1
|
Affὸ S, Sererols-Viñas L, Garcia-Vicién G, Cadamuro M, Chakraborty S, Sirica AE. Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma: Insights into Origins, Heterogeneity, Lymphangiogenesis, and Peritoneal Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00279-7. [PMID: 39117110 DOI: 10.1016/j.ajpath.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) denotes a rare, highly malignant, and heterogeneous class of primary liver adenocarcinomas exhibiting phenotypic characteristics of cholangiocyte differentiation. Among the distinctive pathological features of iCCA, one that differentiates the most common macroscopic subtype (eg, mass-forming type) of this hepatic tumor from conventional hepatocellular carcinoma, is a prominent desmoplastic reaction manifested as a dense fibro-collagenous-enriched tumor stroma. Cancer-associated fibroblasts (CAFs) represent the most abundant mesenchymal cell type in the desmoplastic reaction. Although the protumor effects of CAFs in iCCA have been increasingly recognized, more recent cell lineage tracing studies, advanced single-cell RNA sequencing, and expanded biomarker analyses have provided new awareness into their ontogeny, as well as underscored their biological complexity as reflected by the presence of multiple subtypes. In addition, evidence has been described to support CAFs' potential to display cancer-restrictive roles, including immunosuppression. However, CAFs also play important roles in facilitating metastasis, as exemplified by lymph node metastasis and peritoneal carcinomatosis, which are common in iCCA. Herein, the authors provide a timely appraisal of the origins and phenotypic and functional complexity of CAFs in iCCA, together with providing mechanistic insights into lymphangiogenesis and peritoneal metastasis relevant to this lethal human cancer.
Collapse
Affiliation(s)
- Silvia Affὸ
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sanjukta Chakraborty
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
2
|
Ryu KB, Seo JA, Lee K, Choi J, Yoo G, Ha JH, Ahn MR. Drug-Resistance Biomarkers in Patient-Derived Colorectal Cancer Organoid and Fibroblast Co-Culture System. Curr Issues Mol Biol 2024; 46:5794-5811. [PMID: 38921017 PMCID: PMC11202770 DOI: 10.3390/cimb46060346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Colorectal cancer, the third most commonly occurring tumor worldwide, poses challenges owing to its high mortality rate and persistent drug resistance in metastatic cases. We investigated the tumor microenvironment, emphasizing the role of cancer-associated fibroblasts in the progression and chemoresistance of colorectal cancer. We used an indirect co-culture system comprising colorectal cancer organoids and cancer-associated fibroblasts to simulate the tumor microenvironment. Immunofluorescence staining validated the characteristics of both organoids and fibroblasts, showing high expression of epithelial cell markers (EPCAM), colon cancer markers (CK20), proliferation markers (KI67), and fibroblast markers (VIM, SMA). Transcriptome profiling was conducted after treatment with anticancer drugs, such as 5-fluorouracil and oxaliplatin, to identify chemoresistance-related genes. Changes in gene expression in the co-cultured colorectal cancer organoids following anticancer drug treatment, compared to monocultured organoids, particularly in pathways related to interferon-alpha/beta signaling and major histocompatibility complex class II protein complex assembly, were identified. These two gene groups potentially mediate drug resistance associated with JAK/STAT signaling. The interaction between colorectal cancer organoids and fibroblasts crucially modulates the expression of genes related to drug resistance. These findings suggest that the interaction between colorectal cancer organoids and fibroblasts significantly influences gene expression related to drug resistance, highlighting potential biomarkers and therapeutic targets for overcoming chemoresistance. Enhanced understanding of the interactions between cancer cells and their microenvironment can lead to advancements in personalized medical research..
Collapse
Affiliation(s)
| | | | | | | | | | - Ji-hye Ha
- Clinical Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (K.-B.R.)
| | - Mee Ryung Ahn
- Clinical Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (K.-B.R.)
| |
Collapse
|
3
|
Zhu S, Mao J, Zhang X, Wang P, Zhou Y, Tong J, Peng H, Yang B, Fu Q. CAF-derived exosomal lncRNA FAL1 promotes chemoresistance to oxaliplatin by regulating autophagy in colorectal cancer. Dig Liver Dis 2024; 56:330-342. [PMID: 37400281 DOI: 10.1016/j.dld.2023.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/18/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Oxaliplatin is a widely applied anti-cancer drug in clinics for colorectal cancer (CRC) treatment. Nonetheless, the treatment efficacy is always limited by the acquisition of chemoresistance in cancer cells. The deregulation of long non-coding RNA (lncRNA) FAL1 has been implicated in the tumorigenesis and progression of different malignancies. Nevertheless, the possible contribution of lnc-FAL1 in drug resistance development of CRC has not been investigated. Here, we reported the overexpression of lnc-FAL1 in CRC samples, and elevated lnc-FAL1 levels seemed to be associated with the poor survival in CRC patients. We further demonstrated that lnc-FAL1 promoted oxaliplatin chemoresistance in both cell and animal model. Additionally, lnc-FAL1 was mainly derived from exosomes secreted by cancer associated fibroblasts (CAFs), and lnc-FAL1-containing exosomes or lnc-FAL1 overexpression significantly inhibited oxaliplatin-induced autophagy in CRC cells. Mechanistically, lnc-FAL1 acted as a scaffold for the interaction between Beclin1 and TRIM3 to promote TRIM3-dependent Beclin1 polyubiquitination and degradation, thereby suppressing oxaliplatin-induced autophagic cell death. In summary, these data imply a molecular mechanism through which CAF-derived exosomal lnc-FAL1 contributes to the acquisition of oxaliplatin resistance in CRC.
Collapse
Affiliation(s)
- Sixian Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. No. 1095 Jiefang Avenue, Wuhan City 430030, Hubei Province, China
| | - Jie Mao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. No. 1095 Jiefang Avenue, Wuhan City 430030, Hubei Province, China
| | - Xiaoli Zhang
- Department of oncology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430064, Hubei, China
| | - Ping Wang
- Department of Oncology, Huanggang Central Hospital, Huanggang 438000, Hubei, China
| | - Yi Zhou
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Tong
- Department of PICC, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. No. 1095 Jiefang Avenue, Wuhan City 430030, Hubei Province, China
| | - Bei Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. No. 1095 Jiefang Avenue, Wuhan City 430030, Hubei Province, China
| | - Qiang Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. No. 1095 Jiefang Avenue, Wuhan City 430030, Hubei Province, China.
| |
Collapse
|
4
|
Sheikhnia F, Maghsoudi H, Majidinia M. The Critical Function of microRNAs in Developing Resistance against 5- Fluorouracil in Cancer Cells. Mini Rev Med Chem 2024; 24:601-617. [PMID: 37642002 DOI: 10.2174/1389557523666230825144150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023]
Abstract
Although there have been significant advancements in cancer treatment, resistance and recurrence in patients make it one of the leading causes of death worldwide. 5-fluorouracil (5-FU), an antimetabolite agent, is widely used in treating a broad range of human malignancies. The cytotoxic effects of 5-FU are mediated by the inhibition of thymidylate synthase (TYMS/TS), resulting in the suppression of essential biosynthetic activity, as well as the misincorporation of its metabolites into RNA and DNA. Despite its huge benefits in cancer therapy, the application of 5-FU in the clinic is restricted due to the occurrence of drug resistance. MicroRNAs (miRNAs) are small, non-coding RNAs that act as negative regulators in many gene expression processes. Research has shown that changes in miRNA play a role in cancer progression and drug resistance. This review examines the role of miRNAs in 5-FU drug resistance in cancers.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Lv Y, Hu J, Zheng W, Shan L, Bai B, Zhu H, Dai S. A WGCNA-based cancer-associated fibroblast risk signature in colorectal cancer for prognosis and immunotherapy response. Transl Cancer Res 2023; 12:2256-2275. [PMID: 37859738 PMCID: PMC10583018 DOI: 10.21037/tcr-23-261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023]
Abstract
Background Cancer-associated fibroblasts (CAFs) are notably involved in colorectal cancer (CRC) tumorigenesis, progression, and treatment failure. In this article, we report the in silico development of a CAF-related prognostic signature for CRC. Methods We separately downloaded CRC transcription data from The Cancer Genome Atlas and the Gene Expression Omnibus database. Deconvolution algorithms, including Estimating the Proportions of Immune and Cancer Cells and the Microenvironment Cell Population-counter, were used to calculate CAF abundance, while the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression algorithm was used to calculate the stromal score. Weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator algorithm were used to identify CAF-related genes and prognostic signatures. Results We identified a three-gene, prognostic, CAF-related signature and defined risk groups based on the Riskscores. Multidimensional validations were applied to evaluate the robustness of the signature and its correlation with clinical parameters. We utilized Tumor Immune Dysfunction and Exclusion (TIDE) and oncoPredict algorithms to predict therapy responses and found that patients in low-risk groups are more sensitive to immunotherapy and chemotherapy drugs such as 5-fluorouracil and oxaliplatin. Finally, we used the Cancer Cell Line Encyclopedia and Human Protein Atlas databases to evaluate the mRNA and protein levels encoded by the signature genes. Conclusions This novel CAF-related three-gene signature is expected to become a potential prognostic biomarker in CRC and predict chemotherapy and immunotherapy responses. It may be of considerable value for studying the tumor microenvironment in CRC.
