1
|
Namba T, Huttner WB. What Makes Us Human: Insights from the Evolution and Development of the Human Neocortex. Annu Rev Cell Dev Biol 2024; 40:427-452. [PMID: 39356810 DOI: 10.1146/annurev-cellbio-112122-032521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
"What makes us human?" is a central question of many research fields, notably anthropology. In this review, we focus on the development of the human neocortex, the part of the brain with a key role in cognition, to gain neurobiological insight toward answering this question. We first discuss cortical stem and progenitor cells and human-specific genes that affect their behavior. We thus aim to understand the molecular foundation of the expansion of the neocortex that occurred in the course of human evolution, as this expansion is generally thought to provide a basis for our unique cognitive abilities. We then review the emerging evidence pointing to differences in the development of the neocortex between present-day humans and Neanderthals, our closest relatives. Finally, we discuss human-specific genes that have been implicated in neuronal circuitry and offer a perspective for future studies addressing the question of what makes us human.
Collapse
Affiliation(s)
- Takashi Namba
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany;
| |
Collapse
|
2
|
Xing L, Huttner WB, Namba T. Role of cell metabolism in the pathophysiology of brain size-associated neurodevelopmental disorders. Neurobiol Dis 2024; 199:106607. [PMID: 39029564 DOI: 10.1016/j.nbd.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Cell metabolism is a key regulator of human neocortex development and evolution. Several lines of evidence indicate that alterations in neural stem/progenitor cell (NPC) metabolism lead to abnormal brain development, particularly brain size-associated neurodevelopmental disorders, such as microcephaly. Abnormal NPC metabolism causes impaired cell proliferation and thus insufficient expansion of NPCs for neurogenesis. Therefore, the production of neurons, which is a major determinant of brain size, is decreased and the size of the brain, especially the size of the neocortex, is significantly reduced. This review discusses recent progress understanding NPC metabolism, focusing in particular on glucose metabolism, fatty acid metabolism and amino acid metabolism (e.g., glutaminolysis and serine metabolism). We provide an overview of the contributions of these metabolic pathways to brain development and evolution, as well as to the etiology of neurodevelopmental disorders. Furthermore, we discuss the advantages and disadvantages of various experimental models to study cell metabolism in the developing brain.
Collapse
Affiliation(s)
- Lei Xing
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Developmental Biology, Fujita Health University School of Medicine, Toyoake, Japan; International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Japan.
| |
Collapse
|
3
|
Gao R, Liu Z, Meng M, Song X, He J. Neurogenesis-Associated Protein, a Potential Prognostic Biomarker in Anti-PD-1 Based Kidney Renal Clear Cell Carcinoma Patient Therapeutics. Pharmaceuticals (Basel) 2024; 17:451. [PMID: 38675412 PMCID: PMC11053496 DOI: 10.3390/ph17040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The transketolase 1 gene (TKTL1) is an essential factor that contributes to brain development. Some studies have shown the influence of TKTL1 in cancers, but it has been rarely reported in kidney cancer. Furthermore, the role of TKTL1 in the prognosis and tumor infiltration of immune cells in various cancers, particularly kidney cancer, remains unknown. In this study, TKTL1 expression and its clinical characteristics were investigated using a variety of databases. TIMER was used to investigate the relationship between TKTL1 and immune infiltrates in various types of cancer. We also studied the relationship between TKTL1 expression and response to PD-1 blocker immunotherapy in renal cancer. We conducted TKTL1 agonists virtual screening from 13,633 natural compounds (L6020), implemented secondary library construction according to the types of top results, and then conducted secondary virtual screening for 367 alkaloids. Finally, in vitro assays of cell viability assays and colony formation assays were performed to demonstrate the pharmacological potency of the screening of TKTL1 agonists. Using these methods, we determined that TKTL1 significantly affects the prognostic potential in different types of kidney cancer patients. The underlying mechanism might be that the TKTL1 expression level was positively associated with devious immunocytes in kidney renal clear cell carcinoma (KIRC) rather than in kidney renal papillary cell carcinoma (KIRP) and kidney chromophobe (KICH). This recruitment may result from the up-regulation of the mTOR signaling pathway affecting T cell metabolism. We also found that TKTL1 may act as an immunomodulator in KIRC patients' response to anti-PD-1 therapy. Moreover, we also found that piperine and glibenclamide are potent agonists of TKTL1. We have demonstrated, in vitro, that piperine and glibenclamide can inhibit the proliferation and clone formation of Caki-2 cell lines by agonizing the expression of TKTL1. In summary, our discovery implies that TKTL1 may be a promising prognostic biomarker for KIRC patients who respond to anti-PD-1 therapy. Piperine and glibenclamide may be effective therapeutic TKTL1 agonists, providing a theoretical basis for the clinical treatment of kidney cancer.
Collapse
Affiliation(s)
- Rui Gao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.G.); (Z.L.); (M.M.)
| | - Zixue Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.G.); (Z.L.); (M.M.)
| | - Mei Meng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.G.); (Z.L.); (M.M.)
| | - Xuefei Song
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian He
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.G.); (Z.L.); (M.M.)
| |
Collapse
|
4
|
Dehay C, Huttner WB. Development and evolution of the primate neocortex from a progenitor cell perspective. Development 2024; 151:dev199797. [PMID: 38369736 DOI: 10.1242/dev.199797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The generation of neurons in the developing neocortex is a major determinant of neocortex size. Crucially, the increase in cortical neuron numbers in the primate lineage, notably in the upper-layer neurons, contributes to increased cognitive abilities. Here, we review major evolutionary changes affecting the apical progenitors in the ventricular zone and focus on the key germinal zone constituting the foundation of neocortical neurogenesis in primates, the outer subventricular zone (OSVZ). We summarize characteristic features of the OSVZ and its key stem cell type, the basal (or outer) radial glia. Next, we concentrate on primate-specific and human-specific genes, expressed in OSVZ-progenitors, the ability of which to amplify these progenitors by targeting the regulation of the cell cycle ultimately underlies the evolutionary increase in upper-layer neurons. Finally, we address likely differences in neocortical development between present-day humans and Neanderthals that are based on human-specific amino acid substitutions in proteins operating in cortical progenitors.
Collapse
Affiliation(s)
- Colette Dehay
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
5
|
Hao S, Meng Q, Sun H, Yang X, Liu B, Zhang Y, Zhou H, Xu Z, Wang Y. Human papillomavirus type 16 E6 promotes cervical cancer proliferation by upregulating transketolase enzymatic activity through the activation of protein kinase B. Mol Carcinog 2024; 63:339-355. [PMID: 37988232 DOI: 10.1002/mc.23656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Over 99% of precancerous cervical lesions are associated with human papillomavirus (HPV) infection, with HPV types 16 and 18 (especially type 16) found in over 70% of cervical cancer cases globally. E6, a critical HPV gene, triggers malignant proliferation by degrading p53; however, this mechanism alone cannot fully explain the oncogenic effects of HPV16 E6. Therefore, we aimed to investigate new targets of HPV oncogenic mechanisms. Our results revealed significant changes in nonoxidative pentose phosphate pathway (PPP) metabolites in HPV16-positive cells. However, the role of nonoxidative PPP in HPV-associated cell transformation and tumor development remained unexplored. In this study, we investigated the impact and mechanisms of HPV16 E6 on cervical cancer proliferation using the HPV-negative cervical cancer cell line (C33A). HPV16 E6 was found to promote cervical cancer cell proliferation both in vitro and in vivo, activating the nonoxidative PPP. Transketolase (TKT), a key enzyme in the nonoxidative PPP, is highly expressed in cervical cancer tissues and associated with poor prognosis. HPV16 E6 promotes cervical cancer cell proliferation by upregulating TKT activity through the activation of AKT. In addition, oxythiamine (OT), a TKT inhibitor, hindered tumor growth, with enhanced effects when combined with cisplatin (DDP). In conclusion, HPV16 E6 promotes cervical cancer proliferation by upregulating TKT activity through the activation of AKT. OT demonstrates the potential to inhibit HPV16-positive cervical cancer growth, and when combined with DDP, could further enhance the tumor-suppressive effect of DDP.
