1
|
Luo S, Yue M, Wang D, Lu Y, Wu Q, Jiang J. Breaking the barrier: Epigenetic strategies to combat platinum resistance in colorectal cancer. Drug Resist Updat 2024; 77:101152. [PMID: 39369466 DOI: 10.1016/j.drup.2024.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Platinum-based drugs, such as cisplatin and oxaliplatin, are frontline chemotherapy for CRC, effective in both monotherapy and combination regimens. However, the clinical efficacy of these treatments is often undermined by the development of drug resistance, a significant obstacle in cancer therapy. In recent years, epigenetic alterations have been recognized as key players in the acquisition of resistance to platinum drugs. Targeting these dysregulated epigenetic mechanisms with small molecules represents a promising therapeutic strategy. This review explores the complex relationship between epigenetic changes and platinum resistance in CRC, highlighting current epigenetic therapies and their effectiveness in countering resistance mechanisms. By elucidating the epigenetic underpinnings of platinum resistance, this review aims to contribute to ongoing efforts to improve treatment outcomes for CRC patients.
Collapse
Affiliation(s)
- Shiwen Luo
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ming Yue
- Department of Pharmacy, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Dequan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yukang Lu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jue Jiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
2
|
Ye J, Zhang J, Ding W. DNA methylation modulates epigenetic regulation in colorectal cancer diagnosis, prognosis and precision medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:34-53. [PMID: 38464391 PMCID: PMC10918240 DOI: 10.37349/etat.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by the interplay of genetic and environmental factors. The clinical heterogeneity of CRC cannot be attributed exclusively to genetic diversity and environmental exposures, and epigenetic markers, especially DNA methylation, play a critical role as key molecular markers of cancer. This review compiles a comprehensive body of evidence underscoring the significant involvement of DNA methylation modifications in the pathogenesis of CRC. Moreover, this review explores the potential utility of DNA methylation in cancer diagnosis, prognostics, assessment of disease activity, and prediction of drug responses. Recognizing the impact of DNA methylation will enhance the ability to identify distinct CRC subtypes, paving the way for personalized treatment strategies and advancing precision medicine in the management of CRC.
Collapse
Affiliation(s)
- Jingxin Ye
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, Jiangsu Province, China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
3
|
Chen Z, Zhang L, Yang Y, Liu H, Kang X, Nie Y, Fan D. DNMT1 expression partially dictates 5-Azacytidine sensitivity and correlates with RAS/MEK/ERK activity in gastric cancer cells. Epigenetics 2023; 18:2254976. [PMID: 37691391 PMCID: PMC10496526 DOI: 10.1080/15592294.2023.2254976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
Though DNMTs inhibitors were widely used in myelodysplastic syndrome and leukaemia, their application in solid tumours has been limited by low response rate and lack of optimal combination strategies. In gastric cancer (GC), the therapeutic implication of KRAS mutation or MEK/ERK activation for combinational use of DNMTs inhibitors with MEK/ERK inhibitors remains elusive. In this study, stable knockdown of DNMT1 expression by lentiviral transfection led to decreased sensitivity of GC cells to 5-Azacytidine. KRAS knockdown in KRAS mutant GC cells or the MEK/ERK activation by EGF stimulation in GC cells increased DNMT1 expression, while inhibition of MEK/ERK activity by Selumetinib led to decreased DNMT1 expression. 5-Azacytidine treatment, which led to dramatic decline of DNMTs protein levels and increased activity of MEK/ERK pathway, altered the activity of MEK/ERK inhibitor Selumetinib on GC cells. Both RAS-dependent gene expression signature and expression levels of multiple MEK/ERK-dependent genes were correlated with DNMT1 expression in TCGA stomach cancer samples. In conclusion, DNMT1 expression partially dictates 5-Azacytidine sensitivity and correlates with RAS/MEK/ERK activity in GC cells. Combining DNMTs inhibitor with MEK/ERK inhibitor might be a promising strategy for patients with GC.[Figure: see text].
Collapse
Affiliation(s)
- Zhangqian Chen
- Department of Infectious Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Zhang
- Department of Internal Medicine, Central Medical Branch of Chinese PLA General Hospital, Beijing, China
| | - Yang Yang
- Department of Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Haiming Liu
- School of Software Engineering, Beijing Jiaotong University, Beijing, China
| | - Xiaoyu Kang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Zheng Z, Wieder T, Mauerer B, Schäfer L, Kesselring R, Braumüller H. T Cells in Colorectal Cancer: Unravelling the Function of Different T Cell Subsets in the Tumor Microenvironment. Int J Mol Sci 2023; 24:11673. [PMID: 37511431 PMCID: PMC10380781 DOI: 10.3390/ijms241411673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Therapeutic options for metastatic colorectal cancer (mCRC) are very limited, and the prognosis using combination therapy with a chemotherapeutic drug and a targeted agent, e.g., epidermal growth factor receptor or tyrosine kinase, remains poor. Therefore, mCRC is associated with a poor median overall survival (mOS) of only 25-30 months. Current immunotherapies with checkpoint inhibitor blockade (ICB) have led to a substantial change in the treatment of several cancers, such as melanoma and non-small cell lung cancer. In CRC, ICB has only limited effects, except in patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) tumors, which comprise about 15% of sporadic CRC patients and about 4% of patients with metastatic CRC. The vast majority of sporadic CRCs are microsatellite-stable (MSS) tumors with low levels of infiltrating immune cells, in which immunotherapy has no clinical benefit so far. Immunotherapy with checkpoint inhibitors requires the presence of infiltrating T cells into the tumor microenvironment (TME). This makes T cells the most important effector cells in the TME, as evidenced by the establishment of the immunoscore-a method to estimate the prognosis of CRC patients. The microenvironment of a tumor contains several types of T cells that are anti-tumorigenic, such as CD8+ T cells or pro-tumorigenic, such as regulatory T cells (Tregs) or T helper 17 (Th17) cells. However, even CD8+ T cells show marked heterogeneity, e.g., they can become exhausted, enter a state of hyporesponsiveness or become dysfunctional and express high levels of checkpoint molecules, the targets for ICB. To kill cancer cells, CD8+ T cells need the recognition of the MHC class I, which is often downregulated on colorectal cancer cells. In this case, a population of unconventional T cells with a γδ T cell receptor can overcome the limitations of the conventional CD8+ T cells with an αβT cell receptor. γδ T cells recognize antigens in an MHC-independent manner, thus acting as a bridge between innate and adaptive immunity. Here, we discuss the effects of different T cell subsets in colorectal cancer with a special emphasis on γδ T cells and the possibility of using them in CAR-T cell therapy. We explain T cell exclusion in microsatellite-stable colorectal cancer and the possibilities to overcome this exclusion to enable immunotherapy even in these "cold" tumors.
Collapse
Affiliation(s)
- Ziwen Zheng
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Wieder
- Department of Vegetative and Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luisa Schäfer
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Heidi Braumüller
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
5
|
MCPIP1 Suppresses the NF-κB Signaling Pathway Through Negative Regulation of K63-Linked Ubiquitylation of TRAF6 in Colorectal Cancer. Cancer Gene Ther 2023; 30:96-107. [PMID: 36076064 DOI: 10.1038/s41417-022-00528-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023]
Abstract
The abnormal activation of the nuclear factor-kappa B (NF-κB) signaling pathway is an important precipitating factor for the inception and development of colorectal cancer (CRC), one of the most common tumors worldwide. As a pro-apoptotic transcription factor, monocyte chemotactic protein-induced protein 1 (MCPIP1) has been closely associated with many tumor types. In the present study, the expression of MCPIP1 was firstly discovered reduced in CRC tissues and correlated with poor patient prognosis. The decreased expression was caused by promoter hypermethylation. Overexpressed MCPIP1 was found to inhibit the proliferative and migratory abilities of CRC cells, whereas knockdown of MCPIP1 produced the opposite result. The subsequent investigation demonstrated that MCPIP1 exerted its "anti-cancer" effect by suppression of the NF-κB signaling pathway through negative regulation of K63-linked ubiquitylation of TNF receptor associated factor 6 (TRAF6). Therefore, our results indicate a prognostic marker for CRC and a theoretical basis for MCPIP1 as a treatment.
