1
|
Potrony M, Haddad TS, Tell-Martí G, Gimenez-Xavier P, Leon C, Pevida M, Mateu J, Badenas C, Carrera C, Malvehy J, Aguilera P, Llames S, Escámez MJ, Puig-Butillé JA, Del Río M, Puig S. DNA Repair and Immune Response Pathways Are Deregulated in Melanocyte-Keratinocyte Co-cultures Derived From the Healthy Skin of Familial Melanoma Patients. Front Med (Lausanne) 2021; 8:692341. [PMID: 34660619 PMCID: PMC8517393 DOI: 10.3389/fmed.2021.692341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Familial melanoma accounts for 10% of cases, being CDKN2A the main high-risk gene. However, the mechanisms underlying melanomagenesis in these cases remain poorly understood. Our aim was to analyze the transcriptome of melanocyte-keratinocyte co-cultures derived from healthy skin from familial melanoma patients vs. controls, to unveil pathways involved in melanoma development in at-risk individuals. Accordingly, primary melanocyte-keratinocyte co-cultures were established from the healthy skin biopsies of 16 unrelated familial melanoma patients (8 CDKN2A mutant, 8 CDKN2A wild-type) and 7 healthy controls. Whole transcriptome was captured using the SurePrint G3 Human Microarray. Transcriptome analyses included: differential gene expression, functional enrichment, and protein-protein interaction (PPI) networks. We identified a gene profile associated with familial melanoma independently of CDKN2A germline status. Functional enrichment analysis of this profile showed a downregulation of pathways related to DNA repair and immune response in familial melanoma (P < 0.05). In addition, the PPI network analysis revealed a network that consisted of double-stranded DNA repair genes (including BRCA1, BRCA2, BRIP1, and FANCA), immune response genes, and regulation of chromosome segregation. The hub gene was BRCA1. In conclusion, the constitutive deregulation of BRCA1 pathway genes and the immune response in healthy skin could be a mechanism related to melanoma risk.
Collapse
Affiliation(s)
- Miriam Potrony
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Tariq Sami Haddad
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Tell-Martí
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Pol Gimenez-Xavier
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Leon
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioingeniería, Universidad Carlos III de Madrid, Leganés, Spain.,Cátedra de Medicina Regenerativa y Bioingeniería de Tejidos, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Marta Pevida
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Tissue Engineering Unit, Centro Comunitario de Sangre y Tejidos de Asturias, Oviedo, Spain.,Instituto Universitario Fdez-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Judit Mateu
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Celia Badenas
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Carrera
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Josep Malvehy
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Paula Aguilera
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Sara Llames
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Cátedra de Medicina Regenerativa y Bioingeniería de Tejidos, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.,Tissue Engineering Unit, Centro Comunitario de Sangre y Tejidos de Asturias, Oviedo, Spain.,Instituto Universitario Fdez-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Maria José Escámez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioingeniería, Universidad Carlos III de Madrid, Leganés, Spain.,Cátedra de Medicina Regenerativa y Bioingeniería de Tejidos, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Energéticas Mediambientales y Tecnonlógicas, Madrid, Spain
| | - Joan A Puig-Butillé
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Molecular Biology Core, Biomedical Diagnostic Center, Melanoma Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Marcela Del Río
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioingeniería, Universidad Carlos III de Madrid, Leganés, Spain.,Cátedra de Medicina Regenerativa y Bioingeniería de Tejidos, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Energéticas Mediambientales y Tecnonlógicas, Madrid, Spain
| | - Susana Puig
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.,Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Sinkala M, Mulder N, Patrick Martin D. Metabolic gene alterations impact the clinical aggressiveness and drug responses of 32 human cancers. Commun Biol 2019; 2:414. [PMID: 31754644 PMCID: PMC6856368 DOI: 10.1038/s42003-019-0666-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Malignant cells reconfigure their metabolism to support oncogenic processes such as accelerated growth and proliferation. The mechanisms by which this occurs likely involve alterations to genes that encode metabolic enzymes. Here, using genomics data for 10,528 tumours of 32 different cancer types, we characterise the alterations of genes involved in various metabolic pathways. We find that mutations and copy number variations of metabolic genes are pervasive across all human cancers. Based on the frequencies of metabolic gene alterations, we further find that there are two distinct cancer supertypes that tend to be associated with different clinical outcomes. By utilising the known dose-response profiles of 825 cancer cell lines, we infer that cancers belonging to these supertypes are likely to respond differently to various anticancer drugs. Collectively our analyses define the foundational metabolic features of different cancer supertypes and subtypes upon which discriminatory strategies for treating particular tumours could be constructed.
Collapse
Affiliation(s)
- Musalula Sinkala
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town School of Health Sciences, Anzio Rd, Observatory, Cape Town, 7925 South Africa
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town School of Health Sciences, Anzio Rd, Observatory, Cape Town, 7925 South Africa
| | - Darren Patrick Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town School of Health Sciences, Anzio Rd, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
3
|
Phatak A, Athar M, Crowell JA, Leffel D, Herbert BS, Bale AE, Kopelovich L. Global gene expression of histologically normal primary skin cells from BCNS subjects reveals "single-hit" effects that are influenced by rapamycin. Oncotarget 2019; 10:1360-1387. [PMID: 30858923 PMCID: PMC6402716 DOI: 10.18632/oncotarget.26640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/11/2019] [Indexed: 02/05/2023] Open
Abstract
Studies of dominantly heritable cancers enabled insights about tumor progression. BCNS is a dominantly inherited disorder that is characterized by developmental abnormalities and postnatal neoplasms, principally BCCs. We performed an exploratory gene expression profiling of primary cell cultures derived from clinically unaffected skin biopsies of BCNS gene-carriers (PTCH1+/-) and normal individuals. PCA and HC of untreated keratinocytes or fibroblasts failed to clearly distinguish BCNS samples from controls. These results are presumably due to the common suppression of canonical HH signaling in vitro. We then used a relaxed threshold (p-value <0.05, no FDR cut-off; FC 1.3) that identified a total of 585 and 857 genes differentially expressed in BCNS keratinocytes and fibroblasts samples, respectively. A GSEA identified pancreatic β cell hallmark and mTOR signaling genes in BCNS keratinocytes, whereas analyses of BCNS fibroblasts identified gene signatures regulating pluripotency of stem cells, including WNT pathway. Significantly, rapamycin treatment (FDR<0.05), affected a total of 1411 and 4959 genes in BCNS keratinocytes and BCNS fibroblasts, respectively. In contrast, rapamycin treatment affected a total of 3214 and 4797 genes in normal keratinocytes and normal fibroblasts, respectively. The differential response of BCNS cells to rapamycin involved 599 and 1463 unique probe sets in keratinocytes and fibroblasts, respectively. An IPA of these genes in the presence of rapamycin pointed to hepatic fibrosis/stellate cell activation, and HIPPO signaling in BCNS keratinocytes, whereas mitochondrial dysfunction and AGRN expression were uniquely enriched in BCNS fibroblasts. The gene expression changes seen here are likely involved in the etiology of BCCs and they may represent biomarkers/targets for early intervention.