Collapse
Affiliation(s)
- Shiming Hao
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiangzhe Yang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- Department of Medicine, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
6
|
Thommen Q, Hurbain J, Pfeuty B. Stochastic simulation algorithm for isotope-based dynamic flux analysis. Metab Eng 2023; 75:100-109. [PMID: 36402409 DOI: 10.1016/j.ymben.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/05/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
Carbon isotope labeling method is a standard metabolic engineering tool for flux quantification in living cells. To cope with the high dimensionality of isotope labeling systems, diverse algorithms have been developed to reduce the number of variables or operations in metabolic flux analysis (MFA), but lacks generalizability to non-stationary metabolic conditions. In this study, we present a stochastic simulation algorithm (SSA) derived from the chemical master equation of the isotope labeling system. This algorithm allows to compute the time evolution of isotopomer concentrations in non-stationary conditions, with the valuable property that computational time does not scale with the number of isotopomers. The efficiency and limitations of the algorithm is benchmarked for the forward and inverse problems of 13C-DMFA in the pentose phosphate pathways, and is compared with EMU-based methods for NMFA and MFA including the central carbon metabolism. Overall, SSA constitutes an alternative class to deterministic approaches for metabolic flux analysis that is well adapted to comprehensive dataset including parallel labeling experiments, and whose limitations associated to the sampling size can be overcome by using Monte Carlo sampling approaches.
Collapse
Affiliation(s)
- Quentin Thommen
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.
| | - Julien Hurbain
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000, Lille, France
| | - Benjamin Pfeuty
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000, Lille, France
| |
Collapse
|
7
|
Wang HL, Chen Y, Wang YQ, Tao EW, Tan J, Liu QQ, Li CM, Tong XM, Gao QY, Hong J, Chen YX, Fang JY. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability. Nat Commun 2022; 13:6121. [PMID: 36253417 PMCID: PMC9576705 DOI: 10.1038/s41467-022-33903-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
In our previous study, we reported that sirtuin5 (SIRT5), a member of the NAD+-dependent class III histone deacetylase family, is highly expressed in colorectal cancer (CRC). Herein we show that SIRT5 knockdown impairs the production of ribose-5-phosphate, which is essential for nucleotide synthesis, resulting in continuous and irreparable DNA damage and consequently leading to cell cycle arrest and enhanced apoptosis in CRC cells. These SIRT5 silencing-induced effects can be reversed by nucleoside supplementation. Mechanistically, SIRT5 activates transketolase (TKT), a key enzyme in the non-oxidative pentose phosphate pathway, in a demalonylation-dependent manner. Furthermore, TKT is essential for SIRT5-induced malignant phenotypes of CRC both in vivo and in vitro. Altogether, SIRT5 silencing induces DNA damage in CRC via post-translational modifications and inhibits tumor growth, suggesting that SIRT5 can serve as a promising target for CRC treatment.
Collapse
Affiliation(s)
- Hao-Lian Wang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Chen
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Qian Wang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - En-Wei Tao
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Tan
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian-Qian Liu
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Min Li
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Mei Tong
- grid.16821.3c0000 0004 0368 8293Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin-Yan Gao
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xuan Chen
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Pinson A, Xing L, Namba T, Kalebic N, Peters J, Oegema CE, Traikov S, Reppe K, Riesenberg S, Maricic T, Derihaci R, Wimberger P, Pääbo S, Huttner WB. Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science 2022; 377:eabl6422. [PMID: 36074851 DOI: 10.1126/science.abl6422] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neanderthal brains were similar in size to those of modern humans. We sought to investigate potential differences in neurogenesis during neocortex development. Modern human transketolase-like 1 (TKTL1) differs from Neanderthal TKTL1 by a lysine-to-arginine amino acid substitution. Using overexpression in developing mouse and ferret neocortex, knockout in fetal human neocortical tissue, and genome-edited cerebral organoids, we found that the modern human variant, hTKTL1, but not the Neanderthal variant, increases the abundance of basal radial glia (bRG) but not that of intermediate progenitors (bIPs). bRG generate more neocortical neurons than bIPs. The hTKTL1 effect requires the pentose phosphate pathway and fatty acid synthesis. Inhibition of these metabolic pathways reduces bRG abundance in fetal human neocortical tissue. Our data suggest that neocortical neurogenesis in modern humans differs from that in Neanderthals.
Collapse
Affiliation(s)
- Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Sofia Traikov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Katrin Reppe
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stephan Riesenberg
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Tomislav Maricic
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Razvan Derihaci
- Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, 01307 Dresden, Germany
| | - Pauline Wimberger
- Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, 01307 Dresden, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
9
|
Chen Y, Zhang T, Zeng S, Xu R, Jin K, Coorey NJ, Wang Y, Wang K, Lee SR, Yam M, Zhu M, Chang A, Fan X, Zhang M, Du J, Gillies MC, Zhu L. Transketolase in human Müller cells is critical to resist light stress through the pentose phosphate and NRF2 pathways. Redox Biol 2022; 54:102379. [PMID: 35779441 PMCID: PMC9287732 DOI: 10.1016/j.redox.2022.102379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/11/2022] Open
Abstract
The Pentose Phosphate Pathway (PPP), a metabolic offshoot of the glycolytic pathway, provides protective metabolites and molecules essential for cell redox balance and survival. Transketolase (TKT) is the critical enzyme that controls the extent of “traffic flow” through the PPP. Here, we explored the role of TKT in maintaining the health of the human retina. We found that Müller cells were the primary retinal cell type expressing TKT in the human retina. We further explored the role of TKT in human Müller cells by knocking down its expression in primary cultured Müller cells (huPMCs), isolated from the human retina (11 human donors in total), under light-induced oxidative stress. TKT knockdown and light stress reduced TKT enzymatic activities and the overall metabolic activities of huPMCs with no detectable cell death. TKT knockdown restrained the PPP traffic flow, reduced the expression of NAD(P)H Quinone Dehydrogenase 1 (NQO1), impaired the antioxidative response of NRF2 to light stress and aggravated the endoplasmic reticulum (ER) stress. TKT knockdown also inhibited overall glucose intake, reduced expression of Dihydrolipoamide dehydrogenase (DLD) and impaired the energy supply of the huPMCs. In summary, Müller cell-mediated TKT activity plays a critical protective role in the stressed retina. Knockdown of TKT disrupted the PPP and impaired overall glucose utilisation by huPMCs and rendered huPMCs more vulnerable to light stress by impairing energy supply and antioxidative NRF2 responses.
Collapse
|
10
|
Epitope Detection in Monocytes (EDIM) As a New Method of Liquid Biopsy in Pediatric Rhabdomyosarcoma. Biomedicines 2022; 10:biomedicines10081812. [PMID: 36009359 PMCID: PMC9404738 DOI: 10.3390/biomedicines10081812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Biomarkers allowing characterization of pediatric rhabdomyosarcoma (RMS) are lacking. Epitope detection in monocytes (EDIM) is a novel method focused on detection of the biomarkers TKTL1 (transketolase-like protein 1) and Apo10 (epitope of DNaseX) in activated monocytes (CD14+/CD16+) from patient’s blood. We investigated the expression of these biomarkers in RMS cell lines, tumor material, and peripheral blood from RMS patients. Expression levels of TKTL1 and DNaseX/Apo10 in RMS cell lines (RH30, RD) and tumor samples were analyzed by RT-PCR and flow cytometry. Blood samples of 29 RMS patients were measured and compared to 27 healthy individuals. The percentages of activated CD14+/CD16+ monocytes harboring TKTL1 and Apo10 were determined. EDIM-TKTL1 and EDIM-Apo10 expression scores were calculated. The relationship between TKTL1 expression and DNA-hypomethylation was evaluated. Both RMS cell lines and tumor samples showed significantly higher expression levels of TKTL1 and DNaseX/Apo10 compared to skeletal muscle cells (SkMC). EDIM-TKTL1 and EDIM-Apo10 scores were positive in 96.5% of patients with RMS. All healthy controls had negative corresponding scores. RMS cell lines show increased expression levels of the biomarkers TKTL1 and DNaseX/Apo10. The sensitivity of the EDIM blood test indicates that this assay might serve as an additional tool in pediatric RMS.