Collapse
|
6
|
Heumann TR, Baretti M, Sugar EA, Durham JN, Linden S, Lopez-Vidal TY, Leatherman J, Cope L, Sharma A, Weekes CD, O'Dwyer PJ, Reiss KA, Monga DK, Ahuja N, Azad NS. A randomized, phase II trial of oral azacitidine (CC-486) in patients with resected pancreatic adenocarcinoma at high risk for recurrence. Clin Epigenetics 2022; 14:166. [PMID: 36463226 PMCID: PMC9719150 DOI: 10.1186/s13148-022-01367-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Of the only 20% of patients with resectable pancreatic ductal adenocarcinoma (rPDA), cancer recurs in 80% of cases. Epigenetic dysregulation is an early hallmark of cancer cells acquiring metastatic potential, and epigenetic modulators may reactivate tumor suppressor genes, delay recurrence, and sensitize PDA to future chemotherapy. METHODS This was a randomized phase II study (NCT01845805) of CC-486 (oral DNA methyltransferase inhibitor azacitidine) vs. observation (OBS) in rPDA patients harboring high-risk features (stage pN1-2, R1 margins, or elevated CA 19-9 level) with no evidence of disease following standard adjuvant therapy. Patients were randomized to oral CC-486 treatment (300 mg daily on days 1-21 on a 28-day cycle) or OBS for up to 12 cycles or until disease relapse/unacceptable toxicities. Following recurrence, records of next-line therapies, imaging, and survival were obtained. The primary endpoint was progression-free survival (PFS)-time from randomization to recurrence (imaging/biopsy confirmed or death). Secondary endpoints included OS and PFS and ORR and metastatic PFS with subsequent next-line systemic therapy in metastatic setting. RESULTS Forty-nine patients (24 in CC-486 arm, 25 in OBS arm) were randomized: median age 66 (range 36-81), 53% male, 73% node positive, 49% elevated CA 19-9, 20% R1 resection, 63% and 100% received perioperative concurrent chemoradiation and chemotherapy, respectively. Median time from surgery to randomization was 9.6 mo (range 2.9-36.8). For the CC-486 arm, median treatment duration was 5.6 mo (range 1.3 to 12.8) with 14 treatment-related grade 3 or 4 AEs among 5 patients (22%) resulting in dose-reduction. Four patients (17%) discontinued therapy due to AEs. With median follow-up of 20.3mo (IQR 12.8, 41.4), 38 (79%) of evaluable patients recurred (34 imaging-confirmed, 4 clinically). Median PFS in imagining-confirmed cases was 9.2 and 8.9mo (HR 0.94, 95% CI 0.46-1.87, p = 0.85) for CC-486 and OBS patients, respectively. Median OS (2-yr OS%) was 33.8 (50%) and 26.4 mo (61%) in CC-486 and OBS patients, respectively. (HR 0.98, 95% CI 0.46-2.05, p = 0.96). ORR with subsequent chemotherapy in the metastatic setting was minimal in both arms. CONCLUSIONS Treatment with CC-486 following adjuvant therapy did not prolong time-to-relapse in patients with high-risk rPDA or improve disease response on 1st-line metastatic therapy.
Collapse
Affiliation(s)
- Thatcher R Heumann
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Marina Baretti
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Elizabeth A Sugar
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
- Departments of Biostatistics and Epidemiology, The Bloomberg School of Public Health at Johns Hopkins, Baltimore, MD, USA
| | - Jennifer N Durham
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sheila Linden
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Tamara Y Lopez-Vidal
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - James Leatherman
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Leslie Cope
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Anup Sharma
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Colin D Weekes
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Peter J O'Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Kim A Reiss
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Dulabh K Monga
- Medical Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Nita Ahuja
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Nilofer S Azad
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| |
Collapse
|
7
|
Morris VK, Overman MJ, Lam M, Parseghian CM, Johnson B, Dasari A, Raghav K, Kee BK, Huey R, Wolff RA, Shen JP, Li J, Zorrilla I, Tzeng CWD, Tran Cao HS, Chun YS, Newhook TE, Vauthey N, Duose D, Luthra R, Haymaker C, Kopetz S. Bintrafusp alfa, an anti-PD-L1:TGF-β trap fusion protein, in patients with ctDNA-positive, liver-limited metastatic colorectal cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:979-986. [PMID: 36382087 PMCID: PMC9648419 DOI: 10.1158/2767-9764.crc-22-0194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
BACKGROUND Identification of circulating tumor DNA (ctDNA) following curative intent therapies is a surrogate for microscopic residual disease for patients with metastatic colorectal cancer (mCRC). Preclinically, in micrometastatic microsatellite stable (MSS) CRC, increased TGF-β signaling results in exclusion of anti-tumor cytotoxic T cells from the tumor microenvironment. Bintrafusp alfa (BA) is a bifunctional fusion protein composed of the extracellular domain of the TGF-βRII receptor ("TGF-β trap") and anti-PD-L1 antibody. METHODS Patients with liver-limited, MSS mCRC and with detected ctDNA after complete resection of all known tumors and standard-of-care therapy were treated with 1200 mg of BA intravenously every 14 days for six doses. The primary endpoint was ctDNA clearance. Radiographic characteristics at recurrence were compared using independent t-tests to historical data from a similar cohort of patients with liver-limited mCRC who underwent observation. RESULTS Only 4 of 15 planned patients received BA before the study was stopped early for loss of equipoise. There was no grade ≥3 AE. None of the patients cleared ctDNA. All patients developed radiographic recurrence by the first planned restaging. Although not detectable at prior to treatment, TGFβ3 was found in circulation in all patients at cycle 2 day 1. Compared to a historical cohort, patients administered BA developed more metastases (15 versus 2, p=0.005) and greater tumor volumes (9 cm vs 2 cm, p=0.05). CONCLUSIONS Treatment with BA in patients with ctDNA-detected, liver-limited mCRC did not clear ctDNA and was associated with large-volume recurrence, highlighting the potential context-specific complexity of dual TGF-β and PD-L1 inhibition.
Collapse
Affiliation(s)
- Van K. Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Corresponding Author: Van K. Morris, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 426, Houston, TX 77030. Phone 713-792-2828. E-mail:
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Lam
- Department of Medical Oncology and Cancer Services, The University of Melbourne, Melbourne, Australia
| | - Christine M. Parseghian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benny Johnson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bryan K. Kee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ryan Huey
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - June Li
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Isabel Zorrilla
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ching-Wei D. Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hop S. Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yun Shin Chun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy E. Newhook
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dzifa Duose
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raja Luthra
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Fatemi N, Tierling S, Es HA, Varkiani M, Nazemalhosseini Mojarad E, Asadzadeh Aghdaei H, Walter J, Totonchi M. DNA Methylation Biomarkers in Colorectal Cancer: Clinical Applications for Precision Medicine. Int J Cancer 2022; 151:2068-2081. [PMID: 35730647 DOI: 10.1002/ijc.34186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute, and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | | | - Maryam Varkiani
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörn Walter
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Mehdi Totonchi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Huyghe N, Benidovskaya E, Stevens P, Van den Eynde M. Biomarkers of Response and Resistance to Immunotherapy in Microsatellite Stable Colorectal Cancer: Toward a New Personalized Medicine. Cancers (Basel) 2022; 14:2241. [PMID: 35565369 PMCID: PMC9105843 DOI: 10.3390/cancers14092241] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
Immune Checkpoint Inhibitors (ICIs) are well recognized as a major immune treatment modality for multiple types of solid cancers. However, for colorectal cancer (CRC), ICIs are only approved for the treatment of Mismatch-Repair-Deficient and Microsatellite Instability-High (dMMR/MSI-H) tumors. For the vast majority of CRC, that are not dMMR/MSI-H, ICIs alone provide limited to no clinical benefit. This discrepancy of response between CRC and other solid cancers suggests that CRC may be inherently resistant to ICIs alone. In translational research, efforts are underway to thoroughly characterize the immune microenvironment of CRC to better understand the mechanisms behind this resistance and to find new biomarkers of response. In the clinic, trials are being set up to study biomarkers along with treatments targeting newly discovered immune checkpoint molecules or treatments combining ICIs with other existing therapies to improve response in MSS CRC. In this review, we will focus on the characteristics of response and resistance to ICIs in CRC, and discuss promising biomarkers studied in recent clinical trials combining ICIs with other therapies.
