1
|
Saeidi V, Jackson Cullison SR, Doudican NA, Carucci JA, Stevenson ML. CD73 Is an Immunometabolic Biomarker of Poor Prognosis in Patients With Primary Cutaneous Squamous Cell Carcinoma and Hematologic Malignancy. Dermatol Surg 2024; 50:1096-1101. [PMID: 38975660 DOI: 10.1097/dss.0000000000004310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
BACKGROUND Impaired immunity may drive the increased incidence and aggression of cutaneous squamous cell carcinoma (cSCC) in patients with hematologic malignancy; however, precise mechanisms and prognostic biomarkers remain undefined. CD73 maintains elevated immunosuppressive adenosine levels and is associated with poor prognosis in several tumor microenvironments. OBJECTIVE Identify poor outcome biomarkers in patients with cSCC and hematologic malignancy. MATERIALS AND METHODS Differentially expressed genes in tumors from patients with hematologic malignancy experiencing good ( n = 8) versus poor ( n = 7) outcomes were identified by NanoString analysis. Results were validated at the protein level using CD73 immunohistochemistry in cSCC patients with ( n = 38) and without ( n = 29) hematologic malignancy. RESULTS Forty-eight genes were differentially expressed in tumors from patients with hematologic malignancy experiencing good versus poor outcomes. CD73 gene expression was >2-fold higher in patients with poor versus good outcomes or normal skin. Significantly increased CD73 protein levels were observed in cSCC tumors with poor versus good outcomes from patients with hematologic malignancies ( p < .01), whereas no differences were noted in tumors with poor versus good outcomes from patients without hematologic malignancies ( p = .49). CONCLUSION CD73 is highly expressed in poor prognosis cSCC from patients with hematologic malignancy and may represent a useful biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Vahide Saeidi
- All authors are affiliated with the Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York
| | | | | | | | | |
Collapse
|
2
|
Im NR, Kim B, Chung YY, Jung KY, Kim YS, Baek SK. The Inhibitory Effect of Hedera helix and Coptidis Rhizome Mixture in the Pathogenesis of Laryngopharyngeal Reflux: Cleavage of E-Cadherin in Acid-Exposed Primary Human Pharyngeal Epithelial Cells. Int J Mol Sci 2024; 25:12244. [PMID: 39596310 PMCID: PMC11595113 DOI: 10.3390/ijms252212244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Laryngopharyngeal reflux disease (LPRD) is a prevalent upper airway disorder characterized by inflammation and epithelial damage due to the backflow of gastric contents. Current treatments, primarily proton pump inhibitors (PPIs), often show variable efficacy, necessitating the exploration of alternative or adjunctive therapies. This study investigates the therapeutic potential of a mixture of Hedera helix and Coptidis rhizome (HHCR) in mitigating the pathophysiological mechanisms of LPRD. Using an in vitro model of human pharyngeal epithelial cells exposed to acidic conditions, we observed that acid exposure significantly increased the expression of adenosine A3 receptor (adenosine A3) and matrix metalloproteinase-7 (MMP-7), leading to E-cadherin cleavage and compromised epithelial integrity. Treatment with the HHCR mixture effectively suppressed adenosine A3 expression and MMP-7 activity, thereby reducing E-cadherin cleavage and preserving cellular cohesion. These results highlight the HHCR mixture's ability to modulate the adenosine A3-MMP-7-E-cadherin pathway, suggesting its potential as a valuable adjunctive therapy for LPRD, particularly for patients unresponsive to conventional PPI treatment. This study provides new insights into the molecular interactions involved in LPRD and supports further clinical evaluation of HHCR as a complementary treatment option.
Collapse
Affiliation(s)
- Nu-Ri Im
- Department of Efficacy Evaluation and Diagnosis Team, Zymedi, Incheon 21983, Republic of Korea
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - You Yeon Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Kwang-Yoon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Kuk Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Botticelli A, Cirillo A, d'Amati G, Di Gioia C, Corsi A, Della Rocca C, Santini D, Carletti R, Pisano A, Polimeni A, De Vincentiis M, Valentini V, di Cristofano C, Romeo U, Cerbelli E, Messineo D, De Felice F, Leopizzi M, Cerbelli B. The role of CD73 in predicting the response to immunotherapy in head and neck cancer patients. Pathol Res Pract 2024; 260:155415. [PMID: 38996615 DOI: 10.1016/j.prp.2024.155415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024]
Abstract
Immunotherapy has a crucial role in the treatment of recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). However, only a small percentage of patients achieve long-term benefit in terms of overall response and survival. It was shown that HNSCC has an immunosuppressive microenvironment due to high levels of regulatory T cells and immunosuppressive molecules, such as LAG3 and CD73. The aim of our study was to investigate if the expression of CD73 by neoplastic and immune cells could affect the efficacy of anti-PD-1 immunotherapy. We reviewed data from 50 patients with R/M HNSCC receiving first line immunotherapy with or without chemotherapy based on a combined positive score (CPS). CD73 expression by cancer and immune cells was evaluated on pre-treatment and the percentage of stained cells was recorded. We analysed the association between CD73 expression on neoplastic and immune cells and early progression (EP), defined as progression occurring within 3 months. In 88 % of patients the primary tumour site was in the oral cavity or larynx. All patients received pembrolizumab associated in 40 % of cases to chemotherapy. CD73 was positive in 82 % and 96 % of cases on neoplastic and immune cells, respectively. The median value of CD73 was 32 % for neoplastic cells and 10 % for the immune ones. We observed a significant association between the CD73 expression on neoplastic cells over the median value and EP disease. We didn't record a correlation between the expression of CD73 on immune cells and early progression. Our findings suggest that higher expression of CD73 on neoplastic cells could predict resistance to immunotherapy in patients with CPS positive R/M HNSCC. The addition of this biomarker to routine evaluation of CPS could help to select the patients primary resistant to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Alessio Cirillo
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy; Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, Rome 00161, Italy
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Cira Di Gioia
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Alessandro Corsi
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Roma 00185, Italy
| | - Daniele Santini
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Roma 00185, Italy
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Annalinda Pisano
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Antonella Polimeni
- Odontostomatological and Maxillo-Facial Science, 'Sapienza' University of Rome, Rome 00185, Italy
| | - Marco De Vincentiis
- Odontostomatological and Maxillo-Facial Science, 'Sapienza' University of Rome, Rome 00185, Italy
| | - Valentino Valentini
- Odontostomatological and Maxillo-Facial Science, 'Sapienza' University of Rome, Rome 00185, Italy
| | - Claudio di Cristofano
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Roma 00185, Italy
| | - Umberto Romeo
- Odontostomatological and Maxillo-Facial Science, 'Sapienza' University of Rome, Rome 00185, Italy
| | - Edoardo Cerbelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, Rome 00161, Italy
| | - Daniela Messineo
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Francesca De Felice
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Roma 00185, Italy
| | - Bruna Cerbelli
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Roma 00185, Italy.