Collapse
Affiliation(s)
- Amruta Phatak
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David Leffel
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
4
|
Subbaramaiah K, Iyengar NM, Morrow M, Elemento O, Zhou XK, Dannenberg AJ. Prostaglandin E 2 down-regulates sirtuin 1 (SIRT1), leading to elevated levels of aromatase, providing insights into the obesity-breast cancer connection. J Biol Chem 2018; 294:361-371. [PMID: 30409902 DOI: 10.1074/jbc.ra118.005866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/05/2018] [Indexed: 01/01/2023] Open
Abstract
Obesity increases the risk of hormone receptor-positive breast cancer in postmenopausal women. Levels of aromatase, the rate-limiting enzyme in estrogen biosynthesis, are increased in the breast tissue of obese women. Both prostaglandin E2 (PGE2) and hypoxia-inducible factor 1α (HIF-1α) contribute to the induction of aromatase in adipose stromal cells (ASCs). Sirtuin 1 (SIRT1) binds, deacetylates, and thereby inactivates HIF-1α. Here, we sought to determine whether SIRT1 also plays a role in regulating aromatase expression. We demonstrate that reduced SIRT1 levels are associated with elevated levels of acetyl-HIF-1α, HIF-1α, and aromatase in breast tissue of obese compared with lean women. To determine whether these changes were functionally linked, ASCs were utilized. In ASCs, treatment with PGE2, which is increased in obese individuals, down-regulated SIRT1 levels, leading to elevated acetyl-HIF-1α and HIF-1α levels and enhanced aromatase gene transcription. Chemical SIRT1 activators (SIRT1720 and resveratrol) suppressed the PGE2-mediated induction of acetyl-HIF-1α, HIF-1α, and aromatase. Silencing of p300/CBP-associated factor (PCAF), which acetylates HIF-1α, blocked PGE2-mediated increases in acetyl-HIF-1α, HIF-1α, and aromatase. SIRT1 overexpression or PCAF silencing inhibited the interaction between HIF-1α and p300, a coactivator of aromatase expression, and suppressed p300 binding to the aromatase promoter. PGE2 acted via prostaglandin E2 receptor 2 (EP2) and EP4 to induce activating transcription factor 3 (ATF3), a repressive transcription factor, which bound to a CREB site within the SIRT1 promoter and reduced SIRT1 levels. These findings suggest that reduced SIRT1-mediated deacetylation of HIF-1α contributes to the elevated levels of aromatase in breast tissues of obese women.
Collapse
Affiliation(s)
- Kotha Subbaramaiah
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065.
| | - Neil M Iyengar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Monica Morrow
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Olivier Elemento
- Departments of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Xi Kathy Zhou
- Healthcare Policy and Research, Weill Cornell Medical College, New York, New York 10065
| | - Andrew J Dannenberg
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065.
| |
Collapse
|
5
|
Peri S, Caretti E, Tricarico R, Devarajan K, Cheung M, Sementino E, Menges CW, Nicolas E, Vanderveer LA, Howard S, Conrad P, Crowell JA, Campbell KS, Ross EA, Godwin AK, Yeung AT, Clapper ML, Uzzo RG, Henske EP, Ricketts CJ, Vocke CD, Linehan WM, Testa JR, Bellacosa A, Kopelovich L, Knudson AG. Haploinsufficiency in tumor predisposition syndromes: altered genomic transcription in morphologically normal cells heterozygous for VHL or TSC mutation. Oncotarget 2017; 8:17628-17642. [PMID: 27682873 PMCID: PMC5392274 DOI: 10.18632/oncotarget.12192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 02/01/2023] Open
Abstract
Tumor suppressor genes and their effector pathways have been identified for many dominantly heritable cancers, enabling efforts to intervene early in the course of disease. Our approach on the subject of early intervention was to investigate gene expression patterns of morphologically normal "one-hit" cells before they become hemizygous or homozygous for the inherited mutant gene which is usually required for tumor formation. Here, we studied histologically non-transformed renal epithelial cells from patients with inherited disorders that predispose to renal tumors, including von Hippel-Lindau (VHL) disease and Tuberous Sclerosis (TSC). As controls, we studied histologically normal cells from non-cancerous renal epithelium of patients with sporadic clear cell renal cell carcinoma (ccRCC). Gene expression analyses of VHLmut/wt or TSC1/2mut/wt versus wild-type (WT) cells revealed transcriptomic alterations previously implicated in the transition to precancerous renal lesions. For example, the gene expression changes in VHLmut/wt cells were consistent with activation of the hypoxia response, associated, in part, with the "Warburg effect". Knockdown of any remaining VHL mRNA using shRNA induced secondary expression changes, such as activation of NFκB and interferon pathways, that are fundamentally important in the development of RCC. We posit that this is a general pattern of hereditary cancer predisposition, wherein haploinsufficiency for VHL or TSC1/2, or potentially other tumor susceptibility genes, is sufficient to promote development of early lesions, while cancer results from inactivation of the remaining normal allele. The gene expression changes identified here are related to the metabolic basis of renal cancer and may constitute suitable targets for early intervention.