Collapse
Affiliation(s)
- Nicolas Huyghe
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Elena Benidovskaya
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Philippe Stevens
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Marc Van den Eynde
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
- Institut Roi Albert II, Department of Medical Oncology and Gastroenterology, Cliniques Universitaires St-Luc, 1200 Brussels, Belgium
| |
Collapse
|
10
|
Su R, Wu X, Tao L, Wang C. The role of epigenetic modifications in Colorectal Cancer Metastasis. Clin Exp Metastasis 2022; 39:521-539. [PMID: 35429301 PMCID: PMC9338907 DOI: 10.1007/s10585-022-10163-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
Abstract
Distant metastasis is the major contributor to the high mortality rate of colorectal cancer (CRC). To overcome the poor prognosis caused by distant metastasis, the mechanisms of CRC metastasis should be further explored. Epigenetic events are the main mediators of gene regulation and further affect tumor progression. Recent studies have found that some epigenetic enzymes are often dysregulated or mutated in multiple tumor types, which prompted us to study the roles of these enzymes in CRC metastasis. In this review, we summarized the alteration of enzymes related to various modifications, including histone modification, nonhistone modification, DNA methylation, and RNA methylation, and their epigenetic mechanisms during the progression of CRC metastasis. Existing data suggest that targeting epigenetic enzymes is a promising strategy for the treatment of CRC metastasis.
Collapse
Affiliation(s)
- Riya Su
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinlin Wu
- Department of General Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Liang Tao
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Changshan Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
11
|
Luo M, Yang X, Chen HN, Nice EC, Huang C. Drug resistance in colorectal cancer: An epigenetic overview. Biochim Biophys Acta Rev Cancer 2021; 1876:188623. [PMID: 34481016 DOI: 10.1016/j.bbcan.2021.188623] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Despite significant progress that has been made in therapies against CRC over the past decades, drug resistance is still a major limitation in CRC treatment. Numerous investigations have unequivocally shown that epigenetic regulation plays an important role in CRC drug resistance because of the high rate of epigenetic alterations in multiple genes during cancer development or drug treatment. Furthermore, the reversibility of epigenetic alterations provides novel therapeutic strategies to overcome drug resistance using small molecules, which can target non-coding RNAs or reverse histone modification and DNA methylation. In this review, we discuss epigenetic regulation in CRC drug resistance and the possible role of preventing or reversing CRC drug resistance using epigenetic therapy in CRC treatment.
Collapse
Affiliation(s)
- Maochao Luo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xingyue Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Canhua Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
12
|
Mora Y, Reyes ME, Zanella L, Mora B, Buchegger K, Ili C, Brebi P. Resistance to platinum-based cancer drugs: a special focus on epigenetic mechanisms. Pharmacogenomics 2021; 22:777-790. [PMID: 34281355 DOI: 10.2217/pgs-2021-0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemoresistance is a significant clinical challenge, limiting the drug response in cancer. Several mechanisms associated with drug resistance have been characterized, and the role of epigenetics in generating resistance to platinum-based drugs has been clarified. Epigenetic mechanisms such as DNA methylation, histone modification, long noncoding RNA, and microRNA affect the expression of genes implicated in absorption, distribution, metabolism and excretion (ADME) of drugs, and other non-ADME genes that encode enzymes involved in the processes of cell proliferation, DNA repair, apoptosis and signal transduction key in the development of chemoresistance in cancer, specifically in platinum-based drugs. This review summarizes current discoveries in epigenetic regulation implicated in platinum drug resistance in cancer and the main clinical trials based on epigenetic therapy, evaluating their potential synergy with platinum-based drugs.
Collapse
Affiliation(s)
- Yuselin Mora
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - María Elena Reyes
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile.,Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, 8370003, Chile
| | - Louise Zanella
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - Bárbara Mora
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, 4810101, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile.,Departamento Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| |
Collapse
|
13
|
Advani SM, Swartz MD, Loree J, Davis JS, Sarsashek AM, Lam M, Lee MS, Bressler J, Lopez DS, Daniel CR, Morris V, Shureqi I, Kee B, Dasari A, Vilar E, Overman M, Hamilton S, Maru D, Braithwaite D, Kopetz S. Epidemiology and Molecular-Pathologic Characteristics of CpG Island Methylator Phenotype (CIMP) in Colorectal Cancer. Clin Colorectal Cancer 2021; 20:137-147.e1. [PMID: 33229221 DOI: 10.1016/j.clcc.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND CpG island methylator phenotype (CIMP) forms a distinct epigenetic phenotype in colorectal cancer (CRC). Though associated with distinct clinicopathologic characteristics, limited evidence exists of the association of CIMP with patient's reported lifestyle factors and tumor molecular characteristics. We assessed the associations of these characteristics in a pooled analysis of CRC patients. PATIENTS AND METHODS We pooled data from 3 CRC patient cohorts: Assessment of Targeted Therapies Against Colorectal Cancer (ATTACC), biomarker-based protocol (Integromics), and The Cancer Genome Atlas (TCGA). CIMP was measured using the classical 6-gene methylated-in-tumor (MINT) marker panel (MINT1, MINT2, MINT31, p14, p16, and MLH1) in ATTACC and genome-wide human methylation arrays in Integromics and TCGA, respectively. CIMP-High (CIMP-H) was defined as ≥ 3 of 6 methylated markers in ATTACC. In TCGA and Integromics, CIMP-H group was defined on the basis of clusters of methylation profiles and high levels of methylation in tumor samples. Baseline comparisons of characteristics across CIMP groups (CIMP-H vs. CIMP-0) were performed by Student t test or chi-square test for continuous or categorical variables, respectively. Further logistic regression analyses were performed to compute the odds ratio (OR) of these associations. RESULTS Pooled prevalence of CIMP-H was 22% across 3 data sets. CIMP-H CRC tumors were associated with older age at diagnosis (OR, 1.02; 95% confidence interval [CI], 1.01, 1.03), microsatellite instability-high (MSI-H) status (OR, 9.15; 95% CI, 4.45, 18.81), BRAF mutation (OR, 7.70; 95% CI, 4.98, 11.87), right-sided tumor location (OR, 2.40; 95% CI, 1.78, 3.22), poor differentiation (OR, 2.94; 95% CI, 1.95, 4.45), and mucinous histology (OR, 2.47; 95% CI, 1.77, 3.47), as reported previously in the literature. CIMP-H tumors were also found to be associated with self-reported history of alcohol consumption (OR, ever vs. never, 1.58; 95% CI, 1.07, 2.34). Pathologically, CIMP-H tumors were associated with the presence of intraepithelial lymphocytes (OR, 3.31; 95% CI, 1.41, 7.80) among patients in the Integromics cohort. CONCLUSION CIMP-H tumors were associated with history of alcohol consumption and presence of intraepithelial lymphocytes. In addition, we confirmed the previously known association of CIMP with age, MSI-H status, BRAF mutation, sidedness, and mucinous histology. Molecular pathologic epidemiology associations help us explore the underlying association of lifestyle and clinical factors with molecular subsets like CIMP and help guide cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Shailesh M Advani
- Social Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, MD; Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Oncology, Georgetown University School of Medicine, Washington, DC.
