSA has a poor prognosis in both species and disease-free intervals and cure rates have not improved in recent years. Gene expression in canine OSAs was compared with non-tumor tissue utilising RNA sequencing, validated by qRT-PCR and immunohistochemistry (n = 16). Polymorphic polyglutamine (polyQ) tracts in the androgen receptor (AR/NR3C4) and nuclear receptor coactivator 3 (NCOA3) genes were investigated in control and OSA patients using polymerase chain reaction (PCR), Sanger sequencing and fragment analysis (n = 1019 Rottweilers, 379 Irish Wolfhounds). Our analysis identified 1281 significantly differentially expressed genes (>2 fold change, p < 0.05), specifically 839 lower and 442 elevated gene expression in osteosarcoma (n = 3) samples relative to non-malignant (n = 4) bone. Enriched pathways and gene ontologies were identified, which provide insight into the molecular pathways implicated in canine OSA. Expression of a subset of these genes (SLC2A1, DKK3, MMP3, POSTN, RBP4, ASPN) was validated by qRTPCR and immunohistochemistry (MMP3, DKK3, SLC2A1) respectively. While little variation was found in the NCOA3 polyQ tract, greater variation was present in both polyQ tracts in the AR, but no significant associations in length were made with OSA. The data provides novel insights into the molecular mechanisms of OSA in high risk breeds. This knowledge may inform development of new prevention strategies and treatments for OSA in dogs and supports utilising spontaneous OSA in dogs to improve understanding of the disease in people.
Collapse
|
40
|
Li Y, Feng Z, Xing S, Liu W, Zhang G. Combination of serum matrix metalloproteinase-3 activity and EBV antibodies improves the diagnostic performance of nasopharyngeal carcinoma. J Cancer 2020; 11:6009-6018. [PMID: 32922541 PMCID: PMC7477409 DOI: 10.7150/jca.46977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: Nasopharyngeal carcinoma (NPC) is a malignant head and neck tumor that is highly prevalent in Southeast Asia. The two traditional NPC markers VCA-IgA (EBV viral capsid antigen) and EA-IgA (EBV early antigen) are limited in the screening and diagnosis of NPC. The purpose of present study is to evaluate the diagnostic value of matrix metalloproteinase-3 (MMP3) in NPC. Methods: The levels of 23 secretory MMPs in serum samples from 15 healthy controls and 26 NPC patients were detected by Cytokine Antibody Array 2000. Immunohistochemistry, Real-time PCR and western bolt were used to detect MMP3 mRNA and protein levels in NPC tissues and cell lines. The serum protein levels of MMP3 were further measured by ELISA in healthy control individuals (n = 200) and NPC patients (n = 206). Results: MMP3 can be expressed and secreted by both NPC and fibroblast cell lines, suggesting that the higher expression of MMP3 protein in both tumor nests and stromal of NPC tissues may be the source of circulating MMP3 in NPC patients. Furthermore, we found out both MMP3 concentration and enzymatic activity were significantly increased in the NPC group (n = 206) than the healthy control group (n = 200) (P < 0.001). However, serum MMP3 enzymatic activity, but not MMP3 concentration, was significantly associated with the progression of NPC. In addition, serum MMP3 activity was more valuable in diagnosis of NPC than its concentration (0.86 vs. 0.78, AUC), and MMP3 activity can improve the diagnosis of NPC by combining with EBV-infection biomarkers VCA-IgA and EA-IgA with a sensitivity of 91.5% and a specificity of 92.3%. Conclusions: This study suggested the combination of MMP3 activity and EBV antibodies may be a useful biomarker for screening and diagnosis of NPC.