| |
Collapse
|
4
|
Rubenich DS, Domagalski JL, Gentil GFS, Eichberger J, Fiedler M, Weber F, Federlin M, Poeck H, Reichert TE, Ettl T, Bauer RJ, Braganhol E, Schulz D. The immunomodulatory ballet of tumour-derived extracellular vesicles and neutrophils orchestrating the dynamic CD73/PD-L1 pathway in cancer. J Extracell Vesicles 2024; 13:e12480. [PMID: 38978304 PMCID: PMC11231043 DOI: 10.1002/jev2.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a global cancer burden with a 5-year overall survival rate of around 50%, stagnant for decades. A tumour-induced immunosuppressive microenvironment contributes to HNSCC progression, with the adenosine (ADO) pathway and an upregulated expression of inhibitory immune checkpoint regulators playing a key role in this context. The correlation between high neutrophil-to-lymphocyte ratio (NLR) with advanced tumour staging suggests involvement of neutrophils (NØ) in cancer progression. Interestingly, we associated a high NLR with an increased intracellular PD-L1 localization in primary HNSCC samples, potentially mediating more aggressive tumour characteristics and therefore synergistically favouring tumour progression. Still, further research is needed to harness this knowledge for effective treatments and overcome resistance. Since it is hypothesized that the tumour microenvironment (TME) may be influenced by small extracellular vesicles (sEVs) secreted by tumours (TEX), this study aims to investigate the impact of HNSCC-derived TEX on NØ and blockade of ADO receptors as a potential strategy to reverse the pro-tumour phenotype of NØ. UMSCC47-TEX exhibited CD73 enzymatic activity involved in ADO signalling, as well as the immune checkpoint inhibitor PD-L1. Data revealed that TEX induce chemotaxis of NØ and the sustained interaction promotes a shift into a pro-tumour phenotype, dependent on ADO receptors (P1R), increasing CD170high subpopulation, CD73 and PD-L1 expression, followed by an immunosuppressive secretome. Blocking A3R reduced CD73 and PD-L1 expression. Co-culture experiments with HNSCC cells demonstrated that TEX-modulated NØ increase the CD73/PD-L1 axis, through Cyclin D-CDK4/6 signalling. To support these findings, the CAM model with primary tumour was treated with NØ supernatant. Moreover, these NØ promoted an increase in migration, invasion, and reduced cell death. Targeting P1R on NØ, particularly A3R, exhibited potential therapeutic strategy to counteract immunosuppression in HNSCC. Understanding the TEX-mediated crosstalk between tumours and NØ offers insights into immunomodulation for improving cancer therapies.
Collapse
Affiliation(s)
- Dominique S. Rubenich
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgRegensburgGermany
- Biosciences Graduate ProgramFederal University of Health Science of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Jordana L. Domagalski
- Biosciences Graduate ProgramFederal University of Health Science of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Gabriela F. S. Gentil
- Biosciences Graduate ProgramFederal University of Health Science of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Jonas Eichberger
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgRegensburgGermany
| | - Mathias Fiedler
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgRegensburgGermany
| | - Florian Weber
- Institute of PathologyUniversity of RegensburgRegensburgGermany
| | - Marianne Federlin
- Department of Conservative Dentistry and PeriodontologyUniversity Medical Center RegensburgRegensburgGermany
| | - Hendrik Poeck
- Clinic and Polyclinic for Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
- Leibnitz Institute for Immunotherapy (LIT)RegensburgGermany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Tobias Ettl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Richard J. Bauer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgRegensburgGermany
| | - Elizandra Braganhol
- Biosciences Graduate ProgramFederal University of Health Science of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Daniela Schulz
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgRegensburgGermany
| |
Collapse
|
5
|
Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, Boland GM. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 2024; 24:498-512. [PMID: 38867074 DOI: 10.1038/s41568-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.
Collapse
Affiliation(s)
- Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Aparna Parikh
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Li R, An P, Lin X, Liu X, Zhao L, He Y. A comprehensive analysis of LINC00958 as a prognostic biomarker for head and neck squamous cell carcinoma. Int J Oral Maxillofac Surg 2024; 53:461-469. [PMID: 37923576 DOI: 10.1016/j.ijom.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
This work focused on exploring whether the long intergenic non-protein coding RNA LINC00958 is associated with the prognosis of head and neck squamous cell carcinoma (HNSCC). Associations of the LINC00958 expression level with clinicopathological features of HNSCC were investigated by logistic regression and Wilcoxon signed-rank test. The Kaplan-Meier method was applied to evaluate patient survival. Clinical data and expression profiles were obtained from The Cancer Genome Atlas (TCGA). Associations of patient clinical characteristics with overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS) were assessed by univariate and multivariate analysis using the Cox proportional hazard model. Immune cell infiltration analysis and gene set enrichment analysis (GSEA) were applied to determine any significant effects of LINC00958. High LINC00958 expression was related to early pT stage (P < 0.01), primary therapy outcome (P < 0.01), HPV status (P < 0.001), lymphovascular invasion (P < 0.001), and perineural invasion (P < 0.01). The receiver operating characteristic curve showed strong prognostic power for LINC00958 (area under curve = 0.886). High LINC00958 expression predicted poor OS (P = 0.007), DSS (P = 0.036), and PFI (P = 0.040). LINC00958 was related to signalling pathways and the infiltration of certain immune cells. miR-27b-5p was significantly associated with LINC00958, and downstream NT5E predicted poor survival in HNSCC cases. LINC00958 may affect the prognosis by regulating NT5E via miR-27b-5p, and could serve as a possible factor to predict the prognosis of HNSCC, especially oral squamous cell carcinoma.
Collapse
Affiliation(s)
- R Li
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China; Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - P An
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Lin
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - X Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - L Zhao
- Center of Oral Medicine, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Y He
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China.
| |
Collapse
|
7
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
8
|
Jiang B, Tang M, Shi S, Xie H, Pan S, Zhang L, Sheng J. Effects of abnormal expression of CD73 on malignant phenotype of nasopharyngeal carcinoma. J Mol Histol 2023; 54:633-644. [PMID: 37874500 DOI: 10.1007/s10735-023-10165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/30/2023] [Indexed: 10/25/2023]
Abstract
Cluster of differentiation (CD) 73, encoded by the NT5E gene, plays important enzymatic and non-enzymatic roles in cells. There is growing evidence show that CD73 is a key regulator in the development of tumor. Nasopharyngeal carcinoma (NPC) is one of the most common cancers in east and southeast Asia. It is urgent to know more about the mechanism of NPC development and find diagnostic markers for the patients. In this research, we carried out western blot, immunohistochemistry and qRT-PCR to investigate the expression level of CD73 and found that NPC tissues had higher level of CD73 than normal tissues. We also detected the relationship between its expression level with the clinicopathological features and prognosis of NPC patients. The results showed that CD73 expression was related to the clinical stages, lymph node metastasis and survival state of NPC patients. More importantly, patients with higher expression of CD73 had poorer prognosis. Then, CD73 was knocked down in NPC cells (CNE2 and CNE1), and its effects on cell proliferation and migration were investigated by CCK8, colony formation, Transwell and wound-healing assays. We found that knocking down the expression of CD73 in NPC cells could inhibit cells malignant phenotype. Collectively, CD73 plays important roles in NPC malignant behavior and might act as a novel target for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Mingming Tang
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Si Shi
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Si Pan
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Lin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Haimen People's Hospital, Nantong, Jiangsu Province, China.
| | - Juping Sheng
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
9
|
Shi E, Wu Z, Karaoglan BS, Schwenk-Zieger S, Kranz G, Abdul Razak N, Reichel CA, Canis M, Baumeister P, Zeidler R, Gires O. 5'-Ectonucleotidase CD73/NT5E supports EGFR-mediated invasion of HPV-negative head and neck carcinoma cells. J Biomed Sci 2023; 30:72. [PMID: 37620936 PMCID: PMC10463398 DOI: 10.1186/s12929-023-00968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) of malignant cells is a driving force of disease progression in human papillomavirus-negative (HPV-negative) head and neck squamous cell carcinomas (HNSCC). Sustained hyper-activation of epidermal growth factor receptor (EGFR) induces an invasion-promoting subtype of EMT (EGFR-EMT) characterized by a gene signature ("'EGFR-EMT_Signature'") comprising 5´-ectonucleotidase CD73. Generally, CD73 promotes immune evasion via adenosine (ADO) formation and associates with EMT and metastases. However, CD73 regulation through EGFR signaling remains under-explored and targeting options are amiss. METHODS CD73 functions in EGFR-mediated tumor cell dissemination were addressed in 2D and 3D cellular models of migration and invasion. The novel antagonizing antibody 22E6 and therapeutic antibody Cetuximab served as inhibitors of CD73 and EGFR, respectively, in combinatorial treatment. Specificity for CD73 and its role as effector or regulator of EGFR-EMT were assessed upon CD73 knock-down and over-expression. CD73 correlation to tumor budding was studied in an in-house primary HNSCC cohort. Expression correlations, and prognostic and predictive values were analyzed using machine learning-based algorithms and Kaplan-Meier survival curves in single cell and bulk RNA sequencing datasets. RESULTS CD73/NT5E is induced by the EGF/EGFR-EMT-axis and blocked by Cetuximab and MEK inhibitor. Inhibition of CD73 with the novel antagonizing antibody 22E6 specifically repressed EGFR-dependent migration and invasion of HNSCC cells in 2D. Cetuximab and 22E6 alone reduced local invasion in a 3D-model. Interestingly, combining inefficient low-dose concentrations of Cetuximab and 22E6 revealed highly potent in invasion inhibition, substantially reducing the functional IC50 of Cetuximab regarding local invasion. A role for CD73 as an effector of EGFR-EMT in local invasion was further supported by knock-down and over-expression experiments in vitro and by high expression in malignant cells budding from primary tumors. CD73 expression correlated with EGFR pathway activity, EMT, and partial EMT (p-EMT) in malignant single HNSCC cells and in large patient cohorts. Contrary to published data, CD73 was not a prognostic marker of overall survival (OS) in the TCGA-HNSCC cohort when patients were stratified for HPV-status. However, CD73 prognosticated OS of oral cavity carcinomas. Furthermore, CD73 expression levels correlated with response to Cetuximab in HPV-negative advanced, metastasized HNSCC patients. CONCLUSIONS In sum, CD73 is an effector of EGF/EGFR-mediated local invasion and a potential therapeutic target and candidate predictive marker for advanced HPV-negative HNSCC.