| | - Michael D Swartz
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston, Houston, TX
| | - Jonathan Loree
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer S Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amir Mehvarz Sarsashek
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Lam
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Sangmin Lee
- Division of Gastrointestinal Oncology, University of North Carolina Chapel Hill, Chapel Hill, NC
| | - Jan Bressler
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - David S Lopez
- Department of Preventive Medicine and Population Health, UTMB School of Medicine, Galveston, TX
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Van Morris
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Imad Shureqi
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bryan Kee
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Arvind Dasari
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Overman
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stanley Hamilton
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dipen Maru
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dejana Braithwaite
- Department of Oncology, Georgetown University School of Medicine, Washington, DC
| | - Scott Kopetz
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
14
|
Pouya FD, Rasmi Y, Camci IY, Tutar Y, Nemati M. Performance of capecitabine in novel combination therapies in colorectal cancer. J Chemother 2021; 33:375-389. [PMID: 34019782 DOI: 10.1080/1120009x.2021.1920247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer is one of the most common cancers throughout the world, and no definitive cure has ever been found. Perhaps a new insight into the effectiveness of chemotherapy drugs could help better treat patients. Targeted therapies have significantly improved the median overall survival of colorectal cancer patients. One of the standard chemotherapy regimens used for colorectal cancer is capecitabine, which is important in monotherapy and combination therapies. Capecitabine, with other chemotherapeutic agents (irinotecan, oxaliplatin, perifosine, 17-allylamino-17-demethoxygeldanamycin, aspirin, celecoxib, statins, quinacrine, inositol hexaphosphate and inositol, cystine/theanine, curcumin, and isorhamnetin), and biological ones (antibodies) plays an important role in the inhibition of some signaling pathways, increasing survival, reducing tumor growth and side effects of capecitabine. However, some drugs, such as proton pump inhibitors, are negatively related to capecitabine; therefore, the purpose of this work is to review and discuss the performance of capecitabine combination therapies in colorectal cancer.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Irem Yalim Camci
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, University of Health Sciences, Turkey Istanbul
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
15
|
Linnekamp JF, Kandimalla R, Fessler E, de Jong JH, Rodermond HM, van Bochove GGW, The FO, Punt CJA, Bemelman WA, van de Ven AWH, Tanis PJ, Kemper EM, Koens L, Dekker E, Vermeulen L, van Laarhoven HWM, Medema JP. Pre-Operative Decitabine in Colon Cancer Patients: Analyses on WNT Target Methylation and Expression. Cancers (Basel) 2021; 13:cancers13102357. [PMID: 34068407 PMCID: PMC8153633 DOI: 10.3390/cancers13102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
DNA hypermethylation is common in colon cancer. Previously, we have shown that methylation of WNT target genes predicts poor prognosis in stage II colon cancer. The primary objective of this study was to assess whether pre-operative treatment with decitabine can decrease methylation and increase the expression of WNT target genes APCDD1, AXIN2 and DKK1 in colon cancer patients. A clinical study was conducted, investigating these potential effects of decitabine in colon cancer patients (DECO). Patients were treated two times with 25 mg/m2 decitabine before surgery. Methylation and expression of LINE1 and WNT target genes (primary outcome) and expression of endogenous retroviral genes (secondary outcome) were analysed in pre- and post-treatment tumour samples using pyrosequencing and rt-PCR. Ten patients were treated with decitabine and eighteen patients were used as controls. Decitabine treatment only marginally decreased LINE1 methylation. More importantly, no differences in methylation or expression of WNT target or endogenous retroviral genes were observed. Due to the lack of an effect on primary and secondary outcomes, the study was prematurely closed. In conclusion, pre-operative treatment with decitabine is safe, but with the current dosing, the primary objective, increased WNT target gene expression, cannot be achieved.
Collapse
Affiliation(s)
- Janneke F. Linnekamp
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.F.L.); (R.K.); (E.F.); (J.H.d.J.); (H.M.R.); (G.G.W.v.B.); (L.V.)
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Raju Kandimalla
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.F.L.); (R.K.); (E.F.); (J.H.d.J.); (H.M.R.); (G.G.W.v.B.); (L.V.)
| | - Evelyn Fessler
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.F.L.); (R.K.); (E.F.); (J.H.d.J.); (H.M.R.); (G.G.W.v.B.); (L.V.)
| | - Joan H. de Jong
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.F.L.); (R.K.); (E.F.); (J.H.d.J.); (H.M.R.); (G.G.W.v.B.); (L.V.)
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Hans M. Rodermond
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.F.L.); (R.K.); (E.F.); (J.H.d.J.); (H.M.R.); (G.G.W.v.B.); (L.V.)
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Gregor G. W. van Bochove
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.F.L.); (R.K.); (E.F.); (J.H.d.J.); (H.M.R.); (G.G.W.v.B.); (L.V.)
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Frans O. The
- Department of Gastroenterology and Hepatology, OLVG, 1105 AZ Amsterdam, The Netherlands;
| | - Cornelis J. A. Punt
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.J.A.P.); (H.W.M.v.L.)
| | - Willem A. Bemelman
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (W.A.B.); (A.W.H.v.d.V.); (P.J.T.)
| | - Anthony W. H. van de Ven
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (W.A.B.); (A.W.H.v.d.V.); (P.J.T.)
- Department of Surgery, Flevo Hospital Almere, 1315 RA Almere, The Netherlands
| | - Pieter J. Tanis
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (W.A.B.); (A.W.H.v.d.V.); (P.J.T.)
| | - Elles M. Kemper
- Department of Pharmacology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Lianne Koens
- Department of Pathology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.F.L.); (R.K.); (E.F.); (J.H.d.J.); (H.M.R.); (G.G.W.v.B.); (L.V.)
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Hanneke W. M. van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.J.A.P.); (H.W.M.v.L.)
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.F.L.); (R.K.); (E.F.); (J.H.d.J.); (H.M.R.); (G.G.W.v.B.); (L.V.)
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
16
|
Jin N, George TL, Otterson GA, Verschraegen C, Wen H, Carbone D, Herman J, Bertino EM, He K. Advances in epigenetic therapeutics with focus on solid tumors. Clin Epigenetics 2021; 13:83. [PMID: 33879235 PMCID: PMC8056722 DOI: 10.1186/s13148-021-01069-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
Epigenetic ("above genetics") modifications can alter the gene expression without altering the DNA sequence. Aberrant epigenetic regulations in cancer include DNA methylation, histone methylation, histone acetylation, non-coding RNA, and mRNA methylation. Epigenetic-targeted agents have demonstrated clinical activities in hematological malignancies and therapeutic potential in solid tumors. In this review, we describe mechanisms of various epigenetic modifications, discuss the Food and Drug Administration-approved epigenetic agents, and focus on the current clinical investigations of novel epigenetic monotherapies and combination therapies in solid tumors.
Collapse
Affiliation(s)
- Ning Jin
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Tiffany L George
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Gregory A Otterson
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Claire Verschraegen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Haitao Wen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - David Carbone
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - James Herman
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erin M Bertino
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| | - Kai He
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
17
|
Yang C, Zhang Y, Lin S, Liu Y, Li W. Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces ferroptosis and enhances the sensitivity of colorectal cancer to oxaliplatin. Aging (Albany NY) 2021; 13:13515-13534. [PMID: 33819186 PMCID: PMC8202845 DOI: 10.18632/aging.202774] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 12/18/2020] [Indexed: 04/11/2023]
Abstract
Oxaliplatin resistance can develop in colorectal cancer (CRC), which may involve inhibition of ferroptosis, although further research is needed to understand this potential mechanism. We evaluated CRC cells with acquired oxaliplatin resistance (HCT116-Or) or congenital resistance (H716) to determine whether a ferroptosis inducer (RSL3) or inhibitor (liproxstatin-1) could modulate the effects of oxaliplatin. The results suggested that induction of ferroptosis could significantly reverse the oxaliplatin resistance of the CRC cells. Bioinformatic and cytobiological searches also revealed that KIF20A was highly expressed in the oxaliplatin-resistant cell lines and was strongly correlated with survival among CRC patients. Silencing KIF20A enhanced cellular sensitivity to oxaliplatin both in vivo and in vitro, and silencing KIF20A also suppressed NUAK1 activation, while a NUAK1 agonist (ETC-1002) could reverse the oxaliplatin sensitivity of KIF20A-silenced cells. Moreover, silencing NUAK1 up-regulated the expression of PP1β, down-regulated the phosphorylation of downstream GSK3βSer9, suppressed the nuclear import of Nrf2, inhibited the expression of a ferroptosis key negative regulatory protein (GPX4), and blocked cellular resistance. Applying a Nrf2 agonist (oltipraz) also reversed the oxaliplatin sensitivity of NUAK1-silenced cells. Therefore, cellular ferroptosis may be inhibited via the KIF20A/NUAK1/PP1β/GPX4 pathway in CRC cells, which may underly the resistance of CRC to oxaliplatin.