Collapse
Affiliation(s)
- Yiming Lv
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinhui Hu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenqian Zheng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lina Shan
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongbo Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Dai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Atanasova VS, de Jesus Cardona C, Hejret V, Tiefenbacher A, Mair T, Tran L, Pfneissl J, Draganić K, Binder C, Kabiljo J, Clement J, Woeran K, Neudert B, Wohlhaupter S, Haase A, Domazet S, Hengstschläger M, Mitterhauser M, Müllauer L, Tichý B, Bergmann M, Schweikert G, Hartl M, Dolznig H, Egger G. Mimicking Tumor Cell Heterogeneity of Colorectal Cancer in a Patient-derived Organoid-Fibroblast Model. Cell Mol Gastroenterol Hepatol 2023; 15:1391-1419. [PMID: 36868311 PMCID: PMC10141529 DOI: 10.1016/j.jcmgh.2023.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND & AIMS Patient-derived organoid cancer models are generated from epithelial tumor cells and reflect tumor characteristics. However, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we developed a colorectal cancer organoid model that incorporates matched epithelial cells and stromal fibroblasts. METHODS Primary fibroblasts and tumor cells were isolated from colorectal cancer specimens. Fibroblasts were characterized for their proteome, secretome, and gene expression signatures. Fibroblast/organoid co-cultures were analyzed by immunohistochemistry and compared with their tissue of origin, as well as on gene expression levels compared with standard organoid models. Bioinformatics deconvolution was used to calculate cellular proportions of cell subsets in organoids based on single-cell RNA sequencing data. RESULTS Normal primary fibroblasts, isolated from tumor adjacent tissue, and cancer associated fibroblasts retained their molecular characteristics in vitro, including higher motility of cancer associated compared with normal fibroblasts. Importantly, both cancer-associated fibroblasts and normal fibroblasts supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. Organoids grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared with mono-cultures and closely resembled the in vivo tumor morphology. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by considerably deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. Thrombospondin-1 was identified as a critical factor for fibroblast invasiveness. CONCLUSION We developed a physiological tumor/stroma model, which will be vital as a personalized tumor model to study disease mechanisms and therapy response in colorectal cancer.
Collapse
Affiliation(s)
- Velina S Atanasova
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Václav Hejret
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andreas Tiefenbacher
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Carina Binder
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Julijan Kabiljo
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Clinic of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Janik Clement
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Katharina Woeran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Barbara Neudert
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Astrid Haase
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sandra Domazet
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | | | | | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Boris Tichý
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Bergmann
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Clinic of General Surgery, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany; Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Markus Hartl
- Department of Biochemistry and Cell Biology, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria; Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Li J, Han T, Wang X, Wang Y, Chen X, Chen W, Yang Q. Identification of prognostic immune-related lncRNA signature predicting the overall survival for colorectal cancer. Sci Rep 2023; 13:1333. [PMID: 36693898 PMCID: PMC9873726 DOI: 10.1038/s41598-023-28305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Long non-coding RNA (lncRNA) is an important regulator of gene expression and serves a fundamental role in immune regulation. The present study aimed to develop a novel immune-related lncRNA signature to assess the prognosis of patients with colorectal cancer (CRC). Transcriptome data and clinical information of patients with CRC were downloaded from The Cancer Genome Atlas (TCGA) and UCSC Xena platforms. Immune-related mRNAs were extracted from the Molecular Signatures Database (MSigDB), and the immune-related lncRNAs were identified based on correlation analysis. Then, univariate, Lasso and multivariate Cox regression were applied to construct an immune-related lncRNA signature, and CRC patients were divided into high- and low-risk groups according to the median risk score. Finally, we evaluated the signature from the perspectives of clinical outcome, clinicopathological parameters, tumor-infiltrating immune cells (TIICs), immune status, tumor mutation burden (TMB) and immunotherapy responsiveness. In total, 272 immune-related lncRNAs were identified, five of which were applied to construct an immune-related lncRNA signature. The signature divided patients with CRC into low- and high-risk groups, the prognosis of patients in the high-risk group were significantly poorer than those in low-risk group, and the results were further confirmed in external validation cohort. Furthermore, the high-risk group showed aggressive clinicopathological characteristics, specific TIIC and immune function status, and low sensitivity to immunotherapy. The immune-related lncRNA signature could be exploited as a promising biomarker for predicting the prognosis and immune status of patients with CRC.
Collapse
Affiliation(s)
- Jianxin Li
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ting Han
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xin Wang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yinchun Wang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xuan Chen
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Wangsheng Chen
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qingqiang Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Li J, Li X, Guo Q. Drug Resistance in Cancers: A Free Pass for Bullying. Cells 2022; 11:3383. [PMID: 36359776 PMCID: PMC9654341 DOI: 10.3390/cells11213383] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
The cancer burden continues to grow globally, and drug resistance remains a substantial challenge in cancer therapy. It is well established that cancerous cells with clonal dysplasia generate the same carcinogenic lesions. Tumor cells pass on genetic templates to subsequent generations in evolutionary terms and exhibit drug resistance simply by accumulating genetic alterations. However, recent evidence has implied that tumor cells accumulate genetic alterations by progressively adapting. As a result, intratumor heterogeneity (ITH) is generated due to genetically distinct subclonal populations of cells coexisting. The genetic adaptive mechanisms of action of ITH include activating "cellular plasticity", through which tumor cells create a tumor-supportive microenvironment in which they can proliferate and cause increased damage. These highly plastic cells are located in the tumor microenvironment (TME) and undergo extreme changes to resist therapeutic drugs. Accordingly, the underlying mechanisms involved in drug resistance have been re-evaluated. Herein, we will reveal new themes emerging from initial studies of drug resistance and outline the findings regarding drug resistance from the perspective of the TME; the themes include exosomes, metabolic reprogramming, protein glycosylation and autophagy, and the relates studies aim to provide new targets and strategies for reversing drug resistance in cancers.
Collapse
Affiliation(s)
| | | | - Qie Guo
- The Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
9
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J, Souglakos J. Cancer-Associated Fibroblasts: The Origin, Biological Characteristics and Role in Cancer-A Glance on Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14184394. [PMID: 36139552 PMCID: PMC9497276 DOI: 10.3390/cancers14184394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor microenvironment is a major contributor to tumor growth, metastasis and resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the case of colorectal cancer. Although their functions differ according to their subtype, their detection is not easy, and there are no established markers for such detection. They are possible targets for therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment target. More research remains to be carried out to establish their role in prognosis and treatment. Abstract The therapeutic approaches to cancer remain a considerable target for all scientists around the world. Although new cancer treatments are an everyday phenomenon, cancer still remains one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although patients with CRC may have better survival compared with other malignancies. Not only the tumor but also its environment, what we call the tumor microenvironment (TME), seem to contribute to cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-associated fibroblasts are a major component. They arise from normal fibroblasts and other normal cells through various pathways. Their role seems to contribute to cancer promotion, participating in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown that their existence is correlated with prognosis, and they are already under evaluation as a possible target for treatment. However, extensive research is warranted.
Collapse
Affiliation(s)
- Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394926
| | | | | | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
10
|
SNAI1-expressing fibroblasts and derived-extracellular matrix as mediators of drug resistance in colorectal cancer patients. Toxicol Appl Pharmacol 2022; 450:116171. [PMID: 35878797 DOI: 10.1016/j.taap.2022.116171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Resistance to antitumor treatments is one of the most important problems faced by clinicians in the management of colorectal cancer (CRC) patients. Cancer-Associated Fibroblasts (CAFs) are the main producers and remodelers of the extracellular matrix (ECM), which is directly involved in drug resistance mechanisms. Primary Normal Fibroblasts (NFs) and CAFs and cell lines (fibroblasts and tumor cells), were used to generate ECM and to identify its role in the oxaliplatin and cetuximab chemoresistance processes of CRC cells mediated by SNAI1-expressing fibroblasts. Matrices generated by Snai1 KO MEFs (Knockout Mouse Embryonic Fibroblasts) confer less resistance on oxaliplatin and cetuximab than wild-type MEF-derived matrices. Similarly, matrices derived from CAFs cause greater survival of colorectal cancer cells than NF-derived matrices, in a similar way to Snai1 expression levels. In addition, Snail1 expression in fibroblasts regulates drug resistance and metabolism gene expression in tumor cells mediated by ECM. Finally, a series of 531 patients (TCGA) with CRC was used to assess the role of SNAI1 expression in patients' prognosis indicating an association between tumor SNAI1 expression and overall survival in colon cancer patients but not in rectal cancer patients. SNAI1 expression in CRC cancer patients, together with in vitro experimentation, suggests the possible use of SNAI1 expression in tumor-associated fibroblasts as a predictive biomarker of response to oxaliplatin and cetuximab treatments in patients with CRC.