Collapse
Affiliation(s)
- Yiqiu Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Zhibo Feng
- Department of anatomy, Xinxiang Medical University, Xinxiang, Henan 453700, China
| | - Shan Xing
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wanli Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Waihuandong Road, University Town, Guangzhou 510006, China
| |
Collapse
|
41
|
Slapak EJ, Duitman J, Tekin C, Bijlsma MF, Spek CA. Matrix Metalloproteases in Pancreatic Ductal Adenocarcinoma: Key Drivers of Disease Progression? BIOLOGY 2020; 9:biology9040080. [PMID: 32325664 PMCID: PMC7235986 DOI: 10.3390/biology9040080] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is a dismal disorder that is histologically characterized by a dense fibrotic stroma around the tumor cells. As the extracellular matrix comprises the bulk of the stroma, matrix degrading proteases may play an important role in pancreatic cancer. It has been suggested that matrix metalloproteases are key drivers of both tumor growth and metastasis during pancreatic cancer progression. Based upon this notion, changes in matrix metalloprotease expression levels are often considered surrogate markers for pancreatic cancer progression and/or treatment response. Indeed, reduced matrix metalloprotease levels upon treatment (either pharmacological or due to genetic ablation) are considered as proof of the anti-tumorigenic potential of the mediator under study. In the current review, we aim to establish whether matrix metalloproteases indeed drive pancreatic cancer progression and whether decreased matrix metalloprotease levels in experimental settings are therefore indicative of treatment response. After a systematic review of the studies focusing on matrix metalloproteases in pancreatic cancer, we conclude that the available literature is not as convincing as expected and that, although individual matrix metalloproteases may contribute to pancreatic cancer growth and metastasis, this does not support the generalized notion that matrix metalloproteases drive pancreatic ductal adenocarcinoma progression.
Collapse
Affiliation(s)
- Etienne J. Slapak
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - JanWillem Duitman
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Cansu Tekin
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - C. Arnold Spek
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
42
|
Okusha Y, Eguchi T, Tran MT, Sogawa C, Yoshida K, Itagaki M, Taha EA, Ono K, Aoyama E, Okamura H, Kozaki KI, Calderwood SK, Takigawa M, Okamoto K. Extracellular Vesicles Enriched with Moonlighting Metalloproteinase Are Highly Transmissive, Pro-Tumorigenic, and Trans-Activates Cellular Communication Network Factor ( CCN2/CTGF): CRISPR against Cancer. Cancers (Basel) 2020; 12:cancers12040881. [PMID: 32260433 PMCID: PMC7226423 DOI: 10.3390/cancers12040881] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinase 3 (MMP3) plays multiple roles in extracellular proteolysis as well as intracellular transcription, prompting a new definition of moonlighting metalloproteinase (MMP), according to a definition of protein moonlighting (or gene sharing), a phenomenon by which a protein can perform more than one function. Indeed, connective tissue growth factor (CTGF, aka cellular communication network factor 2 (CCN2)) is transcriptionally induced as well as cleaved by MMP3. Moreover, several members of the MMP family have been found within tumor-derived extracellular vesicles (EVs). We here investigated the roles of MMP3-rich EVs in tumor progression, molecular transmission, and gene regulation. EVs derived from a rapidly metastatic cancer cell line (LuM1) were enriched in MMP3 and a C-terminal half fragment of CCN2/CTGF. MMP3-rich, LuM1-derived EVs were disseminated to multiple organs through body fluid and were pro-tumorigenic in an allograft mouse model, which prompted us to define LuM1-EVs as oncosomes in the present study. Oncosome-derived MMP3 was transferred into recipient cell nuclei and thereby trans-activated the CCN2/CTGF promoter, and induced CCN2/CTGF production in vitro. TRENDIC and other cis-elements in the CCN2/CTGF promoter were essential for the oncosomal responsivity. The CRISPR/Cas9-mediated knockout of MMP3 showed significant anti-tumor effects such as the inhibition of migration and invasion of tumor cells, and a reduction in CCN2/CTGF promoter activity and fragmentations in vitro. A high expression level of MMP3 or CCN2/CTGF mRNA was prognostic and unfavorable in particular types of cancers including head and neck, lung, pancreatic, cervical, stomach, and urothelial cancers. These data newly demonstrate that oncogenic EVs-derived MMP is a transmissive trans-activator for the cellular communication network gene and promotes tumorigenesis at distant sites.
Collapse
Affiliation(s)
- Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (E.A.); (M.T.)
- Correspondence: or
| | - Manh T. Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan;
| | - Mami Itagaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
- Research program for undergraduate students, Okayama University Dental School, Okayama 700-8525, Japan
| | - Eman A. Taha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Okayama University Hospital, Okayama 700-0914, Japan;
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (E.A.); (M.T.)
| | - Hirohiko Okamura
- Department of Oral Morphology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8525, Japan;
| | - Ken-ichi Kozaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
| | - Stuart K. Calderwood
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (E.A.); (M.T.)