Collapse
Affiliation(s)
- Changshun Yang
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Shengtao Lin
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yi Liu
- Department of Endoscopy, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100000, China
| | - Weihua Li
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
18
|
Zhang X, Zhang W, Cao P. Advances in CpG Island Methylator Phenotype Colorectal Cancer Therapies. Front Oncol 2021; 11:629390. [PMID: 33718206 PMCID: PMC7952756 DOI: 10.3389/fonc.2021.629390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
With the aging of the population, the incidence of colorectal cancer in China is increasing. One of the epigenetic alterations: CpG island methylator phenotype (CIMP) plays an important role in the incidence of colorectal cancer. Recent studies have shown that CIMP is closely related to some specific clinicopathological phenotypes and multiple molecular phenotypes in colorectal cancer. In this paper, the newest progress of CIMP colorectal cancer in chemotherapeutic drugs, targeted agents and small molecular methylation inhibitors are going to be introduced. We hope to provide potential clinical treatment strategies for personalized and precise treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Wenjun Zhang
- Department of Colorectal Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Pingan Cao
- Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| |
Collapse
|
19
|
Jung G, Hernández-Illán E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol 2020; 17:111-130. [PMID: 31900466 PMCID: PMC7228650 DOI: 10.1038/s41575-019-0230-y] [Citation(s) in RCA: 447] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC), a leading cause of cancer-related death worldwide, evolves as a result of the stepwise accumulation of a series of genetic and epigenetic alterations in the normal colonic epithelium, leading to the development of colorectal adenomas and invasive adenocarcinomas. Although genetic alterations have a major role in a subset of CRCs, the pathophysiological contribution of epigenetic aberrations in this malignancy has attracted considerable attention. Data from the past couple of decades has unequivocally illustrated that epigenetic marks are important molecular hallmarks of cancer, as they occur very early in disease pathogenesis, involve virtually all key cancer-associated pathways and, most importantly, can be exploited as clinically relevant disease biomarkers for diagnosis, prognostication and prediction of treatment response. In this Review, we summarize the current knowledge on the best-studied epigenetic modifications in CRC, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators. We focus on the emerging potential for the bench-to-bedside translation of some of these epigenetic alterations into clinical practice and discuss the burgeoning evidence supporting the potential of emerging epigenetic therapies in CRC as we usher in the era of precision medicine.
Collapse
Affiliation(s)
- Gerhard Jung
- Gastroenterology Department, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Eva Hernández-Illán
- Gastroenterology Department, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Leticia Moreira
- Gastroenterology Department, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.,;
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA.,Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California, USA.,;
| |
Collapse
|
20
|
Overexpressed CES2 has prognostic value in CRC and knockdown CES2 reverses L-OHP-resistance in CRC cells by inhibition of the PI3K signaling pathway. Exp Cell Res 2020; 389:111856. [PMID: 31981591 DOI: 10.1016/j.yexcr.2020.111856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
CES-2 (carboxylesterase-2) belongs to the carboxylesterase gene family, which plays crucial roles in lipid mobilization and chemosensitivity to irinotecan. However, its role in chemosensitivity to oxaliplatin (L-OHP) remains unclear. Herein, L-OHP-resistant cells (HCT-116L and RKOL) were established by increasing the concentration of L-OHP. The results showed that CES2 expression was upregulated in L-OHP-resistant tissues and cells lines (both P < 0.01). Low expression of CES2 correlated with a better survival, and the results were further confirmed in the R2 platform: a biologist friendly web-based genomics analysis and visualization application. Downregulation of CES2 suppressed cell proliferation, induced apoptosis and reversed L-OHP resistance by medicating the PI3K signaling pathway in L-OHP-resistant cells. However, both PI3K inhibitor (LY294002) and activator (IGF-1) could not medicate CES2 expression. These findings indicated that CES2 may be utilized as a novel biomarker and therapeutic target for L-OHP resistance in CRC treatment.
Collapse
|
21
|
Symonds EL, Pedersen SK, Murray D, Byrne SE, Roy A, Karapetis C, Hollington P, Rabbitt P, Jones FS, LaPointe L, Segelov E, Young GP. Circulating epigenetic biomarkers for detection of recurrent colorectal cancer. Cancer 2020; 126:1460-1469. [PMID: 31909823 PMCID: PMC7155014 DOI: 10.1002/cncr.32695] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Abstract
Background The sensitive detection of recurrent colorectal cancer (CRC) by the measurement of circulating tumor DNA (ctDNA) might improve the chance of a cure. This study compared a quantitative methylated ctDNA test with carcinoembryonic antigen (CEA) in the setting of surveillance for recurrence. Methods Blood samples collected either during surveillance or within 12 months of the confirmation of recurrence were assayed for ctDNA (methylated branched‐chain amino acid transaminase 1 [BCAT1]/Ikaros family zinc‐finger 1 protein [IKZF1]) and CEA. The optimal ctDNA threshold was determined by receiver operating characteristic analysis, and the test performance for the detection of recurrence was compared with CEA (5 ng/mL threshold). Results The study cohort comprised 144 eligible patients and included 50 recurrence events. The sensitivity of the methylated ctDNA test for recurrence was 66.0% (95% confidence interval [CI], 57.1%‐69.3%), which was significantly higher than the sensitivity of CEA (31.9%; 95% CI, 22.8%‐36.6%; P < .001). The sensitivity for resectable recurrence (n = 20) was also higher (ctDNA, 60.0%; CEA, 20.0%; P = .01). The specificity did not differ between the tests (ctDNA, 97.9%; 95% CI, 93.2%‐99.6%; CEA, 96.4%; 95% CI, 91.4%‐99.0%). When adjustments were made for other predictors of the presence of recurrence, a positive ctDNA test was an independent predictor (odds ratio, 155.7; 95% CI, 17.9‐1360.6; P < .001), whereas CEA was not (odds ratio, 2.5; 95% CI, 0.3‐20.6; P = .407). Conclusions The quantitative ctDNA test showed superior sensitivity in comparison with CEA without a difference in the specificity for detecting recurrent CRC. Longitudinal studies are warranted to further assess the utility (specifically the survival benefit) of methylated BCAT1/IKZF1 ctDNA in the surveillance of patients with CRC. An optimal positivity threshold has been determined for an epigenetic circulating tumor DNA panel of biomarkers (methylated BCAT1 and IKZF1), and it has been applied to investigating the panel's utility in the detection of colorectal cancer recurrence. The sensitivity of the circulating tumor DNA test is superior to that of the clinically used carcinoembryonic antigen test for all recurrences (66% vs 32%) and those considered curable (60% vs 20%), with both tests having a very high specificity (98% vs 96%).
Collapse
Affiliation(s)
- Erin L Symonds
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia, Australia.,Bowel Health Service, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | - David Murray
- Clinical Genomics Pty, Ltd, North Ryde, New South Wales, Australia
| | - Susan E Byrne
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia, Australia
| | - Amitesh Roy
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia, Australia.,Department of Oncology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Christos Karapetis
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia, Australia.,Department of Oncology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Paul Hollington
- Bowel Health Service, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Philippa Rabbitt
- Bowel Health Service, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | | | - Eva Segelov
- Department of Medicine, School of Clinical Sciences, Monash Health, Melbourne, Victoria, Australia.,Translational Oncology Research Laboratory, Monash University, Melbourne, Victoria, Australia
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
22
|
Vincent A, Ouelkdite-Oumouchal A, Souidi M, Leclerc J, Neve B, Van Seuningen I. Colon cancer stemness as a reversible epigenetic state: Implications for anticancer therapies. World J Stem Cells 2019; 11:920-936. [PMID: 31768220 PMCID: PMC6851010 DOI: 10.4252/wjsc.v11.i11.920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of cancer cell plasticity, i.e. their ability to reprogram into cancer stem cells (CSCs) either naturally or under chemotherapy and/or radiotherapy, has changed, once again, the way we consider cancer treatment. If cancer stemness is a reversible epigenetic state rather than a genetic identity, opportunities will arise for therapeutic strategies that remodel epigenetic landscapes of CSCs. However, the systematic use of DNA methyltransferase and histone deacetylase inhibitors, alone or in combination, in advanced solid tumors including colorectal cancers, regardless of their molecular subtypes, does not seem to be the best strategy. In this review, we first summarize the knowledge researchers have gathered on the epigenetic signatures of CSCs with the difficulty of isolating rare populations of cells. We raise questions about the relevant use of currently available epigenetic inhibitors (epidrugs) while the expression of numerous cancer stem cell markers are often repressed by epigenetic mechanisms. These markers include the three cluster of differentiation CD133, CD44 and CD166 that have been extensively used for the isolation of colon CSCs.and . Finally, we describe current treatment strategies using epidrugs, and we hypothesize that, using correlation tools comparing associations of relevant CSC markers with chromatin modifier expression, we could identify better candidates for epienzyme targeting.
