1
|
Rezaei M, Ghasemi M, Saravani M, Ghahghayi F, Shahraki-Ghadim H, Salimi S. The possible effects of the MTOR polymorphisms on preeclampsia susceptibility, severity, and onset: a case-control study and in silico analysis. Mol Biol Rep 2024; 51:335. [PMID: 38393518 DOI: 10.1007/s11033-023-09190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/21/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Preeclampsia (PE) is a gestational complication with developed hypertension and proteinuria. Evidence showed the role of mTOR in various cellular processes. Therefore, this study aimed to evaluate the effects of MTOR polymorphisms on susceptibility, severity, and onset of Preeclampsia (PE). METHODS AND RESULTS A total of 250 PE pregnant women and 258 age-matched control subjects were recruited in this study. To genotype MTOR polymorphisms, the PCR-RFLP method was used. The SpliceAid 2 and PROMO tools were used for in silico analysis. The maternal MTOR rs17036508T/C polymorphism was associated with PE risk in various genetic models. There was no relationship between rs2536T/C and rs2295080T/G polymorphisms and PE. The TTC and TGC haplotypes of rs2536/ rs2295080/ rs17036508 polymorphisms were significantly higher in PE women. Subgroup analysis revealed the association between the MTOR rs2295080 variant and an increased risk of Early-onset PE (EOPE). However, the MTOR rs17036508 was associated with a higher risk of EOPE and Late- Onset PE. In addition, the MTOR rs2295080 could increase the risk of severe PE. The results of the in silico analysis showed that rs17036508 disrupted several binding motifs in the mutant sequence. The PROMO database revealed that the T to C substitution leads to the loss of the TFII-I binding site in the mutant allele. CONCLUSION The MTOR rs17036508T/C polymorphism was associated with PE risk. There was an association between the MTOR rs2295080 variant and an increased risk of EOPE. The MTOR rs17036508T/C and rs2295080T/C variants could disrupt several binding motifs and TFII-I binding respectively.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Marzieh Ghasemi
- Department of Obstetrics and Gynecology, Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Ghahghayi
- Department of Obstetrics and Gynecology, Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Shahraki-Ghadim
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeedeh Salimi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Tosta BR, de Almeida IM, da Cruz Pena L, Dos Santos Silva H, Reis-Goes FS, Silva NN, Cruz JVA, Dos Anjos Silva M, de Araújo JF, Rodrigues JL, Oliveira G, Figueiredo RG, Vaz SN, Montaño-Castellón I, Santana D, de Lima Beltrão FE, Carneiro VL, Campos GS, Brites C, Fortuna V, Figueiredo CA, Trindade SC, Ramos HE, Costa RDS. MTOR gene variants are associated with severe COVID-19 outcomes: A multicenter study. Int Immunopharmacol 2023; 125:111155. [PMID: 37951192 DOI: 10.1016/j.intimp.2023.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND The worst outcomes linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been attributed to the cytokine storm, which contributes significantly to the immunopathogenesis of the disease. The mammalian target of rapamycin (mTOR) pathway is essential for orchestrating innate immune cell defense including cytokine production and is dysregulated in severe Coronavirus Disease 2019 (COVID-19) individuals. The individual genetic background might play a role in the exacerbated immune response. OBJECTIVE In this study, we aimed to investigate the association between MTOR genetic variants and COVID-19 outcomes. METHODS This study enrolled groups of individuals with severe (n = 285) and mild (n = 207) COVID-19 from Brazilian states. The MTOR variants, rs1057079 and rs2536, were genotyped. A logistic regression analysis and Kaplan-Meier survival curves were performed. We applied a genotyping risk score to estimate the cumulative contribution of the risk alleles. Tumor necrosis factor (TNF) and interleukin-6 (IL-6) plasma levels were also measured. RESULTS The T allele of the MTOR rs1057079 variant was associated with a higher likelihood of developing the most severe form of COVID-19. In addition, higher levels of IL-6 and COVID-19 death was linked to the T allele of the rs2536 variant. These variants exhibited a cumulative risk when inherited collectively. CONCLUSIONS These results show a potential pathogenetic role of MTOR gene variants and may be useful for predicting severe outcomes following COVID-19 infection, resulting in a more effective allocation of health resources.
Collapse
Affiliation(s)
- Bruna Ramos Tosta
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Ingrid Marins de Almeida
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Laiane da Cruz Pena
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Hatilla Dos Santos Silva
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Fabiane S Reis-Goes
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Nívia N Silva
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - João Victor Andrade Cruz
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Mailane Dos Anjos Silva
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Jéssica Francisco de Araújo
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Juliana Lopes Rodrigues
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | | | | | - Sara Nunes Vaz
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Iris Montaño-Castellón
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Daniele Santana
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | | | | | - Gubio Soares Campos
- Laboratório de Virologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Carlos Brites
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Vitor Fortuna
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Camila Alexandrina Figueiredo
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Soraya Castro Trindade
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil; Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Helton Estrela Ramos
- Programa de Pós-Graduação em Processos Interativos de Órgãos e Sistema, Instituto de Saúde e Ciência, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Ryan Dos Santos Costa
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil.
| |
Collapse
|
3
|
Shafique R, Mahjabeen I, Bibi K, Kalsoom F, Rizwan M, Ashraf NS, Mehmood A, Ul Haq MF, Abbasi SF, Saeed N, Kayani MA. miRNA-767 and its binding site polymorphism in the mTOR gene act as potential biomarkers for female reproductive cancers. Future Oncol 2023; 19:1929-1943. [PMID: 37781867 DOI: 10.2217/fon-2022-1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Aims: The present study aimed to understand the relationship between the mTOR gene SNP (rs2536) and reproductive cancer risk. The expression level of miRNA-767 was also assessed. Methods: 700 tumor samples (300 breast, 200 ovarian and 200 cervical cancers), along with adjacent uninvolved control tissue, were used. rs2536 was screened using Tetra-ARMS PCR and expression level of miRNA-767 was assessed using quantitative PCR. Results: The frequency of the homozygous mutant genotype of rs2536 was observed significantly higher in breast (p < 0.04), ovarian (p < 0.005) and cervical (p < 0.003) cancers. Significant downregulation of miRNA-767 was observed in tumors compared with controls. Conclusion: The present study demonstrates that increased mutant frequency of rs2536 and deregulation of miRNA-767 are associated with increased reproductive cancer risk.