Collapse
|
11
|
Tilsed CM, Fisher SA, Nowak AK, Lake RA, Lesterhuis WJ. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front Oncol 2022; 12:960317. [PMID: 35965519 PMCID: PMC9372369 DOI: 10.3389/fonc.2022.960317] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy has historically been the mainstay of cancer treatment, but our understanding of what drives a successful therapeutic response remains limited. The diverse response of cancer patients to chemotherapy has been attributed principally to differences in the proliferation rate of the tumor cells, but there is actually very little experimental data supporting this hypothesis. Instead, other mechanisms at the cellular level and the composition of the tumor microenvironment appear to drive chemotherapy sensitivity. In particular, the immune system is a critical determinant of chemotherapy response with the depletion or knock-out of key immune cell populations or immunological mediators completely abrogating the benefits of chemotherapy in pre-clinical models. In this perspective, we review the literature regarding the known mechanisms of action of cytotoxic chemotherapy agents and the determinants of response to chemotherapy from the level of individual cells to the composition of the tumor microenvironment. We then summarize current work toward the development of dynamic biomarkers for response and propose a model for a chemotherapy sensitive tumor microenvironment.
Collapse
Affiliation(s)
- Caitlin M. Tilsed
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Scott A. Fisher
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - W. Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA, Australia
- *Correspondence: W. Joost Lesterhuis,
| |
Collapse
|
12
|
Mele V, Basso C, Governa V, Glaus Garzon JF, Muraro MG, Däster S, Nebiker CA, Mechera R, Bolli M, Schmidt A, Geiger R, Spagnoli GC, Christoforidis D, Majno PE, Borsig L, Iezzi G. Identification of TPM2 and CNN1 as Novel Prognostic Markers in Functionally Characterized Human Colon Cancer-Associated Stromal Cells. Cancers (Basel) 2022; 14:cancers14082024. [PMID: 35454931 PMCID: PMC9025001 DOI: 10.3390/cancers14082024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Non-transformed cells of tumor microenvironment also impact on cancer outgrowth and progression. In colon cancer, a leading cause of cancer-related death worldwide, a high abundance of a heterogeneous cell population generally referred to as cancer-associated fibroblasts (CAFs) or tumor-associated stromal cells (TASCs) is associated with poor prognosis. The identification of TASC-specific markers could help to select patients for additional treatments and may provide novel targets for innovative therapies. Some markers have been proposed, but their prognostic significance is modest. We successfully expanded TASCs from human colon cancers and demonstrated their capacity to promote tumor growth and metastatic spread in vitro and in in vivo models. By comparing TASC whole protein expression, the so-called “proteome”, with that of stromal cells derived from matched healthy colon tissues, we identified two novel markers highly significantly associated with severe prognosis. Our results might help to identify patients at risk and might suggest new treatment options. Abstract Stromal infiltration is associated with poor prognosis in human colon cancers. However, the high heterogeneity of human tumor-associated stromal cells (TASCs) hampers a clear identification of specific markers of prognostic relevance. To address these issues, we established short-term cultures of TASCs and matched healthy mucosa-associated stromal cells (MASCs) from human primary colon cancers and, upon characterization of their phenotypic and functional profiles in vitro and in vivo, we identified differentially expressed markers by proteomic analysis and evaluated their prognostic significance. TASCs were characterized by higher proliferation and differentiation potential, and enhanced expression of mesenchymal stem cell markers, as compared to MASCs. TASC triggered epithelial–mesenchymal transition (EMT) in tumor cells in vitro and promoted their metastatic spread in vivo, as assessed in an orthotopic mouse model. Proteomic analysis of matched TASCs and MASCs identified a panel of markers preferentially expressed in TASCs. The expression of genes encoding two of them, calponin 1 (CNN1) and tropomyosin beta chain isoform 2 (TPM2), was significantly associated with poor outcome in independent databases and outperformed the prognostic significance of currently proposed TASC markers. The newly identified markers may improve prognostication of primary colon cancers and identification of patients at risk.
Collapse
Affiliation(s)
- Valentina Mele
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (V.M.); (M.G.M.)
| | - Camilla Basso
- Laboratory for Surgical Research, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland; (D.C.); (P.E.M.)
| | - Valeria Governa
- Department of Clinical Sciences Lund, Section of Oncology, Lund University, 221 85 Lund, Sweden;
| | - Jesus F. Glaus Garzon
- Institute of Physiology, University of Zürich, 8006 Zürich, Switzerland; (J.F.G.G.); (L.B.)
| | - Manuele G. Muraro
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (V.M.); (M.G.M.)
| | - Silvio Däster
- Department of General Surgery, University Hospital Basel, 4031 Basel, Switzerland; (S.D.); (C.A.N.); (R.M.)
| | - Christian A. Nebiker
- Department of General Surgery, University Hospital Basel, 4031 Basel, Switzerland; (S.D.); (C.A.N.); (R.M.)
| | - Robert Mechera
- Department of General Surgery, University Hospital Basel, 4031 Basel, Switzerland; (S.D.); (C.A.N.); (R.M.)
| | - Martin Bolli
- Department of Visceral Surgery, Clarunis-University Center for Gastrointestinal and Liver Diseases, St. Claraspital and University Hospital Basel, 4002 Basel, Switzerland;
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland;
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland;
- Institute of Oncology Research, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Giulio C. Spagnoli
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy;
| | - Dimitri Christoforidis
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland; (D.C.); (P.E.M.)
- Department of Surgery, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Pietro E. Majno
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland; (D.C.); (P.E.M.)
- Department of Surgery, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Lubor Borsig
- Institute of Physiology, University of Zürich, 8006 Zürich, Switzerland; (J.F.G.G.); (L.B.)
| | - Giandomenica Iezzi
- Laboratory for Surgical Research, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland; (D.C.); (P.E.M.)
- Correspondence:
| |
Collapse
|
13
|
Baião A, Dias S, Soares AF, Pereira CL, Oliveira C, Sarmento B. Advances in the use of 3D colorectal cancer models for novel drug discovery. Expert Opin Drug Discov 2022; 17:569-580. [PMID: 35343351 DOI: 10.1080/17460441.2022.2056162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the most common and deadly tumors worldwide. CRC in vitro and in vivo models that recapitulate key features of human disease are essential to the development of novel and effective therapeutics. However, two-dimensional (2D) in vitro culture systems are considered too simple and do not represent the complex nature of the human tumor. However, three-dimensional (3D) models have emerged in recent years as more advanced and complex cell culture systems, able to closely resemble key features of human cancer tissues. AREAS COVERED The authors' review the currently established in vitro cell culture models and describe the advances in the development of 3D scaffold-free models to study CRC. The authors also discuss intestinal spheroids and organoids. As well as in vitro models for drug screening and metastatic CRC (mCRC). EXPERT OPINION The ideal CRC in vitro model is not yet established. Spheroid-based 3D models represent one of the most used approaches to recapitulate the tumor environment, overcoming some limitations of 2D models. Mouse and patient-derived organoids are more advanced models that can mimic more closely the characteristics and properties of CRC, with the possibility of including cells derived from patients with metastatic CRC.
Collapse
Affiliation(s)
- Ana Baião
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Dias
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Francisca Soares
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Catarina Leite Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Carla Oliveira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,IPATIMUP, Institute of Molecular Pathology and Immunology of University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,Department of Pathology, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
14
|
李 宇, 谭 香, 黄 柳, 马 理, 付 利. [Research Progress in Immunosuppressive Tumor Microenvironment of Gastrointestinal Cancer]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:7-14. [PMID: 35048593 PMCID: PMC10408857 DOI: 10.12182/20220160501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/23/2022]
Abstract
Gastrointestinal (GI) cancer, a common malignant tumor with a high incidence in China, is showing a trend of rising incidence and is afflicting increasingly younger patients. Meanwhile, there have been constant development and innovations in new therapeutic technologies, among which, immunotherapy is now leading in a new era in the treatment of GI cancer. However, the complexity and diversity of immunosuppressive tumor microenvironment (TME) bring many obstacles to the immunotherapy of solid tumors in the GI tract. In this paper, focusing on solid tumors in the GI tract, we reviewed the main factors affecting the formation of immunosuppressive TME, and summarized strategies for targeted immunosuppressive TME-based therapies. Moreover, we analyzed the synergistic mechanism of various combination immunotherapies and reported on the latest progress in and future direction of immunotherapy for GI cancer, intending to provide new perspectives for treating solid tumors in the GI tract with immumotherapy.