Collapse
Affiliation(s)
- Enxian Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Zhengquan Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Birnur Sinem Karaoglan
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nilofer Abdul Razak
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Reinhard Zeidler
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
- Institute of Structural Biology, Research Unit Therapeutic Antibodies, Helmholtz Munich, Feodor-Lynen-Str. 21, 81377, Munich, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
10
|
Chatterjee A, Chaudhary A, Ghosh A, Arun P, Mukherjee G, Arun I, Maitra A, Biswas N, Majumder PP. Overexpression of CD73 is associated with recurrence and poor prognosis of gingivobuccal oral cancer as revealed by transcriptome and deep immune profiling of paired tumor and margin tissues. Cancer Med 2023; 12:16774-16787. [PMID: 37392167 PMCID: PMC10501293 DOI: 10.1002/cam4.6299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND For various cancers, differences in response to treatment and subsequent survival period have been reported to be associated with variation in immune contextures. AIM We sought to identify whether such association exists in respect of gingivobuccal oral cancer. MATERIALS AND METHODS We performed deep immune profiling of tumor and margin tissues collected from 46 treatment naïve, Human Papillomavirus (HPV) negative, patients. Each patient was followed for 24 months and prognosis (recurrence/death) noted. Key findings were validated by comparing with TCGA-HNSC cohort data. RESULTS About 28% of patients showed poor post-treatment prognosis. These patients exhibited a high probability of recurrence even within 1 year and death within 2 years. There was restricted immune cell infiltration in tumor, but not in margin, among these patients. Reduced expression of eight immune-related genes (IRGs) (NT5E, THRA, RBP1, TLR4, ITGA6, BMPR1B, ITGAV, SSTR1) in tumor strongly predicted better quality of prognosis, both in our patient cohort and in TCGA-HNSC cohort. Tumors of patients with better prognosis were associated with (a) lower CD73+ cells with concomitant lower expression level of NT5E/CD73, (b) higher proportions of CD4+ and CD8+ T cells, B cells, NK cells, M1 macrophages, (c) higher %Granzyme+ cells, (d) higher TCR and BCR repertoire diversities. CD73 expression in tumor was associated with low CD8+ and CD4+ T cells, low immune repertoire diversity, and advanced cancer stage. DISCUSSION AND CONCLUSION High infiltration of anti-tumor immune cells in both tumors and margins results in good prognosis, while in patients with minimal infiltration in tumors in spite of high infiltration in margins results in poor prognosis. Targeted CD73 immune-checkpoint inhibition may improve clinical outcome.
Collapse
Affiliation(s)
- Ankita Chatterjee
- National Institute of Biomedical GenomicsKalyaniIndia
- John C. Martin Centre for Liver Research and InnovationsKolkataIndia
| | | | - Arnab Ghosh
- National Institute of Biomedical GenomicsKalyaniIndia
| | | | | | | | | | - Nidhan Biswas
- National Institute of Biomedical GenomicsKalyaniIndia
| | - Partha P. Majumder
- National Institute of Biomedical GenomicsKalyaniIndia
- John C. Martin Centre for Liver Research and InnovationsKolkataIndia
- Indian Statistical InstituteKolkataIndia
| |
Collapse
|
11
|
Lin YS, Chiang SF, Chen CY, Hong WZ, Chen TW, Chen WTL, Ke TW, Yang PC, Liang JA, Shiau AC, Chao KSC, Huang KCY. Targeting CD73 increases therapeutic response to immunogenic chemotherapy by promoting dendritic cell maturation. Cancer Immunol Immunother 2023; 72:2283-2297. [PMID: 36881132 PMCID: PMC10991491 DOI: 10.1007/s00262-023-03416-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
The CD39-CD73-adenosinergic pathway converts adenosine triphosphate (ATP) to adenosine for inhibiting anti-tumor immune responses. Therefore, targeting CD73 to reinvigorate anti-tumor immunity is considered the novel cancer immunotherapy to eradicate tumor cells. To fully understand the critical role of CD39/CD73 in colon adenocarcinoma (COAD), this study aims to comprehensive investigate the prognostic significance of CD39 and CD73 in stage I-IV COAD. Our data demonstrated that CD73 staining strongly marked malignant epithelial cells and CD39 was highly expressed in stromal cells. Attractively, tumor CD73 expression was significantly associated with tumor stage and the risk of distant metastasis, which suggested CD73 was as an independent factor for colon adenocarcinoma patients in univariate COX analysis [HR = 1.465, 95%CI = 1.084-1.978, p = 0.013]; however, high stromal CD39 in COAD patients was more likely to have favorable survival outcome [HR = 1.458, p = 1.103-1.927, p = 0.008]. Notably, high CD73 expression in COAD patients showed poor response to adjuvant chemotherapy and high risk of distant metastasis. High CD73 expression was inversely associated with less infiltration of CD45+ and CD8+ immune cells. However, administration with anti-CD73 antibodies significantly increased the response to oxaliplatin (OXP). Blockade of CD73 signaling synergistically enhanced OXP-induced ATP release, which is a marker of immunogenic cell death (ICD), promotes dendritic cell maturation and immune cell infiltration. Moreover, the risk of colorectal cancer lung metastasis was also decreased. Taken together, the present study revealed tumor CD73 expression inhibited the recruitment of immune cells and correlated with a poor prognosis in COAD patients, especially patients received adjuvant chemotherapy. Targeting CD73 to markedly increased the therapeutic response to chemotherapy and inhibited lung metastasis. Therefore, tumor CD73 may be an independent prognostic factor as well as the potential of therapeutic target for immunotherapy to benefit colon adenocarcinoma patients.
Collapse
Affiliation(s)
- Yun-Shan Lin
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan, ROC
| | - Chia-Yi Chen
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Wei-Ze Hong
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Tsung-Wei Chen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan, ROC
- Department of Pathology, Asia University Hospital, Asia University, Taichung, 41354, Taiwan, ROC
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
- Department of Surgery, School of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
- School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
- Department of Radiotherapy, School of Medicine, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - An-Cheng Shiau
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan, ROC
| | - K S Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC.
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan, ROC.
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC.
- Department of Radiotherapy, School of Medicine, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC.
| | - Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan, ROC.