Collapse
Affiliation(s)
- Rabia Shafique
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Kashaf Bibi
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Farah Kalsoom
- Department of Pathology, Sir Ganga Ram Hospital, Lahore, Pakistan
| | - Muhammad Rizwan
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Nida Sarosh Ashraf
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Azhar Mehmood
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Maria Fazal Ul Haq
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Sumaira Fida Abbasi
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Nadia Saeed
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| |
Collapse
|
4
|
Ilozumba MN, Yaghjyan L, Datta S, Zhao J, Hong CC, Lunetta KL, Zirpoli G, Bandera EV, Palmer JR, Yao S, Ambrosone CB, Cheng TYD. mTOR pathway candidate genes and energy intake interaction on breast cancer risk in Black women from the Women's Circle of Health Study. Eur J Nutr 2023; 62:2593-2604. [PMID: 37209192 PMCID: PMC10695182 DOI: 10.1007/s00394-023-03176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Excessive energy intake has been shown to affect the mammalian target of the rapamycin (mTOR) signaling pathway and breast cancer risk. It is not well understood whether there are gene-environment interactions between mTOR pathway genes and energy intake in relation to breast cancer risk. METHODS The study included 1642 Black women (809 incident breast cancer cases and 833 controls) from the Women's Circle of Health Study (WCHS). We examined interactions between 43 candidate single-nucleotide polymorphisms (SNPs) in 20 mTOR pathway genes and quartiles of energy intake in relation to breast cancer risk overall and by ER- defined subtypes using Wald test with a 2-way interaction term. RESULTS AKT1 rs10138227 (C > T) was only associated with a decreased overall breast cancer risk among women in quartile (Q)2 of energy intake, odds ratio (OR) = 0.60, 95% confidence interval (CI) 0.40, 0.91 (p-interaction = 0.042). Similar results were found in ER- tumors. AKT rs1130214 (C > A) was associated with decreased overall breast cancer risk in Q2 (OR = 0.63, 95% CI 0.44, 0.91) and Q3 (OR = 0.65, 95% CI 0.48, 0.89) (p-interaction = 0.026). HIF-1α C1772T rs11549465 (C > T) was associated with decreased overall breast cancer risk in Q4 (OR = 0.29, 95% CI 0.14, 0.59, p-interaction = 0.007); the results were similar in ER+ tumors. These interactions became non-significant after correction for multiple comparisons. CONCLUSION Our findings suggest that mTOR genetic variants may interact with energy intake in relation to breast cancer risk, including the ER- subtype, in Black women. Future studies should confirm these findings.
Collapse
Affiliation(s)
- Mmadili N Ilozumba
- Department of Epidemiology, University of Florida, Gainesville, FL, USA.
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA.
| | - Lusine Yaghjyan
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Gary Zirpoli
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Elisa V Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ting-Yuan David Cheng
- Department of Epidemiology, University of Florida, Gainesville, FL, USA.
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Division of Cancer Prevention and Control, Department of Internal Medicine, The Ohio State University, Suite 525, 1590 North High Street, Columbus, OH, 43201, USA.
| |
Collapse
|
5
|
Derwich A, Sykutera M, Bromińska B, Rubiś B, Ruchała M, Sawicka-Gutaj N. The Role of Activation of PI3K/AKT/mTOR and RAF/MEK/ERK Pathways in Aggressive Pituitary Adenomas-New Potential Therapeutic Approach-A Systematic Review. Int J Mol Sci 2023; 24:10952. [PMID: 37446128 PMCID: PMC10341524 DOI: 10.3390/ijms241310952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary tumors (PT) are mostly benign, although occasionally they demonstrate aggressive behavior, invasion of surrounding tissues, rapid growth, resistance to conventional treatments, and multiple recurrences. The pathogenesis of PT is still not fully understood, and the factors responsible for its invasiveness, aggressiveness, and potential for metastasis are unknown. RAF/MEK/ERK and mTOR signaling are significant pathways in the regulation of cell growth, proliferation, and survival, its importance in tumorigenesis has been highlighted. The aim of our review is to determine the role of the activation of PI3K/AKT/mTOR and RAF/MEK/ERK pathways in the pathogenesis of pituitary tumors. Additionally, we evaluate their potential in a new therapeutic approach to provide alternative therapies and improved outcomes for patients with aggressive pituitary tumors that do not respond to standard treatment. We perform a systematic literature search using the PubMed, Embase, and Scopus databases (search date was 2012-2023). Out of the 529 screened studies, 13 met the inclusion criteria, 7 related to the PI3K/AKT/mTOR pathway, and 7 to the RAF/MEK/ERK pathway (one study was used in both analyses). Understanding the specific factors involved in PT tumorigenesis provides opportunities for targeted therapies. We also review the possible new targeted therapies and the use of mTOR inhibitors and TKI in PT management. Although the RAF/MEK/ERK and PI3K/AKT/mTOR pathways play a pivotal role in the complex signaling network along with many interactions, further research is urgently needed to clarify the exact functions and the underlying mechanisms of these signaling pathways in the pathogenesis of pituitary adenomas and their role in its invasiveness and aggressive clinical outcome.
Collapse
Affiliation(s)
- Aleksandra Derwich
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Monika Sykutera
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Barbara Bromińska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| |
Collapse
|
6
|
Clinical Implications of mTOR Expression in Papillary Thyroid Cancer—A Systematic Review. Cancers (Basel) 2023; 15:cancers15061665. [PMID: 36980552 PMCID: PMC10046096 DOI: 10.3390/cancers15061665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Papillary thyroid cancer (PTC) comprises approximately 80% of all thyroid malignancies. Although several etiological factors, such as age, gender, and irradiation, are already known to be involved in the development of PTC, the genetics of cancerogenesis remain undetermined. The mTOR pathway regulates several cellular processes that are critical for tumorigenesis. Activated mTOR is involved in the development and progression of PTC. Therefore, we performed a systematic review of papers studying the expression of the mTOR gene and protein and its relationship with PTC risk and clinical outcome. A systematic literature search was performed using PubMed, Embase, and Scopus databases (the search date was 2012–2022). Studies investigating the expression of mTOR in the peripheral blood or tissue of patients with PTC were deemed eligible for inclusion. Seven of the 286 screened studies met the inclusion criteria for mTOR gene expression and four for mTOR protein expression. We also analyzed the data on mTOR protein expression in PTC. We analyzed the association of mTOR expression with papillary thyroid cancer clinicopathological features, such as the TNM stage, BRAF V600E mutation, sex distribution, lymph node and distant metastases, and survival prognosis. Understanding specific factors involved in PTC tumorigenesis provides opportunities for targeted therapies. We also reviewed the possible new targeted therapies and the use of mTOR inhibitors in PTC. This topic requires further research with novel techniques to translate the achieved results to clinical application.