Collapse
Affiliation(s)
- Suraj Peri
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Elena Caretti
- Cancer Epigenetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Mitchell Cheung
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Craig W. Menges
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Lisa A. Vanderveer
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sharon Howard
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peggy Conrad
- University of California San Francisco, San Francisco, CA, USA
| | - James A. Crowell
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Rockville, MD, USA
| | - Kerry S. Campbell
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric A. Ross
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anthony T. Yeung
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Margie L. Clapper
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Robert G. Uzzo
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Kidney Cancer Programs, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Elizabeth P. Henske
- Brigham and Womens Hospital, Harvard Medical School, Boston, MA, NCI, Bethesda, MD, USA
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | - Cathy D. Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | - Joseph R. Testa
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Kidney Cancer Programs, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
6
|
Subbaramaiah K, Brown KA, Zahid H, Balmus G, Weiss RS, Herbert BS, Dannenberg AJ. Hsp90 and PKM2 Drive the Expression of Aromatase in Li-Fraumeni Syndrome Breast Adipose Stromal Cells. J Biol Chem 2016; 291:16011-23. [PMID: 27467582 PMCID: PMC4965552 DOI: 10.1074/jbc.m115.698902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/23/2016] [Indexed: 11/06/2022] Open
Abstract
Li-Fraumeni syndrome (LFS) patients harbor germ line mutations in the TP53 gene and are at increased risk of hormone receptor-positive breast cancers. Recently, elevated levels of aromatase, the rate-limiting enzyme for estrogen biosynthesis, were found in the breast tissue of LFS patients. Although p53 down-regulates aromatase expression, the underlying mechanisms are incompletely understood. In the present study, we found that LFS stromal cells expressed higher levels of Hsp90 ATPase activity and aromatase compared with wild-type stromal cells. Inhibition of Hsp90 ATPase suppressed aromatase expression. Silencing Aha1 (activator of Hsp90 ATPase 1), a co-chaperone of Hsp90 required for its ATPase activity, led to both inhibition of Hsp90 ATPase activity and reduced aromatase expression. In comparison with wild-type stromal cells, increased levels of the Hsp90 client proteins, HIF-1α, and PKM2 were found in LFS stromal cells. A complex comprised of HIF-1α and PKM2 was recruited to the aromatase promoter II in LFS stromal cells. Silencing either HIF-1α or PKM2 suppressed aromatase expression in LFS stromal cells. CP-31398, a p53 rescue compound, suppressed levels of Aha1, Hsp90 ATPase activity, levels of PKM2 and HIF-1α, and aromatase expression in LFS stromal cells. Consistent with these in vitro findings, levels of Hsp90 ATPase activity, Aha1, HIF-1α, PKM2, and aromatase were increased in the mammary glands of p53 null versus wild-type mice. PKM2 and HIF-1α were shown to co-localize in the nucleus of stromal cells of LFS breast tissue. Taken together, our results show that the Aha1-Hsp90-PKM2/HIF-1α axis mediates the induction of aromatase in LFS.
Collapse
Affiliation(s)
- Kotha Subbaramaiah
- From the Department of Medicine, Weill Cornell Medical College, New York, New York 10065,
| | - Kristy A Brown
- the Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Heba Zahid
- the Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, Monash University, Clayton, Victoria 3800, Australia, the Faculty of Applied Medical Science, Taibah University, Medina, Saudi Arabia
| | - Gabriel Balmus
- the Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, and
| | - Robert S Weiss
- the Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, and
| | - Brittney-Shea Herbert
- the Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Andrew J Dannenberg
- From the Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
7
|
Pećina-Šlaus N, Kafka A, Vladušić T, Tomas D, Logara M, Skoko J, Hrašćan R. Loss of p53 expression is accompanied by upregulation of beta-catenin in meningiomas: a concomitant reciprocal expression. Int J Exp Pathol 2016; 97:159-69. [PMID: 27292269 DOI: 10.1111/iep.12186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/13/2016] [Indexed: 12/13/2022] Open
Abstract
Crosstalk between Wnt and p53 signalling pathways in cancer has long been suggested. Therefore in this study we have investigated the involvement of these pathways in meningiomas by analysing their main effector molecules, beta-catenin and p53. Cellular expression of p53 and beta-catenin proteins and genetic changes in TP53 were analysed by immunohistochemistry, PCR/RFLP and direct sequencing of TP53 exon 4. All the findings were analysed statistically. Our analysis showed that 47.5% of the 59 meningiomas demonstrated loss of expression of p53 protein. Moderate and strong p53 expression in the nuclei was observed in 8.5% and 6.8% of meningiomas respectively. Gross deletion of TP53 gene was observed in one meningioma, but nucleotide alterations were observed in 35.7% of meningiomas. In contrast, beta-catenin, the main Wnt signalling molecule, was upregulated in 71.2%, while strong expression was observed in 28.8% of meningiomas. The concomitant expressions of p53 and beta-catenin were investigated in the same patients. In the analysed meningiomas, the levels of the two proteins were significantly negatively correlated (P = 0.002). This indicates that meningiomas with lost p53 upregulate beta-catenin and activate Wnt signalling. Besides showing the reciprocal relationship between proteins, we also showed that the expression of p53 was significantly (P = 0.021) associated with higher meningioma grades (II and III), while beta-catenin upregulation was not associated with malignancy grades. Additionally, women exhibited significantly higher values of p53 loss when compared to males (P = 0.005). Our findings provide novel information about p53 involvement in meningeal brain tumours and reveal the complex relationship between Wnt and p53 signalling, they suggest an important role for beta-catenin in these tumours.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tomislav Vladušić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Davor Tomas
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Hospital Centre 'Sisters of Charity', Zagreb, Croatia
| | - Monika Logara
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Josip Skoko