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC.
| |
Collapse
|
12
|
Yu Y, Wang Y, Xi D, Wang N, Gao L, Shi Q, Yu R, Li H, Xiang L, Maswikiti EP, Chen H. A novel adenosine signalling-based prognostic signature in gastric cancer and its association with cancer immune features and immunotherapy response. Cell Biol Int 2023. [PMID: 37366248 DOI: 10.1002/cbin.12053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023]
Abstract
Reliable prognostic signatures that can reflect the intrinsic characteristics of gastric cancer (GC) are still rare. Here, we developed an adenosine-based prognostic signature and explored its association with the tumour immune in GC patients, aiming at confirming the prognostic value of adenosine-related genes and guiding the GC risk stratification and immunotherapeutic response prediction. We collected adenosine pathway-related genes from STRING websites and manual searching. We enrolled the The Cancer Genome Atlas cohort and four gene expression omnibus cohorts of GC for generating and validating the adenosine pathway-based signature using the Cox regression method. Gene expression in the signature was verified using polymerase chain reaction. We also performed gene set enrichment analysis, immune infiltration assessment and immunotherapy response prediction based on this signature. Our study resulted in a six-gene adenosine signature (GNAS, CXCR4, PPP1R1B, ADCY6, NT5E and NOS3) for risk stratification of GC prognosis, with the highest area under the receiver operating characteristic curve up to 0.767 for predicting 10-year overall survival (OS). In the training cohort, patients with signature-defined high risk had significantly poorer OS than those with low risk (p < .001). Multivariate analysis identified the signature as an independent prognostic factor (hazard ratio 2.863, 95% confidence interval [1.871-4.381], p < .001). These findings were confirmed in four independent cohorts. Expression detection showed that all signature genes were upregulated in both GC tissues and cell lines. Further analysis revealed that the signature-defined high-risk patients were characterised by immunosuppressive states and associated with a poor immunotherapy response. In conclusion, the adenosine pathway-based signature represents a promising risk stratification tool for GC in guiding individualised prognostication and immunotherapy.
Collapse
Affiliation(s)
- Yang Yu
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yidian Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dayong Xi
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Na Wang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Lei Gao
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Qianling Shi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Yu
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Haiyuan Li
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Xiang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Ewetse Paul Maswikiti
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hao Chen
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Kurago Z, Guo G, Shi H, Bollag RJ, Groves MW, Byrd JK, Cui Y. Inhibitors of the CD73-adenosinergic checkpoint as promising combinatory agents for conventional and advanced cancer immunotherapy. Front Immunol 2023; 14:1212209. [PMID: 37435071 PMCID: PMC10330720 DOI: 10.3389/fimmu.2023.1212209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
The cell surface enzyme CD73 is increasingly appreciated as a pivotal non-redundant immune checkpoint (IC) in addition to PD-1/PD-L1 and CTLA-4. CD73 produces extracellular adenosine (eADO), which not only inhibits antitumor T cell activity via the adenosine receptor (AR) A2AR, but also enhances the immune inhibitory function of cancer-associated fibroblasts and myeloid cells via A2BR. Preclinical studies show that inhibition of the CD73-adenosinergic pathway in experimental models of many solid tumors either as a monotherapy or, more effectively, in combination with PD-1/PD-L1 or CTLA-4 IC blockades, improves antitumor immunity and tumor control. Consequently, approximately 50 ongoing phase I/II clinical trials targeting the CD73-adenosinergic IC are currently listed on https://clinicaltrials.gov. Most of the listed trials employ CD73 inhibitors or anti-CD73 antibodies alone, in combination with A2AR antagonists, and/or with PD-1/PD-L1 blockade. Recent evidence suggests that the distribution of CD73, A2AR and A2BR in tumor microenvironments (TME) is heterogeneous, and this distribution affects CD73-adenosinergic IC function. The new insights have implications for the optimally effective, carefully tailored approaches to therapeutic targeting of this essential IC. In the mini-review, we briefly discuss the cellular and molecular mechanisms of CD73/eADO-mediated immunosuppression during tumor progression and therapy in the spatial context of the TME. We include preclinical data regarding therapeutic CD73-eADO blockade in tumor models as well as available clinical data from completed trials that targeted CD73-adenosinergic IC with or without PD-1/PD-L1 inhibitors and discuss factors that are potentially important for optimal therapeutic outcomes in cancer patients.
Collapse
Affiliation(s)
- Zoya Kurago
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Gang Guo
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Roni J. Bollag
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Michael W. Groves
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Otolaryngology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - J. Kenneth Byrd
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Otolaryngology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yan Cui
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
14
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
15
|
Erices JI, Niechi I, Uribe-Ojeda A, Toro MDLÁ, García-Romero N, Carrión-Navarro J, Monago-Sánchez Á, Ayuso-Sacido Á, Martin RS, Quezada-Monrás C. The low affinity A2B adenosine receptor enhances migratory and invasive capacity in vitro and angiogenesis in vivo of glioblastoma stem-like cells. Front Oncol 2022; 12:969993. [PMID: 36059665 PMCID: PMC9433907 DOI: 10.3389/fonc.2022.969993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and deadly malignant brain tumor, with a median survival of 15 to 17 months for a patient. GBM contains a cellular subpopulation known as GBM stem-like cells (GSCs) that persist in hypoxic niches and are capable of infiltrating into healthy brain tissue. For this reason, GSCs are considered one of the main culprits for GBM recurrence. A hypoxic microenvironment increases extracellular adenosine levels, activating the low affinity A2B adenosine receptor (A2BAR). Adenosine, through A2BAR, is capable of modulating invasiveness. However, its role in the invasion/migration of hypoxic-GSCs is still unknown. This study aims to understand the importance of A2BAR in modulating the migratory/invasive capacity of GSCs under hypoxia. Data analysis from The Cancer Genome Atlas (TCGA) program correlates A2BAR expression with high-grade glioma and hypoxic necrotic areas. U87MG and primary culture-derived GSCs under hypoxic conditions (0.5% O2) increased A2BAR mRNA and protein levels. As expected, the migratory and invasive capacity of GSCs increased under hypoxia, which was counteracted by blocking A2BAR, through the downregulation of MMP9 activity and epithelial–mesenchymal transition marker expression. Finally, in a xenograft mouse model, we demonstrate that treatment with MRS1754 did not affect the tumor volume but could decrease blood vessel formation and VEGF expression. Our results suggest that extracellular adenosine, through the activation of A2BAR, enhances the migratory and invasive capacity of GSCs in vitro under hypoxic conditions. Targeting A2BAR can be an effective therapy for GBM recurrence.
Collapse
Affiliation(s)
- José I. Erices
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Niechi
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia, Chile
| | - Atenea Uribe-Ojeda
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María de los Ángeles Toro
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, Madrid, Spain
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, Madrid, Spain
| | - Álvaro Monago-Sánchez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, Madrid, Spain
| | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, Madrid, Spain
| | - Rody San Martin
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Quezada-Monrás
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Claudia Quezada-Monrás,
| |
Collapse
|
16
|
Iser IC, Vedovatto S, Oliveira FD, Beckenkamp LR, Lenz G, Wink MR. The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer. Semin Cancer Biol 2022; 86:202-213. [PMID: 35779713 DOI: 10.1016/j.semcancer.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Samlai Vedovatto
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Maino Vieytes CA, Rodriguez-Zas SL, Madak-Erdogan Z, Smith RL, Zarins KR, Wolf GT, Rozek LS, Mondul AM, Arthur AE. Adherence to a priori-Defined Diet Quality Indices Throughout the Early Disease Course Is Associated With Survival in Head and Neck Cancer Survivors: An Application Involving Marginal Structural Models. Front Nutr 2022; 9:791141. [PMID: 35548563 PMCID: PMC9083460 DOI: 10.3389/fnut.2022.791141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
No studies, to date, have scrutinized the role of a priori dietary patterns on prognosis following a head and neck squamous cell carcinoma (HNSCC) diagnosis. The purpose of this analysis was to evaluate the associations between adherence to six a priori defined diet quality indices (including AHEI-2010, aMED, DASH, and three low-carbohydrate indices) throughout the first 3 years of observation and all-cause and cancer-specific mortalities in 468 newly diagnosed HNSCC patients from the University of Michigan Head and Neck Specialized Program of Research Excellence (UM-SPORE). The dietary intake data were measured using a food frequency questionnaire administered at three annual time points commencing at study entry. Deaths and their causes were documented throughout the study using various data sources. Marginal structural Cox proportional hazards models were used to evaluate the role of diet quality, as a time-varying covariate, on mortality. There were 93 deaths from all causes and 74 cancer-related deaths adjudicated throughout the observation period. There was a strong inverse association between adherence to the AHEI-2010, all-cause mortality (HRQ5–Q1:0.07, 95% CI:0.01–0.43, ptrend:0.04), and cancer-specific mortality (HRQ5–Q1:0.15, 95% CI:0.02–1.07, ptrend:0.04). Other more modest associations were noted for the low-carbohydrate indices. In sum, higher adherence to the AHEI-2010 and a plant-based low-carbohydrate index throughout the first 3 years since diagnosis may bolster survival and prognosis in newly diagnosed patients with HNSCC.