Collapse
|
7
|
Fernández LP, Deleyto-Seldas N, Colmenarejo G, Sanz A, Wagner S, Plata-Gómez AB, Gómez-Patiño M, Molina S, Espinosa-Salinas I, Aguilar-Aguilar E, Ortega S, Graña-Castro O, Loria-Kohen V, Fernández-Marcos PJ, Efeyan A, Ramírez de Molina A. Folliculin-interacting protein FNIP2 impacts on overweight and obesity through a polymorphism in a conserved 3' untranslated region. Genome Biol 2022; 23:230. [PMID: 36316722 PMCID: PMC9620695 DOI: 10.1186/s13059-022-02798-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/19/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Overweight and obesity are defined by an anomalous or excessive fat accumulation that may compromise health. To find single-nucleotide polymorphisms (SNPs) influencing metabolic phenotypes associated with the obesity state, we analyze multiple anthropometric and clinical parameters in a cohort of 790 healthy volunteers and study potential associations with 48 manually curated SNPs, in metabolic genes functionally associated with the mechanistic target of rapamycin (mTOR) pathway. RESULTS We identify and validate rs2291007 within a conserved region in the 3'UTR of folliculin-interacting protein FNIP2 that correlates with multiple leanness parameters. The T-to-C variant represents the major allele in Europeans and disrupts an ancestral target sequence of the miRNA miR-181b-5p, thus resulting in increased FNIP2 mRNA levels in cancer cell lines and in peripheral blood from carriers of the C allele. Because the miRNA binding site is conserved across vertebrates, we engineered the T-to-C substitution in the endogenous Fnip2 allele in mice. Primary cells derived from Fnip2 C/C mice show increased mRNA stability, and more importantly, Fnip2 C/C mice replicate the decreased adiposity and increased leanness observed in human volunteers. Finally, expression levels of FNIP2 in both human samples and mice negatively associate with leanness parameters, and moreover, are the most important contributor in a multifactorial model of body mass index prediction. CONCLUSIONS We propose that rs2291007 influences human leanness through an evolutionarily conserved modulation of FNIP2 mRNA levels.
Collapse
Affiliation(s)
- Lara P Fernández
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | | | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Alba Sanz
- Spanish National Cancer Research Center, Madrid, Spain
| | - Sonia Wagner
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | | | - Mónica Gómez-Patiño
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Susana Molina
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Isabel Espinosa-Salinas
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Elena Aguilar-Aguilar
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Sagrario Ortega
- Mouse Genome Editing Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Center, Madrid, Spain
- Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), Department of Basic Medical Sciences, School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Viviana Loria-Kohen
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | | | - Alejo Efeyan
- Spanish National Cancer Research Center, Madrid, Spain.
| | | |
Collapse
|
8
|
Yasmin T. In silico comprehensive analysis of coding and non-coding SNPs in human mTOR protein. PLoS One 2022; 17:e0270919. [PMID: 35788771 PMCID: PMC9255762 DOI: 10.1371/journal.pone.0270919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) protein is an important growth regulator and has been linked with multiple diseases including cancer and diabetes. Non-synonymous mutations of this gene have already been found in patients with renal clear cell carcinoma, melanoma, and acute lymphoid leukemia among many others. Such mutations can potentially affect a protein’s structure and hence its functions. In this study, therefore, the most deleterious SNPs of mTOR protein have been determined to identify potential biomarkers for various disease treatments. The aim is to generate a structured dataset of the mTOR gene’s SNPs that may prove to be an asset for the identification and treatment of multiple diseases associated with the target gene. Both sequence and structure-based approaches were adopted and a wide variety of bioinformatics tools were applied to analyze the SNPs of mTOR protein. In total 11 nsSNPs have been filtered out of 2178 nsSNPs along with two non-coding variations. All of the nsSNPs were found to destabilize the protein structure and disrupt its function. While R619C, A1513D, and T1977R mutations were shown to alter C alpha distances and bond angles of the mTOR protein, L509Q, R619C and N2043S were predicted to disrupt the mTOR protein’s interaction with NBS1 protein and FKBP1A/rapamycin complex. In addition, one of the non-coding SNPs was shown to alter miRNA binding sites. Characterizing nsSNPs and non-coding SNPs and their harmful effects on a protein’s structure and functions will enable researchers to understand the critical impact of mutations on the molecular mechanisms of various diseases. This will ultimately lead to the identification of potential targets for disease diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Tahirah Yasmin
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
9
|
Associations of Genetic Polymorphisms of mTOR rs2295080 T/G and rs1883965 G/A with Susceptibility of Urinary System Cancers. DISEASE MARKERS 2022; 2022:1720851. [PMID: 35082928 PMCID: PMC8786550 DOI: 10.1155/2022/1720851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022]
Abstract
Background. Genetic polymorphisms in mammalian target of rapamycin (mTOR) signaling axis can influence the susceptibility of cancer. The relationship between mTOR gene variants rs2295080 T/G and rs1883965 G/A and the risk of cancer remains inconsistent. The present study is aimed at comprehensively investigating the association between mTOR polymorphisms and susceptibility to cancer. Methods. We conducted a comprehensive assessment using odds ratios (ORs), corresponding 95% confidence intervals (CIs), and in silico tools to evaluate the effect of mTOR variations. Immunohistochemical staining (IHS) and GSEA analysis were used to investigate the expression of mTOR in urinary system cancer. Results. The pooled analysis involved 22 case-control studies including 14,747 cancer patients and 16,399 controls. The rs2295080 T/G polymorphism was associated with the risk of cancer (G-allele versus T-allele,
,
–0.98,
; GT versus TT,
,
–0.96,
; GG+GT versus TT,
,
–0.96,
), especially for cancers of the urinary system, breast, and blood. Variation rs1883965 G/A was associated with cancer susceptibility, especially for digestive cancer. IHS analysis showed that mTOR was upregulated in prostate and bladder cancer. GSEA revealed that the insulin signaling pathway, lysine degradation pathway, and mTOR signaling pathway were enriched in the high mTOR expression group. Conclusions. The mTOR rs2295080 T/G polymorphism may be associated with susceptibility of urinary cancer. The expression of mTOR is positively correlated with tumor malignancy in prostate cancer.