Collapse
Affiliation(s)
- Audrey Vincent
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Aïcha Ouelkdite-Oumouchal
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Mouloud Souidi
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Julie Leclerc
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
- Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille F-59000, France
| | - Bernadette Neve
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Isabelle Van Seuningen
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| |
Collapse
|
23
|
Reece M, Saluja H, Hollington P, Karapetis CS, Vatandoust S, Young GP, Symonds EL. The Use of Circulating Tumor DNA to Monitor and Predict Response to Treatment in Colorectal Cancer. Front Genet 2019; 10:1118. [PMID: 31824558 PMCID: PMC6881479 DOI: 10.3389/fgene.2019.01118] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Colorectal cancer is one of the most common cancers worldwide and has a high mortality rate following disease recurrence. Treatment efficacy is maximized by providing tailored cancer treatment, ideally involving surgical resection and personalized neoadjuvant and adjuvant therapies, including chemotherapy, radiotherapy and increasingly, targeted therapy. Early detection of recurrence or disease progression results in more treatable disease and is essential to improving survival outcomes. Recent advances in the understanding of tumor genetics have resulted in the discovery of circulating tumor DNA (ctDNA). A growing body of evidence supports the use of these sensitive biomarkers in detecting residual disease and diagnosing recurrence as well as enabling targeted and tumor-specific adjuvant therapies. Methods: A literature search in Pubmed was performed to identify all original articles preceding April 2019 that utilize ctDNA for the purpose of monitoring response to colorectal cancer treatment. Results: Ninety-two clinical studies were included. These studies demonstrate that ctDNA is a reliable measure of tumor burden. Studies show the utility of ctDNA in assessing the adequacy of surgical tumor clearance and changes in ctDNA levels reflect response to systemic treatments. ctDNA can be used in the selection of targeted treatments. The reappearance or increase in ctDNA, as well as the emergence of new mutations, correlates with disease recurrence, progression, and resistance to therapy, with ctDNA measurement allowing more sensitive monitoring than currently used clinical tools. Conclusions: ctDNA shows enormous promise as a sensitive biomarker for monitoring response to many treatment modalities and for targeting therapy. Thus, it is emerging as a new way for guiding treatment decisions-initiating, altering, and ceasing treatments, or prompting investigation into the potential for residual disease. However, many potentially useful ctDNA markers are available and more work is needed to determine which are best suited for specific purposes and for improving specific outcomes.
Collapse
Affiliation(s)
- Mifanwy Reece
- Colorectal Surgery, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Hariti Saluja
- Department of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Paul Hollington
- Colorectal Surgery, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Christos S Karapetis
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Department of Medical Oncology, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Sina Vatandoust
- Department of Medical Oncology, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Erin L Symonds
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Bowel Health Service, Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
24
|
Advani SM, Shi Q, Overman MJ, Loree JM, Lam M, Morris V, Shureiqi I, Kee B, Dasari A, Vilar E, Sarshekeh AM, Lin HK, Manuel S, Hamilton S, Raghav K, Maru D, Kopetz S, Wang XS. Patient-reported Symptom Outcomes and Microsatellite Instability in Patients With Metastatic Colorectal Cancer. Clin Colorectal Cancer 2019; 19:48-56.e2. [PMID: 32008976 DOI: 10.1016/j.clcc.2019.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND The survival of patients with metastatic colorectal cancer (mCRC) is influenced by the genetic and epigenetic changes that might influence the patient experience of symptom burden. Understanding the association of molecular changes with the symptom burden could help clinicians gain insight into the molecular basis of symptom burden and improve treatment tolerance. To date, no studies have compared the patient-reported symptom burden with these molecular subsets among patients with mCRC. PATIENTS AND METHODS We recruited patients with mCRC that was refractory to ≥ 1 line of therapy who had been enrolled in the Assessment of Targeted Therapies Against Colorectal Cancer trial at The University of Texas MD Anderson Cancer Center. All patients completed a baseline gastrointestinal symptom inventory (MD Anderson Symptom Inventory, gastrointestinal). The symptom burden across key demographic variables and molecular changes, including CRC-associated mutations, microsatellite instability (MSI) status, and the CpG island methylator phenotype (CIMP) were compared using χ2 tests. Association of the symptom burden with overall survival was examined using Cox regression models. RESULTS Patients with an MSI-high (MSI-H) phenotype reported greater pain (odds ratio [OR], 3.06; 95% confidence interval [CI], 1.61-5.84), fatigue (OR, 2.78; 95% CI, 1.41-5.49), sleep (OR, 2.52; 95% CI, 1.32-4.08); and drowsiness (OR, 2.51; 95% CI, 1.32-4.78) compared with microsatellite stable patients. Patients with an MSI-H phenotype also had greater odds of overall symptom burden (OR, 2.48; 95% CI, 1.29-4.74) compared with microsatellite stable patients. The CIMP-high patients experienced greater odds of pain compared with the CIMP-negative patients (OR, 1.72; 95% CI, 1.06-2.80). A greater overall symptom burden was associated with poor overall survival (hazard ratio, 1.42; 95% CI, 0.98-2.06]), although the difference was not significant (P = .06). CONCLUSION Correlation of MSI-H-associated tumor features with the symptom burden could help provide a better understanding of underlying mechanisms associated with our findings.
Collapse
Affiliation(s)
- Shailesh M Advani
- Social Epidemiology Research Unit, Social Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, MD; Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Quilling Shi
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Lam
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Van Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bryan Kee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eduardo Vilar
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amir Mehrvarz Sarshekeh
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Huei K Lin
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shanequa Manuel
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stan Hamilton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dipen Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xin Shelley Wang
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
25
|
Prognostic significance of DNMT3A alterations in Middle Eastern papillary thyroid carcinoma. Eur J Cancer 2019; 117:133-144. [DOI: 10.1016/j.ejca.2019.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022]
|
26
|
Lee RM, Cardona K, Russell MC. Historical perspective: Two decades of progress in treating metastatic colorectal cancer. J Surg Oncol 2019; 119:549-563. [PMID: 30806493 DOI: 10.1002/jso.25431] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most commonly diagnosed cancer in the United States. While screening methods strive to improve rates of early stage detection, 25% of patients have metastatic disease at the time of diagnosis, with the most common sites being the liver, lung, and peritoneum. While once perceived as hopeless, the last two decades have seen substantial strides in the medical, surgical, and regional therapies to treat metastatic disease offering significant improvements in survival.
Collapse
Affiliation(s)
- Rachel M Lee
- Department of Surgery, Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Kenneth Cardona
- Department of Surgery, Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Maria C Russell
- Department of Surgery, Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
27
|
Lee V, Wang J, Zahurak M, Gootjes E, Verheul HM, Parkinson R, Kerner Z, Sharma A, Rosner G, De Jesus-Acosta A, Laheru D, Le DT, Oganesian A, Lilly E, Brown T, Jones P, Baylin S, Ahuja N, Azad N. A Phase I Trial of a Guadecitabine (SGI-110) and Irinotecan in Metastatic Colorectal Cancer Patients Previously Exposed to Irinotecan. Clin Cancer Res 2018; 24:6160-6167. [PMID: 30097434 DOI: 10.1158/1078-0432.ccr-18-0421] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/29/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Chemotherapeutic resistance eventually develops in all patients with metastatic colorectal cancer (mCRC). Gene silencing through promoter demethylation is one potential reversible mechanism of resistance with administration of hypomethylating agents. We evaluated the safety and tolerability of guadecitabine and irinotecan in patients with mCRC previously treated with irinotecan. PATIENTS AND METHODS In this 3+3 dose-escalation study, patients with mCRC previously exposed to irinotecan received guadecitabine days 1 to 5 of a 28-day cycle and irinotecan 125 mg/m2 days 8 and 15 [dose level (DL) 1, guadecitabine 45 mg/m2; DL -1: guadecitabine 30 mg/m2; DL -1G: guadecitabine 30 mg/m2 with growth factor support (GFS); DL 1G: guadecitabine 45 mg/m2 with GFS]. RESULTS Twenty-two patients were treated across four DLs. Dose-limiting toxicities were neutropenic fever (DL 1 and -1G), biliary drain infection (DL -1), colonic obstruction (DL -1), and severe dehydration (DL 1G). Most common toxicities were neutropenia (82% any grade, 77% Grade 3/4), neutropenic fever (23%), leukopenia (73% any grade, 50% Grade 3/4), and injection site reactions (64% total, 0% Grade 3/4). Patients received a median of 4.5 cycles of treatment; 12/17 evaluable patients had stable disease as best response, with one having initial disease progression but subsequently durable partial response. Circulating tumor DNA showed decrease in global demethylation by LINE-1 after treatment. CONCLUSIONS We report the first study of chemo-priming with epigenetic therapy in gastrointestinal cancers. Guadecitabine 45 mg/m2 and irinotecan 125 mg/m2 with GFS was safe and tolerable in patients with mCRC, with early indication of benefit. These data have provided the basis for an ongoing phase II randomized, multicenter trial.