Collapse
|
11
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|
12
|
TKTL1 Knockdown Impairs Hypoxia-Induced Glucose-6-phosphate Dehydrogenase and Glyceraldehyde-3-phosphate Dehydrogenase Overexpression. Int J Mol Sci 2022; 23:ijms23073574. [PMID: 35408935 PMCID: PMC8999113 DOI: 10.3390/ijms23073574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
Increased expression of transketolase (TKT) and its isoform transketolase-like-1 (TKTL1) has been related to the malignant leukemia phenotype through promoting an increase in the non-oxidative branch of the pentose phosphate pathway (PPP). Recently, it has also been described that TKTL1 can have a role in survival under hypoxic conditions and in the acquisition of radio resistance. However, TKTL1’s role in triggering metabolic reprogramming under hypoxia in leukemia cells has never been characterized. Using THP-1 AML cells, and by combining metabolomics and transcriptomics techniques, we characterized the impact of TKTL1 knockdown on the metabolic reprogramming triggered by hypoxia. Results demonstrated that TKTL1 knockdown results in a decrease in TKT, glucose-6-phosphate dehydrogenase (G6PD) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activities and impairs the hypoxia-induced overexpression of G6PD and GAPDH, all having significant impacts on the redox capacity of NADPH- and NADH-related cells. Moreover, TKTL1 knockdown impedes hypoxia-induced transcription of genes encoding key enzymes and transporters involved in glucose, PPP and amino acid metabolism, rendering cells unable to switch to enhanced glycolysis under hypoxia. Altogether, our results show that TKTL1 plays a key role in the metabolic adaptation to hypoxia in THP-1 AML cells through modulation of G6PD and GAPDH activities, both regulating glucose/glutamine consumption and the transcriptomic overexpression of key players of PPP, glucose and amino acids metabolism.
Collapse
|
13
|
Wang SY, Hu QC, Wu T, Xia J, Tao XA, Cheng B. Abnormal lipid synthesis as a therapeutic target for cancer stem cells. World J Stem Cells 2022; 14:146-162. [PMID: 35432735 PMCID: PMC8963380 DOI: 10.4252/wjsc.v14.i2.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) comprise a subpopulation of cancer cells with stem cell properties, which exhibit the characteristics of high tumorigenicity, self-renewal, and tumor initiation and are associated with the occurrence, metastasis, therapy resistance, and relapse of cancer. Compared with differentiated cells, CSCs have unique metabolic characteristics, and metabolic reprogramming contributes to the self-renewal and maintenance of stem cells. It has been reported that CSCs are highly dependent on lipid metabolism to maintain stemness and satisfy the requirements of biosynthesis and energy metabolism. In this review, we demonstrate that lipid anabolism alterations promote the survival of CSCs, including de novo lipogenesis, lipid desaturation, and cholesterol synthesis. In addition, we also emphasize the molecular mechanism underlying the relationship between lipid synthesis and stem cell survival, the signal trans-duction pathways involved, and the application prospect of lipid synthesis reprogramming in CSC therapy. It is demonstrated that the dependence on lipid synthesis makes targeting of lipid synthesis metabolism a promising therapeutic strategy for eliminating CSCs. Targeting key molecules in lipid synthesis will play an important role in anti-CSC therapy.
Collapse
Affiliation(s)
- Si-Yu Wang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Qin-Chao Hu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Tong Wu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Juan Xia
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-An Tao
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Bin Cheng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
14
|
Meskers CJW, Franczak M, Smolenski RT, Giovannetti E, Peters GJ. Are we still on the right path(way)?: the altered expression of the pentose phosphate pathway in solid tumors and the potential of its inhibition in combination therapy. Expert Opin Drug Metab Toxicol 2022; 18:61-83. [PMID: 35238253 DOI: 10.1080/17425255.2022.2049234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The pentose phosphate pathway (PPP) branches from glycolysis and is crucial for cell growth, since it provides necessary compounds for anabolic reactions, nucleotide synthesis, and detoxification of reactive-oxygen-species (ROS). Overexpression of PPP enzymes has been reported in multiple cancer types and linked to therapy resistance, making their inhibition interesting targets for anti-cancer therapies. AREAS COVERED This review summarizes the extent of PPP upregulation across different cancer types, and the non-metabolic functions that PPP-enzymes might contribute to cancer initiation and maintenance. The effects of PPP-inhibition and their combinations with chemotherapeutics are summarized. We searched the databases provided by the University of Amsterdam to characterize the altered expression of the PPP across different cancer types, and to identify the effects of PPP-inhibition. EXPERT OPINION It can be concluded that there are synergistic and additive effects of PPP-inhibition and various classes of chemotherapeutics. These effects may be attributed to the increased susceptibility to ROS. However, the toxicity, low efficacy, and off-target effects of PPP-inhibitors make application in clinical practice challenging. Novel inhibitors are currently being developed, which could make PPP-inhibition a potential therapeutic strategy in the future, especially in combination with conventional chemotherapeutics and the inhibition of other metabolic pathways.
Collapse
Affiliation(s)
- Caroline J W Meskers
- Amsterdam University College, Amsterdam, The Netherlands.,Laboratory Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam location VUMC, Cancer Center Amsterdam, The Netherlands
| | - Marika Franczak
- Department of Biochemistry, Medical University of Gdansk, Poland
| | | | - Elisa Giovannetti
- Laboratory Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam location VUMC, Cancer Center Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam location VUMC, Cancer Center Amsterdam, The Netherlands.,Department of Biochemistry, Medical University of Gdansk, Poland
| |
Collapse
|
15
|
Oates EH, Antoniewicz MR. Coordinated reprogramming of metabolism and cell function in adipocytes from proliferation to differentiation. Metab Eng 2021; 69:221-230. [PMID: 34929419 DOI: 10.1016/j.ymben.2021.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/25/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Adipose tissue plays a major role in regulating lipid and energy homeostasis by storing excess nutrients, releasing energetic substrates through lipolysis, and regulating metabolism of other tissues and organs through endocrine and paracrine signaling. Adipocytes within fat tissues store excess nutrients through increased cell number (hyperplasia), increased cell size (hypertrophy), or both. The differentiation of pre-adipocytes into mature lipid-accumulating adipocytes requires a complex interaction of metabolic pathways that is still incompletely understood. Here, we applied parallel labeling experiments and 13C-metabolic flux analysis to quantify precise metabolic fluxes in proliferating and differentiated 3T3-L1 cells, a widely used model to study adipogenesis. We found that morphological and biomass composition changes in adipocytes were accompanied by significant shifts in metabolic fluxes, encompassing all major metabolic pathways. In contrast to proliferating cells, differentiated adipocytes 1) increased glucose uptake and redirected glucose utilization from lactate production to lipogenesis and energy generation; 2) increased pathway fluxes through glycolysis, oxidative pentose phosphate pathway and citric acid cycle; 3) reduced lactate secretion, resulting in increased ATP generation via oxidative phosphorylation; 4) rewired glutamine metabolism, from glutaminolysis to de novo glutamine synthesis; 5) increased cytosolic NADPH production, driven mostly by increased cytosolic malic enzyme flux; 6) increased production of monounsaturated C16:1; and 7) activated a mitochondrial pyruvate cycle through simultaneous activity of pyruvate carboxylase, malate dehydrogenase and malic enzyme. Taken together, these results quantitatively highlight the complex interplay between pathway fluxes and cell function in adipocytes, and suggest a functional role for metabolic reprogramming in adipose differentiation and lipogenesis.
Collapse
Affiliation(s)
- Eleanor H Oates
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE, 19716, USA
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
16
|
Mu R, Ma Z, Lu C, Wang H, Cheng X, Tuo B, Fan Y, Liu X, Li T. Role of succinylation modification in thyroid cancer and breast cancer. Am J Cancer Res 2021. [PMID: 34765287 DOI: 10.2156/j.ajcr.2021.11.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The incidence of thyroid cancer and breast cancer is increasing year by year, and the specific pathogenesis is unclear. Posttranslational modifications constitute an important regulatory mechanism that affects the function of almost all proteins, are essential for a diverse and well-functioning proteome and can integrate metabolism with physiological and pathological processes. In recent years, posttranslational modifications, which mainly include metabolic enzyme-mediated protein posttranslational modifications, such as methylation, phosphorylation, acetylation and succinylation, have become a research hotspot. Among these modifications, lysine succinylation is a newly discovered broad-spectrum, dynamic, non-enzymatic protein post-translational modification, and it plays an important regulatory role in a variety of tumors. Studies have shown that succinylation can affect the synthesis of thyroid hormones, and the regulation of this post-translational modification can inhibit the apoptosis and migration of thyroid cancer cell lines, and promote breast cancer cell proliferation, DNA damage repair and autophagy-related regulation. However, the specific regulatory mechanism of succinylation in thyroid cancer and breast cancer is currently unclear. Therefore, this article mainly reviews the research progress of succinylation modification in thyroid cancer and breast cancer. It is expected to provide new directions and targets for the prevention and treatment of thyroid cancer and breast cancer.