Collapse
|
10
|
Simons CCJM, Schouten LJ, Godschalk RWL, van Schooten FJ, Stoll M, Van Steen K, van den Brandt PA, Weijenberg MP. Polymorphisms in the mTOR-PI3K-Akt pathway, energy balance-related exposures and colorectal cancer risk in the Netherlands Cohort Study. BioData Min 2022; 15:2. [PMID: 35012583 PMCID: PMC8751328 DOI: 10.1186/s13040-021-00286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mTOR-PI3K-Akt pathway influences cell metabolism and (malignant) cell growth. We generated sex-specific polygenic risk scores capturing natural variation in 7 out of 10 top-ranked genes in this pathway. We studied the scores directly and in interaction with energy balance-related factors (body mass index (BMI), trouser/skirt size, height, physical activity, and early life energy restriction) in relation to colorectal cancer (CRC) risk in the Netherlands Cohort Study (NLCS) (n=120,852). The NLCS has a case-cohort design and 20.3 years of follow-up. Participants completed a baseline questionnaire on diet and cancer in 1986 when 55-69 years old. ~75% of the cohort returned toenail clippings used for DNA isolation and genotyping (n subcohort=3,793, n cases=3,464). To generate the scores, the dataset was split in two and risk alleles were defined and weighted based on sex-specific associations with CRC risk in the other dataset half, because there were no SNPs in the top-ranked genes associated with CRC risk in previous genome-wide association studies at a significance level p<1*10-5. RESULTS Cox regression analyses showed positive associations between the sex-specific polygenic risk scores and colon but not rectal cancer risk in men and women, with hazard ratios for continuously modeled scores close to 1.10. There was no modifying effect observed of the scores on associations between the energy balance-related factors and CRC risk. However, BMI (in men), non-occupational physical activity (in women), and height (in men and women) were associated with the risk of CRC, in particular (proximal and distal) colon cancer, in the direction as expected in the lower tertiles of the sex-specific polygenic risk scores. CONCLUSIONS Current data suggest that the mTOR-PI3K-Akt pathway may be involved in colon cancer development. This study thereby sheds more light on colon cancer etiology through use of genetic variation in the mTOR-PI3K-Akt pathway.
Collapse
Affiliation(s)
- Colinda C J M Simons
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Leo J Schouten
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Roger W L Godschalk
- Department of Pharmacology and Toxicology, NUTRIM - School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM - School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, University of Münster, Münster, Germany.,Department of Biochemistry, Maastricht Centre for Systems Biology (MaCSBio), School for Cardiovascular Diseases, CARIM-, Maastricht University, Maastricht, the Netherlands
| | | | - Piet A van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
11
|
Mc Auley MT. DNA methylation in genes associated with the evolution of ageing and disease: A critical review. Ageing Res Rev 2021; 72:101488. [PMID: 34662746 DOI: 10.1016/j.arr.2021.101488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022]
Abstract
Ageing is characterised by a physical decline in biological functioning which results in a progressive risk of mortality with time. As a biological phenomenon, it is underpinned by the dysregulation of a myriad of complex processes. Recently, however, ever-increasing evidence has associated epigenetic mechanisms, such as DNA methylation (DNAm) with age-onset pathologies, including cancer, cardiovascular disease, and Alzheimer's disease. These diseases compromise healthspan. Consequently, there is a medical imperative to understand the link between epigenetic ageing, and healthspan. Evolutionary theory provides a unique way to gain new insights into epigenetic ageing and health. This review will: (1) provide a brief overview of the main evolutionary theories of ageing; (2) discuss recent genetic evidence which has revealed alleles that have pleiotropic effects on fitness at different ages in humans; (3) consider the effects of DNAm on pleiotropic alleles, which are associated with age related disease; (4) discuss how age related DNAm changes resonate with the mutation accumulation, disposable soma and programmed theories of ageing; (5) discuss how DNAm changes associated with caloric restriction intersect with the evolution of ageing; and (6) conclude by discussing how evolutionary theory can be used to inform investigations which quantify age-related DNAm changes which are linked to age onset pathology.
Collapse
Affiliation(s)
- Mark Tomás Mc Auley
- Faculty of Science and Engineering, University of Chester, Exton Park, Chester CH1 4BJ, UK.
| |
Collapse
|
12
|
Lu X, Liu M, Liao Y, Huang C, Chai L, Jin Y, Xiong Q, Chen B. Meta-analysis of the association between mTORC1-related genes polymorphisms and cancer risk. Pathol Res Pract 2021; 229:153696. [PMID: 34839094 DOI: 10.1016/j.prp.2021.153696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND mTOR, mLST8 and RAPTOR are the core components of mTORC1, which has been found to be closely related to tumorigenesis. Currently, multiple single nucleotide polymorphisms (SNPs) in mTOR gene (rs2295080, rs17036508 and rs1034528), mLST8 gene (rs3160 and rs26865) and RPTOR gene (rs1062935, rs3751932, rs3751834, rs12602885) have been extensively studied for their associations with cancer risk. However, the results remained inconclusive and conflicting. Therefore, we here performed a meta-analysis of all available studies to investigate the association between these SNPs and cancer risk. METHODS Up to April 2021, 25 related publications were retrieved and included in this meta-analysis. The odds ratios (ORs) and 95% confidence intervals (CIs) calculated by fixed or random effects models were applied to assess the strength of association. Trial Sequential Analysis (TSA) was conducted to weaken the random error and enhance the reliability of evidence. RESULTS After Bonferroni correction, it was revealed that rs3160, rs26865, rs1062935, rs3751932, rs3751834 and rs10602885 were not associated with cancer risk. However, rs17036508 and rs1034528 showed significant association with total cancer risk. A significant association was also found between rs2295080 and total cancer risk, and stratified analysis by cancer type suggested that rs2295080 was specifically associated with acute lymphoblastic leukemia risk, prostate cancer risk, and breast cancer risk. CONCLUSIONS The present meta-analysis suggested that the rs2295080, rs17036508 and rs1034528 polymorphisms in mTOR gene may be the susceptive factors for cancer development, while the target genetic polymorphisms in mLST8 gene or RPTOR gene may not be associated with cancer risk. However, these findings remain to be confirmed or further reinforced in large and well-designed studies in different ethnic populations.
Collapse
Affiliation(s)
- Xiaoling Lu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meitong Liu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yuxiao Liao
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Chao Huang
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Longlong Chai
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China; Department of Laboratory, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yuchen Jin
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Qiantao Xiong
- Department of Laboratory, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.
| | - Bifeng Chen
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
13
|
Zeuschner P, Zaccagnino A, Junker K. [Biomarkers for renal cell tumours]. Aktuelle Urol 2021; 52:452-463. [PMID: 34157774 DOI: 10.1055/a-1517-6259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
During the last three decades, renal tumours have become increasingly well differentiated on the basis of their histopathological and molecular features. This subtyping has increasingly impacted clinical practice because more therapeutic options are available in organ-confined and metastatic renal cell tumours. The knowledge of the underlying molecular alterations is essential to develop molecular targeted therapies and to select the most effective systemic therapy for each patient. This manuscript gives an overview of the molecular differentiation on the one hand, and on diagnostic, prognostic and predictive biomarkers on the other hand.