Collapse
Affiliation(s)
- Valerie Lee
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Judy Wang
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marianna Zahurak
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elske Gootjes
- Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Henk M Verheul
- Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Rose Parkinson
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zachary Kerner
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anup Sharma
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gary Rosner
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Daniel Laheru
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dung T Le
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Ellen Lilly
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Brown
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Stephen Baylin
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nita Ahuja
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nilofer Azad
- Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
28
|
Schirripa M, Cohen SA, Battaglin F, Lenz HJ. Biomarker-driven and molecular targeted therapies for colorectal cancers. Semin Oncol 2018; 45:124-132. [PMID: 30262397 PMCID: PMC7496213 DOI: 10.1053/j.seminoncol.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022]
Abstract
Improved clinical selection and identification of new molecules and innovative strategies have widened treatment options and increased overall survival in metastatic colorectal cancer patients in recent years. Biomarker-driven therapies represent an emerging issue in this field and new targeted treatments are under investigation and probably will be soon adopted into daily clinical practice. In the present review, the role RAS, BRAF mutations, Her2 amplification, microsatellite instability, and CpG island methylator phenotype are discussed according to their possible roles as prognostic, predictive markers, as well as possible biomarker-driven treatment options.
Collapse
Affiliation(s)
- Marta Schirripa
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Stacey A Cohen
- Division of Medical Oncology, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Francesca Battaglin
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Abstract
Epigenetic alterations such as DNA methylation defects and aberrant covalent histone modifications occur within all cancers and are selected for throughout the natural history of tumor formation, with changes being detectable in early onset, progression, and ultimately recurrence and metastasis. The ascertainment and use of these marks to identify at-risk patient populations, refine diagnostic criteria, and provide prognostic and predictive factors to guide treatment decisions are of growing clinical relevance. Furthermore, the targetable nature of epigenetic modifications provides a unique opportunity to alter treatment paradigms and provide new therapeutic options for patients whose malignancies possess these aberrant epigenetic modifications, paving the way for new and personalized medicine. DNA methylation has proven to be of significant clinical utility for its stability and relative ease of testing. The intent of this review is to elaborate upon well-supported examples of epigenetic precision medicine and how the field is moving forward, primarily in the context of aberrant DNA methylation.
Collapse
Affiliation(s)
- Rachael J Werner
- From the *Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | | | | |
Collapse
|
30
|
Jouinot A, Bertherat J. MANAGEMENT OF ENDOCRINE DISEASE: Adrenocortical carcinoma: differentiating the good from the poor prognosis tumors. Eur J Endocrinol 2018; 178:R215-R230. [PMID: 29475877 DOI: 10.1530/eje-18-0027] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis, the five-years overall survival being below 40%. However, there is great variability of outcomes and we have now a better view of the heterogeneity of tumor aggressiveness. The extent of the disease at the time of diagnosis, best assayed by the European Network for the Study of Adrenal Tumors (ENSAT) Staging Score, is a major determinant of survival. The tumor grade, including the mitotic count and the Ki67 proliferation index, also appears as a strong prognostic factor. The assessment of tumor grade, even by expert pathologists, still suffers from inter-observer reproducibility. The emergence of genomics in the last decade has revolutionized the knowledge of molecular biology and genetics of cancers. In ACC, genomic approaches - including pan-genomic studies of gene expression (transcriptome), recurrent mutations (exome or whole-genome sequencing), chromosome alterations, DNA methylation (methylome), miRNA expression (miRnome) - converge in a new classification of ACC, characterized by distinct molecular profiles and very different outcomes. Targeted measurements of a few discriminant molecular alterations have been developed in the perspective of clinical routine, and thus, may help defining therapeutic strategy. By individualizing patients' prognosis and tumor biology, these recent progresses appear as an important step forward towards precision medicine.
Collapse
Affiliation(s)
- Anne Jouinot
- Institut CochinINSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, France
- Medical Oncology Reference Center for Rare Adrenal DiseasesDepartment of Endocrinology, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Jérôme Bertherat
- Institut CochinINSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, France
- Reference Center for Rare Adrenal DiseasesDepartment of Endocrinology, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| |
Collapse
|
31
|
Worm Ørntoft MB. Review of Blood-Based Colorectal Cancer Screening: How Far Are Circulating Cell-Free DNA Methylation Markers From Clinical Implementation? Clin Colorectal Cancer 2018; 17:e415-e433. [PMID: 29678513 DOI: 10.1016/j.clcc.2018.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer related deaths worldwide, and late stages (III-IV) in particular have low 5-year survival rates. Stage shifting by CRC screening programs has proven effective by decreasing morbidity and mortality and in many countries national CRC screening programs have been implemented. Currently, European, Asian, and American authorities recommend screening for CRC using fecal occult blood testing, sigmoidoscopy, or colonoscopy. Because these approaches all have weaknesses (eg, poor compliance, high costs, test invasiveness), much effort has been put into the development of alternative screening approaches, many of which are blood-based. Blood-based strategies especially present the advantages of minimally invasiveness compared to endoscopies and an expectantly higher compliance rate compared to stool-based tests. The last decades have seen many discovery studies identifying promising blood-based biomarkers of CRC; however, common to all of these markers is that their clinical usefulness remains evasive. At present only one blood-based CRC screening marker has been approved in the United States. The aim of this review is to discuss the development of blood-based cell-free DNA methylation marker candidates for CRC screening. On the basis of a methodical literature search, the past, present, and future of cell-free DNA screening markers for CRC are revised and discussed. Resource limitations and technical challenges related to sensitivity and specificity measurements keep many markers at bay. Possible solutions to these problems are offered to enable markers to benefit future screening participants.
Collapse
|
32
|
Leveraging Epigenetics to Enhance the Cellular Response to Chemotherapies and Improve Tumor Immunogenicity. Adv Cancer Res 2018; 138:1-39. [PMID: 29551125 DOI: 10.1016/bs.acr.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer chemotherapeutic drugs have greatly advanced our ability to successfully treat a variety of human malignancies. The different forms of stress produced by these agents in cancer cells result in both cell autonomous and cell nonautonomous effects. Desirable cell autonomous effects include reduced proliferative potential, cellular senescence, and cell death. More recently recognized cell nonautonomous effects, usually in the form of stimulating an antitumor immune response, have significant roles in therapeutic efficiency for a select number of chemotherapies. Unfortunately, the success of these therapeutics is not universal as not all tumors respond to treatment, and those that do respond will frequently relapse into therapy-resistant disease. Numerous strategies have been developed to sensitize tumors toward chemotherapies as a means to either improve initial responses, or serve as a secondary treatment strategy for therapy-resistant disease. Recently, targeting epigenetic regulators has emerged as a viable method of sensitizing tumors to the effects of chemotherapies, many of which are cytotoxic. In this review, we summarize these strategies and propose a path for future progress.
Collapse
|
33
|
Weisenberger DJ, Liang G, Lenz HJ. DNA methylation aberrancies delineate clinically distinct subsets of colorectal cancer and provide novel targets for epigenetic therapies. Oncogene 2017; 37:566-577. [PMID: 28991233 DOI: 10.1038/onc.2017.374] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a worldwide health concern with respect to both incidence and mortality, and as a result, CRC tumorigenesis, progression and metastasis have been heavily studied, especially with respect to identifying genetic, epigenetic, transcriptomic and proteomic profiles of disease. DNA methylation alterations are hallmarks of CRC, and epigenetic driver genes have been identified that are thought to be involved in early stages of tumorigenesis. Moreover, distinct CRC patient subgroups are organized based on DNA methylation profiles. CRC tumors displaying CpG island methylator phenotypes (CIMPs), defined as DNA hypermethylation at specific CpG islands in subsets of tumors, show high concordance with specific genetic alterations, disease risk factors and patient outcome. This review details the DNA methylation alterations in CRC, the significance of CIMP status, the development of treatments based on specific molecular profiles and the application of epigenetic therapies for CRC patient treatment.