Collapse
Affiliation(s)
- 宇婷 李
- 广东省区域免疫与疾病重点实验室 深圳大学国际肿瘤中心 深圳大学医学部基础医学院 药理系 (深圳 518060)Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center of Shenzhen University, and Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - 香玉 谭
- 广东省区域免疫与疾病重点实验室 深圳大学国际肿瘤中心 深圳大学医学部基础医学院 药理系 (深圳 518060)Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center of Shenzhen University, and Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - 柳娜 黄
- 广东省区域免疫与疾病重点实验室 深圳大学国际肿瘤中心 深圳大学医学部基础医学院 药理系 (深圳 518060)Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center of Shenzhen University, and Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - 理想 马
- 广东省区域免疫与疾病重点实验室 深圳大学国际肿瘤中心 深圳大学医学部基础医学院 药理系 (深圳 518060)Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center of Shenzhen University, and Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - 利 付
- 广东省区域免疫与疾病重点实验室 深圳大学国际肿瘤中心 深圳大学医学部基础医学院 药理系 (深圳 518060)Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center of Shenzhen University, and Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Kamali Zonouzi S, Pezeshki PS, Razi S, Rezaei N. Cancer-associated fibroblasts in colorectal cancer. Clin Transl Oncol 2021; 24:757-769. [PMID: 34839457 DOI: 10.1007/s12094-021-02734-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality among cancers. Many aspects of this cancer are under investigation to find established markers of diagnosis, prognosis, and also potential drug targets. In this review article, we are going to discuss the possible solution to all these aims by investigating the literature about cancer-associated fibroblasts (CAFs) involved in CRC. Moreover, we are going to review their interaction with the tumor microenvironment (TME) and vitamin D and their role in tumorigenesis and metastasis. Moreover, we are going to expand more on some markers produced by them or related to them including FAP, a-SMA, CXCL12, TGF- β, POSTN, and β1-Integrin. Some signaling pathways related to CAFs are as follows: FAK, AKT, activin A, and YAP/TAZ. Some genes related to the CAFs which are found to be possible therapeutic targets include COL3A1, JAM3, AEBP1 and, CAF-derived TGFB3, WNT2, and WNT54.
Collapse
Affiliation(s)
- S Kamali Zonouzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - P S Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - S Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - N Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
16
|
Deng L, Jiang N, Zeng J, Wang Y, Cui H. The Versatile Roles of Cancer-Associated Fibroblasts in Colorectal Cancer and Therapeutic Implications. Front Cell Dev Biol 2021; 9:733270. [PMID: 34660589 PMCID: PMC8517274 DOI: 10.3389/fcell.2021.733270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
The tumor microenvironment (TME) is populated by abundant cancer-associated fibroblasts (CAFs) that radically influence the disease progression across many cancers, including the colorectal cancer (CRC). In theory, targeting CAFs holds great potential in optimizing CRC treatment. However, attempts to translate the therapeutic benefit of CAFs into clinic practice face many obstacles, largely due to our limited understanding of the heterogeneity in their origins, functions, and mechanisms. In recent years, accumulating evidence has uncovered some cellular precursors and molecular markers of CAFs and also revealed their versatility in impacting various hallmarks of CRC, together helping us to better define the population of CAFs and also paving the way toward their future therapeutic targeting for CRC treatment. In this review, we outline the emerging concept of CAFs in CRC, with an emphasis on their origins, biomarkers, prognostic significance, as well as their functional roles and underlying mechanisms in CRC biology. At last, we discuss the prospect of harnessing CAFs as promising therapeutic targets for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Nianfen Jiang
- Health Management Center, Southwest University Hospital, Chongqing, China
| | - Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yi Wang
- Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomater 2021; 132:461-472. [PMID: 33388439 DOI: 10.1016/j.actbio.2020.12.037] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
The lack of cancer-associated fibroblasts (CAFs) in patient-derived organoid (PDO) models is a major limitation as CAFs contribute to tumor progression and drug resistance. In the present study, we addressed this problem by establishing in vitro conditions that enable the co-culture of colorectal cancer (CRC) PDO with patient-derived CAFs. Considering that the CRC extracellular matrix is high in hyaluronan and collagen I, we hypothesized that hyaluronan-gelatin hydrogels may serve as a suitable alternative 3D matrix to traditionally used basement membrane extracts to support the co-culture of CRC PDO and CAFs. We report the development of in vitro models consisting of CRC PDO encapsulated within a well-defined three-dimensional (3D) hyaluronan-gelatin hydrogel and co-cultured with patient-derived CAFs. Through RNA- and whole -exome sequencing, we first show that these hydrogels are capable of maintaining key molecular characteristics of the original patient tumors in CRC PDO but not support the culture of CAFs. Further, based on our findings that CRC PDO culture medium poorly supports CAF viability, we developed a co-culture strategy that maintains the viability of both CRC PDO and CAFs. We found that even in the absence of growth factors conventionally used to support CRC PDO culture, CAFs were able to maintain the proliferation of the cultured CRC PDO in the hydrogels and restore distinct biological pathways absent in the PDO culture alone but present in patient tissues. Lastly, we demonstrate that these CRC PDO-CAFs co-culture models are suitable for evaluating standard-of-care drugs, making them potentially very useful for realizing personalized cancer medicine. STATEMENT OF SIGNIFICANCE: We report the development of an engineered tumor microenvironment consisting of colorectal cancer patient-derived organoids (CRC PDO) encapsulated within a well-defined three-dimensional (3D) hyaluronan-gelatin hydrogel and co-cultured with patient-derived cancer-associated fibroblasts (CAFs). Through sequential culture, we found that in the absence of growth factors added to the co-culture, CAFs were able to maintain the proliferation of the cultured CRC PDO in the hydrogels and restore distinct biological pathways absent in the PDO culture alone but present in patient tissues. Lastly, we demonstrate that these CRC PDO-CAFs models are suitable for evaluating standard-of-care drugs, making them potentially very useful for realizing personalized cancer medicine.
Collapse
|
18
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
19
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Targeting STAT3 Signaling Pathway in Colorectal Cancer. Biomedicines 2021; 9:biomedicines9081016. [PMID: 34440220 PMCID: PMC8392110 DOI: 10.3390/biomedicines9081016] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor that has been firmly associated with colorectal cancer (CRC) initiation and development. STAT3 mediates key inflammatory mechanisms in colitis-associated cancer, becomes excessively activated in CRC, and enhances cancer cell proliferation, tumor growth, angiogenesis, invasion, and migration. STAT3 hyperactivation in malignant cells, surrounding immune cells and cancer-associated fibroblasts, mediates inhibition of the innate and adaptive immunity of the tumor microenvironment, and, therefore, tumor evasion from the immune system. These features highlight STAT3 as a promising therapeutic target; however, the mechanisms underlying these features have not been fully elucidated yet and STAT3 inhibitors have not reached the clinic in everyday practice. In the present article, we review the STAT3 signaling network in CRC and highlight the current notion for the design of STAT3-focused treatment approaches. We also discuss recent breakthroughs in combination immunotherapy regimens containing STAT3 inhibitors, therefore providing a new perception for the clinical application of STAT3 in CRC.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.G.); (K.A.P.)
- Department of Biopathology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.G.); (K.A.P.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.N.G.); (K.A.P.)
- Correspondence: ; Tel.: +30-210-746-2508; Fax: +30-210-746-2703
| |
Collapse
|
20
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 324] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
21
|
The Blockade of Tumoral IL1β-Mediated Signaling in Normal Colonic Fibroblasts Sensitizes Tumor Cells to Chemotherapy and Prevents Inflammatory CAF Activation. Int J Mol Sci 2021; 22:ijms22094960. [PMID: 34066976 PMCID: PMC8125420 DOI: 10.3390/ijms22094960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Heterotypic interactions between newly transformed cells and normal surrounding cells define tumor’s fate in incipient carcinomas. Once homeostasis has been lost, normal resident fibroblasts become carcinoma-associated fibroblasts, conferring protumorogenic properties on these normal cells. Here we describe the IL1β-mediated interplay between cancer cells and normal colonic myofibroblasts (NCFs), which bestows differential sensitivity to cytotoxic drugs on tumor cells. We used NCFs, their conditioned media (CM), and cocultures with tumor cells to characterize the IL1β-mediated crosstalk between both cell types. We silenced IL1β in tumor cells to demonstrate that such cells do not exert an influence on NCFs inflammatory phenotype. Our results shows that IL1β is overexpressed in cocultured tumor cells. IL1β enables paracrine signaling in myofibroblasts, converting them into inflammatory-CAFs (iCAF). IL1β-stimulated-NCF-CM induces migration and differential sensitivity to oxaliplatin in colorectal tumor cells. Such chemoprotective effect has not been evidenced for TGFβ1-driven NCFs. IL1β induces the loss of a myofibroblastic phenotype in NCFs and acquisition of iCAF traits. In conclusion, IL1β-secreted by cancer cells modify surrounding normal fibroblasts to confer protumorogenic features on them, particularly tolerance to cytotoxic drugs. The use of IL1β-blocking agents might help to avoid the iCAF traits acquisition and consequently to counteract the protumorogenic actions these cells.
Collapse
|
22
|
Wilkinson K, Ng W, Roberts TL, Becker TM, Lim SHS, Chua W, Lee CS. Tumour immune microenvironment biomarkers predicting cytotoxic chemotherapy efficacy in colorectal cancer. J Clin Pathol 2021; 74:625-634. [PMID: 33753562 PMCID: PMC8461409 DOI: 10.1136/jclinpath-2020-207309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
The role of the local tumour and stromal immune landscape is increasingly recognised to be important in cancer development, progression and response to therapy. The composition, function, spatial orientation and gene expression profile of the infiltrate of the innate and adaptive immune system at the tumour and surrounding tissue has an established prognostic role in colorectal cancer (CRC). Multiple studies have confirmed that a tumour immune microenvironment (TIME) reflective of a type 1 adaptive immune response is associated with improved prognosis. There have been significant efforts to evolve these observations into validated, histopathology-based prognostic biomarkers, such as the Immunoscore. However, the clinical need lies much more in the development of predictive, not prognostic, biomarkers which have the potential to improve patient outcomes. This is particularly pertinent to help guide cytotoxic chemotherapy use in CRC, which remains the standard of care. Cytotoxic chemotherapy has recognised immunomodulatory activity distinct from its antimitotic effects, including mechanisms such as immunogenic cell death (ICD) and induction/inhibition of key immune players. Response to chemotherapy may differ with regard to molecular subtype of CRC, which are strongly associated with immune phenotypes. Thus, immune markers are potentially useful, though under-reported, predictive biomarkers. In this review, we discuss the impact of the TIME on response to cytotoxic chemotherapy in CRC, with a focus on baseline immune markers, and associated genomic and transcriptomic signatures.