Collapse
Affiliation(s)
- Philip Zeuschner
- Klinik für Urologie und Kinderurologie, Universitätsklinikum des Saarlandes, Homburg/Saar
| | - Angela Zaccagnino
- Klinik für Urologie und Kinderurologie, Universitätsklinikum des Saarlandes, Homburg/Saar
| | - Kerstin Junker
- Klinik für Urologie und Kinderurologie, Universitätsklinikum des Saarlandes, Homburg/Saar
| |
Collapse
|
14
|
Thrombospondin-2 and LDH Are Putative Predictive Biomarkers for Treatment with Everolimus in Second-Line Metastatic Clear Cell Renal Cell Carcinoma (MARC-2 Study). Cancers (Basel) 2021; 13:cancers13112594. [PMID: 34070677 PMCID: PMC8199288 DOI: 10.3390/cancers13112594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Treatment of metastatic renal cell carcinoma (mRCC) remains a challenge due to the lack of biomarkers indicating the optimal drug for each patient. This study analyzed blood samples of patients with predominant clear cell mRCC who were treated with the mTOR inhibitor everolimus after failure of one prior tumor therapy. In an exploratory approach, predictive blood biomarkers were searched. We found lower levels of the protein thrombospondin-2 (TSP-2) at the start of the therapy and higher lactate dehydrogenase (LDH) levels in serum two weeks after therapy initiation to be associated with therapy response. Of note, these blood biomarkers had a higher predictive value than baseline patient parameters or risk classifications. Polymorphisms in the mTOR gene appeared to be associated with therapy response, but were not significant. To conclude, it seems feasible to identify patients showing longtime responses to everolimus and possible to increase tumor therapy response rates based on biomarkers for individual therapy selection. Abstract There is an unmet need for predictive biomarkers in metastatic renal cell carcinoma (mRCC) therapy. The phase IV MARC-2 trial searched for predictive blood biomarkers in patients with predominant clear cell mRCC who benefit from second-line treatment with everolimus. In an exploratory approach, potential biomarkers were assessed employing proteomics, ELISA, and polymorphism analyses. Lower levels of angiogenesis-related protein thrombospondin-2 (TSP-2) at baseline (≤665 parts per billion, ppb) identified therapy responders with longer median progression-free survival (PFS; ≤665 ppb at baseline: 6.9 months vs. 1.8, p = 0.005). Responders had higher lactate dehydrogenase (LDH) levels in serum two weeks after therapy initiation (>27.14 nmol/L), associated with a longer median PFS (3.8 months vs. 2.2, p = 0.013) and improved overall survival (OS; 31.0 months vs. 14.0 months, p < 0.001). Baseline TSP-2 levels had a stronger relation to PFS (HR 0.36, p = 0.008) than baseline patient parameters, including IMDC score. Increased serum LDH levels two weeks after therapy initiation were the best predictor for OS (HR 0.21, p < 0.001). mTOR polymorphisms appeared to be associated with therapy response but were not significant. Hence, we identified TSP-2 and LDH as promising predictive biomarkers for therapy response on everolimus after failure of one VEGF-targeted therapy in patients with clear cell mRCC.
Collapse
|
15
|
SNP-SNP Interaction in Genes Encoding PD-1/PD-L1 Axis as a Potential Risk Factor for Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12123521. [PMID: 33255938 PMCID: PMC7760680 DOI: 10.3390/cancers12123521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Immune checkpoints are key receptors that regulate the immune system and prevent its overactivation. This regulatory mechanism, which under normal conditions is responsible for maintaining immune homeostasis, can be misused by cancer cells, allowing them to avoid recognition and destruction. PD-1 is one of the major immune checkpoints that when interacting with its ligands—PD-L1/PD-L2, regulates the immune surveillance in the tumor microenvironment. We therefore hypothesized that single nucleotide polymorphisms (SNPs) (located in regulatory regions involved in regulation of expression and alternative splicing as well as SNPs introducing changes to the protein sequence) in genes encoding PD-1 and PD-L1 molecules may be associated with the development and outcome of renal cell carcinoma (RCC). We genotyped nine SNPs in PD-1/PD-L1 axis genes, with application of TaqMan allelic discrimination assays, and found that two of them taken together (rs10815225xrs7421861) may be considered to be potential risk factor for clear cell RCC. Abstract PD-1/PD-L1 axis plays an important role in maintaining homeostasis and prevention from autoimmunity; however, in the tumor microenvironment, PD-1/PD-L1 interaction is responsible for the evasion of immune surveillance by tumor cells. We therefore hypothesized that single nucleotide polymorphisms (SNPs) in genes encoding PD-1 and PD-L1 molecules are associated with the development and outcome of renal cell carcinoma (RCC). Here we genotyped nine polymorphisms: five of PDCD1: rs36084323G>A, rs11568821G>A, rs2227981C>T, rs10204525G>A, rs7421861T>C and four of PD-L1: rs822335C>T, rs4143815G>C, rs4742098A>G, rs10815225G>C in 237 RCC patients (including 208 with clear cell RCC (ccRCC)) and 256 controls, with application of allelic discrimination method with use of TaqMan Assays. Interestingly, we found the SNP-SNP interaction between rs10815225 and rs7421861 polymorphisms associated with ccRCC risk. The rs7421861 TC genotype decreased the risk of ccRCC development compared to TT and CC genotypes in the group of rs10815225 GC + CC individuals (OR = 0.21, CI95% = 0.08; 0.54). While possessing of rs10815225 GC or CC genotype increased susceptibility to ccRCC when compared to rs10815225 GG genotype in individuals with rs7421861 TT or CC genotype (OR = 2.40, CI95% = 1.25; 4.61). In conclusion, genetic variants in PDCD1 and PD-L1 genes, especially taken together as SNP-SNP interactions, can be considered to be ccRCC risk factors.