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,University of Stuttgart Institute of Cell Biology and Immunology, D-70569 Stuttgart, Germany
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Liu JC, Egan SE, Zacksenhaus E. A Tumor initiating cell-enriched prognostic signature for HER2+:ERα- breast cancer; rationale, new features, controversies and future directions. Oncotarget 2014; 4:1317-28. [PMID: 23945331 PMCID: PMC3787160 DOI: 10.18632/oncotarget.1170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The high intra- and inter-tumor heterogeneity of many types of cancers, including breast cancer (BC), poses great challenge to development of subtype-specific prognosis. In BC, the classification of tumors as either ERα+ (Luminal A and Luminal B), HER2+ (ERα+ or ERα−) or triple-negative (TNBC)(Basal-like, claudin-low) guides both prognostication and therapy. Indeed, prognostic signatures for ERα+ BC are being incorporated into clinical use. However, these signatures distinguish between luminal A (low risk) and Luminal B (high risk) BC; signatures that identify low/high risk patients with luminal B BC are yet to be developed. Likewise, no signature is in clinical use for HER2+ or TNBC. The major obstacles to development of robust signatures stem from diversity of BC, clonal evolution and heterogeneity within each subtype. We have recently generated a prognostic signature for HER2+:ERα− BC based on the identification of genes that were differentially expressed in a tumor-initiating cell (TIC)-enriched fraction versus non-TIC fraction from a mouse model of HER2+ BC (MMTV-Hers/Neu). Here we describe the rationale behind development of this prognosticator, and present new features of the signature, including elevated PI3K pathway activity and low TNFalpha and IFNgamma signaling in high-risk tumors. In addition, we address controversies in the field such as whether random gene expression signatures significantly associate with cancer outcome. Finally, we suggest a guideline for development of prognostic signatures and discuss future directions.
Collapse
Affiliation(s)
- Jeff C Liu
- Division of Cell and Molecular Biology, Toronto General Research Institute - University Health Network, Toronto, Canada.
| | | | | |
Collapse
|
9
|
Kochhar A, Kopelovich L, Sue E, Guttenplan JB, Herbert BS, Dannenberg AJ, Subbaramaiah K. p53 modulates Hsp90 ATPase activity and regulates aryl hydrocarbon receptor signaling. Cancer Prev Res (Phila) 2014; 7:596-606. [PMID: 24736433 PMCID: PMC4074578 DOI: 10.1158/1940-6207.capr-14-0051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), a client protein of heat shock protein 90 (Hsp90), is a ligand-activated transcription factor that plays a role in polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis. Tobacco smoke activates AhR signaling leading to increased transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to mutagens. Recently, p53 was found to regulate Hsp90 ATPase activity via effects on activator of Hsp90 ATPase (Aha1). It is possible, therefore, that AhR-dependent expression of CYP1A1 and CYP1B1 might be affected by p53 status. The main objective of this study was to determine whether p53 modulated AhR-dependent gene expression and PAH metabolism. Here, we show that silencing p53 led to elevated Aha1 levels, increased Hsp90 ATPase activity, and enhanced CYP1A1 and CYP1B1 expression. Overexpression of wild-type p53 suppressed levels of CYP1A1 and CYP1B1. The significance of Aha1 in mediating these p53-dependent effects was determined. Silencing of Aha1 led to reduced Hsp90 ATPase activity and downregulation of CYP1A1 and CYP1B1. In contrast, overexpressing Aha1 was associated with increased Hsp90 ATPase activity and elevated levels of CYP1A1 and CYP1B1. Using p53 heterozygous mutant epithelial cells from patients with Li-Fraumeni syndrome, we show that monoallelic mutation of p53 was associated with elevated levels of CYP1A1 and CYP1B1 under both basal conditions and following treatment with benzo[a]pyrene. Treatment with CP-31398, a p53 rescue compound, suppressed benzo[a]pyrene-mediated induction of CYP1A1 and CYP1B1 and the formation of DNA adducts. Collectively, our results suggest that p53 affects AhR-dependent gene expression, PAH metabolism, and possibly carcinogenesis.
Collapse
Affiliation(s)
- Amit Kochhar
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IndianaAuthors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Levy Kopelovich
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Erika Sue
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph B Guttenplan
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IndianaAuthors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brittney-Shea Herbert
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J Dannenberg
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kotha Subbaramaiah
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
10
|
Puig-Butille JA, Escámez MJ, Garcia-Garcia F, Tell-Marti G, Fabra À, Martínez-Santamaría L, Badenas C, Aguilera P, Pevida M, Dopazo J, del Río M, Puig S. Capturing the biological impact of CDKN2A and MC1R genes as an early predisposing event in melanoma and non melanoma skin cancer. Oncotarget 2014; 5:1439-51. [PMID: 24742402 PMCID: PMC4039222 DOI: 10.18632/oncotarget.1444] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 12/19/2022] Open
Abstract
Germline mutations in CDKN2A and/or red hair color variants in MC1R genes are associated with an increased susceptibility to develop cutaneous melanoma or non melanoma skin cancer. We studied the impact of the CDKN2A germinal mutation p.G101W and MC1R variants on gene expression and transcription profiles associated with skin cancer. To this end we set-up primary skin cell co-cultures from siblings of melanoma prone-families that were later analyzed using the expression array approach. As a result, we found that 1535 transcripts were deregulated in CDKN2A mutated cells, with over-expression of immunity-related genes (HLA-DPB1, CLEC2B, IFI44, IFI44L, IFI27, IFIT1, IFIT2, SP110 and IFNK) and down-regulation of genes playing a role in the Notch signaling pathway. 3570 transcripts were deregulated in MC1R variant carriers. In particular, genes related to oxidative stress and DNA damage pathways were up-regulated as well as genes associated with neurodegenerative diseases such as Parkinson's, Alzheimer and Huntington. Finally, we observed that the expression signatures indentified in phenotypically normal cells carrying CDKN2A mutations or MC1R variants are maintained in skin cancer tumors (melanoma and squamous cell carcinoma). These results indicate that transcriptome deregulation represents an early event critical for skin cancer development.