Collapse
Affiliation(s)
- D J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA USA
| | - G Liang
- Department of Urology, University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - H-J Lenz
- Department of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
34
|
Puccini A, Berger MD, Naseem M, Tokunaga R, Battaglin F, Cao S, Hanna DL, McSkane M, Soni S, Zhang W, Lenz HJ. Colorectal cancer: epigenetic alterations and their clinical implications. Biochim Biophys Acta Rev Cancer 2017; 1868:439-448. [PMID: 28939182 DOI: 10.1016/j.bbcan.2017.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with distinct molecular and clinical features, which reflects the wide range of prognostic outcomes and treatment responses observed among CRC patients worldwide. Our understanding of the CRC epigenome has been largely developed over the last decade and it is now believed that among thousands of epigenetic alterations present in each tumor, a small subgroup of these may be considered as a CRC driver event. DNA methylation profiles have been the most widely studied in CRC, which includes a subset of patients with distinct molecular and clinical features now categorized as CpG island methylator phenotype (CIMP). Major advances have been made in our capacity to detect epigenetic alterations, providing us with new potential biomarkers for diagnostic, prognostic and therapeutic purposes. This review aims to summarize our current knowledge about epigenetic alterations occurring in CRC, underlying their potential future clinical implications in terms of diagnosis, prognosis and therapeutic strategies for CRC patients.
Collapse
Affiliation(s)
- Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Diana L Hanna
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
35
|
Tse JWT, Jenkins LJ, Chionh F, Mariadason JM. Aberrant DNA Methylation in Colorectal Cancer: What Should We Target? Trends Cancer 2017; 3:698-712. [PMID: 28958388 DOI: 10.1016/j.trecan.2017.08.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022]
Abstract
Colorectal cancers (CRCs) are characterized by global hypomethylation and promoter-specific DNA methylation. A subset of CRCs with extensive and co-ordinate patterns of promoter methylation has also been identified, termed the CpG-island methylator phenotype. Some genes methylated in CRC are established tumor suppressors; however, for the majority, direct roles in disease initiation or progression have not been established. Herein, we examine functional evidence of specific methylated genes contributing to CRC pathogenesis, focusing on components of commonly deregulated signaling pathways. We also review current knowledge of the mechanisms underpinning promoter methylation in CRC, including genetic events, altered transcription factor binding, and DNA damage. Finally, we summarize clinical trials of DNA methyltransferase inhibitors in CRC, and propose strategies for enhancing their efficacy.
Collapse
Affiliation(s)
- Janson W T Tse
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia; These authors contributed equally
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia; These authors contributed equally
| | - Fiona Chionh
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia.
| |
Collapse
|
36
|
Lu WQ, Hu YY, Lin XP, Fan W. Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells. Oncotarget 2017; 8:44171-44185. [PMID: 28498807 PMCID: PMC5546471 DOI: 10.18632/oncotarget.17396] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022] Open
Abstract
Clinical treatment for colorectal cancer (CRC) thus far encounters a huge challenge due to oxaliplatin-resistance. As crucial rate-limiting enzymes in aerobic glycolysis and glutaminolysis, pyruvate kinase M2 type (PKM2) and kidney-type glutaminase (GLS1) are proposed to carry important implications in colorectal carcinogenesis and drug-resistance. This study aimed to explore the possible association of oxaliplatin-resistance with aerobic glycolysis/glutaminolysis indexed by PKM2/GLS1 expression. PKM2 and GLS1 expression was quantified by polymerase chain reaction (PCR) and Western blot techniques in CRC cell lines. The abilities of cell formation, kinetics, migration, invasion, survival and apoptosis, as well as permeability glycoprotein (Pgp) expression were inspected before and after knocking-down PKM2/GLS1 expression. In addition, the influence of knocking-down PKM2/GLS1 expression was evaluated in vivo. Differentiated PKM2 and GLS1 expression in both THC8307 and THC8307/Oxa cell lines was identified. In the THC8307 cell line, PKM2 and GLS1 can accelerate malignant behaviors, increase oxaliplatin-resistance, upregulate Pgp expression, and inhibit cell apoptosis. Contrastingly in the THC8307/Oxa cell line, knockdown of PKM2/GLS1 expression can restrain malignant behaviors, reestablish oxaliplatin-sensitivity, downregulate Pgp expression, and induce cell apoptosis. In xenograft, knockdown of PKM2/GLS1 expression can significantly inhibit tumor growth, reduce Pgp expression, and increase tumor apoptosis. Taken together, the present findings enriched our knowledge by demonstrating a significant association of PKM2 and GLS1 with oxaliplatin-resistance in CRC. We further propose that knockdown of PKM2/GLS1 expression may constitute a novel therapeutic strategy toward effective treatment for CRC.
Collapse
Affiliation(s)
- Wei-Qun Lu
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
| | - Ying-Ying Hu
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
| | - Xiao-Ping Lin
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
| |
Collapse
|
37
|
Kelly AD, Issa JPJ. The promise of epigenetic therapy: reprogramming the cancer epigenome. Curr Opin Genet Dev 2017; 42:68-77. [PMID: 28412585 DOI: 10.1016/j.gde.2017.03.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023]
Abstract
Epigenetics refers to heritable molecular determinants of phenotype independent of DNA sequence. Epigenetic features include DNA methylation, histone modifications, non-coding RNAs, and chromatin structure. The epigenetic status of cells plays a crucial role in determining their differentiation state and proper function within multicellular organisms. Disruption of these processes is now understood to be a major contributor to cancer development and progression, and recent efforts have attempted to pharmacologically reverse such altered epigenetics. In this mini-review we introduce the concept of epigenetic drivers of cancer and discuss how aberrant DNA methylation, histone modifications, and chromatin states are being targeted using drugs either in preclinical, or clinical development, and how they fit in the context of existing therapies.
Collapse
Affiliation(s)
- Andrew D Kelly
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
38
|
Clinical and biological effects of demethylating agents on solid tumours – A systematic review. Cancer Treat Rev 2017; 54:10-23. [DOI: 10.1016/j.ctrv.2017.01.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 01/22/2023]
|
39
|
|
40
|
Abdelfatah E, Kerner Z, Nanda N, Ahuja N. Epigenetic therapy in gastrointestinal cancer: the right combination. Therap Adv Gastroenterol 2016; 9:560-79. [PMID: 27366224 PMCID: PMC4913338 DOI: 10.1177/1756283x16644247] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epigenetics is a relatively recent field of molecular biology that has arisen over the past 25 years. Cancer is now understood to be a disease of widespread epigenetic dysregulation that interacts extensively with underlying genetic mutations. The development of drugs targeting these processes has rapidly progressed; with several drugs already FDA approved as first-line therapy in hematological malignancies. Gastrointestinal (GI) cancers possess high degrees of epigenetic dysregulation, exemplified by subtypes such as CpG island methylator phenotype (CIMP), and the potential benefit of epigenetic therapy in these cancers is evident. The application of epigenetic drugs in solid tumors, including GI cancers, is just emerging, with increased understanding of the cancer epigenome. In this review, we provide a brief overview of cancer epigenetics and the epigenetic targets of therapy including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. We discuss the epigenetic drugs currently in use, with a focus on DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and explain the pharmacokinetic and mechanistic challenges in their application. We present the strategies employed in incorporating these drugs into the treatment of GI cancers, and explain the concept of the cancer stem cell in epigenetic reprogramming and reversal of chemo resistance. We discuss the most promising combination strategies in GI cancers including: (1) epigenetic sensitization to radiotherapy, (2) epigenetic sensitization to cytotoxic chemotherapy, and (3) epigenetic immune modulation and priming for immune therapy. Finally, we present preclinical and clinical trial data employing these strategies thus far in various GI cancers including colorectal, esophageal, gastric, and pancreatic cancer.
Collapse
Affiliation(s)
- Eihab Abdelfatah
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachary Kerner
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nainika Nanda
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- West Virginia University School of Medicine, Morgantown, WV, USA
| | - Nita Ahuja
- Department of Surgery and Oncology, Johns Hopkins University, 1650 Orleans St. Room 342, Baltimore, MD 21231, USA
| |
Collapse
|