Collapse
Affiliation(s)
- Renmin Mu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China.,Digestive Disease Institute of Guizhou Province Zunyi 563003, Guizhou Province, China
| | - Chengli Lu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China.,Digestive Disease Institute of Guizhou Province Zunyi 563003, Guizhou Province, China
| | - Yi Fan
- Endoscopy Center, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China.,Digestive Disease Institute of Guizhou Province Zunyi 563003, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University Zunyi 563003, Guizhou Province, China
| |
Collapse
|
17
|
Peng Y, Yang H, Li S. The role of glycometabolic plasticity in cancer. Pathol Res Pract 2021; 226:153595. [PMID: 34481210 DOI: 10.1016/j.prp.2021.153595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Dysregulated glycometabolism represented by the Warburg effect is well recognized as a hallmark of cancer that can be driven by oncogenes (e.g., c-Myc, K-ras, and BRAF) and contribute to cellular malignant transformation. The Warburg effect reveals the different glycometabolic patterns of cancer cells, but this unique glycometabolic pattern has the characteristic of plasticity rather than changeless which can vary with different internal or external stimuli during evolution. Glycometabolic plasticity enables cancer cells to modulate glycometabolism to support progression, metastasis, treatment resistance and recurrence. In this review, we report the characteristics of glycometabolic plasticity during different stages of cancer evolution, providing insight into the molecular mechanisms of glycometabolic plasticity in cancer. In addition, we discussed the challenges and future research directions of glycometabolism research in cancer.
Collapse
Affiliation(s)
- Yuyang Peng
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Song Li
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
18
|
Azzarà A, Rendeli C, Crivello AM, Brugnoletti F, Rumore R, Ausili E, Sangiorgi E, Gurrieri F. Identification of new candidate genes for spina bifida through exome sequencing. Childs Nerv Syst 2021; 37:2589-2596. [PMID: 33855610 DOI: 10.1007/s00381-021-05153-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Neural tube defects are a group of birth defects caused by failure of neural tube closure during development. The etiology of NTD, requiring a complex interaction between environmental and genetic factors, is not well understood. METHODS We performed whole-exome sequencing (WES) in six trios, with a single affected proband with spina bifida, to identify rare/novel variants as potential causes of the NTD. RESULTS Our analysis identified four de novo and ten X-linked recessive variants in four of the six probands, all of them in genes previously never implicated in NTD. Among the 14 variants, we ruled out six of them, based on different criteria and pursued the evaluation of eight potential candidates in the following genes: RXRγ, DTX1, COL15A1, ARHGAP36, TKTL1, AMOT, GPR50, and NKRF. The de novo variants where located in the RXRγ, DTX1, and COL15A1 genes while ARHGAP36, TKTL1, AMOT, GPR50, and NKRF carry X-linked recessive variants. This analysis also revealed that four patients presented multiple variants, while we were unable to identify any significant variant in two patients. CONCLUSIONS Our preliminary conclusion support a major role for the de novo variants with respect to the X-linked recessive variants where the X-linked could represent a contribution to the phenotype in an oligogenic model.
Collapse
Affiliation(s)
- Alessia Azzarà
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italia. .,Unità di Genetica Medica, Università Campus Bio-Medico, Roma, Italia.
| | - Claudia Rendeli
- Spina Bifida Center, Dipartimento di Scienze della Vita e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Anna Maria Crivello
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Fulvia Brugnoletti
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Roberto Rumore
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Emanuele Ausili
- Spina Bifida Center, Dipartimento di Scienze della Vita e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Eugenio Sangiorgi
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italia.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Fiorella Gurrieri
- Unità di Genetica Medica, Università Campus Bio-Medico, Roma, Italia
| |
Collapse
|
19
|
Icard P, Loi M, Wu Z, Ginguay A, Lincet H, Robin E, Coquerel A, Berzan D, Fournel L, Alifano M. Metabolic Strategies for Inhibiting Cancer Development. Adv Nutr 2021; 12:1461-1480. [PMID: 33530098 PMCID: PMC8321873 DOI: 10.1093/advances/nmaa174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies for targeting each cancer tumor, novel techniques must be developed, such as new tracers for positron emission tomography/computed tomography scan and immunohistochemical markers to characterize the metabolic phenotype of cancer cells and their microenvironment. Pending personalized strategies that specifically target all metabolic components of cancer development in a patient, simple metabolic interventions could be tested in clinical trials in combination with standard cancer therapies, such as short cycles of fasting or the administration of sodium citrate or weakly toxic compounds (such as curcumin, metformin, lipoic acid) that target autophagy and biosynthetic or signaling pathways.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Medical School, CHU de Caen, Caen, France
- Normandie Université, UNICAEN, INSERM U1086, Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer Centre François Baclesse, Caen, France
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Mauro Loi
- Radiotherapy Department, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Zherui Wu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Antonin Ginguay
- Service de Biochimie, Hôpital Cochin, Hôpitaux Universitaires Paris-Centre, AP-HP, Paris, France
- EA4466 Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie de Paris, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Hubert Lincet
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | - Edouard Robin
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Antoine Coquerel
- INSERM U1075, Comete “Mobilités: Attention, Orientation, Chronobiologie”, Université Caen, Caen, France
| | - Diana Berzan
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM U1138, Integrative Cancer Immunology, Paris, France
| |
Collapse
|
20
|
Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update. Int J Mol Sci 2021; 22:ijms22126587. [PMID: 34205414 PMCID: PMC8235534 DOI: 10.3390/ijms22126587] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Citrate plays a central role in cancer cells’ metabolism and regulation. Derived from mitochondrial synthesis and/or carboxylation of α-ketoglutarate, it is cleaved by ATP-citrate lyase into acetyl-CoA and oxaloacetate. The rapid turnover of these molecules in proliferative cancer cells maintains a low-level of citrate, precluding its retro-inhibition on glycolytic enzymes. In cancer cells relying on glycolysis, this regulation helps sustain the Warburg effect. In those relying on an oxidative metabolism, fatty acid β-oxidation sustains a high production of citrate, which is still rapidly converted into acetyl-CoA and oxaloacetate, this latter molecule sustaining nucleotide synthesis and gluconeogenesis. Therefore, citrate levels are rarely high in cancer cells. Resistance of cancer cells to targeted therapies, such as tyrosine kinase inhibitors (TKIs), is frequently sustained by aerobic glycolysis and its key oncogenic drivers, such as Ras and its downstream effectors MAPK/ERK and PI3K/Akt. Remarkably, in preclinical cancer models, the administration of high doses of citrate showed various anti-cancer effects, such as the inhibition of glycolysis, the promotion of cytotoxic drugs sensibility and apoptosis, the neutralization of extracellular acidity, and the inhibition of tumors growth and of key signalling pathways (in particular, the IGF-1R/AKT pathway). Therefore, these preclinical results support the testing of the citrate strategy in clinical trials to counteract key oncogenic drivers sustaining cancer development and resistance to anti-cancer therapies.
Collapse
|
21
|
Dasgupta A, Bakshi A, Chowdhury N, De RK. A control theoretic three timescale model for analyzing energy management in mammalian cancer cells. Comput Struct Biotechnol J 2020; 19:477-508. [PMID: 33510857 PMCID: PMC7809419 DOI: 10.1016/j.csbj.2020.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Interaction among different pathways, such as metabolic, signaling and gene regulatory networks, of cellular system is responsible to maintain homeostasis in a mammalian cell. Malfunctioning of this cooperation may lead to many complex diseases, such as cancer and type 2 diabetes. Timescale differences among these pathways make their integration a daunting task. Metabolic, signaling and gene regulatory networks have three different timescales, such as, ultrafast, fast and slow respectively. The article deals with this problem by developing a support vector regression (SVR) based three timescale model with the application of genetic algorithm based nonlinear controller. The proposed model can successfully capture the nonlinear transient dynamics and regulations of such integrated biochemical pathway under consideration. Besides, the model is quite capable of predicting the effects of certain drug targets for many types of complex diseases. Here, energy and cell proliferation management of mammalian cancer cells have been explored and analyzed with the help of the proposed novel approach. Previous investigations including in silico/in vivo/in vitro experiments have validated the results (the regulations of glucose transporter 1 (glut1), hexokinase (HK), and hypoxia-inducible factor-1 α (HIF-1 α ) among others, and the switching of pyruvate kinase (M2 isoform) between dimer and tetramer) generated by this model proving its effectiveness. Subsequently, the model predicts the effects of six selected drug targets, such as, the deactivation of transketolase and glucose-6-phosphate isomerase among others, in the case of mammalian malignant cells in terms of growth, proliferation, fermentation, and energy supply in the form of adenosine triphosphate (ATP).