Collapse
Affiliation(s)
- Christian A Maino Vieytes
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sandra L Rodriguez-Zas
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zeynep Madak-Erdogan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rebecca L Smith
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Gregory T Wolf
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States
| | - Anna E Arthur
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
18
|
Harou O, Cros-Perrial E, Alix E, Callet-Bauchu E, Bertheau C, Dumontet C, Devouassoux-Shisheboran M, Jordheim LP. Variability in CD39 and CD73 protein levels in uveal melanoma patients. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1099-1108. [PMID: 35199627 DOI: 10.1080/15257770.2022.2032738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Extracellular adenosine is produced from ATP by CD39 and CD73, and can modulate tumor development by acting on cancer cells or immune cells. Adenosine metabolism has been poorly studied in uveal melanoma. We studied the protein levels of CD39 and CD73 in a small, well described cohort of patients with uveal melanoma. Our results show a high variability in the levels of the two proteins, both in positivity and in intensity. Our results suggest that similar studies on larger cohorts could determine the clinical value and the druggability of these enzymes in the given clinical setting.Supplemental data for this article is available online at http://dx.doi.org/10.1080/15257770.2022.2032738.
Collapse
Affiliation(s)
- Olivier Harou
- Hospices Civils de Lyon, Department of Pathology, Centre Hospitalier Lyon Sud, France
| | - Emeline Cros-Perrial
- Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Eudeline Alix
- Department of Cytogenetics, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Evelyne Callet-Bauchu
- Department of Cytogenetics, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Charlotte Bertheau
- Hospices Civils de Lyon, Department of Pathology, Centre Hospitalier Lyon Sud, France
| | - Charles Dumontet
- Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
- Department of Cytogenetics, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | | | - Lars Petter Jordheim
- Department of Cytogenetics, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
19
|
Sánchez-Melgar A, Muñoz-López S, Albasanz JL, Martín M. Antitumoral Action of Resveratrol Through Adenosinergic Signaling in C6 Glioma Cells. Front Neurosci 2021; 15:702817. [PMID: 34539333 PMCID: PMC8440868 DOI: 10.3389/fnins.2021.702817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
Gliomas are the most common and aggressive primary tumors in the central nervous system. The nucleoside adenosine is considered to be one major constituent within the tumor microenvironment. The adenosine level mainly depends on two enzymatic activities: 5′-nucleotidase (5′NT or CD73) that synthesizes adenosine from AMP, and adenosine deaminase (ADA) that converts adenosine into inosine. Adenosine activates specific G-protein coupled receptors named A1, A2A, A2B, and A3 receptors. Resveratrol, a natural polyphenol present in grapes, peanuts, and berries, shows several healthy effects, including protection against cardiovascular, endocrine, and neurodegenerative diseases and cancer. However, the molecular mechanisms of resveratrol actions are not well known. Recently, we demonstrated that resveratrol acts as an agonist for adenosine receptors in rat C6 glioma cells. The present work aimed to investigate the involvement of adenosine metabolism and adenosine receptors in the molecular mechanisms underlying the antitumoral action of resveratrol. Results presented herein show that resveratrol was able to decrease cell numbers and viability and to reduce CD73 and ADA activities, leading to the increase of extracellular adenosine levels. Some resveratrol effects were reduced by the blockade of A1 or A3 receptors by DPCPX or MRS1220, respectively. These results suggest that reduced CD73 activity located in the plasma membrane in addition to a fine-tuned modulatory role of adenosine receptors could be involved, at least in part, in the antiproliferative action of resveratrol in C6 glioma cells.
Collapse
Affiliation(s)
- Alejandro Sánchez-Melgar
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia Muñoz-López
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - José Luis Albasanz
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mairena Martín
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
20
|
CD39 Regulation and Functions in T Cells. Int J Mol Sci 2021; 22:ijms22158068. [PMID: 34360833 PMCID: PMC8348030 DOI: 10.3390/ijms22158068] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
CD39 is an enzyme which is responsible, together with CD73, for a cascade converting adenosine triphosphate into adenosine diphosphate and cyclic adenosine monophosphate, ultimately leading to the release of an immunosuppressive form of adenosine in the tumor microenvironment. Here, we first review the environmental and genetic factors shaping CD39 expression. Second, we report CD39 functions in the T cell compartment, highlighting its role in regulatory T cells, conventional CD4+ T cells and CD8+ T cells. Finally, we compile a list of studies, from preclinical models to clinical trials, which have made essential contributions to the discovery of novel combinatorial approaches in the treatment of cancer.
Collapse
|
21
|
Baghbani E, Noorolyai S, Shanehbandi D, Mokhtarzadeh A, Aghebati-Maleki L, Shahgoli VK, Brunetti O, Rahmani S, Shadbad MA, Baghbanzadeh A, Silvestris N, Baradaran B. Regulation of immune responses through CD39 and CD73 in cancer: Novel checkpoints. Life Sci 2021; 282:119826. [PMID: 34265363 DOI: 10.1016/j.lfs.2021.119826] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
The immunosuppressive tumor microenvironment has been implicated in attenuating anti-tumoral immune responses and tumor growth in various cancers. Inhibitory immune checkpoints have been introduced as the primary culprits for developing the immunosuppressive tumor microenvironment. Therefore, a better understanding of the cross-talk between inhibitory immune checkpoints in the tumor microenvironment can pave the way for introducing novel approaches for treating affected patients. Growing evidence indicates that CD39 and CD73, as novel checkpoints, can transform adenosine triphosphate (ATP)-mediated pro-inflammatory tumor microenvironment into an adenosine-mediated immunosuppressive one via the purinergic signaling pathway. Indeed, enzymatic processes of CD39 and CD73 have crucial roles in adjusting the extent, intensity, and chemical properties of purinergic signals. This study aims to review the biological function of CD39 and CD73 and shed light on their significance in regulating anti-tumoral immune responses in various cancers.