Collapse
|
16
|
Maruei‐Milan R, Saravani M, Heidari Z, Asadi‐Tarani M, Salimi S. Effects of the
MTOR
and
AKT1
genes polymorphisms on papillary thyroid cancer development. IUBMB Life 2020; 72:2601-2610. [DOI: 10.1002/iub.2388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Rostam Maruei‐Milan
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Mohsen Saravani
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute Zahedan University of Medical Sciences Zahedan Iran
| | - Zahra Heidari
- Department of Internal Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Mina Asadi‐Tarani
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute Zahedan University of Medical Sciences Zahedan Iran
| |
Collapse
|
17
|
Wang M, Ma SJ, Wu XY, Zhang X, Abesig J, Xiao ZH, Huang X, Yan HP, Wang J, Chen MS, Tan HZ. Impact of mTOR gene polymorphisms and gene-tea interaction on susceptibility to tuberculosis. World J Clin Cases 2020; 8:4320-4330. [PMID: 33083391 PMCID: PMC7559685 DOI: 10.12998/wjcc.v8.i19.4320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 08/29/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND mTOR gene is a key component of the PI3K/Akt/mTOR signaling pathway, and its dysregulation is associated with various diseases. Several studies have demonstrated that tea drinking is a protective factor against tuberculosis (TB). This study was designed to explore five single nucleotide polymorphisms (SNPs) of mTOR in the Han population of China to determine how their interactions with tea drinking affect susceptibility to TB.
AIM To investigate if the polymorphisms of mTOR gene and the gene-tea interaction are associated with susceptibility to TB.
METHODS In this case-control study, 503 patients with TB and 494 healthy controls were enrolled by a stratified sampling method. The cases were newly registered TB patients from the county-level centers for disease control and prevention, and the healthy controls were permanent residents from Xin’ansi Community, Changsha city. Demographic data and environmental exposure information including tea drinking were obtained from the study participants. We genotyped five potentially functional SNP sites (rs2295080, rs2024627, rs1057079, rs12137958, and rs7525957) of mTOR gene and assessed their associations with the risk of TB using logistic regression analysis, and marginal structural linear odds models were used to estimate the gene-environment interactions.
RESULTS The frequencies of four SNPs (rs2295080, rs2024627, rs1057079, and rs7525957) were found to be associated with susceptibility to TB (P < 0.05). Genotypes GT (OR 1.334), GG (OR 2.224), and GT + GG (OR 1.403) at rs2295080; genotypes CT (OR 1.562) and CT + TT (OR 1.578) at rs2024627, genotypes CT (OR 1.597), CC (OR 2.858), and CT + CC (OR 1.682) at rs1057079; and genotypes CT (OR 1.559) and CT + CC (OR 1.568) at rs7525957 of mTOR gene were significantly more prevalent in TB patients than in healthy controls. The relative excess risk of interaction between the four SNPs (rs2295080, rs2024627, rs1057079, and rs7525957) of mTOR genes and tea drinking were found to be -1.5187 (95%CI: -1.9826, -1.0547, P < 0.05), -1.8270 (95%CI: -2.3587, -1.2952, P < 0.05), -2.3246 (95%CI: -2.9417, -1.7076, P < 0.05) and -0.4235 (95%CI: -0.7756, -0.0714, P < 0.05), respectively, which suggest negative interactions.
CONCLUSION The polymorphisms of mTOR (rs2295080, rs2024627, rs1057079, and rs7525957) are associated with susceptibility to TB, and there is a negative interaction between each of the four SNPs and tea drinking.
Collapse
Affiliation(s)
- Mian Wang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, China
| | - Shu-Juan Ma
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, China
| | - Xin-Yin Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, China
| | - Xian Zhang
- Department of Occupational and Environmental Hygiene, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, China
| | - Julius Abesig
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, China
| | - Zheng-Hui Xiao
- Hunan Provincial Key Laboratory of Pediatric Emergency, Hunan Children’s Hospital, Changsha 410007, Hunan Province, China
| | - Xin Huang
- Department of Epidemiology and Health Statistics, Hunan Normal University, Changsha 410008, Hunan Province, China
| | - Hai-Peng Yan
- Hunan Provincial Key Laboratory of Pediatric Emergency, Hunan Children’s Hospital, Changsha 410007, Hunan Province, China
| | - Jing Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, China
| | - Meng-Shi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, China
| | - Hong-Zhuan Tan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, China
| |
Collapse
|
18
|
Qi GH, Wang CH, Zhang HG, Yu JG, Ding F, Song ZC, Xia QH. Comprehensive analysis of the effect of rs2295080 and rs2536 polymorphisms within the mTOR gene on cancer risk. Biosci Rep 2020; 40:BSR20191825. [PMID: 32597485 PMCID: PMC7350887 DOI: 10.1042/bsr20191825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
There is still no conclusion on the potential effect of the rs2295080 and rs2536 polymorphisms of mTOR (mammalian target of rapamycin) gene on different cancers. Herein, we performed a comprehensive assessment using pooled analysis, FPRP (false-positive report probability), TSA (trial sequential analysis), and eQTL (expression quantitative trait loci) analysis. Eighteen high-quality articles from China were enrolled. The pooled analysis of rs2295080 with 9502 cases and 10,965 controls showed a decreased risk of urinary system tumors and specific prostate cancers [TG vs. TT, TG+GG vs. TT and G vs. T; P<0.05, OR (odds ratio) <1]. FPRP and TSA data further confirmed these results. There was an increased risk of leukemia [G vs. T, GG vs. TT, and GG vs. TT+TG genotypes; P<0.05, OR>1]. The eQTL data showed a potential correlation between the rs2295080 and mTOR expression in whole blood samples. Nevertheless, FPRP and TSA data suggested that more evidence is required to confirm the potential role of rs2295080 in leukemia risk. The pooled analysis of rs2536 (6653 cases and 7025 controls) showed a significant association in the subgroup of "population-based" control source via the allele, heterozygote, dominant, and carrier comparisons (P<0.05, OR>1). In conclusion, the TG genotype of mTOR rs2295080 may be linked to reduced susceptibility to urinary system tumors or specific prostate cancers in Chinese patients. The currently data do not strongly support a role of rs2295080 in leukemia susceptibility. Large sample sizes are needed to confirm the potential role of rs2536 in more types of cancer.