Collapse
Affiliation(s)
- Abhijit Dasgupta
- Department of Data Science, School of Interdisciplinary Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Abhisek Bakshi
- Department of Information Technology, Bengal Institute of Technology, Basanti Highway, Kolkata 700150, India
| | - Nirmalya Chowdhury
- Department of Computer Science & Engineering, Jadavpur University, Kolkata 700032, India
| | - Rajat K. De
- Machine Intelligence Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| |
Collapse
|
22
|
Bayram S, Fürst S, Forbes M, Kempa S. Analysing central metabolism in ultra-high resolution: At the crossroads of carbon and nitrogen. Mol Metab 2020; 33:38-47. [PMID: 31928927 PMCID: PMC7056925 DOI: 10.1016/j.molmet.2019.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/13/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer cell metabolism can be characterised by adaptive metabolic alterations, which support abnormal proliferative cell growth with high energetic demand. De novo nucleotide biosynthesis is essential for providing nucleotides for RNA and DNA synthesis, and drugs targeting this biosynthetic pathway have proven to be effective anticancer therapeutics. Nevertheless, cancers are often able to circumvent chemotherapeutic interventions and become therapy resistant. Our understanding of the changing metabolic profile of the cancer cell and the mode of action of therapeutics is dependent on technological advances in biochemical analysis. SCOPE OF REVIEW This review begins with information about carbon- and nitrogen-donating pathways to build purine and pyrimidine moieties in the course of nucleotide biosynthesis. We discuss the application of stable isotope resolved metabolomics to investigate the dynamics of cancer cell metabolism and outline the benefits of high-resolution accurate mass spectrometry, which enables multiple tracer studies. CONCLUSION With the technological advances in mass spectrometry that allow for the analysis of the metabolome in high resolution, the application of stable isotope resolved metabolomics has become an important technique in the investigation of biological processes. The literature in the area of isotope labelling is dominated by 13C tracer studies. Metabolic pathways have to be considered as complex interconnected networks and should be investigated as such. Moving forward to simultaneous tracing of different stable isotopes will help elucidate the interplay between carbon and nitrogen flow and the dynamics of de novo nucleotide biosynthesis within the cell.
Collapse
Affiliation(s)
- Safak Bayram
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Susanne Fürst
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Germany
| | - Martin Forbes
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
| |
Collapse
|
23
|
Dong W, Moon SJ, Kelleher JK, Stephanopoulos G. Dissecting Mammalian Cell Metabolism through 13C- and 2H-Isotope Tracing: Interpretations at the Molecular and Systems Levels. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sun Jin Moon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joanne K. Kelleher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Selivanov VA, Marin S, Tarragó-Celada J, Lane AN, Higashi RM, Fan TWM, de Atauri P, Cascante M. Software Supporting a Workflow of Quantitative Dynamic Flux Maps Estimation in Central Metabolism from SIRM Experimental Data. Methods Mol Biol 2020; 2088:271-298. [PMID: 31893378 DOI: 10.1007/978-1-0716-0159-4_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stable isotope-resolved metabolomics (SIRM), based on the analysis of biological samples from living cells incubated with artificial isotope enriched substrates, enables mapping the rates of biochemical reactions (metabolic fluxes). We developed software supporting a workflow of analysis of SIRM data obtained with mass spectrometry (MS). The evaluation of fluxes starting from raw MS recordings requires at least three steps of computer support: first, extraction of mass spectra of metabolites of interest, then correction of the spectra for natural isotope abundance, and finally, evaluation of fluxes by simulation of the corrected spectra using a corresponding mathematical model. A kinetic model based on ordinary differential equations (ODEs) for isotopomers of metabolites of the corresponding biochemical network supports the final part of the analysis, which provides a dynamic flux map.
Collapse
Affiliation(s)
- Vitaly A Selivanov
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain. .,Institute of Biomedicine of Universitat de Barcelona (IBUB), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. .,INB-Bioinformatics Platform Metabolomics Node, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Institute of Biomedicine of Universitat de Barcelona (IBUB), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Josep Tarragó-Celada
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Institute of Biomedicine of Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Andrew N Lane
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Center for Environment and Systems Biochemistry and the Resource Center for Stable Isotope Resolved Metabolomics, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Richard M Higashi
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Center for Environment and Systems Biochemistry and the Resource Center for Stable Isotope Resolved Metabolomics, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Teresa W-M Fan
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Center for Environment and Systems Biochemistry and the Resource Center for Stable Isotope Resolved Metabolomics, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Pedro de Atauri
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Institute of Biomedicine of Universitat de Barcelona (IBUB), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,INB-Bioinformatics Platform Metabolomics Node, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain. .,Institute of Biomedicine of Universitat de Barcelona (IBUB), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. .,INB-Bioinformatics Platform Metabolomics Node, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
25
|
Saman S, Stagno M, Warmann S, Malek N, Plentz R, Schmid E. Biomarkers Apo10 and TKTL1: Epitope-detection in monocytes (EDIM) as a new diagnostic approach for cholangiocellular, pancreatic and colorectal carcinoma. Cancer Biomark 2020; 27:129-137. [PMID: 31771043 PMCID: PMC7029314 DOI: 10.3233/cbm-190414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The EDIM (Epitope detection in monocytes) blood test is based on two biomarkers Apo10 and TKTL1. Apo10 is responsible for cell proliferation and resistance to apoptosis. TKTL1 plays a major role in anaerobic glycolysis of tumor cells, leading to destruction of the basal membrane and metastasis as well as in controlling cell cycle. For the first time we analyzed Apo10 and TKLT1 in patients with cholangiocellular (CCC), pancreatic (PC), and colorectal carcinoma (CRC). METHODS Blood samples of 62 patients with CCC, PC, and CRC were measured and compared to 29 control patients. We also investigated 13 patients with inflammatory conditions, because elevated TKTL1 and Apo10 have been previously described in affected individuals. Flow cytometry was used to detect surface antigens CD14+/CD16+ (activated monocytes/macrophages). Percentages of macrophages harboring TKTL1 and Apo10 were determined. A combined EDIM score (EDIM-CS: TKTL1 plus Apo10) was calculated. Results were correlated with serum tumor markers CEA and CA19-9. RESULTS Patients with CCC had 100% positive EDIM-CS but CEA and CA19-9 were positive in only 22.2% and 70%, respectively. Patients with PC had 100% positive EDIM-CS but positive tumor markers in only 37.5% (CEA) and 72.7% (CA19-9). Patients with CRC had 100% positive EDIM-CS but only 50% positive CEA. EDIM-CS was positive in 100% (62/62) of all cancer patients and in 0% of healthy individuals. Of the individuals with inflammation, 7.7% had a positive EDIM-CS. CONCLUSION The sensitivity of the EDIM blood test and the comparison with traditional tumor markers indicate that this new test might improve the detection of carcinomas (CCC, PC and, CRC) and might be relevant for the diagnosis of all tumor entities.
Collapse
Affiliation(s)
- S. Saman
- Medical Clinic, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
| | - M.J. Stagno
- Department of Pediatric Surgery and Pediatric Urology, Children’s Hospital, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
| | - S.W. Warmann
- Department of Pediatric Surgery and Pediatric Urology, Children’s Hospital, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
| | - N.P. Malek
- Medical Clinic, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
| | - R.R. Plentz
- Medical Clinic, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
- Klinikum Bremen Nord, Department of Gastroenterology, Oncology and Diabetology, Bremen
| | - E. Schmid
- Department of Pediatric Surgery and Pediatric Urology, Children’s Hospital, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
26
|
ATP citrate lyase: A central metabolic enzyme in cancer. Cancer Lett 2019; 471:125-134. [PMID: 31830561 DOI: 10.1016/j.canlet.2019.12.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
ACLY links energy metabolism provided by catabolic pathways to biosynthesis. ACLY, which has been found to be overexpressed in many cancers, converts citrate into acetyl-CoA and OAA. The first of these molecules supports protein acetylation, in particular that of histone, and de novo lipid synthesis, and the last one sustains the production of aspartate (required for nucleotide and polyamine synthesis) and the regeneration of NADPH,H+(consumed in redox reaction and biosynthesis). ACLY transcription is promoted by SREBP1, its activity is stabilized by acetylation and promoted by AKT phosphorylation (stimulated by growth factors and glucose abundance). ACLY plays a pivotal role in cancer metabolism through the potential deprivation of cytosolic citrate, a process promoting glycolysis through the enhancement of the activities of PFK 1 and 2 with concomitant activation of oncogenic drivers such as PI3K/AKT which activate ACLY and the Warburg effect in a feed-back loop. Pending the development of specific inhibitors and tailored methods for identifying which specific metabolism is involved in the development of each tumor, ACLY could be targeted by inhibitors such as hydroxycitrate and bempedoic acid. The administration of citrate at high level mimics a strong inhibition of ACLY and could be tested to strengthen the effects of current therapies.