Collapse
Affiliation(s)
- Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Shima Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nicola Silvestris
- IRCCS Bari, Italy, Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology DIMO, University of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Brauneck F, Haag F, Woost R, Wildner N, Tolosa E, Rissiek A, Vohwinkel G, Wellbrock J, Bokemeyer C, Schulze zur Wiesch J, Ackermann C, Fiedler W. Increased frequency of TIGIT +CD73-CD8 + T cells with a TOX + TCF-1low profile in patients with newly diagnosed and relapsed AML. Oncoimmunology 2021; 10:1930391. [PMID: 34211801 PMCID: PMC8218695 DOI: 10.1080/2162402x.2021.1930391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 10/30/2022] Open
Abstract
The inhibitory receptor TIGIT, as well as theectonucleotidases CD39 and CD73 constitute potential exhaustion markers for T cells. Detailed analysis of these markers can shed light into dysregulation of the T-cell response in acute myeloid leukemia (AML) and will help to identify potential therapeutic targets. The phenotype and expression of transcription factors was assessed on different T-cell populations derived from peripheral blood (PB, n = 38) and bone marrow (BM, n = 43). PB and BM from patients with AML diagnosis, in remission and at relapse were compared with PB from healthy volunteers (HD) (n = 12) using multiparameter flow cytometry. An increased frequency of terminally differentiated (CD45R-CCR7-)CD8+ T cells was detected in PB and BM regardless of the disease state. Moreover, we detected an increased frequency of two distinct T-cell populations characterized by the co-expression of PD-1 or CD39 on TIGIT+CD73-CD8+ T cells in newly diagnosed and relapsed AML in comparison to HDs. In contrast to the PD-1+TIGIT+CD73-CD8+ T-cell population, the frequency of CD39+TIGIT+CD73-CD8+ T cells was normalized in remission. PD-1+- and CD39+TIGIT+CD73-CD8+ T cells exhibited additional features of exhaustion by decreased expression of CD127 and TCF-1 and increased intracellular expression of the transcription factor TOX. CD8+ T cells in AML exhibit a key signature of two subpopulations, PD-1+TOX+TIGIT+CD73-CD8+- and CD39+TOX+TIGIT+CD73-CD8+ T cells that were increased at different stages of the disease. These results provide a rationale to analyze TIGIT blockade in combination with inhibition of the purinergic signaling and depletion of TOX to improve T-cell mediated cytotoxicity in AML. Abbreviations: AML: Acute myeloid leukemia; pAML: newly diagnosed AML; rAML: relapse AML; lrAML: AML in remission; HD: healthy donor; PB: peripheral blood; BM: bone marrow; TIGIT: T-cell immunoreceptor with Ig and ITIM domains; PD-1: Programmed cell death protein 1; CD73: ecto-5'-nucleotidase; CD39: ectonucleoside triphosphate diphosphohydrolase 1; ATP: adenosine triphosphate; ADO: adenosine; CD127: interleukin-7 receptor; CAR-T cell: chimeric antigen receptor T cell; TCF-1: transcription factor T-cell factor 1; TOX: Thymocyte selection-associated high mobility group box protein; NFAT: nuclear factor of activated T cells; NA: Naïve; CM: Central Memory; EM Effector Memory; EMRA: Terminal Effector Memory cells; FMO: Fluorescence minus one; PVR: poliovirus receptor; PVRL2: poliovirus receptor-related 2; IFN-γ: Interferon-γ; IL-2: interleukin-2; MCF: multiparametric flow cytometry; TNFα: Tumornekrosefaktor α; RT: room temperature.
Collapse
Affiliation(s)
- F. Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - F Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - R. Woost
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - N. Wildner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E. Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - A. Rissiek
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - G. Vohwinkel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J. Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C. Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J. Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C. Ackermann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W. Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Miserocchi G, Cocchi C, De Vita A, Liverani C, Spadazzi C, Calpona S, Di Menna G, Bassi M, Meccariello G, De Luca G, Campobassi A, Tumedei MM, Bongiovanni A, Fausti V, Cotelli F, Ibrahim T, Mercatali L. Three-dimensional collagen-based scaffold model to study the microenvironment and drug-resistance mechanisms of oropharyngeal squamous cell carcinomas. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0482. [PMID: 33772505 PMCID: PMC8185858 DOI: 10.20892/j.issn.2095-3941.2020.0482] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Squamous cell carcinoma (SCC) represents the most common histotype of all head and neck malignancies and includes oropharyngeal squamous cell carcinoma (OSCC), a tumor associated with different clinical outcomes and linked to human papilloma virus (HPV) status. Translational research has few available in vitro models with which to study the different pathophysiological behavior of OSCCs. The present study proposes a 3-dimensional (3D) biomimetic collagen-based scaffold to mimic the tumor microenvironment and the crosstalk between the extracellular matrix (ECM) and cancer cells. METHODS We compared the phenotypic and genetic features of HPV-positive and HPV-negative OSCC cell lines cultured on common monolayer supports and on scaffolds. We also explored cancer cell adaptation to the 3D microenvironment and its impact on the efficacy of drugs tested on cell lines and primary cultures. RESULTS HPV-positive and HPV-negative cell lines were successfully grown in the 3D model and displayed different collagen fiber organization. The 3D cultures induced an increased expression of markers related to epithelial-mesenchymal transition (EMT) and to matrix interactions and showed different migration behavior, as confirmed by zebrafish embryo xenografts. The expression of hypoxia-inducible factor 1α (1α) and glycolysis markers were indicative of the development of a hypoxic microenvironment inside the scaffold area. Furthermore, the 3D cultures activated drug-resistance signaling pathways in both cell lines and primary cultures. CONCLUSIONS Our results suggest that collagen-based scaffolds could be a suitable model for the reproduction of the pathophysiological features of OSCCs. Moreover, 3D architecture appears capable of inducing drug-resistance processes that can be studied to better our understanding of the different clinical outcomes of HPV-positive and HPV-negative patients with OSCCs.
Collapse
Affiliation(s)
- Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| | - Claudia Cocchi
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| | - Sebastiano Calpona
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| | - Giandomenico Di Menna
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| | - Massimo Bassi
- Maxillofacial Surgery Unit, Bufalini Hospital, Cesena 47521, Italy
| | - Giuseppe Meccariello
- Department of Head-Neck Surgery, Otolaryngology, Head-Neck and Oral Surgery Unit, Morgagni Pierantoni Hospital, Forlì 47121, Italy
| | - Giovanni De Luca
- Pathology Unit, “Bufalini” Hospital, AUSL Romagna, Cesena 47521, Italy
| | | | - Maria Maddalena Tumedei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| | - Valentina Fausti
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| | - Franco Cotelli
- Department of Biosciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola 47014, Italy
| |
Collapse
|
24
|
CD73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer. Sci Rep 2021; 11:6035. [PMID: 33727591 PMCID: PMC7966763 DOI: 10.1038/s41598-021-85379-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
CD73 is a cell surface ecto-5′-nucleotidase, which converts extracellular adenosine monophosphate to adenosine. High tumor CD73 expression is associated with poor outcome among triple-negative breast cancer (TNBC) patients. Here we investigated the mechanisms by which CD73 might contribute to TNBC progression. This was done by inhibiting CD73 with adenosine 5′-(α, β-methylene) diphosphate (APCP) in MDA-MB-231 or 4T1 TNBC cells or through shRNA-silencing (sh-CD73). Effects of such inhibition on cell behavior was then studied in normoxia and hypoxia in vitro and in an orthotopic mouse model in vivo. CD73 inhibition, through shRNA or APCP significantly decreased cellular viability and migration in normoxia. Inhibition of CD73 also resulted in suppression of hypoxia-induced increase in viability and prevented cell protrusion elongation in both normoxia and hypoxia in cancer cells. Sh-CD73 4T1 cells formed significantly smaller and less invasive 3D organoids in vitro, and significantly smaller orthotopic tumors and less lung metastases than control shRNA cells in vivo. CD73 suppression increased E-cadherin and decreased vimentin expression in vitro and in vivo, proposing maintenance of a more epithelial phenotype. In conclusion, our results suggest that CD73 may promote early steps of tumor progression, possibly through facilitating epithelial–mesenchymal transition.
Collapse
|
25
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
26
|
Churov A, Zhulai G. Targeting adenosine and regulatory T cells in cancer immunotherapy. Hum Immunol 2021; 82:270-278. [PMID: 33610376 DOI: 10.1016/j.humimm.2020.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022]
Abstract
Immunosuppressive activity of regulatory T cells (Tregs) is one of the mechanisms promoting carcinogenesis. Intratumoral Tregs have some phenotypic and functional traits that lower the efficiency of antitumor immune response, which makes them a good target for immunotherapy. Several approaches to cancer immunotherapy are being developed along this vector: deletion of tumor-infiltrating Tregs, inhibition of their homing to the tumor microenvironment, and functional downregulation of Tregs. Studies of the past decade have demonstrated the role of Tregs and ectonucleotidases CD39 and CD73 in the generation of immunosuppressive extracellular adenosine. Pharmacological targeting of CD39 and CD73 can restrain the activity of suppressor cells and promote the efficiency of cancer therapy. Here we review the latest data on issues regarding the role of extracellular adenosine and its receptors in antitumor immune response, adenosine generation mechanisms involving Tregs and the membrane proteins CD39 and CD73. Innovative approaches to antitumor immunotherapy and clinical studies of Treg targeting and application of anti-CD39/CD73 antibodies, adenosine receptor antagonists, and small-molecule inhibitors of ectonucleotidase activity are explored.