Collapse
Affiliation(s)
- Joan Anton Puig-Butille
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - María José Escámez
- Regenerative Medicine Unit. Epithelial Biomedicine Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Department of Bioengineering. Universidad Carlos III (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Francisco Garcia-Garcia
- Functional Genomics Node, National Institute of Bioinformatics, CIPF Valencia, Spain
- Department of Bioinformatics, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Gemma Tell-Marti
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
| | - Àngels Fabra
- Biological Clues of the Invasive and Metastatic Phenotype Group. Molecular Oncology Lab, IDIBELL, Barcelona, Spain
| | - Lucía Martínez-Santamaría
- Regenerative Medicine Unit. Epithelial Biomedicine Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Department of Bioengineering. Universidad Carlos III (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Celia Badenas
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Paula Aguilera
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Marta Pevida
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Tissue Engineering Unit. Centro Comunitario de Sangre y Tejidos del Principado de Asturias (CCST), Oviedo, Spain
| | - Joaquín Dopazo
- Functional Genomics Node, National Institute of Bioinformatics, CIPF Valencia, Spain
- Department of Bioinformatics, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Marcela del Río
- Regenerative Medicine Unit. Epithelial Biomedicine Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Department of Bioengineering. Universidad Carlos III (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Susana Puig
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
11
|
Okayama S, Kopelovich L, Balmus G, Weiss RS, Herbert BS, Dannenberg AJ, Subbaramaiah K. p53 protein regulates Hsp90 ATPase activity and thereby Wnt signaling by modulating Aha1 expression. J Biol Chem 2014; 289:6513-6525. [PMID: 24451373 PMCID: PMC3945316 DOI: 10.1074/jbc.m113.532523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/21/2014] [Indexed: 01/07/2023] Open
Abstract
The p53 tumor suppressor gene encodes a homotetrameric transcription factor which is activated in response to a variety of cellular stressors, including DNA damage and oncogene activation. p53 mutations occur in >50% of human cancers. Although p53 has been shown to regulate Wnt signaling, the underlying mechanisms are not well understood. Here we show that silencing p53 in colon cancer cells led to increased expression of Aha1, a co-chaperone of Hsp90. Heat shock factor-1 was important for mediating the changes in Aha1 levels. Increased Aha1 levels were associated with enhanced interactions with Hsp90, resulting in increased Hsp90 ATPase activity. Moreover, increased Hsp90 ATPase activity resulted in increased phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β), leading to enhanced expression of Wnt target genes. Significantly, levels of Aha1, Hsp90 ATPase activity, Akt, and GSK3β phosphorylation and expression of Wnt target genes were increased in the colons of p53-null as compared with p53 wild type mice. Using p53 heterozygous mutant epithelial cells from Li-Fraumeni syndrome patients, we show that a monoallelic mutation of p53 was sufficient to activate the Aha1/Hsp90 ATPase axis leading to stimulation of Wnt signaling and increased expression of Wnt target genes. Pharmacologic intervention with CP-31398, a p53 rescue agent, inhibited recruitment of Aha1 to Hsp90 and suppressed Wnt-mediated gene expression in colon cancer cells. Taken together, this study provides new insights into the mechanism by which p53 regulates Wnt signaling and raises the intriguing possibility that p53 status may affect the efficacy of anticancer therapies targeting Hsp90 ATPase.
Collapse
Affiliation(s)
- Sachiyo Okayama
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Gabriel Balmus
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Andrew J Dannenberg
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Kotha Subbaramaiah
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065.
| |
Collapse
|
12
|
Nabilsi NH, Ryder DJ, Peraza-Penton AC, Poudyal R, Loose DS, Kladde MP. Local depletion of DNA methylation identifies a repressive p53 regulatory region in the NEK2 promoter. J Biol Chem 2013; 288:35940-51. [PMID: 24163369 DOI: 10.1074/jbc.m113.523837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome-scale mapping suggests that the function of DNA methylation varies with genomic context beyond transcriptional repression. However, the use of DNA-demethylating agents (e.g. 5-aza-2'-deoxycytidine (5aza-dC)) to study epigenetic regulation often focuses on gene activation and ignores repression elicited by 5aza-dC. Here, we show that repression of NEK2, which encodes the never in mitosis A (NIMA)-related kinase, by 5aza-dC is context-specific as NEK2 transcript levels were reduced in HCT116 colon cancer cells but not in isogenic p53(-/-) cells. Bisulfite sequencing showed that DNA methylation was restricted to the distal region of the NEK2 promoter. Demethylation by 5aza-dC was associated with increased accessibility to micrococcal nuclease, i.e. nucleosome depletion. Conversely, methyltransferase accessibility protocol for individual templates (MAPit) methylation footprinting showed that nucleosome occupancy and DNA methylation at the distal promoter were significantly increased in p53(-/-) cells, suggesting dynamic regulation of chromatin structure at this region by p53 in HCT116 cells. Stabilization of endogenous p53 by doxorubicin or ectopic expression of p53, but not a p53 DNA-binding mutant, decreased NEK2 expression. Chromatin immunoprecipitation demonstrated direct and specific association of p53 with the distal NEK2 promoter, which was enhanced by doxorubicin. Luciferase reporters confirmed that this region is required for p53-mediated repression of NEK2 promoter activity. Lastly, modulation of p53 abundance altered nucleosome occupancy and DNA methylation at its binding region. These results identify NEK2 as a novel p53-repressed gene, illustrate that its repression by 5aza-dC is specific and associated with nucleosome reorganization, and provide evidence that identification of partially methylated regions can reveal novel p53 target genes.