Collapse
Affiliation(s)
- Kate Wilkinson
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia .,School of Medicine, Western Sydney University, Liverpool, New South Wales, Australia
| | - Weng Ng
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Liverpool, New South Wales, Australia
| | - Tara Laurine Roberts
- School of Medicine, Western Sydney University, Liverpool, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Therese M Becker
- School of Medicine, Western Sydney University, Liverpool, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Stephanie Hui-Su Lim
- School of Medicine, Western Sydney University, Liverpool, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown, New South Wales, Australia
| | - Wei Chua
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Liverpool, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Cheok Soon Lee
- School of Medicine, Western Sydney University, Liverpool, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Department of Anatomical Pathology, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
23
|
Garcia-Vicién G, Mezheyeuski A, Bañuls M, Ruiz-Roig N, Molleví DG. The Tumor Microenvironment in Liver Metastases from Colorectal Carcinoma in the Context of the Histologic Growth Patterns. Int J Mol Sci 2021; 22:ijms22041544. [PMID: 33546502 PMCID: PMC7913731 DOI: 10.3390/ijms22041544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal carcinoma (CRC) is the third most common cancer. Likewise, it is a disease that has a long survival if it is prematurely detected. However, more than 50% of patients will develop metastases, mainly in the liver (LM-CRC), throughout the evolution of their disease, which accounts for most CRC-related deaths. Treatment it is certainly a controversial issue, since it has not been shown to increase overall survival in the adjuvant setting, although it does improve disease free survival (DFS). Moreover, current chemotherapy combinations are administered based on data extrapolated from primary tumors (PT), not considering that LM-CRC present a very particular tumor microenvironment that can radically condition the effectiveness of treatments designed for a PT. The liver has a particular histology and microenvironment that can determine tumor growth and response to treatments: double blood supply, vascularization through fenestrated sinusoids and the presence of different mesenchymal cell types, among other particularities. Likewise, the liver presents a peculiar immune response against tumor cells, a fact that correlates with the poor response to immunotherapy. All these aspects will be addressed in this review, putting them in the context of the histological growth patterns of LM-CRC, a particular pathologic feature with both prognostic and predictive repercussions.
Collapse
Affiliation(s)
- Gemma Garcia-Vicién
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden;
| | - María Bañuls
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain
| | - Núria Ruiz-Roig
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Department of Pathology, Hospital Universitari de Bellvitge, 08908 L’Hospitalet de Llobregat, Spain
| | - David G. Molleví
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain
- Correspondence:
| |
Collapse
|
24
|
Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed Pharmacother 2021; 137:111285. [PMID: 33485118 DOI: 10.1016/j.biopha.2021.111285] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil (5-FU) has been an important anti-cancer drug to date. With an increase in the knowledge of its mechanism of action, various treatment modalities have been developed over the past few decades to increase its anti-cancer activity. But drug resistance has greatly affected the clinical use of 5-FU. Overcoming this chemoresistance is a challenge due to the presence of cancer stem cells like cells, cancer recurrence, metastasis, and angiogenesis. In this review, we have systematically discussed the mechanism of 5-FU resistance and advent strategies to increase the sensitivity of 5-FU therapy including resistance reversal. Special emphasis has been given to the cancer stem cells (CSCs) mediated 5-FU chemoresistance and its reversal process by different approaches including the DNA repair inhibition process.
Collapse
Affiliation(s)
- Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
25
|
Reidy E, Leonard NA, Treacy O, Ryan AE. A 3D View of Colorectal Cancer Models in Predicting Therapeutic Responses and Resistance. Cancers (Basel) 2021; 13:E227. [PMID: 33435170 PMCID: PMC7827038 DOI: 10.3390/cancers13020227] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Although there have been many advances in recent years for the treatment of colorectal cancer (CRC), it still remains the third most common cause of cancer-related deaths worldwide. Many patients with late stage CRC display resistance to multiple different therapeutics. An important aspect in developing effective therapeutics for CRC patients is understanding the interactions that take place in the tumor microenvironment (TME), as it has been shown to contribute to drug resistance in vivo. Much research over the past 100 years has focused on 2D monolayer cultures or in vivo studies, however, the efficacy in translating these to the clinic is very low. More recent studies are turning towards developing an effective 3D model of CRC that is clinically relevant, that can recapitulate the TME in vitro and bridge the gap between 2D cultures and in vivo studies, with the aim of reducing the use of animal models in the future. This review summarises the advantages and limitations of different 3D CRC models. It emphasizes how different 3D models may be optimised to study cellular and extracellular interactions that take place in the TME of CRC in an effort to allow the development of more translatable effective treatment options for patients.
Collapse
Affiliation(s)
- Eileen Reidy
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, H91 W2TY Galway, Ireland
| | - Niamh A. Leonard
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Oliver Treacy
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Aideen E. Ryan
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
26
|
Fibroblast Subsets in Intestinal Homeostasis, Carcinogenesis, Tumor Progression, and Metastasis. Cancers (Basel) 2021; 13:cancers13020183. [PMID: 33430285 PMCID: PMC7825703 DOI: 10.3390/cancers13020183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer often develops via the adenoma–carcinoma sequence, a process which is accompanied by (epi) genetic alterations in epithelial cells and gradual phenotypic changes in fibroblast populations. Recent studies have made it clear that these fibroblast populations which, in the context of invasive cancers are termed cancer-associated fibroblasts (CAFs), play an important role in intestinal tumor progression. This review provides an overview on the emerging role of fibroblasts in various stages of colorectal cancer development, ranging from adenoma initiation to metastatic spread of tumor cells. As fibroblasts show considerable heterogeneity in subsets and phenotypes during cancer development, a better functional understanding of stage-specific (alterations in) fibroblast/CAF populations is key to increase the effectiveness of fibroblast-based prognosticators and therapies. Abstract In intestinal homeostasis, continuous renewal of the epithelium is crucial to withstand the plethora of stimuli which can damage the structural integrity of the intestines. Fibroblasts contribute to this renewal by facilitating epithelial cell differentiation as well as providing the structural framework in which epithelial cells can regenerate. Upon dysregulation of intestinal homeostasis, (pre-) malignant neoplasms develop, a process which is accompanied by (epi) genetic alterations in epithelial cells as well as phenotypic changes in fibroblast populations. In the context of invasive carcinomas, these fibroblast populations are termed cancer-associated fibroblasts (CAFs). CAFs are the most abundant cell type in the tumor microenvironment of colorectal cancer (CRC) and consist of various functionally heterogeneous subsets which can promote or restrain cancer progression. Although most previous research has focused on the biology of epithelial cells, accumulating evidence shows that certain fibroblast subsets can also importantly contribute to tumor initiation and progression, thereby possibly providing avenues for improvement of clinical care for CRC patients. In this review, we summarized the current literature on the emerging role of fibroblasts in various stages of CRC development, ranging from adenoma initiation to the metastatic spread of cancer cells. In addition, we highlighted translational and therapeutic perspectives of fibroblasts in the different stages of intestinal tumor progression.
Collapse
|
27
|
Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci 2020; 111:3142-3154. [PMID: 32536012 PMCID: PMC7469786 DOI: 10.1111/cas.14532] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5-fluorouracil (5-FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5-FU resistance. Some are disease-specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5-FU. In this review, we construct a global outline of different mechanisms from disruption of 5-FU-metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial-mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future.