Collapse
Affiliation(s)
- Alexey Churov
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russian Federation.
| | - Galina Zhulai
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russian Federation
| |
Collapse
|
27
|
Turiello R, Pinto A, Morello S. CD73: A Promising Biomarker in Cancer Patients. Front Pharmacol 2020; 11:609931. [PMID: 33364969 PMCID: PMC7751688 DOI: 10.3389/fphar.2020.609931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| |
Collapse
|
28
|
Tsiampali J, Neumann S, Giesen B, Koch K, Maciaczyk D, Janiak C, Hänggi D, Maciaczyk J. Enzymatic Activity of CD73 Modulates Invasion of Gliomas via Epithelial-Mesenchymal Transition-Like Reprogramming. Pharmaceuticals (Basel) 2020; 13:E378. [PMID: 33187081 PMCID: PMC7698190 DOI: 10.3390/ph13110378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant primary brain tumour in adulthood. Despite strong research efforts current treatment options have a limited impact on glioma stem-like cells (GSCs) which contribute to GBM formation, progression and chemoresistance. Invasive growth of GSCs is in part associated with epithelial-mesenchymal-like transition (EMT), a mechanism associated with CD73 in several cancers. Here, we show that CD73 regulates the EMT activator SNAIL1 and further investigate the role of enzymatic and non-enzymatic CD73 activity in GBM progression. Reduction of CD73 protein resulted in significant suppression of GSC viability, proliferation and clonogenicity, whereas CD73 enzymatic activity exhibited negative effects only on GSC invasion involving impaired downstream adenosine (ADO) signalling. Furthermore, application of phosphodiesterase inhibitor pentoxifylline, a potent immunomodulator, effectively inhibited ZEB1 and CD73 expression and significantly decreased viability, clonogenicity, and invasion of GSC in vitro cultures. Given the involvement of adenosine and A3 adenosine receptor in GSC invasion, we investigated the effect of the pharmacological inhibition of A3AR on GSC maintenance. Direct A3AR inhibition promoted apoptotic cell death and impaired the clonogenicity of GSC cultures. Taken together, our data indicate that CD73 is an exciting novel target in GBM therapy. Moreover, pharmacological interference, resulting in disturbed ADO signalling, provides new opportunities to innovate GBM therapy.
Collapse
Affiliation(s)
- Julia Tsiampali
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany; (J.T.); (K.K.); (D.H.)
| | - Silke Neumann
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand; (S.N.); (D.M.)
| | - Beatriz Giesen
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany; (B.G.); (C.J.)
| | - Katharina Koch
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany; (J.T.); (K.K.); (D.H.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany
| | - Donata Maciaczyk
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand; (S.N.); (D.M.)
| | - Christoph Janiak
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany; (B.G.); (C.J.)
| | - Daniel Hänggi
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany; (J.T.); (K.K.); (D.H.)
| | - Jaroslaw Maciaczyk
- Department of Neurosurgery, University Hospital Bonn, 53179 Bonn, Germany
- Department of Surgical Sciences, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
29
|
Varied functions of immune checkpoints during cancer metastasis. Cancer Immunol Immunother 2020; 70:569-588. [PMID: 32902664 PMCID: PMC7907026 DOI: 10.1007/s00262-020-02717-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Immune checkpoints comprise diverse receptors and ligands including costimulatory and inhibitory molecules, which play monumental roles in regulating the immune system. Immune checkpoints retain key potentials in maintaining the immune system homeostasis and hindering the malignancy development and autoimmunity. The expression of inhibitory immune checkpoints delineates an increase in a plethora of metastatic tumors and the inhibition of these immune checkpoints can be followed by promising results. On the other hand, the stimulation of costimulatory immune checkpoints can restrain the metastasis originating from diverse tumors. From the review above, key findings emerged regarding potential functions of inhibitory and costimulatory immune checkpoints targeting the metastatic cascade and point towards novel potential Achilles’ heels of cancer that might be exploited therapeutically in the future.
Collapse
|
30
|
Purinergic Signaling in the Hallmarks of Cancer. Cells 2020; 9:cells9071612. [PMID: 32635260 PMCID: PMC7407645 DOI: 10.3390/cells9071612] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex expression of an altered state of cellular differentiation associated with severe clinical repercussions. The effort to characterize this pathological entity to understand its underlying mechanisms and visualize potential therapeutic strategies has been constant. In this context, some cellular (enhanced duplication, immunological evasion), metabolic (aerobic glycolysis, failure in DNA repair mechanisms) and physiological (circadian disruption) parameters have been considered as cancer hallmarks. The list of these hallmarks has been growing in recent years, since it has been demonstrated that various physiological systems misfunction in well-characterized ways upon the onset and establishment of the carcinogenic process. This is the case with the purinergic system, a signaling pathway formed by nucleotides/nucleosides (mainly adenosine triphosphate (ATP), adenosine (ADO) and uridine triphosphate (UTP)) with their corresponding membrane receptors and defined transduction mechanisms. The dynamic equilibrium between ATP and ADO, which is accomplished by the presence and regulation of a set of ectonucleotidases, defines the pro-carcinogenic or anti-cancerous final outline in tumors and cancer cell lines. So far, the purinergic system has been recognized as a potential therapeutic target in cancerous and tumoral ailments.
Collapse
|
31
|
Panigrahi S, Bazdar DA, Albakri M, Ferrari B, Antonelli CJ, Freeman ML, Dubyak G, Zender C, Sieg SF. CD8 + CD73 + T cells in the tumor microenvironment of head and neck cancer patients are linked to diminished T cell infiltration and activation in tumor tissue. Eur J Immunol 2020; 50:2055-2066. [PMID: 32548862 DOI: 10.1002/eji.202048626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/07/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Recent studies have implicated a role for adenosine-dependent immunosuppression in head and neck tumor microenvironments. We describe expression of CD73, an enzyme critical to the generation of adenosine from extracellular AMP, in T cells and other cell types within human head and neck tumors. Flow cytometric analyses of tumor-infiltrating cells indicate that CD3+ cells are the predominant source of CD73 among immune infiltrating cells and that CD73 expression, especially among CD8+ T cells, is inversely related to indices of T cell infiltration and T cell activation in the microenvironment of head and neck tumors. We provide evidence that CD73 expression on peripheral T cells and levels of soluble CD73 in circulation are correlated with CD73 expression on CD8+ T cells in tumors. Moreover, fluorescent microscopy studies reveal that CD8+ CD73+ cells are observed in close proximity to tumor cells as well as in surrounding tissue. In vitro studies with peripheral blood T cells indicate that anti-CD3-stimulation causes loss of CD73 expression, especially among cells that undergo proliferation and that exogenous AMP can impair T cell proliferation, while sustaining CD73 expression. These data suggest that CD8+ CD73+ T cells may be especially important mediators of immunosuppression in human head and neck cancer.