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.O.); (M.T.T.); (C.S.); (M.I.); (E.A.T.); (K.-i.K.); (K.O.)
| |
Collapse
|
43
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
44
|
Suhaimi SA, Chan SC, Rosli R. Matrix Metallopeptidase 3 Polymorphisms: Emerging genetic Markers in Human Breast Cancer Metastasis. J Breast Cancer 2020; 23:1-9. [PMID: 32140265 PMCID: PMC7043940 DOI: 10.4048/jbc.2020.23.e17] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Matrix metallopeptidase 3 or MMP3, is a zinc-dependent proteolytic enzyme that is involved in various physiological processes via modification of the extracellular matrix. In particular, its over-expression has been associated with cancer metastasis and tumor growth in various cancers including breast cancer. MMP3 gene expression is regulated by several factors such as DNA polymorphisms which also serve as risk factors for breast cancer. As such, DNA polymorphisms of MMP3 have the potential to be utilized as genetic biomarkers for prediction and prognosis of metastatic breast cancer. Presently, genome-wide association studies of MMP3 gene polymorphisms which are associated with breast cancer risk and patient survival in a variety of populations are reviewed. In order to understand the potential role of MMP3 polymorphisms as genetic markers for breast cancer metastasis, the domain structure of MMP3, the regulation of its expression and its role in breast cancer metastasis are also briefly discussed in this review. The emergence of MMP3 gene polymorphisms as prognostic biomarker candidates for breast cancer metastasis may contribute towards improving targeted therapies and categorization of breast cancer cases in order to provide a better and more accurate prognosis.
Collapse
Affiliation(s)
- Shafinah Ahmad Suhaimi
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Soon Choy Chan
- Perdana University School of Foundation Studies, MAEPS Building, MARDI Complex, Serdang, Malaysia
| | - Rozita Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
45
|
Lee MG, Lee KS, Nam KS. Anti‑metastatic effects of arctigenin are regulated by MAPK/AP‑1 signaling in 4T‑1 mouse breast cancer cells. Mol Med Rep 2020; 21:1374-1382. [PMID: 32016480 DOI: 10.3892/mmr.2020.10937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/29/2019] [Indexed: 11/06/2022] Open
Abstract
Arctigenin is a natural lignan that is found in burdock with anti‑viral, ‑oxidative, ‑inflammatory and anti‑tumor activities. In the current study, the effect of arctigenin on metastatic potential was examined in 4T‑1 mouse triple‑negative breast cancer cells. The results indicated that arctigenin inhibited cell motility and invasiveness, which was determined using wound healing and transwell invasion assays. Arctigenin suppressed matrix metalloprotease‑9 (MMP‑9) activity via gelatin zymography, and protein expression of cyclooxygenase‑2 (COX‑2) and MMP‑3. Furthermore, arctigenin attenuated the mRNA expression of metastatic factors, including MMP‑9, MMP‑3 and COX‑2. Based on these results, the effect of arctigenin on the mitogen‑activated protein kinase (MAPK)/activating protein‑1 (AP‑1) signaling pathway was assessed in an attempt to identify the regulatory mechanism responsible for its anti‑metastatic effects. Arctigenin was demonstrated to inhibit the phosphorylation of extracellular signal‑regulated protein kinase (ERK) and c‑Jun N‑terminal kinase (JNK), and the nuclear translocations of the AP‑1 subunits, c‑Jun and c‑Fos. In summary, the present study demonstrated that in 4T‑1 mouse triple‑negative breast cancer cells the anti‑metastatic effect of arctigenin is mediated by the inhibition of MMP‑9 activity and by the inhibition of the metastasis‑enhancing factors MMP‑9, MMP‑3 and COX‑2, due to the suppression of the MAPK/AP‑1 signaling pathway. The results of the current study demonstrated that arctigenin exhibits a potential for preventing cell migration and invasion in triple negative breast cancer.