Collapse
Affiliation(s)
- Nancy H Nabilsi
- From the Department of Biochemistry and Molecular Biology, University of Florida Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610
| | | | | | | | | | | |
Collapse
|
13
|
Fan M, Pfeffer SR, Lynch HT, Cassidy P, Leachman S, Pfeffer LM, Kopelovich L. Altered transcriptome signature of phenotypically normal skin fibroblasts heterozygous for CDKN2A in familial melanoma: relevance to early intervention. Oncotarget 2013; 4:128-41. [PMID: 23371019 PMCID: PMC3702213 DOI: 10.18632/oncotarget.786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Familial melanoma (FM) is a dominantly heritable cancer that is associated with mutations in the tumor suppressor CDKN2A/p16. In FM, a single inherited “hit” occurs in every somatic cell, enabling interrogation of cultured normal skin fibroblasts (SFs) from FM gene carriers as surrogates for the cell of tumor origin, namely the melanocyte. We compared the gene expression profile of SFs from FM individuals with two distinct CDKN2A/p16 mutations (V126D-p16 and R87P-p16) with the gene expression profile of SFs from age-matched individuals without p16 mutations and with no family history of melanoma. We show an altered transcriptome signature in normal SFs bearing a single-hit inherited mutation in the CDKN2A/p16 gene, wherein some of these abnormal alterations recapitulate changes observed in the corresponding cancer. Significantly, the extent of the alterations is mutation-site specific with the R87P-p16 mutation being more disruptive than the V126D-p16 mutation. We also examined changes in gene expression after exposure to ultraviolet (UV) radiation to define potential early biomarkers triggered by sun exposure. UV treatment of SFs from FM families induces distinct alterations in genes related to cell cycle regulation and DNA damage responses that are also reported to be dysregulated in melanoma. Importantly, these changes were diametrically opposed to UV-induced changes in SF from normal controls. We posit that changes identified in the transcriptome of SF from FM mutation carriers represent early events critical for melanoma development. As such, they may serve as specific biomarkers of increased risk as well as molecular targets for personalized prevention strategies in high-risk populations.
Collapse
Affiliation(s)
- Meiyun Fan
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kopelovich L, Shea-Herbert B. Heritable one-hit events defining cancer prevention? Cell Cycle 2013; 12:2553-7. [PMID: 23907126 DOI: 10.4161/cc.25690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over 100 years ago (1902-1914) Theodor Boveri suggested a role for mutations in cancer. Boveri's ideas were derived from the then "just-emerging" chromosome theory of inheritance. While demonstrating chromosomal aberrations as a cause of genetic imbalance, Boveri suggested that possible causes of malignancy may include events such as aneuploidy that are now defined as gene mutations, asserting all the while that malignancy occurs at the cellular level. Indeed, studies to date essentially uniformly show that cancer is a genetic disease.
Collapse
Affiliation(s)
- Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
15
|
Komarova EA, Antoch MP, Novototskaya LR, Chernova OB, Paszkiewicz G, Leontieva OV, Blagosklonny MV, Gudkov AV. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/- mice. Aging (Albany NY) 2013; 4:709-14. [PMID: 23123616 PMCID: PMC3517941 DOI: 10.18632/aging.100498] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The TOR (Target of Rapamycin) pathway accelerates cellular and organismal aging. Similar to rapamycin, p53 can inhibit the mTOR pathway in some mammalian cells. Mice lacking one copy of p53 (p53+/− mice) have an increased cancer incidence and a shorter lifespan. We hypothesize that rapamycin can delay cancer in heterozygous p53+/− mice. Here we show that rapamycin (given in a drinking water) extended the mean lifespan of p53+/− mice by 10% and when treatment started early in life (at the age less than 5 months) by 28%. In addition, rapamycin decreased the incidence of spontaneous tumors. This observation may have applications in management of Li-Fraumeni syndrome patients characterized by heterozygous mutations in the p53 gene.
Collapse
Affiliation(s)
- Elena A Komarova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, Mazzarino MC, Fagone P, Nicoletti F, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Chiarini F, Evangelisti C, Cocco L, Martelli AM. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2013; 3:1068-111. [PMID: 23085539 PMCID: PMC3717945 DOI: 10.18632/oncotarget.659] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chappell WH, Abrams SL, Franklin RA, LaHair MM, Montalto G, Cervello M, Martelli AM, Nicoletti F, Candido S, Libra M, Polesel J, Talamini R, Milella M, Tafuri A, Steelman LS, McCubrey JA. Ectopic NGAL expression can alter sensitivity of breast cancer cells to EGFR, Bcl-2, CaM-K inhibitors and the plant natural product berberine. Cell Cycle 2012; 11:4447-61. [PMID: 23159854 PMCID: PMC3552927 DOI: 10.4161/cc.22786] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, this expression did not alter the sensitivity of these cells to doxorubicin as compared with empty vector-transduced cells. We were also interested in determining the effects of ectopic NGAL expression on the sensitivity to small-molecule inhibitors targeting key signaling molecules. Ectopic NGAL expression increased the sensitivity of MCF-7 breast cancer cells to EGFR, Bcl-2 and calmodulin kinase inhibitors as well as the natural plant product berberine. Furthermore, when suboptimal concentrations of certain inhibitors were combined with doxorubicin, a reduction in the doxorubicin IC 50 was frequently observed. An exception was observed when doxorubicin was combined with rapamycin, as doxorubicin suppressed the sensitivity of the NGAL-transduced MCF-7 cells to rapamycin when compared with the empty vector controls. In contrast, changes in the sensitivities of the NGAL-transduced HT-29 colorectal cancer cell line and the breast epithelial MCF-10A cell line were not detected compared with empty vector-transduced cells. Doxorubicin-resistant MCF-7/Dox (R) cells were examined in these experiments as a control drug-resistant line; it displayed increased sensitivity to EGFR and Bcl-2 inhibitors compared with empty vector transduced MCF-7 cells. These results indicate that NGAL expression can alter the sensitivity of certain cancer cells to small-molecule inhibitors, suggesting that patients whose tumors exhibit elevated NGAL expression or have become drug-resistant may display altered responses to certain small-molecule inhibitors.