Collapse
Affiliation(s)
- Sabrina Blondy
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France
| | - Valentin David
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Department of pharmacy, University Hospital of Limoges, Limoges, France
| | - Mireille Verdier
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France
| | - Muriel Mathonnet
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| | - Aurélie Perraud
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| | - Niki Christou
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| |
Collapse
|
28
|
Yadav VK, Huang YJ, George TA, Wei PL, Sumitra MR, Ho CL, Chang TH, Wu ATH, Huang HS. Preclinical Evaluation of the Novel Small-Molecule MSI-N1014 for Treating Drug-Resistant Colon Cancer via the LGR5/β-catenin/miR-142-3p Network and Reducing Cancer-Associated Fibroblast Transformation. Cancers (Basel) 2020; 12:cancers12061590. [PMID: 32560222 PMCID: PMC7352915 DOI: 10.3390/cancers12061590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer represents one of the most prevalent malignancies globally, with an estimated 140,000 new cases in the United States alone in 2019. Despite advancements in interventions, drug resistance occurs in virtually all patients diagnosed with late stages of colon cancer. Amplified epidermal growth factor receptor (EGFR) signaling is one of the most prevalent oncogenic drivers in patients and induces increased Janus kinase (JAK)/signal transduction and activator of transcription (STAT) and β-catenin functions, all of which facilitate disease progression. Equally important, cancer-associated fibroblasts (CAFs) transformed by cancer cells within the tumor microenvironment (TME) further facilitate malignancy by secreting interleukin (IL)-6 and augmenting STAT3 signaling in colon cancer cells and promoting the generation of cancer stem-like cells (CSCs). Based on these premises, single-targeted therapeutics have proven ineffective for treating malignant colon cancer, and alternative multiple-targeting agents should be explored. Herein, we synthesized a tetracyclic heterocyclic azathioxanthone, MSI-N1014, and demonstrated its therapeutic potential both in vitro and in vivo. First, we used a co-culture system to demonstrate that colon cancer cells co-cultured with CAFs resulted in heightened 5-fluorouracil (5-FU) resistance and tumor sphere-forming ability and increased side populations, accompanied by elevated expression of cluster of differentiation 44 (CD44), β-catenin, leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), and ATP-binding cassette super-family G member 2 (ABCG2). MSI-N1014 suppressed cell viability, colony formation, and migration in both DLD1 and HCT116 cells. MSI-N1014 treatment led to decreased expressions of oncogenic markers, including mammalian target of rapamycin (mTOR), EGFR, and IL-6 and stemness markers such as CD44, β-catenin, and LGR5. More importantly, MSI-N1014 treatment suppressed the transformation of CAFs, and was associated with decreased secretion of IL-6 and vascular endothelial growth factor (VEGF) by CAFs. Furthermore, MSI-N1014 treatment resulted in significantly reduced oncogenic properties, namely the migratory ability, tumor-sphere generation, and resistance against 5-FU. Notably, an increased level of the tumor suppressor, miR-142-3p, whose targets include LGR5, IL-6, and ABCG2, was detected in association with MSI-N1014 treatment. Finally, we demonstrated the therapeutic potential of MSI-N1014 in vivo, where combined treatment with MSI-N1014 and 5-FU led to the lowest tumor growth, followed by MSI-N1014 only, 5-FU, and the vehicle control. Tumor samples from the MSI-N1014 group showed markedly reduced expressions of LGR5, β-catenin, IL-6, and mTOR, but increased expression of the tumor suppressor, miR-142-3p, according to qRT-PCR analysis. Collectively, we present preclinical support for the application of MSI-N1014 in treating 5-FU-resistant colon cancer cells. Further investigation is warranted to translate these findings into clinical settings.
Collapse
Affiliation(s)
- Vijesh Kumar Yadav
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yan-Jiun Huang
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; (Y.-J.H.); (P.-L.W.)
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Thomashire Anita George
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; (Y.-J.H.); (P.-L.W.)
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Maryam rachmawati Sumitra
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ching-Liang Ho
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Alexander T. H. Wu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.); Tel.: +886-2-2697-2035 (ext. 112) (A.T.H.W.); +886-2-6638-2736 (ext. 1377) (H.-S.H.)
| | - Hsu-Shan Huang
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.); Tel.: +886-2-2697-2035 (ext. 112) (A.T.H.W.); +886-2-6638-2736 (ext. 1377) (H.-S.H.)
| |
Collapse
|
29
|
Inhibition of colorectal cancer-associated fibroblasts by lipid nanocapsules loaded with acriflavine or paclitaxel. Int J Pharm 2020; 584:119337. [PMID: 32371002 DOI: 10.1016/j.ijpharm.2020.119337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Crosstalk between cancer-associated fibroblasts (CAFs) and colorectal cancer cells promotes tumor growth and contributes to chemoresistance. In this study, we assessed the sensitivity of a primary CAF cell line, CT5.3hTERT, to standard-of-care and alternative cytotoxic treatments. Paclitaxel (PTX) and acriflavine (ACF) were identified as the most promising molecules to inhibit CAF development. To allow the translational use of both drugs, we developed lipid nanocapsule (LNC) formulations for PTX and ACF. Finally, we mixed CAFs and tumor cell lines in a cocultured spheroid, and the effect of both drugs was investigated by histological analyses. We demonstrated CAF inhibition by LNC-ACF and whole tumor inhibition by LNC-PTX. Altogether, we proposed a new strategy to reduce CAF populations in the colorectal microenvironment that should be tested in vivo.
Collapse
|
30
|
Li H, Zhang X, Jin Z, Yin T, Duan C, Sun J, Xiong R, Li Z. MiR-122 Promotes the Development of Colon Cancer by Targeting ALDOA In Vitro. Technol Cancer Res Treat 2020; 18:1533033819871300. [PMID: 31564215 PMCID: PMC6767722 DOI: 10.1177/1533033819871300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Non-coding RNAs, originally considered junk gene products, have taken center
stage in view of their significant involvement in a spectrum of biological
processes during human development, thereby offering novel therapeutic targets
for improvement of treatment options. Accumulating evidence has demonstrated
non-coding RNA dysfunction across various human cancers. In particular,
microRNAs have emerged as key regulatory molecules in cancer biology. MicroRNAs
are noninvasive, readily accessible biomarkers that can be effectively applied
for diagnosis and prognosis of different tumor types, including colon cancer. In
this study, we reanalyzed the available data with bioinformatics tools to
identify differentially expressed microRNAs in colon cancer cells. The top 3
upregulated microRNAs (miR-10, miR-199, and miR-122) in colon cancer cells were
further validated in tissues of clinical patients via reverse
transcription-quantitative polymerase chain reaction. Our results showed that
miR-122 significantly promotes the proliferation and invasion ability of SW480
and SW620 cells through inhibition of Aldolase, Fructose-Bisphosphate A
(ALDOA) expression. We further summarized recent advances
in our understanding of the functional relevance of microRNAs in cancer
development and discussed the possible implications of specific microRNAs in
colon cancer. This study extends our knowledge of microRNA involvement in colon
cancer biology and presents novel candidates for the development of attractive
therapeutic strategies.
Collapse
Affiliation(s)
- Hong Li
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Xinhua Zhang
- Hubei Cancer Hospital, Wuhan, Hubei, China.,Xinhua Zhang is the co-first author
| | - Zhao Jin
- Zhongnan Hospital of Wuhan University
| | - Tao Yin
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | | | - Junwei Sun
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Rui Xiong
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Zilin Li
- Hubei Cancer Hospital, Wuhan, Hubei, China
| |
Collapse
|
31
|
Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci 2020; 21:ijms21031102. [PMID: 32046099 PMCID: PMC7037308 DOI: 10.3390/ijms21031102] [Citation(s) in RCA: 450] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous signal transduction pathways that regulate all aspects of life and are frequently altered in disease. Here, we focus on the role of MAPK pathways in modulating drug sensitivity and resistance in cancer. We briefly discuss new findings in the extracellular signaling-regulated kinase (ERK) pathway, but mainly focus on the mechanisms how stress activated MAPK pathways, such as p38 MAPK and the Jun N-terminal kinases (JNK), impact the response of cancer cells to chemotherapies and targeted therapies. In this context, we also discuss the role of metabolic and epigenetic aberrations and new therapeutic opportunities arising from these changes.
Collapse
|
32
|
Hipólito A, Mendes C, Serpa J. The Metabolic Remodelling in Lung Cancer and Its Putative Consequence in Therapy Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:311-333. [PMID: 32130706 DOI: 10.1007/978-3-030-34025-4_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide in both men and women. Conventional chemotherapy has failed to provide long-term benefits for many patients and in the past decade, important advances were made to understand the underlying molecular/genetic mechanisms of lung cancer, allowing the unfolding of several other pathological entities. Considering these molecular subtypes, and the appearance of promising targeted therapies, an effective personalized control of the disease has emerged, nonetheless benefiting a small proportion of patients. Although immunotherapy has also appeared as a new hope, it is still not accessible to the majority of patients with lung cancer.The metabolism of energy and biomass is the basis of cellular survival. This is true for normal cells under physiological conditions and it is also true for pathophysiologically altered cells, such as cancer cells. Thus, knowledge of the metabolic remodelling that occurs in cancer cells in the sense of, on one hand, surviving in the microenvironment of the organ in which the tumour develops and, on the other hand, escaping from drugs conditioned microenvironment, is essential to understand the disease and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
33
|
The Gastrointestinal Tumor Microenvironment: An Updated Biological and Clinical Perspective. JOURNAL OF ONCOLOGY 2019; 2019:6240505. [PMID: 31885581 PMCID: PMC6893275 DOI: 10.1155/2019/6240505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Gastrointestinal cancers are still responsible for high numbers of cancer-related deaths despite advances in therapy. Tumor-associated cells play a key role in tumor biology, by supporting or halting tumor development through the production of extracellular matrix, growth factors, cytokines, and extracellular vesicles. Here, we review the roles of these tumor-associated cells in the initiation, angiogenesis, immune modulation, and resistance to therapy of gastrointestinal cancers. We also discuss novel diagnostic and therapeutic strategies directed at tumor-associated cells and their potential benefits for the survival of these patients.