Collapse
Affiliation(s)
- Min-Gu Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
46
|
Medeiros B, Goodale D, Postenka C, Lowes LE, Kiser P, Hearn S, Salmond N, Williams KC, Allan AL. Triple-Negative Primary Breast Tumors Induce Supportive Premetastatic Changes in the Extracellular Matrix and Soluble Components of the Lung Microenvironment. Cancers (Basel) 2020; 12:cancers12010172. [PMID: 31936750 PMCID: PMC7016570 DOI: 10.3390/cancers12010172] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
The lung is one of the deadliest sites of breast cancer metastasis, particularly in patients with triple-negative (TN) disease. We hypothesized that the presence of a TN primary breast tumor induces changes in the extracellular matrix (ECM) and soluble components of the lung microenvironment that support metastatic behavior. SUM159 (TN) and MCF7 (luminal A) breast cancer cells were injected into mice, and primary breast tumors were established prior to assessing metastatic niche changes. We observed increased CD117+ hematopoietic progenitor cells in the bone marrow of SUM159 mice versus MCF7 or control mice (p < 0.05). Relative to mice bearing MCF7 tumors and non-tumor controls, mice bearing SUM159 tumors demonstrated enhanced expression of ECM proteins in the lung (fibronectin, tenascin-c and periostin), with similar changes observed in lung fibroblasts treated with extracellular vesicles (EVs) from TN breast cancer cells (p < 0.05). Exposure to lung-conditioned media (LCM) from SUM159 tumor-bearing mice resulted in increased migration/proliferation of both SUM159 and MCF7 cells relative to the control (p < 0.05). In contrast, LCM from MCF-7 tumor-bearing mice had no such effect. LCM from SUM159 tumor-bearing mice contained 16 unique proteins relative to other LCM conditions, including the metastasis-associated proteins CCL7, FGFR4, GM-CSF, MMP3, thrombospondin-1 and VEGF. These findings suggest for the first time that the TN breast cancer molecular subtype may be an important determinant of premetastatic changes to both the ECM and soluble components of the lung, potentially mediated via breast cancer-derived EVs.
Collapse
Affiliation(s)
- Braeden Medeiros
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada;
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (D.G.); (C.P.)
| | - Carl Postenka
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (D.G.); (C.P.)
| | - Lori E. Lowes
- London Regional Cancer Program and Flow Cytometry, London Health Sciences Centre, London, ON N6A 5W9, Canada;
| | - Patti Kiser
- Department of Pathology & Laboratory Medicine, Western University, London, ON N6A 3K7, Canada;
| | - Stephen Hearn
- Biotron Research Centre, Western University, London, ON N6A 3K7, Canada;
| | - Nikki Salmond
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (N.S.); (K.C.W.)
| | - Karla C. Williams
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (N.S.); (K.C.W.)
| | - Alison L. Allan
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada;
- Correspondence: ; Tel.: +1-519-685-8600 (ext. 55134)
| |
Collapse
|
47
|
Silva AL, Faria M, Matos P. Inflammatory Microenvironment Modulation of Alternative Splicing in Cancer: A Way to Adapt. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:243-258. [PMID: 32130703 DOI: 10.1007/978-3-030-34025-4_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The relationship between inflammation and cancer has been long recognized by the medical and scientific community. In the last decades, it has returned to the forefront of clinical oncology since a wealth of knowledge has been gathered about the cells, cytokines and physiological processes that are central to both inflammation and cancer. It is now robustly established that chronic inflammation can induce certain cancers but also that solid tumors, in turn, can initiate and perpetuate local inflammatory processes that foster tumor growth and dissemination. Inflammation is the hallmark of the innate immune response to tissue damage or infection, but also mediates the activation, expansion and recruitment to the tissues of cells and antibodies of the adaptive immune system. The functional integration of both components of the immune response is crucial to identify and subdue tumor development, progression and dissemination. When this tight control goes awry, altered cells can avoid the immune surveillance and even subvert the innate immunity to promote their full oncogenic transformation. In this chapter, we make a general overview of the most recent data linking the inflammatory process to cancer. We start with the overall inflammatory cues and processes that influence the relationship between tumor and the microenvironment that surrounds it and follow the ever-increasing complexity of processes that end up producing subtle changes in the splicing of certain genes to ascertain survival advantage to cancer cells.
Collapse
Affiliation(s)
- Ana Luísa Silva
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHLN-Hospital Santa Maria, Lisbon, Portugal
- ISAMB-Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Márcia Faria
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHLN-Hospital Santa Maria, Lisbon, Portugal
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Matos
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
48
|
Zhong P, Liu L, Shen A, Chen Z, Hu X, Cai Y, Lin J, Wang B, Li J, Chen Y, Peng J. Five extracellular matrix-associated genes upregulated in oral tongue squamous cell carcinoma: An integrated bioinformatics analysis. Oncol Lett 2019; 18:5959-5967. [PMID: 31788070 PMCID: PMC6865669 DOI: 10.3892/ol.2019.10982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Despite advancements in treatment regimens, the mortality rate of patients with oral tongue squamous cell carcinoma (OTSCC) is high. In addition, the signaling pathways and oncoproteins involved in OTSCC progression remain largely unknown. Therefore, the aim of the present study was to identify specific prognostic marker for patients at a high risk of developing OTSCC. The present study used four original microarray datasets to identify the key candidate genes involved in OTSCC pathogenesis. Expression profiles of 93 OTSCC tissues and 76 normal tissues from GSE9844, GSE13601, GSE31056 and GSE75538 datasets were investigated. Differentially expressed genes (DEGs) were determined, and gene ontology enrichment and gene interactions were analyzed. The four GSE datasets reported five upregulated and six downregulated DEGs. Five upregulated genes (matrix metalloproteinase 1, 3, 10 and 12 and laminin subunit gamma 2) were localized in the extracellular region of cells and were associated with extracellular matrix disassembly. Furthermore, analysis for The Cancer Genome Atlas database revealed that the aforementioned five upregulated genes were also highly expressed in OTSCC and head and neck squamous cell carcinoma tissues. These results demonstrated that the five upregulated genes may be considered as potential prognostic biomarkers of OTSCC and may serve at understanding OTSCC progression. Upregulated DEGs may therefore represent valuable therapeutic targets to prevent or control OTSCC pathogenesis.