Collapse
|
27
|
Li Y, Yao CF, Xu FJ, Qu YY, Li JT, Lin Y, Cao ZL, Lin PC, Xu W, Zhao SM, Zhao JY. APC/C CDH1 synchronizes ribose-5-phosphate levels and DNA synthesis to cell cycle progression. Nat Commun 2019; 10:2502. [PMID: 31175280 PMCID: PMC6555833 DOI: 10.1038/s41467-019-10375-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/03/2019] [Indexed: 02/05/2023] Open
Abstract
Accumulation of nucleotide building blocks prior to and during S phase facilitates DNA duplication. Herein, we find that the anaphase-promoting complex/cyclosome (APC/C) synchronizes ribose-5-phosphate levels and DNA synthesis during the cell cycle. In late G1 and S phases, transketolase-like 1 (TKTL1) is overexpressed and forms stable TKTL1-transketolase heterodimers that accumulate ribose-5-phosphate. This accumulation occurs by asymmetric production of ribose-5-phosphate from the non-oxidative pentose phosphate pathway and prevention of ribose-5-phosphate removal by depleting transketolase homodimers. In the G2 and M phases after DNA synthesis, expression of the APC/C adaptor CDH1 allows APC/CCDH1 to degrade D-box-containing TKTL1, abrogating ribose-5-phosphate accumulation by TKTL1. TKTL1-overexpressing cancer cells exhibit elevated ribose-5-phosphate levels. The low CDH1 or high TKTL1-induced accumulation of ribose-5-phosphate facilitates nucleotide and DNA synthesis as well as cell cycle progression in a ribose-5-phosphate-saturable manner. Here we reveal that the cell cycle control machinery regulates DNA synthesis by mediating ribose-5-phosphate sufficiency. Ribose-5-phosphate (R5P) is required for DNA synthesis, but how this is regulated during cell cycle progression is unclear. Here the authors report that the cell cycle regulator APC/C-CDH1 synchronizes cell cycle progression with R5P-derived DNA synthesis by controlling TKTL1 stability
Collapse
Affiliation(s)
- Yang Li
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, P.R. China.,Key Laboratory of Reproduction Regulation of NPFPC and Collaborative Innovation Center for Genetics and Development, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200438, P.R. China
| | - Cui-Fang Yao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, P.R. China
| | - Fu-Jiang Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, P.R. China.,Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200438, P.R. China
| | - Yuan-Yuan Qu
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200438, P.R. China
| | - Jia-Tao Li
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, P.R. China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, P.R. China.,Key Laboratory of Reproduction Regulation of NPFPC and Collaborative Innovation Center for Genetics and Development, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200438, P.R. China
| | - Zhong-Lian Cao
- School of Pharmacy, Fudan University, Shanghai, 200438, P.R. China
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, 810007, P. R. China
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, P.R. China.,Key Laboratory of Reproduction Regulation of NPFPC and Collaborative Innovation Center for Genetics and Development, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200438, P.R. China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, P.R. China. .,Key Laboratory of Reproduction Regulation of NPFPC and Collaborative Innovation Center for Genetics and Development, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200438, P.R. China. .,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Jian-Yuan Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, P.R. China. .,Key Laboratory of Reproduction Regulation of NPFPC and Collaborative Innovation Center for Genetics and Development, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200438, P.R. China. .,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
28
|
Qin Z, Xiang C, Zhong F, Liu Y, Dong Q, Li K, Shi W, Ding C, Qin L, He F. Transketolase (TKT) activity and nuclear localization promote hepatocellular carcinoma in a metabolic and a non-metabolic manner. J Exp Clin Cancer Res 2019; 38:154. [PMID: 30971297 PMCID: PMC6458711 DOI: 10.1186/s13046-019-1131-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Metabolic reprogramming is one of the hallmarks of cancer cells. The pentose phosphate pathway (PPP), a branch of glycolysis, is an important metabolic pathway for the survival and biosynthesis of cancer cells. Transketolase (TKT) is a key enzyme in the non-oxidative phase of PPP. The mechanistic details of TKT in hepatocellular carcinoma (HCC) development remain unclear. METHODS TKT level and subcellular location were examined in HCC cell lines and tissue samples. We established the TKT overexpression and knocking-down stable cells in HCC cell lines. Proliferation, migration, viability and enzyme activity assays in vitro, tumor growth and metastasis assays in vivo were employed to test the effects of TKT on HCC development. GFP-tagged TKT truncations and mutants were used to locate the nuclear localization sequence (NLSs) of TKT. Cross-linking co-IP/MS was applied to identify the interaction proteins of nuclear TKT. RESULTS We showed that TKT increased the proliferation and migration of HCC cells, as well as the viability under oxidative stress in vitro and accelerated the growth and metastasis of HCC cells in vivo. We found as a key enzyme of PPP, TKT could promote the proliferation, cell cycle, migration and viability by regulating the metabolic flux. Moreover, it was firstly reported that unlike other key enzymes in PPP, TKT showed a strong nuclear localization in HCC cells. We found not only high TKT expression, but also its nuclear localization was a prediction for poor prognosis of HCC patients. We further identified the nuclear localization sequences (NLS) for TKT and demonstrated the NLS mutations decreased the pro-tumor function of TKT independent of the enzyme activity. Cross-linking Co-IP/MS showed that nuclear TKT interacted with kinases and transcriptional coregulators such as EGFR and MAPK3, which are associated with cell activation or stress response processes. EGF treatment significantly increased the viability and proliferation of HCC cells in the enzyme-inactivating mutation TKT-D155A overexpression cells but not in the NLS-D155A double mutant group, which could be blocked by EGFR inhibitor erlotinib treatment. CONCLUSIONS Our research suggests that in addition to the metabolic manner, TKT can promote the development of HCC in a non-metabolic manner via its nuclear localization and EGFR pathway.
Collapse
Affiliation(s)
- Zhaoyu Qin
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Chan Xiang
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Fan Zhong
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Yang Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Qiongzhu Dong
- Department of Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040 China
| | - Kai Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206 China
| | - Wenhao Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206 China
| | - Chen Ding
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Lunxiu Qin
- Department of Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040 China
| | - Fuchu He
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206 China
| |
Collapse
|
29
|
Singh AK, Yadav S, Chauhan BS, Nandy N, Singh R, Neogi K, Roy JK, Srikrishna S, Singh RK, Prakash P. Classification of Clinical Isolates of Klebsiella pneumoniae Based on Their in vitro Biofilm Forming Capabilities and Elucidation of the Biofilm Matrix Chemistry With Special Reference to the Protein Content. Front Microbiol 2019; 10:669. [PMID: 31019496 PMCID: PMC6458294 DOI: 10.3389/fmicb.2019.00669] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Klebsiella pneumoniae is a human pathogen, capable of forming biofilms on abiotic and biotic surfaces. The limitations of the therapeutic options against Klebsiella pneumoniae is actually due to its innate capabilities to form biofilm and harboring determinants of multidrug resistance. We utilized a newer approach for classification of biofilm producing Klebsiella pneumoniae isolates and subsequently we evaluated the chemistry of its slime, more accurately its biofilm. We extracted and determined the amount of polysaccharides and proteins from representative bacterial biofilms. The spatial distribution of sugars and proteins were then investigated in the biofilm matrix using confocal laser scanning microscopy (CLSM). Thereafter, the extracted matrix components were subjected to sophisticated analysis incorporating Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, one-dimensional gel-based electrophoresis (SDS-PAGE), high performance liquid chromatography (HPLC), and MALDI MS/MS analysis. Besides, the quantification of its total proteins, total sugars, uronates, total acetyl content was also done. Results suggest sugars are not the only/major constituent of its biofilms. The proteins were harvested and subjected to SDS-PAGE which revealed various common and unique protein bands. The common band was excised and analyzed by HPLC. MALDI MS/MS results of this common protein band indicated the presence of different proteins within the biofilm. The 55 different proteins were identified including both cytosolic and membrane proteins. About 22 proteins were related to protein synthesis and processing while 15 proteins were identified related to virulence. Similarly, proteins related to energy and metabolism were 8 and those related to capsule and cell wall synthesis were 4. These results will improve our understanding of Klebsiella biofilm composition and will further help us design better strategies for controlling its biofilm such as techniques focused on weakening/targeting certain portions of the slime which is the most common building block of the biofilm matrix.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Molecular Immunology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shivangi Yadav
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Brijesh Singh Chauhan
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nabarun Nandy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajan Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Kaushik Neogi
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saripella Srikrishna
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rakesh Kumar Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pradyot Prakash
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
30
|
Deshpande GP, Patterton HG, Faadiel Essop M. The human transketolase-like proteins TKTL1 and TKTL2 are bona fide transketolases. BMC STRUCTURAL BIOLOGY 2019; 19:2. [PMID: 30646877 PMCID: PMC6334435 DOI: 10.1186/s12900-018-0099-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Background Three transketolase genes have been identified in the human genome to date: transketolase (TKT), transketolase-like 1 (TKTL1) and transketolase-like 2 (TKTL2). Altered TKT functionality is strongly implicated in the development of diabetes and various cancers, thus offering possible therapeutic utility. It will be of great value to know whether TKTL1 and TKTL2 are, similarly, potential therapeutic targets. However, it remains unclear whether TKTL1 and TKTL2 are functional transketolases. Results Homology modelling of TKTL1 and TKTL2 using TKT as template, revealed that both TKTL1 and TKTL2 could assume a folded structure like TKT. TKTL1/2 presented a cleft of suitable dimensions between the homodimer surfaces that could accommodate the co-factor-substrate. An appropriate cavity and a hydrophobic nodule were also present in TKTL1/2, into which the diphosphate group fitted, and that was implicated in aminopyrimidine and thiazole ring binding in TKT, respectively. The presence of several identical residues at structurally equivalent positions in TKTL1/2 and TKT identified a network of interactions between the protein and co-factor-substrate, suggesting the functional fidelity of TKTL1/2 as transketolases. Conclusions Our data support the hypothesis that TKTL1 and TKTL2 are functional transketolases and represent novel therapeutic targets for diabetes and cancer. Electronic supplementary material The online version of this article (10.1186/s12900-018-0099-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gaurang P Deshpande
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Room 2005, Mike De Vries Building, Merriman Avenue, Stellenbosch, 7600, South Africa
| | - Hugh-George Patterton
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Room 2005, Mike De Vries Building, Merriman Avenue, Stellenbosch, 7600, South Africa.