Collapse
|
34
|
Sato A, Fujita Y, Otsuka K, Sasaki A, Suzuki H, Matsumoto T, Sugai T. Differential expression of microRNAs in colorectal cancer: Different patterns between isolated cancer gland and stromal cells. Pathol Int 2019; 70:21-30. [PMID: 31750597 DOI: 10.1111/pin.12872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022]
Abstract
Although microRNAs (miRNAs) play an important role in invasive tumor lesions, which involve cancer tissues mixed with stromal tissues, the differences in miRNA expression between cancer and stromal cells remain unclear. We selected 13 miRNAs and examined their differential expression patterns in cancer gland cells and surrounding stromal cells isolated from 24 colorectal cancer (CRC) specimens using a crypt isolation method. Although six miRNAs were upregulated in gland cells, only three were upregulated in the corresponding stromal cells, in the cancer compared with non-cancer specimens. Next, we examined the differences in miRNA expression between isolated cancer gland and stromal cells. Five miRNAs showed statistical differences in their cancer-related differential expression patterns between isolated cancer gland and stromal cells. We then compared these miRNA expression patterns in isolated cancer gland and stromal cells with those in fresh intact tumor tissues, consisting of cancer nests and stromal tissue, obtained from the 24 CRCs. The expression patterns of three miRNAs in the intact cancer tissue samples did not correspond with those in the isolated components. Identification of the expression patterns of miRNAs in both the cancer gland and stromal cell components of the tumor microenvironment greatly contributes to evaluating epigenetic regulation in CRC.
Collapse
Affiliation(s)
- Ayaka Sato
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Iwate Prefecture, Japan
| | - Yasuko Fujita
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Iwate Prefecture, Japan
| | - Koki Otsuka
- Department of Surgery, Iwate Medical University, Iwate Prefecture, Japan
| | - Akira Sasaki
- Department of Surgery, Iwate Medical University, Iwate Prefecture, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Iwate Prefecture, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Iwate Prefecture, Japan
| |
Collapse
|
35
|
Gu J, Li Z, Zhou J, Sun Z, Bai C. Response prediction to oxaliplatin plus 5-fluorouracil chemotherapy in patients with colorectal cancer using a four-protein immunohistochemical model. Oncol Lett 2019; 18:2091-2101. [PMID: 31423282 DOI: 10.3892/ol.2019.10474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
The response of cancer patients to oxaliplatin combined with 5-fluorouracil (5-FU) is difficult to predict. It has been reported that carcinoma-associated fibroblasts (CAFs) could induce AKT and ERK phosphorylation, and upregulate survivin expression in colorectal cancer (CRC) cells, which could lead to oxaliplatin plus 5-FU resistance. A total of 71 patients with advanced CRC (aCRC) treated with oxaliplatin plus 5-FU were included in the present study. These patients comprised 46 chemotherapy responders and 25 non-responders. The expression levels of α-smooth muscle actin (α-SMA), phosphorylated (p)-AKT, p-ERK and survivin were determined by immunohistochemical evaluation of paraffin-embedded samples from patients. A predictive model was established using a Probabilistic Neural Network model. The high expression of α-SMA, p-AKT and survivin in patients with aCRC were associated with oxaliplatin plus 5-FU resistance (P<0.001, P=0.023 and P=0.001, respectively). Furthermore, patients with stage IV CRC exhibiting high expression levels of α-SMA and survivin experienced a reduced progression-free survival time compared with patients with low expressions of α-SMA and survivin (5.5 vs. 15.0 months; 5.5 vs. 15.0 months; P=0.005 and P=0.001, respectively). Stage IV CRC and high survivin expression predicted a reduced overall survival time compared with that for patients with stage IV CRC and low survivin expression (50.0 vs. 15.0 months; P<0.001). Patients with α-SMA, p-AKT, p-ERK and survivin overexpression were more likely to present with intrinsic resistance to the oxaliplatin plus 5-FU regimen (the accuracies of modeling, validation and prediction were 83.7, 92.9 and 85.7%, respectively). In conclusion, the multifactorial predictive biomarker model of α-SMA, p-AKT, p-ERK and survivin expression for patients with aCRC to predict intrinsic resistance to oxaliplatin plus 5-FU regimens is of great efficiency and accuracy. Patients with high expression of this predictive model may be intrinsically resistant to the oxaliplatin and 5-FU regimen.
Collapse
Affiliation(s)
- Junjie Gu
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100730, P.R. China
| | - Zhe Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100730, P.R. China
| | - Jianfeng Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng, Beijing 100730, P.R. China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng, Beijing 100730, P.R. China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng, Beijing 100730, P.R. China
| |
Collapse
|
36
|
Wang L, Li X, Ren Y, Geng H, Zhang Q, Cao L, Meng Z, Wu X, Xu M, Xu K. Cancer-associated fibroblasts contribute to cisplatin resistance by modulating ANXA3 in lung cancer cells. Cancer Sci 2019; 110:1609-1620. [PMID: 30868675 PMCID: PMC6500998 DOI: 10.1111/cas.13998] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer tissues consist of cancer cells, surrounding stromal cells and the extracellular matrix. Cancer‐associated fibroblasts (CAF) are one of the key components of stromal cells. CAF have a great impact on the behavior of cancer cells, including proliferation, invasion, metastasis and chemoresistance in many ways. However, the underlying mechanism had not been fully elucidated. In this study, we investigated the role of CAF in cisplatin resistance of lung cancer cells. By using conditioned medium from CAF (CAF‐CM), we found that CAF decreased the sensitivity of lung cancer cells to cisplatin. RNA sequencing results showed that CAF expressed a higher level of Annexin A3 (ANXA3) than normal fibroblasts (NF), and CAF‐CM incubation increased the ANXA3 level in lung cancer cells. Overexpression of ANXA3 in lung cancer cells increased cisplatin resistance and activated c‐jun N‐terminal kinase (JNK), whereas knockdown of ANXA3 increased cisplatin sensitivity. Further study showed that CAF‐CM enhanced cisplatin resistance by inhibiting cisplatin‐induced apoptosis, determined by repression of caspase‐3 and caspase‐8, through activation of the ANXA3/JNK pathway. Conversely, suppression of JNK activation by specific inhibitor retarded the effect of CAF‐CM and ANXA3 on cisplatin sensitivity. Taken together, our study demonstrated that CAF potentiated chemoresistance of lung cancer cells through a novel ANXA3/JNK pathway both in vitro and in vivo, suggesting ANXA3 could be a potential therapeutic target for the treatment of chemoresistant cancer.
Collapse
Affiliation(s)
- Limin Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueqin Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yinghui Ren
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Geng
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Meilin Xu
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
37
|
Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD, Droeser RA, Mechera R, Oertli D, Rosso R, Bolli M, Zettl A, Terracciano LM, Spagnoli GC, Martin I, Iezzi G. Maintenance of Primary Human Colorectal Cancer Microenvironment Using a Perfusion Bioreactor-Based 3D Culture System. ACTA ACUST UNITED AC 2019; 3:e1800300. [PMID: 32627426 DOI: 10.1002/adbi.201800300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/03/2019] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death. Conventional chemotherapeutic regimens have limited success rates, and a major challenge for the development of novel therapies is the lack of adequate in vitro models. Nonmalignant mesenchymal and immune cells of the tumor microenvironment (TME) are known to critically affect CRC progression and drug responsiveness. However, tumor drug sensitivity is still evaluated on systems, such as cell monolayers, spheroids, or tumor xenografts, which typically neglect the original TME. Here, it is investigated whether a bioreactor-based 3D culture system can preserve the main TME cellular components in primary CRC samples. Freshly excised CRC fragments are inserted between two collagen scaffolds in a "sandwich-like" format and cultured under static or perfused conditions up to 3 d. Perfused cultures maintain tumor tissue architecture and densities of proliferating tumor cells to significantly higher extents than static cultures. Stromal and immune cells are also preserved and fully viable, as indicated by their responsiveness to microenvironmental stimuli. Importantly, perfusion-based cultures prove suitable for testing the sensitivity of primary tumor cells to chemotherapies currently in use for CRC. Perfusion-based culture of primary CRC specimens recapitulates TME key features and may allow assessment of tumor drug response in a patient-specific context.