Collapse
Affiliation(s)
- William H. Chappell
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Stephen L. Abrams
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Richard A. Franklin
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Michelle M. LaHair
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Giuseppe Montalto
- Department of Internal Medicine and Specialties; University of Palermo; Palermo, Italy
- Consiglio Nazionale delle Ricerche; Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”; Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche; Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”; Palermo, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences; Università di Bologna; Bologna, Italy
- Institute of Molecular Genetics; National Research Council-Rizzoli Orthopedic Institute; Bologna, Italy
| | | | - Saverio Candido
- Department of Bio-Medical Sciences; University of Catania; Catania, Italy
| | - Massimo Libra
- Department of Bio-Medical Sciences; University of Catania; Catania, Italy
| | - Jerry Polesel
- Unit of Epidemiology and Biostatistics; Centro di Riferimento Oncologico; IRCCS; Aviano, Italy
| | - Renato Talamini
- Unit of Epidemiology and Biostatistics; Centro di Riferimento Oncologico; IRCCS; Aviano, Italy
| | | | - Agostino Tafuri
- Department of Cellular Biotechnology and Hematology; University of Rome, Sapienza; Rome, Italy
| | - Linda S. Steelman
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - James A. McCubrey
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| |
Collapse
|
18
|
Radivoyevitch T, Saunthararajah Y, Pink J, Ferris G, Lent I, Jackson M, Junk D, Kunos CA. dNTP Supply Gene Expression Patterns after P53 Loss. Cancers (Basel) 2012; 4:1212-24. [PMID: 23205301 PMCID: PMC3509543 DOI: 10.3390/cancers4041212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 10/27/2012] [Accepted: 11/15/2012] [Indexed: 11/24/2022] Open
Abstract
Loss of the transcription factor p53 implies mRNA losses of target genes such as the p53R2 subunit of human ribonucleotide reductase (RNR). We hypothesized that other genes in the dNTP supply system would compensate for such p53R2 losses and looked for this in our own data and in data of the Gene Expression Omnibus (GEO). We found that the de novo dNTP supply system compensates for p53R2 losses with increases in RNR subunit R1, R2, or both. We also found compensatory increases in cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) and in mitochondrial deoxyguanosine kinase (dGK), all of the salvage dNTP supply system; in contrast, the remaining mitochondrial salvage enzyme thymidine kinase 2 (TK2) decreased with p53 loss. Thus, TK2 may be more dedicated to meeting mitochondrial dNTP demands than dGK which may be more obligated to assist cytosolic dNTP supply in meeting nuclear DNA dNTP demands.
Collapse
Affiliation(s)
- Tomas Radivoyevitch
- Departments of Epidemiology and Biostatistics, General Medical Sciences (Oncology), and Pathology, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA; E-Mails: (J.P.); (I.L.); (M.J.); (D.J.)
| | - Yogen Saunthararajah
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Ave. R40, Cleveland, OH 44195, USA; E-Mail:
| | - John Pink
- Departments of Epidemiology and Biostatistics, General Medical Sciences (Oncology), and Pathology, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA; E-Mails: (J.P.); (I.L.); (M.J.); (D.J.)
| | - Gina Ferris
- Department of Radiation Oncology, University Hospitals Case Medical Center and Case Western Reserve School of Medicine, Cleveland, OH 44106, USA; E-Mails: (G.F.); (C.A.K.)
| | - Ian Lent
- Departments of Epidemiology and Biostatistics, General Medical Sciences (Oncology), and Pathology, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA; E-Mails: (J.P.); (I.L.); (M.J.); (D.J.)
| | - Mark Jackson
- Departments of Epidemiology and Biostatistics, General Medical Sciences (Oncology), and Pathology, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA; E-Mails: (J.P.); (I.L.); (M.J.); (D.J.)
| | - Damian Junk
- Departments of Epidemiology and Biostatistics, General Medical Sciences (Oncology), and Pathology, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA; E-Mails: (J.P.); (I.L.); (M.J.); (D.J.)
| | - Charles A. Kunos
- Department of Radiation Oncology, University Hospitals Case Medical Center and Case Western Reserve School of Medicine, Cleveland, OH 44106, USA; E-Mails: (G.F.); (C.A.K.)
| |
Collapse
|
19
|
Blagosklonny MV. Rapalogs in cancer prevention: anti-aging or anticancer? Cancer Biol Ther 2012; 13:1349-54. [PMID: 23151465 DOI: 10.4161/cbt.22859] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Common cancer is an age-related disease. Slow aging is associated with reduced and delayed carcinogenesis. Calorie restriction (CR), the most studied anti-aging intervention, prevents cancer by slowing down the aging process. Evidence is emerging that CR decelerates aging by deactivating MTOR (Target of Rapamycin). Rapamycin and other rapalogs suppress cellular senescence, slow down aging and postpone age-related diseases including cancer. At the same time, rapalogs are approved for certain cancer treatments. Can cancer prevention be explained by direct targeting of cancer cells? Or does rapamycin prevent cancer indirectly through slowing down the aging process? Increasing evidence points to the latter scenario.