| |
Collapse
|
31
|
Icard P, Fournel L, Wu Z, Alifano M, Lincet H. Interconnection between Metabolism and Cell Cycle in Cancer. Trends Biochem Sci 2019; 44:490-501. [PMID: 30655165 DOI: 10.1016/j.tibs.2018.12.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Cell cycle progression and division is regulated by checkpoint controls and sequential activation of cyclin-dependent kinases (CDKs). Understanding of how these events occur in synchrony with metabolic changes could have important therapeutic implications. For biosynthesis, cancer cells enhance glucose and glutamine consumption. Inactivation of pyruvate kinase M2 (PKM2) promotes transcription in G1 phase. Glutamine metabolism supports DNA replication in S phase and lipid synthesis in G2 phase. A boost in glycolysis and oxidative metabolism can temporarily furnish more ATP when necessary (G1/S transition, segregation of chromosomes). Recent studies have shown that a few metabolic enzymes [PKM2, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB3), GAPDH] also periodically translocate to the nucleus and oversee cell cycle regulators or oncogene expression (c-Myc). Targeting these metabolic enzymes could increase the response to CDK inhibitors (CKIs).
Collapse
Affiliation(s)
- Philippe Icard
- CHU de Caen, Université Caen Normandie, Medical School, Caen, F-14000, France; Inserm U1086, BioTICLA axis, Université Caen Normandie, F-14000, France; Department of Thoracic Surgery, Paris Center University Hospital, AP-HP, Paris, France.
| | - Ludovic Fournel
- Department of Thoracic Surgery, Paris Center University Hospital, AP-HP, Paris, France; Inserm UMRS 1007, Paris Descartes University, 75270 Paris cedex 06, France
| | - Zherui Wu
- Inserm UMRS 1007, Paris Descartes University, 75270 Paris cedex 06, France
| | - Marco Alifano
- Department of Thoracic Surgery, Paris Center University Hospital, AP-HP, Paris, France; Inserm UMRS 1138, Centre de recherche des Cordeliers, Paris Descartes University, 75270 Paris cedex 06, France
| | - Hubert Lincet
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), France; Université Lyon Claude Bernard 1, Lyon, France; ISPB, Faculté de Pharmacie, Lyon, France
| |
Collapse
|
32
|
Khan M, Shaukat Z, Saint R, Gregory SL. Chromosomal instability causes sensitivity to protein folding stress and ATP depletion. Biol Open 2018; 7:7/10/bio038000. [PMID: 30327366 PMCID: PMC6215417 DOI: 10.1242/bio.038000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aneuploidy – having an unbalanced genome – is poorly tolerated at the cellular and organismal level. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. Using Drosophila as a model, we found that protein folding stress is exacerbated by redox stress that occurs in response to ongoing changes to ploidy (chromosomal instability, CIN). We also found that if de novo nucleotide synthesis is blocked, CIN cells are dependent on a high level of lysosome function to survive. Depletion of adenosine monophosphate (AMP) synthesis enzymes led to DNA damage in CIN cells, which showed elevated activity of the DNA repair enzyme activated poly(ADP ribose) polymerase (PARP). PARP activation causes depletion of its substrate, nicotinamide adenine dinucleotide (NAD+) and subsequent loss of Adenosine Tri-Phosphate (ATP), and we found that adding ATP or nicotinamide (a precursor in the synthesis of NAD+) could rescue the observed phenotypes. These findings provide ways to interpret, target and exploit aneuploidy, which has the potential to offer tumour-specific therapies. Summary: Cells that gain or lose chromosomes during cell division are shown to be sensitive to ATP levels and protein folding stress.
Collapse
Affiliation(s)
- Mahwish Khan
- Department of Genetics, University of Adelaide, Adelaide 5006, Australia
| | - Zeeshan Shaukat
- Department of Genetics, University of Adelaide, Adelaide 5006, Australia
| | - Robert Saint
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Stephen L Gregory
- Department of Genetics, University of Adelaide, Adelaide 5006, Australia .,College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
33
|
Millares L, Barreiro E, Cortes R, Martinez-Romero A, Balcells C, Cascante M, Enguita AB, Alvarez C, Rami-Porta R, Sánchez de Cos J, Seijo L, Monsó E. Tumor-associated metabolic and inflammatory responses in early stage non-small cell lung cancer: Local patterns and prognostic significance. Lung Cancer 2018; 122:124-130. [DOI: 10.1016/j.lungcan.2018.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/27/2018] [Accepted: 06/09/2018] [Indexed: 12/25/2022]
|
34
|
Heller S, Maurer GD, Wanka C, Hofmann U, Luger AL, Bruns I, Steinbach JP, Rieger J. Gene Suppression of Transketolase-Like Protein 1 (TKTL1) Sensitizes Glioma Cells to Hypoxia and Ionizing Radiation. Int J Mol Sci 2018; 19:ijms19082168. [PMID: 30044385 PMCID: PMC6121283 DOI: 10.3390/ijms19082168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
In several tumor entities, transketolase-like protein 1 (TKTL1) has been suggested to promote the nonoxidative part of the pentose phosphate pathway (PPP) and thereby to contribute to a malignant phenotype. However, its role in glioma biology has only been sparsely documented. In the present in vitro study using LNT-229 glioma cells, we analyzed the impact of TKTL1 gene suppression on basic metabolic parameters and on survival following oxygen restriction and ionizing radiation. TKTL1 was induced by hypoxia and by hypoxia-inducible factor-1α (HIF-1α). Knockdown of TKTL1 via shRNA increased the cells’ demand for glucose, decreased flux through the PPP and promoted cell death under hypoxic conditions. Following irradiation, suppression of TKTL1 expression resulted in elevated levels of reactive oxygen species (ROS) and reduced clonogenic survival. In summary, our results indicate a role of TKTL1 in the adaptation of tumor cells to oxygen deprivation and in the acquisition of radioresistance. Further studies are necessary to examine whether strategies that antagonize TKTL1 function will be able to restore the sensitivity of glioma cells towards irradiation and antiangiogenic therapies in the more complex in vivo environment.