Collapse
Affiliation(s)
- Pingping Zhong
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China.,Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhongxin Chen
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoyan Hu
- Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Yichao Cai
- Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Jie Lin
- Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Bangyan Wang
- Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Jiesen Li
- Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
49
|
Quantitative expression of MMPs 2, 9, 14, and collagen IV in LCIS and paired normal breast tissue. Sci Rep 2019; 9:13432. [PMID: 31530842 PMCID: PMC6748975 DOI: 10.1038/s41598-019-48602-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/08/2019] [Indexed: 11/15/2022] Open
Abstract
Certain matrix metalloproteinases (MMPs) have the ability to degrade collagen IV, a main component of the breast lobular basement membrane. In this cross-sectional study, we evaluated expression of MMPs 2, 9, and 14 and collagen IV in LCIS and adjacent normal breast tissue among LCIS patients without invasive breast cancer to determine whether expression differed between benign and preinvasive breast epithelial tissue. A total of 64 LCIS patients, diagnosed 2004–2014, were included; 44 had sufficient paired normal tissue for analysis. Marker epithelial expression was measured using immunofluorescence and quantified using the H score (MMPs) or pixel intensity (collagen IV). Associations were evaluated using the Spearman correlation or the Wilcoxon signed-rank test. In LCIS and normal tissue, there was a strong correlation between MMP2 and MMP14 expression (LCIS r = 0.69, normal r = 0.81, both P < 0.01). Other pairwise correlations were moderate to weak (range: LCIS r = 0.32–0.47, normal r = 0.19–0.32). For all markers, expression was lower in LCIS vs. normal tissue (all P ≤ 0.05). In sum, collagenase MMPs were expressed in normal breast and LCIS lesions of LCIS patients. However, expression was not higher in LCIS compared with normal tissue, suggesting collagenase MMP expression does not increase as breast tissue gains a more proliferative phenotype.
Collapse
|
50
|
Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol 2019; 234:14535-14555. [PMID: 30723913 DOI: 10.1002/jcp.28160] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a key step in transdifferentiation process in solid cancer development. Forthcoming evidence suggest that the stratified program transforms polarized, immotile epithelial cells to migratory mesenchymal cells associated with enhancement of breast cancer stemness, metastasis, and drug resistance. It involves primarily several signaling pathways, such as transforming growth factor-β (TGF-β), cadherin, notch, plasminogen activator protein inhibitor, urokinase plasminogen activator, and WNT/beta catenin pathways. However, current understanding on the crosstalk of multisignaling pathways and assemblies of key transcription factors remain to be explored. In this review, we focus on the crosstalk of signal transduction pathways linked to the current therapeutic and drug development strategies. We have also performed the computational modeling on indepth the structure and conformational dynamic studies of regulatory proteins and analyze molecular interactions with their associate factors to understand the complicated process of EMT in breast cancer progression and metastasis. Electrostatic potential surfaces have been analyzed that help in optimization of electrostatic interactions between the protein and its ligand. Therefore, understanding the biological implications underlying the EMT process through molecular biology with biocomputation and structural biology approaches will enable the development of new therapeutic strategies to sensitize tumors to conventional therapy and suppress their metastatic phenotype.
Collapse
Affiliation(s)
- Vishal Das
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| | - Sourya Bhattacharya
- Department of Biotechnology, Centre for Nanotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| | - Saugata Hazra
- Department of Biotechnology, Centre for Nanotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, India
| | - Mintu Pal
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| |
Collapse
|