Collapse
|
20
|
Zhang CZY, Chen GG, Merchant JL, Lai PBS. Interaction between ZBP-89 and p53 mutants and its contribution to effects of HDACi on hepatocellular carcinoma. Cell Cycle 2012; 11:322-34. [PMID: 22214764 DOI: 10.4161/cc.11.2.18758] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ZBP-89, a zinc finger transcription factor, participates in histone deacetylases inhibitors (HDACi)-mediated growth arrest and apoptosis in cancer cells. p53 mutants may interact with ZBP-89 that transcriptionally regulates p21(Waf1) (p21). However, this interaction and its consequence in cancer treatments are poorly understood. In this study, we demonstrate that ZBP‑89 is essentially required in HDACi-mediated p21 upregulation in hepetocellular carcinoma (HCC). Overexpression of ZBP-89 protein enhanced the lethal effectiveness of Trichostatin A (TSA). p53 mutant p53(G245D), but not p53(R249S), directly bound to ZBP-89 and prevented its translocation from cytoplasm to nucleus. Furthermore, p53(G245D) was shown to have a similar pattern of subcellular localization to ZBP-89 in tissues of HCC patients in Hong Kong. Functionally, the cytoplasmic accumulation of ZBP-89 by p53(G245D) significantly abrogated the induction of p21 caused by sodium butyrate (NaB) treatment and protected cells from TSA-induced death. The activations of several apoptotic proteins, such as Bid and PARP, were involved in p53(G245D)-mediated protection. Moreover, the resistance to HDACi in p53(G245D)-expressing cells was reversed by overexpression of ZBP-89. Taken together, these data suggest a potential mechanism via which mutant p53 enables tumor cells to resist chemotherapy and, therefore, establish a plausible link between mutant p53 binding to ZBP-89 and a decreased chemosensitivity of HCC cells.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT Hong Kong
| | | | | | | |
Collapse
|
21
|
Athar M, Elmets CA, Kopelovich L. Pharmacological activation of p53 in cancer cells. Curr Pharm Des 2011; 17:631-9. [PMID: 21391904 DOI: 10.2174/138161211795222595] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 12/25/2022]
Abstract
Tumor suppressor p53 is a transcription factor that regulates a large number of genes and guards against genomic instability. Under multiple cellular stress conditions, p53 functions to block cell cycle progression transiently unless proper DNA repair occurs. Failure of DNA repair mechanisms leads to p53-mediated induction of cell death programs. p53 also induces permanent cell cycle arrest known as cellular senescence. During neoplastic progression, p53 is often mutated and fails to efficiently perform these functions. It has been observed that cancers carrying a wild-type p53 may also have interrupted downstream p53 regulatory signaling leading to disruption in p53 functions. Therefore, strategies to reactivate p53 provide an attractive approach for blocking tumor pathogenesis and its progression. p53 activation may also lead to regression of existing early neoplastic lesions and therefore may be important in developing cancer chemoprevention protocols. A large number of small molecules capable of reactivating p53 have been developed and some are progressing through clinical trials for prospective human applications. However, several questions remain to be answered at this stage. For example, it is not certain if pharmacological activation of p53 will restore all of its multifaceted biological responses, assuming that the targeted cell is not killed following p53 activation. It remains to be demonstrated whether the distinct biological effects regulated by specific post-translationally modified p53 can effectively be restored by refolding mutant p53. Mutant p53 can be classified as a loss-of-function or gain-of-function protein depending on the type of mutation. It is also unclear whether reactivation of mutant p53 has similar consequences in cells carrying gain-of-function and loss-of-function p53 mutants. This review provides a description of various pharmacological approaches tested to activate p53 (both wild-type and mutant) and to assess the effects of activated p53 on neoplastic progression.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, The University of Alabama at Birmingham, Volker Hall, Room 509, 1530 3rd Avenue South, Birmingham, Alabama 35294-0019, USA.
| | | | | |
Collapse
|
22
|
Patel BB, Li XM, Dixon MP, Blagoi EL, Nicolas E, Seeholzer SH, Cheng D, He YA, Coudry RA, Howard SD, Riddle DM, Cooper HS, Boman BM, Conrad P, Crowell JA, Bellacosa A, Knudson A, Yeung AT, Kopelovich L. APC +/- alters colonic fibroblast proteome in FAP. Oncotarget 2011; 2:197-208. [PMID: 21411865 PMCID: PMC3195363 DOI: 10.18632/oncotarget.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/15/2011] [Indexed: 12/02/2022] Open
Abstract
Here we compared the proteomes of primary fibroblast cultures derived from morphologically normal colonic mucosa of familial adenomatous polyposis (FAP) patients with those obtained from unaffected controls. The expression signature of about 19% of total fibroblast proteins separates FAP mutation carriers from unaffected controls (P < 0.01). More than 4,000 protein spots were quantified by 2D PAGE analysis, identifying 368 non-redundant proteins and 400 of their isoforms. Specifically, all three classes of cytoskeletal filaments and their regulatory proteins were altered as were oxidative stress response proteins. Given that FAP fibroblasts showed heightened sensitivity to transformation by KiMSV and SV40 including elevated levels of the p53 protein, events controlled in large measure by the Ras suppressor protein-1 (RSU-1) and oncogenic DJ-1, here we show decreased RSU1 and augmented DJ-1 expression in both fibroblasts and crypt-derived epithelial cells from morphologically normal colonic mucosa of FAP gene-carriers. The results indicate that heterozygosity for a mutant APC tumor suppressor gene alters the proteomes of both colon-derived normal fibroblasts in a gene-specific manner, consistent with a "one-hit" effect.
Collapse
Affiliation(s)
| | - Xin-Ming Li
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maketa P. Dixon
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elena L. Blagoi
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emmanuelle Nicolas
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Steven H. Seeholzer
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - David Cheng
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yin A. He
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Renata A. Coudry
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sharon D. Howard
- Division of Genetic and Preventive Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dawn M. Riddle
- Cell Culture facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harry S. Cooper
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Bruce M. Boman
- Division of Genetic and Preventive Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peggy Conrad
- University of California at San Francisco, San Francisco, California
| | - James A. Crowell
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | | | - Alfred Knudson
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anthony T. Yeung
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|