Collapse
Affiliation(s)
- Guang-Hui Qi
- Department of Urology, The First Hospital of Zibo City, Zibo, Shandong 255000, China
| | - Chun-Hui Wang
- Second Department of Gastroenterology, The First Hospital of Zibo City, Zibo, Shandong 255000, China
| | - Hong-Ge Zhang
- Third Department of Surgery, Teng zhou Hospital of Traditional Chinese Medicine, Teng zhou, Shandong 277500, China
| | - Jian-Guo Yu
- Department of Urology, The First Hospital of Zibo City, Zibo, Shandong 255000, China
| | - Fei Ding
- Second Department of Oncology, The First Hospital of Zibo City, Zibo, Shandong 255000, China
| | - Zhi-Chao Song
- Department of Anorectal Surgery, The First Hospital of Zibo City, Zibo, Shandong 255000, China
| | - Qing-Hua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
19
|
Sorrenti V, Fortinguerra S, Caudullo G, Buriani A. Deciphering the Role of Polyphenols in Sports Performance: From Nutritional Genomics to the Gut Microbiota toward Phytonutritional Epigenomics. Nutrients 2020; 12:nu12051265. [PMID: 32365576 PMCID: PMC7281972 DOI: 10.3390/nu12051265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
The individual response to nutrients and non-nutrient molecules can be largely affected by three important biological layers. The gut microbiome can alter the bioavailability of nutrients and other substances, the genome can influence molecule kinetics and dynamics, while the epigenome can modulate or amplify the properties of the genome. Today the use of omic techniques and bioinformatics, allow the construction of individual multilayer networks and thus the identification of personalized strategies that have recently been considered in all medical fields, including sports medicine. The composition of each athlete’s microbiome influences sports performance both directly by acting on energy metabolism and indirectly through the modulation of nutrient or non-nutrient molecule availability that ultimately affects the individual epigenome and the genome. Among non-nutrient molecules polyphenols can potentiate physical performances through different epigenetic mechanisms. Polyphenols interact with the gut microbiota, undergoing extensive metabolism to produce bioactive molecules, which act on transcription factors involved in mitochondrial biogenesis, antioxidant systems, glucose and lipid homeostasis, and DNA repair. This review focuses on polyphenols effects in sports performance considering the individual microbiota, epigenomic asset, and the genomic characteristics of athletes to understand how their supplementation could potentially help to modulate muscle inflammation and improve recovery.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
- Correspondence:
| | - Stefano Fortinguerra
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
| | - Giada Caudullo
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
| | - Alessandro Buriani
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
| |
Collapse
|
20
|
Santos de Oliveira FL, Vieira Carletti J, Azevedo FFN, Freitas de Sousa FJ, Caetano EWS, Freire VN, Zanatta G. mTOR–mLST8 interaction: hot spot identification through quantum biochemistry calculations. NEW J CHEM 2020. [DOI: 10.1039/d0nj04099a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantum calculation of mTOR–mLST8 interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Geancarlo Zanatta
- Department of Physics at Federal University of Ceará
- 60455-760 Fortaleza
- Brazil
- Postgraduate Research Program in Biochemistry at Federal University of Ceará
- Fortaleza
| |
Collapse
|
21
|
Xu Z, Yang H, Zhou X, Li J, Jiang L, Li D, Wu L, Huang Y, Xu N. Genetic variants in mTOR-pathway-related genes contribute to osteoarthritis susceptibility. Int Immunopharmacol 2019; 77:105960. [DOI: 10.1016/j.intimp.2019.105960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/23/2022]
|
22
|
Zhang S, Shi W, Ramsay ES, Bliskovsky V, Eiden AM, Connors D, Steinsaltz M, DuBois W, Mock BA. The transcription factor MZF1 differentially regulates murine Mtor promoter variants linked to tumor susceptibility. J Biol Chem 2019; 294:16756-16764. [PMID: 31548308 DOI: 10.1074/jbc.ra119.009779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/18/2019] [Indexed: 01/15/2023] Open
Abstract
Mechanistic target of rapamycin (MTOR) is a highly conserved serine/threonine kinase that critically regulates cell growth, proliferation, differentiation, and survival. Previously, we have implicated Mtor as a plasmacytoma-resistance locus, Pctr2, in mice. Here, we report that administration of the tumor-inducing agent pristane decreases Mtor gene expression to a greater extent in mesenteric lymph nodes of BALB/cAnPt mice than of DBA/2N mice. We identified six allelic variants in the Mtor promoter region in BALB/cAnPt and DBA/2N mice. To determine the effects of these variants on Mtor transcription, we constructed a series of luciferase reporters containing these promoter variants and transfected them into mouse plasmacytoma cells. We could attribute the differences in Mtor promoter activity between the two mouse strains to a C → T change at the -6 position relative to the transcriptional start site Tssr 40273; a T at this position in the BALB promoter creates a consensus binding site for the transcription factor MZF1 (myeloid zinc finger 1). Results from electrophoretic mobility shift assays and DNA pulldown assays with ChIP-PCR confirmed that MZF1 binds to the cis-element TGGGGA located in the -6/-1 Mtor promoter region. Of note, MZF1 significantly and differentially down-regulated Mtor promoter activity, with MZF1 overexpression reducing Mtor expression more strongly in BALB mice than in DBA mice. Moreover, MZF1 overexpression reduced Mtor expression in both fibroblasts and mouse plasmacytoma cells, and Mzf1 knockdown increased Mtor expression in BALB3T3 and NIH3T3 fibroblast cells. Our results provide evidence that MZF1 down-regulates Mtor expression in pristane-induced plasmacytomas in mice.
Collapse
Affiliation(s)
- Shuling Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei Shi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Edward S Ramsay
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Valery Bliskovsky
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Adrian Max Eiden
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel Connors
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthew Steinsaltz
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Wendy DuBois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
23
|
Chen Q, Deng X, Hu X, Guan S, He M, Wang Y, Wei B, Zhang J, Zhao H, Yao W, Jin F, Liu Y, Chen J, Olapade OI, Wu H, Wei M. Breast Cancer Risk-Associated SNPs in the mTOR Promoter Form De Novo KLF5- and ZEB1-Binding Sites that Influence the Cellular Response to Paclitaxel. Mol Cancer Res 2019; 17:2244-2256. [PMID: 31467112 DOI: 10.1158/1541-7786.mcr-18-1072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/03/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022]
Abstract
ZEB1 (a positive enhancer) and KLF5 (a negative silencer) affect transcription factors and play inherently conserved roles in tumorigenesis and multidrug resistance. In humans, the rs2295080T-allele at the mTOR promoter locus has been associated with human cancer risk; however, the 63 bp spacing of another SNP rs2295079 has not been identified. Here, we discovered, for the first time, that rs2295079 (-78C/G) and rs2295080 (-141G/T) formed linkage haplotypes, with Ht1 (-78C/-141G) and Ht2 (-78G/-141T) being dominant, which were associated with distinct susceptibility to breast cancer, response to paclitaxel, and clinical outcomes in breast cancer. At the cellular level, compared with Ht1, Ht2 exhibits a much stronger effect on promoting mTOR expression, leading to enhanced tumor cell growth and strengthened resistance to PTX treatment. Mechanistically, the -141T allele of Ht2 creates a novel ZEB1-binding site; meanwhile, the -78C allele of Ht1 exists as an emerging KLF5-binding site, which synergistically induces promote/inhibit mTOR expression, cell proliferation, and excretion of cytotoxic drugs through the ZEB1/KLF5-mTOR-CCND1/ABCB1 cascade, thereby affecting the response to paclitaxel treatment in vivo and in vitro. Our results suggest the existence of a ZEB1/KLF5-mTOR-CCND1/ABCB1 axis in human cells that could be involved in paclitaxel response pathways and functionally regulate interindividualized breast cancer susceptibility and prognosis. IMPLICATIONS: This study highlights the function of haplotypes of mTOR -78C/-141G and -78G/-141T, in affecting breast cancer susceptibility and paclitaxel response regulated by ZEB1/KLF5-mTOR-CCND1/ABCB1 axis.