Collapse
Affiliation(s)
- Sonja Heller
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Gabriele D Maurer
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Christina Wanka
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Eberhard Karls University, 72074 Tuebingen, Germany.
| | - Anna-Luisa Luger
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Ines Bruns
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany.
| |
Collapse
|
35
|
Quantitative proteome and lysine succinylome analyses provide insights into metabolic regulation in breast cancer. Breast Cancer 2018; 26:93-105. [PMID: 30022435 DOI: 10.1007/s12282-018-0893-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/12/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Breast cancer, the most common invasive cancer and cause of cancer-related death in women worldwide, is a multifactorial, complex disease, and many molecular players and mechanisms underlying the complexity of its clinical behavior remain unknown. METHODS To explore the molecular features of breast cancer, quantitative proteome and succinylome analyses in breast cancer were extensively studied using quantitative proteomics techniques, anti-succinyl lysine antibody-based affinity enrichment, and high-resolution LC-MS/MS analysis. RESULTS Our study is the first to detect the regulation of lysine succinylation in breast cancer progression. We identified a novel mechanism by which the pentose phosphate pathway and the endoplasmic reticulum protein processing pathway might be regulated via lysine succinylation in their core enzymes. CONCLUSIONS These results expand our understanding of tumorigenesis mechanisms and provide a basis for further characterization of the pathophysiological roles in breast cancer progression, laying a foundation for innovative and novel breast cancer drugs and therapies.
Collapse
|
36
|
A guide to 13C metabolic flux analysis for the cancer biologist. Exp Mol Med 2018; 50:1-13. [PMID: 29657327 PMCID: PMC5938039 DOI: 10.1038/s12276-018-0060-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 01/15/2023] Open
Abstract
Cancer metabolism is significantly altered from normal cellular metabolism allowing cancer cells to adapt to changing microenvironments and maintain high rates of proliferation. In the past decade, stable-isotope tracing and network analysis have become powerful tools for uncovering metabolic pathways that are differentially activated in cancer cells. In particular, 13C metabolic flux analysis (13C-MFA) has emerged as the primary technique for quantifying intracellular fluxes in cancer cells. In this review, we provide a practical guide for investigators interested in getting started with 13C-MFA. We describe best practices in 13C-MFA, highlight potential pitfalls and alternative approaches, and conclude with new developments that can further enhance our understanding of cancer metabolism. Tracing tagged molecules can help researchers understand the altered metabolism of cancer cells. The abilities of cancer cells to multiply rapidly and invade new tissues are supported by metabolic alterations, which can be investigated by feeding tagged molecules to cells and tracing how they are metabolized. These techniques, such as 13C metabolic flux analysis (13C-MFA), have been perceived as difficult to use, but recent advances are making them more accessible. Maciek Antoniewicz, University of Delaware, Newark, USA, has published a practical guide for researchers wanting to use 13C-MFA. The review includes best practices, pitfalls, alternative approaches, and new developments, especially new user-friendly software that allows researchers without extensive training in mathematics, statistics, or coding to perform 13C-MFA. Broadening access to tools for investigating altered metabolic pathways may spur development of new cancer therapies targeting these pathways.
Collapse
|
37
|
Vegliante R, Ciriolo MR. Autophagy and Autophagic Cell Death: Uncovering New Mechanisms Whereby Dehydroepiandrosterone Promotes Beneficial Effects on Human Health. VITAMINS AND HORMONES 2018; 108:273-307. [PMID: 30029730 DOI: 10.1016/bs.vh.2018.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dehydroepiandrosterone (DHEA) is the most abundant steroid hormone in human serum and a precursor of sexual hormones. Its levels, which are maximum between the age of 20 and 30, dramatically decline with aging thus raising the question that many pathological conditions typical of the elderly might be associated with the decrement of circulating DHEA. Moreover, since its very early discovery, DHEA and its metabolites have been shown to be active in many pathophysiological contexts, including cardiovascular disease, brain disorders, and cancer. Indeed, treatment with DHEA has beneficial effects for the cure of these and many other pathologies in vitro, in vivo, and in patient studies. However, the molecular mechanisms underlying DHEA effects have been only partially elucidated. Autophagy is a self-digestive process, by which cell homeostasis is maintained, damaged organelles removed, and cell survival assured upon stress stimuli. However, high rate of autophagy is detrimental and leads to a form of programmed cell death known as autophagic cell death (ACD). In this chapter, we describe the process of autophagy and the morphological and biochemical features of ACD. Moreover, we analyze the beneficial effects of DHEA in several pathologies and the molecular mechanisms with particular emphasis on its regulation of cell death processes. Finally, we review data indicating DHEA and structurally related steroid hormones as modulators of both autophagy and ACD, a research field that opens new avenues in the therapeutic use of these compounds.
Collapse
Affiliation(s)
- Rolando Vegliante
- MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hopital Civil-Institut d'Hématologie et Immunologie, Strasbourg, France
| | - Maria R Ciriolo
- University of Rome 'Tor Vergata', Rome, Italy; IRCCS San Raffaele 'La Pisana', Rome, Italy.
| |
Collapse
|
38
|
Dong W, Keibler MA, Stephanopoulos G. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis. Metab Eng 2017; 43:113-124. [PMID: 28192215 PMCID: PMC5552450 DOI: 10.1016/j.ymben.2017.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
Abstract
Cancer metabolism has emerged as an indispensable part of contemporary cancer research. During the past 10 years, the use of stable isotopic tracers and network analysis have unveiled a number of metabolic pathways activated in cancer cells. Here, we review such pathways along with the particular tracers and labeling observations that led to the discovery of their rewiring in cancer cells. The list of such pathways comprises the reductive metabolism of glutamine, altered glycolysis, serine and glycine metabolism, mutant isocitrate dehydrogenase (IDH) induced reprogramming and the onset of acetate metabolism. Additionally, we demonstrate the critical role of isotopic labeling and network analysis in identifying these pathways. The alterations described in this review do not constitute a complete list, and future research using these powerful tools is likely to discover other cancer-related pathways and new metabolic targets for cancer therapy.
Collapse
Affiliation(s)
- Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark A Keibler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
Qin G, Dang M, Gao H, Wang H, Luo F, Chen R. Deciphering the protein–protein interaction network regulating hepatocellular carcinoma metastasis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [DOI: 10.1016/j.bbapap.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
EDIM-TKTL1/Apo10 Blood Test: An Innate Immune System Based Liquid Biopsy for the Early Detection, Characterization and Targeted Treatment of Cancer. Int J Mol Sci 2017; 18:ijms18040878. [PMID: 28425973 PMCID: PMC5412459 DOI: 10.3390/ijms18040878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022] Open
Abstract
Epitope detection in monocytes (EDIM) represents a liquid biopsy exploiting the innate immune system. Activated monocytes (macrophages) phagocytose unwanted cells/cell fragments from the whole body including solid tissues. As they return to the blood, macrophages can be used for a non-invasive detection of biomarkers, thereby providing high sensitivity and specificity, because the intracellular presence of biomarkers is due to an innate immune response. Flow cytometry analysis of blood enables the detection of macrophages and phagocytosed intracellular biomarkers. In order to establish a pan-cancer test, biomarkers for two fundamental biophysical mechanisms have been exploited. The DNaseX/Apo10 protein epitope is a characteristic of tumor cells with abnormal apoptosis and proliferation. Transketolase-like 1 (TKTL1) is a marker for an anaerobic glucose metabolism (Warburg effect), which is concomitant with invasive growth/metastasis and resistant to radical and apoptosis inducing therapies. The detection of Apo10 and TKTL1 in blood macrophages allowed a sensitive (95.8%) and specific (97.3%) detection of prostate, breast and oral squamous cell carcinomas. Since TKTL1 represents a drugable target, the EDIM based detection of TKTL1 enables a targeted cancer therapy using the vitamin derivatives oxythiamine or benfo-oxythiamine.
Collapse
|
41
|
Cordes T, Metallo CM. Tracing insights into human metabolism using chemical engineering approaches. Curr Opin Chem Eng 2016; 14:72-81. [PMID: 28480159 DOI: 10.1016/j.coche.2016.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolism coordinates the conversion of available nutrients toward energy, biosynthetic intermediates, and signaling molecules to mediate virtually all biological functions. Dysregulation of metabolic pathways contributes to many diseases, so a detailed understanding of human metabolism has significant therapeutic implications. Over the last decade major technological advances in the areas of analytical chemistry, computational estimation of intracellular fluxes, and biological engineering have improved our ability to observe and engineer metabolic pathways. These approaches are reminiscent of the design, operation, and control of industrial chemical plants. Immune cells have emerged as an intriguing system in which metabolism influences diverse biological functions. Application of metabolic flux analysis and related approaches to macrophages and T cells offers great therapeutic opportunities to biochemical engineers.
Collapse
Affiliation(s)
- Thekla Cordes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|