Collapse
Affiliation(s)
- Celeste Manfredonia
- Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland.,Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Manuele G Muraro
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland.,Oncology Surgery, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Christian Hirt
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland.,Oncology Surgery, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Valentina Mele
- Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Valeria Governa
- Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland.,Oncology Surgery, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Adam Papadimitropoulos
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Silvio Däster
- Department of Surgery, University Hospital of Basel, Basel, 4031, Switzerland
| | - Savas D Soysal
- Department of Surgery, University Hospital of Basel, Basel, 4031, Switzerland
| | - Raoul A Droeser
- Department of Surgery, University Hospital of Basel, Basel, 4031, Switzerland
| | - Robert Mechera
- Department of Surgery, University Hospital of Basel, Basel, 4031, Switzerland
| | - Daniel Oertli
- Department of Surgery, University Hospital of Basel, Basel, 4031, Switzerland
| | - Raffaele Rosso
- Department of Surgery, Canton Hospital Lugano, Lugano, 6900, Switzerland
| | - Martin Bolli
- Department of Surgery, Claraspital, Basel, 4058, Switzerland
| | | | | | - Giulio C Spagnoli
- Oncology Surgery, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Ivan Martin
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Giandomenica Iezzi
- Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland.,Department of Surgery, Ente Ospedaliero Cantonale and Università Svizzera Italiana, Bellinzona, 6500, Switzerland
| |
Collapse
|
38
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Cisplatin-activated PAI-1 secretion in the cancer-associated fibroblasts with paracrine effects promoting esophageal squamous cell carcinoma progression and causing chemoresistance. Cell Death Dis 2018; 9:759. [PMID: 29988148 PMCID: PMC6037765 DOI: 10.1038/s41419-018-0808-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/17/2018] [Accepted: 06/15/2018] [Indexed: 01/12/2023]
Abstract
Preoperative chemotherapy is a promising strategy for the treatment of esophageal squamous cell carcinoma (ESCC). Acquired resistance to chemotherapy is a major obstacle in improving patient prognosis. Cancer-associated fibroblasts (CAFs) are the primary components of the tumor microenvironment and play a crucial role in tumor development; these cells are also potential therapeutic targets for cancer. Using protein arrays, we identified a key secreted cytokine, PAI-1, from CAFs pretreated with cisplatin that was induced after DNA damage of CAFs. The PAI-1 in the tumor microenvironment promoted tumor growth and attenuated the effects of cisplatin treatment. Extracellular PAI-1 activated the AKT and ERK1/2 signaling pathways and inhibited caspase-3 activity and reactive oxygen species accumulation. Tiplaxtinin as a PAI-1 inhibitor could play synergistic effects with cisplatin in vitro and in vivo. In clinical samples, ESCC patients with high expression of PAI-1 in CAFs presented a significantly worse progression-free survival. Taken together, our results showed that PAI-1 secreted from cisplatin-activated CAFs promoted tumor growth and reduced the effects of cisplatin in a paracrine manner, establishing a preclinical rationale to target this cytokine to further improve the clinical response of esophageal squamous cell carcinoma.
Collapse
|
40
|
Cancer-associated fibroblasts confer cisplatin resistance of tongue cancer via autophagy activation. Biomed Pharmacother 2018; 97:1341-1348. [DOI: 10.1016/j.biopha.2017.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022] Open
|
41
|
Steinbichler TB, Alshaimaa A, Maria MV, Daniel D, Herbert R, Jozsef D, Ira-Ida S. Epithelial-mesenchymal crosstalk induces radioresistance in HNSCC cells. Oncotarget 2017; 9:3641-3652. [PMID: 29423072 PMCID: PMC5790489 DOI: 10.18632/oncotarget.23248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
Objective Epithelial-mesenchymal crosstalk (EMC) contributes to tumor progression, chemoresistance and acquisition of a mesenchymal phenotype (EMT) of cancer cells. This study aims to investigate the effects of EMC on radioresistance in head and neck squamous cell carcinoma (HNSCC) cells. Methods In tumor cell lines, the response of HNSCC cells, stimulated with EMC conditioned medium (CM), to irradiation was evaluated with viability and clonogenic assays. Dose modifying factors (DMF) were calculated from the results of clonogenic assays. Potential pathways involved in radioresistance were analyzed with quantitative Real-Time PCR and western blot. Results CM significantly reduced the doubling time of SCC-25 cells (from 32.8 hours to 16.8 hours, p=0.0001) and Detroit 562 cells (from 88.5 hours to 29.6 hours, p=0.014). Further it increased clonogenic survival after irradiation. The DMF of CM was 2.04 ± 0.43 (mean ± standard deviation) for SCC-25 cells (p=0.015) and 2.14 ± 0.34 for Detroit 562 cells (p=0.008). Treatment with CM more than tripled the ERCC1 and survivin gene expression in SCC-25 cells. Conclusion EMC induced pathways involved in cell survival and DNA repair and led to increased radioresistance in HNSCC cells.
Collapse
Affiliation(s)
| | - Abdelmoez Alshaimaa
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Dejaco Daniel
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Riechelmann Herbert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dudas Jozsef
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Skvortsova Ira-Ida
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Ji X, Zhu X, Lu X. Effect of cancer-associated fibroblasts on radiosensitivity of cancer cells. Future Oncol 2017; 13:1537-1550. [PMID: 28685611 DOI: 10.2217/fon-2017-0054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Solid tumors are composed of tumor epithelial cells and the stroma, which are seemingly separate but actually related through cell-cell and cell-matrix interactions. These interactions can promote tumor evolution. Cancer-associated fibroblasts (CAFs) are the most abundant non-neoplastic cells in the stroma and also among the most important cell types interacting with cancer cells. Particularly, cancer cells promote the formation and maintenance of CAFs by secreting various cytokines. The activated CAFs then synthesize a series of growth factors to promote tumor cell growth, invasion and metastasis. More importantly, the presence of CAFs also interferes with therapeutic efficacy, bringing severe challenges to radiotherapy. This review summarizes the effect of CAFs on the radiosensitivity of tumor cells and underscores the need for further studies on CAFs in order to improve the efficacy of antitumor therapy.
Collapse
Affiliation(s)
- Xiaoqin Ji
- Department of Radiation Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xixu Zhu
- Department of Radiation Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xueguan Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
43
|
Cheteh EH, Augsten M, Rundqvist H, Bianchi J, Sarne V, Egevad L, Bykov VJ, Östman A, Wiman KG. Human cancer-associated fibroblasts enhance glutathione levels and antagonize drug-induced prostate cancer cell death. Cell Death Dis 2017; 8:e2848. [PMID: 28569790 PMCID: PMC5520886 DOI: 10.1038/cddis.2017.225] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/30/2017] [Accepted: 04/20/2017] [Indexed: 11/15/2022]
Abstract
Drug resistance is a major problem in cancer therapy. A growing body of evidence demonstrates that the tumor microenvironment, including cancer-associated fibroblasts (CAFs), can modulate drug sensitivity in tumor cells. We examined the effect of primary human CAFs on p53 induction and cell viability in prostate cancer cells on treatment with chemotherapeutic drugs. Co-culture with prostate CAFs or CAF-conditioned medium attenuated DNA damage and the p53 response to chemotherapeutic drugs and enhanced prostate cancer cell survival. CAF-conditioned medium inhibited the accumulation of doxorubicin, but not taxol, in prostate cancer cells in a manner that was associated with increased cancer cell glutathione levels. A low molecular weight fraction (<3 kDa) of CAF-conditioned medium had the same effect. CAF-conditioned medium also inhibited induction of reactive oxygen species (ROS) in both doxorubicin- and taxol-treated cancer cells. Our findings suggest that CAFs can enhance drug resistance in cancer cells by inhibiting drug accumulation and counteracting drug-induced oxidative stress. This protective mechanism may represent a novel therapeutic target in cancer.
Collapse
Affiliation(s)
- Emarndeena H Cheteh
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Martin Augsten
- Division for Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg, Germany
| | - Helene Rundqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Bianchi
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Victoria Sarne
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Lars Egevad
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Jn Bykov
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Klas G Wiman
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Li H, Yan X, Liu L, Huang L, Yin M, Pan C, Zhang P, Qin H. T-cell leukemia/lymphoma-1A predicts the clinical outcome for patients with stage II/III colorectal cancer. Biomed Pharmacother 2017; 88:924-930. [PMID: 28178623 DOI: 10.1016/j.biopha.2017.01.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/21/2017] [Indexed: 12/18/2022] Open
Abstract
T-cell leukemia/lymphoma-1A (TCL1A) as a stem cell marker is abundantly expressed in embryonic stem cells and has been identified as an oncogene in various hematological malignancies such as chronic lymphocytic leukemia and B-cell lymphoma. However, with regard to its role in solid tumors, few studies are available and less are for colorectal cancer (CRC). In this study, we aim to investigate the expression and clinical significance of TCL1A in a cohort of 278 stage II/III CRC patients. As a result, we find TCL1A expression is higher in CRC tissues than that in adjacent normal tissues, and significantly correlated with tumor differentiation, TNM stage and Ki-67 positive rate. The prognostic analysis suggests that TCL1A expression is an independent factor affecting CRC-specific and disease-free survival of these patients. Furthermore, we find stage II/III patients with high TCL1A expression have a significantly higher rate of postoperative local recurrence and metastasis than those with low TCL1A expression. Finally, through subgroup analysis, we find TCL1A expression can stratify the outcome of stage II/III patients who received standard adjuvant chemotherapy. Taken together, our findings suggest TCL1A is not only a useful biomarker for prognostic evaluation in stage II/III CRC patients, but also a promising therapeutic target for improving their clinical outcome.
Collapse
Affiliation(s)
- Hao Li
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Yan-chang Road, Shanghai 200072, China
| | - Xuebing Yan
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Yan-chang Road, Shanghai 200072, China
| | - Liguo Liu
- Department of General Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University No. 600, Yi-shan Road, Shanghai 200233, China
| | - Linsheng Huang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Yan-chang Road, Shanghai 200072, China
| | - Mingming Yin
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Yan-chang Road, Shanghai 200072, China
| | - Cheng Pan
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Yan-chang Road, Shanghai 200072, China
| | - Peng Zhang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Yan-chang Road, Shanghai 200072, China.
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Yan-chang Road, Shanghai 200072, China.
| |
Collapse
|