Collapse
Affiliation(s)
- Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Xiaolan Deng
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China.,Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, California
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Shu Guan
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Yilin Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Binbin Wei
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yong Liu
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, California
| | | | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China.
| |
Collapse
|
24
|
Zhang Z, Chen Q, Zhang J, Wang Y, Hu X, Yin S, He M, Guan S, Qin W, Xiao Q, Zhao H, Yao W, Wu H, Wei M. Associations of genetic polymorphisms in pTEN/AKT/mTOR signaling pathway genes with cancer risk: A meta-analysis in Asian population. Sci Rep 2017; 7:17844. [PMID: 29259266 PMCID: PMC5736732 DOI: 10.1038/s41598-017-17250-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022] Open
Abstract
The pTEN/AKT/mTOR signaling pathways play a critical role in balancing cell proliferation, differentiation, and survival. Recent studies researched the associations of core genes in the pTEN/AKT/mTOR pathway polymorphisms with the cancer susceptibility; however, the results are inconclusive. Therefore, a systematically meta-analysis was performed to evaluate the association between the five SNPs (mTOR rs2295080 and rs2536, AKT1 rs2494750 and rs2494752, pTEN rs701848) and cancer risk by systematic review of the literature in 31 eligible studies. The results showed a significant decreased risk between rs2295080 TG, GG genotype, and GG/TG genotypes and overall cancer [TG vs.TT: OR(95% CI) = 0.82(0.76, 0.89), GG/TG vs. TT: OR(95% CI) = 0.82(0.76, 0.88), and GG vs. TG/TT: OR(95% CI) = 0.67(0.51, 0.88)] and the subgroup of urinary system cancer and digestive system cancer. Moreover, the SNP rs701848 CC, TC genotype showed significantly increased the overall cancer risk both in dominant model [CC/TC vs. TT: OR(95% CI) = 1.25(1.15, 1.36)] and recessive model [CC vs. TC/TT: OR(95% CI) = 1.20(1.09, 1.32)], and digestive system cancer and urinary system cancer. In addition, AG genotype and GG/AG genotype of rs2494752 was associated with increased risk of cancer. Therefore, this meta-analysis provided genetic risk factors for carcinogenesis and the most valid cancer prevalence estimate for Asian population.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Yilin Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Sainan Yin
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Shu Guan
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Wenyan Qin
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P.R. China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China.
| |
Collapse
|
25
|
Abstract
Small, noncoding RNAs are short untranslated RNA molecules, some of which have been associated with cancer development. Recently we showed that a class of small RNAs generated during the maturation process of tRNAs (tRNA-derived small RNAs, hereafter "tsRNAs") is dysregulated in cancer. Specifically, we uncovered tsRNA signatures in chronic lymphocytic leukemia and lung cancer and demonstrated that the ts-4521/3676 cluster (now called "ts-101" and "ts-53," respectively), ts-46, and ts-47 are down-regulated in these malignancies. Furthermore, we showed that tsRNAs are similar to Piwi-interacting RNAs (piRNAs) and demonstrated that ts-101 and ts-53 can associate with PiwiL2, a protein involved in the silencing of transposons. In this study, we extended our investigation on tsRNA signatures to samples collected from patients with colon, breast, or ovarian cancer and cell lines harboring specific oncogenic mutations and representing different stages of cancer progression. We detected tsRNA signatures in all patient samples and determined that tsRNA expression is altered upon oncogene activation and during cancer staging. In addition, we generated a knocked-out cell model for ts-101 and ts-46 in HEK-293 cells and found significant differences in gene-expression patterns, with activation of genes involved in cell survival and down-regulation of genes involved in apoptosis and chromatin structure. Finally, we overexpressed ts-46 and ts-47 in two lung cancer cell lines and performed a clonogenic assay to examine their role in cell proliferation. We observed a strong inhibition of colony formation in cells overexpressing these tsRNAs compared with untreated cells, confirming that tsRNAs affect cell growth and survival.
Collapse
|
26
|
Gene polymorphisms in the PI3K/AKT/mTOR signaling pathway contribute to prostate cancer susceptibility in Chinese men. Oncotarget 2017; 8:61305-61317. [PMID: 28977864 PMCID: PMC5617424 DOI: 10.18632/oncotarget.18064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/15/2017] [Indexed: 12/28/2022] Open
Abstract
In this hospital-based case-control study of 413 prostate cancer (PCa) cases and 807 cancer-free controls, we investigated the role of functional single nucleotide polymorphisms (SNPs) of pivotal genes in the PI3K/AKT/mTOR pathway. We genotyped 17 SNPs in mTOR, Raptor, AKT1, AKT2, PTEN, and K-ras and found that 4 were associated with PCa susceptibility. Among the variants, the homozygote variant CC genotype of mTOR rs17036508 C>T were associated with higher PCa risk than the wild TT genotypes (adjusted OR = 3.73 (95% CI = 1.75-7.94), P = 0.001). The GT genotype of mTOR rs2295080 G>T was more protective than the TT genotypes (adjusted OR=0.54 (95% CI=0.32-0.91), P=0.020). The distributions of Raptor rs1468033 A>G genotypes differed between cases and controls, especially in subgroups defined by age, BMI, smoking status, and ethnicity. The CT/CC genotypes of AKT2 rs7250897 C>T were associated with an increased risk of PCa, particularly in subgroups of age >71 and BMI >24 kg/m2. These findings suggest that SNPs in the PI3K/AKT/mTOR pathway may contribute to the risk of PCa in Chinese men.
Collapse
|
27
|
Control of B lymphocyte development and functions by the mTOR signaling pathways. Cytokine Growth Factor Rev 2017; 35:47-62. [PMID: 28583723 DOI: 10.1016/j.cytogfr.2017.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells.
Collapse
|