Collapse
Affiliation(s)
- Soumya Panigrahi
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| | - Douglas A Bazdar
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| | - Marwah Albakri
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Taibah University, KSA, College of Applied Medical Sciences, Department of Medical Laboratory Technology
| | - Brian Ferrari
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| | - Christopher J Antonelli
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| | - Michael L Freeman
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| | - George Dubyak
- Case Western Reserve University School of Medicine, Department of Physiology and Biophysics, Cleveland, Ohio
| | - Chad Zender
- MED-Otolaryngology, University of Cincinnati, Cincinnati, Ohio
| | - Scott F Sieg
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio
| |
Collapse
|
32
|
Miyazaki M, Aoki M, Okado Y, Koga K, Hamasaki M, Nakagawa T, Sakata T, Nabeshima K. Highly expressed tumoral emmprin and stromal CD73 predict a poor prognosis for external auditory canal carcinoma. Cancer Sci 2020; 111:3045-3056. [PMID: 32473077 PMCID: PMC7419056 DOI: 10.1111/cas.14508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma of the external auditory canal (SCC-EAC) is rare and has a poor prognosis. The SCC-EAC cases with high-grade tumor budding (TB) or poorly differentiated clusters (PDCs) are associated with shorter survival than those with low-grade TB or PDCs. Extracellular matrix metalloproteinase inducer (emmprin) is a protein expressed in tumor cells that stimulates the production of MMP-2 by stromal fibroblasts to facilitate tumor invasion. Recently, we reported that emmprin forms a complex with CD73 to regulate MMP-2 production from fibroblasts in vitro. Here, we examined the association of emmprin and CD73 expression with TB or PDCs as well as with survival in 34 biopsy specimens of SCC-EAC patients. High tumoral emmprin expression was associated with high-grade TB, whereas high stromal CD73 expression was associated with high-grade PDCs. Furthermore, concurrent elevated expression of tumoral emmprin and stromal CD73 was determined to be an independent poor prognostic factor. In immunoprecipitation analyses, complex formation between emmprin and CD73 was demonstrated in vitro. Production of MMP-2 from fibroblasts was more abundant when cocultured with tumor cells than from fibroblasts cultured alone. Furthermore, MMP-2 production was reduced by the transfection of CD73 siRNA in fibroblasts cocultured with tumor cells. The colocalization of emmprin and CD73 was enhanced in not only the peripheral cells of the tumor cell clusters that interact with fibroblasts but also in the cells of intratumor clusters. Overall, this study provides novel insights into the roles of emmprin, CD73, and MMP-2 in tumor invasiveness.
Collapse
Affiliation(s)
- Masaru Miyazaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan.,Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Mikiko Aoki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Yasuko Okado
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan.,Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Kaori Koga
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Makoto Hamasaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshifumi Sakata
- Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| |
Collapse
|
33
|
Feng LL, Cai YQ, Zhu MC, Xing LJ, Wang X. The yin and yang functions of extracellular ATP and adenosine in tumor immunity. Cancer Cell Int 2020; 20:110. [PMID: 32280302 PMCID: PMC7137337 DOI: 10.1186/s12935-020-01195-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenosine triphosphate (eATP) and its main metabolite adenosine (ADO) constitute an intrinsic part of immunological network in tumor immunity. The concentrations of eATP and ADO in tumor microenvironment (TME) are controlled by ectonucleotidases, such as CD39 and CD73, the major ecto-enzymes expressed on immune cells, endothelial cells and cancer cells. Once accumulated in TME, eATP boosts antitumor immune responses, while ADO attenuates immunity against tumors. eATP and ADO, like yin and yang, represent two opposite aspects from immune-activating to immune-suppressive signals. Here we reviewed the functions of eATP and ADO in tumor immunity and attempt to block eATP hydrolysis, ADO formation and their contradictory effects in tumor models, allowing the induction of effective anti-tumor immune responses in TME. These attempts documented that therapeutic approaches targeting eATP/ADO metabolism and function may be effective methods in cancer therapy.
Collapse
Affiliation(s)
- Li-Li Feng
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Yi-Qing Cai
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Ming-Chen Zhu
- 5Department of Clinical Laboratory, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing, 210009 Jiangsu China
| | - Li-Jie Xing
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Xin Wang
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China.,2School of Medicine, Shandong University, Jinan, 250012 Shandong China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China.,National clinical research center for hematologic diseases, Jinan, 250021 Shandong China
| |
Collapse
|
34
|
Xiong D, Wu W, Kan L, Chen D, Dou X, Ji X, Wang M, Zong Z, Li J, Zhang X. LINC00958 and HOXC13-AS as key candidate biomarkers in head and neck squamous cell carcinoma by integrated bioinformatics analysis. PeerJ 2020; 8:e8557. [PMID: 32095369 PMCID: PMC7024572 DOI: 10.7717/peerj.8557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a malignant tumor with a strong tendency for metastasis and recurrence. Finding effective biomarkers for the early diagnosis of HNSCC is critical for the early treatment and prognosis of patients. Methods RNA sequencing data including long non-coding RNAs (lncRNAs), messenger RNA (mRNAs) and microRNAs (miRNAs) of 141 HNSCC and 44 adjacent normal tissues were obtained from the TCGA. Differentially expressed genes were analyzed using the R package DESeq. GO terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. A competing endogenous RNAs (ceRNA) network was constructed. The most differentially expressed genes in the main ceRNA network were chosen for nasopharyngeal carcinoma (NPC) cell lines and NPEC2 Bmi-1 cell line verification. A receiver operating characteristic (ROC) curve was constructed for 141 specimens of HNSCC tissues from 44 control samples. Results In our study, 79 HNSCC-associated abnormally expressed lncRNAs , 86 abnormally expressed miRNAs and 324 abnormally expressed mRNAs were identified. The public microarray results showed that LINC00958 and HOXC13-AS expression levels were upregulated in HNSCC tissues compared with the adjacent normal tissues in this study (p < 0.0001). LINC00958 and HOXC13-AS expression levels in NPC cell lines were higher than those in the NPEC2 Bmi-1 cell line (p < 0.05). The results showed that the area under the ROC curve (AUC) of LINC00958 reached up to 0.906 at a cutoff value of 7.96, with a sensitivity and specificity of 80.85% and 90.91%, respectively. The AUC of HOXC13-AS reached up to 0.898 at a cutoff value of 0.695, with sensitivity and specificity values of 86.23% and 83.78%, respectively. Conclusion The current study indicates that LINC00958 and HOXC13-AS are new candidate diagnostic biomarkers for HNSCC patients.
Collapse
Affiliation(s)
- Dan Xiong
- Medical Laboratory of the Third Affiliated hospital of ShenZhen University, Shenzhen, China
| | - Wei Wu
- Medical Laboratory of the Third Affiliated hospital of ShenZhen University, Shenzhen, China
| | - Lijuan Kan
- Medical Laboratory of the Third Affiliated hospital of ShenZhen University, Shenzhen, China
| | - Dayang Chen
- Medical Laboratory of the Third Affiliated hospital of ShenZhen University, Shenzhen, China
| | - Xiaowen Dou
- Medical Laboratory of the Third Affiliated hospital of ShenZhen University, Shenzhen, China
| | - Xiang Ji
- Medical Laboratory of the Third Affiliated hospital of ShenZhen University, Shenzhen, China
| | - Mengmeng Wang
- Medical Laboratory of the Third Affiliated hospital of ShenZhen University, Shenzhen, China
| | - Zengyan Zong
- Medical Laboratory of the Third Affiliated hospital of ShenZhen University, Shenzhen, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Xiuming Zhang
- Medical Laboratory of the Third Affiliated hospital of ShenZhen University, Shenzhen, China
| |
Collapse
|
35
|
Wilkat M, Bast H, Drees R, Dünser J, Mahr A, Azoitei N, Marienfeld R, Frank F, Brhel M, Ushmorov A, Greve J, Goldberg-Bockhorn E, Theodoraki MN, Doescher J, Laban S, Schuler PJ, Hoffmann TK, Brunner C. Adenosine receptor 2B activity promotes autonomous growth, migration as well as vascularization of head and neck squamous cell carcinoma cells. Int J Cancer 2020; 147:202-217. [PMID: 31846065 DOI: 10.1002/ijc.32835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
Adenosine is a signaling molecule that exerts dual effects on tumor growth: while it inhibits immune cell function and thereby prevents surveillance by the immune system, it influences tumorigenesis directly via activation of adenosine receptors on tumor cells at the same time. However, the adenosine-mediated mechanisms affecting oncogenic processes particularly in head and neck squamous cell carcinomas (HNSCC) are not fully understood. Here, we investigated the role of adenosine receptor activity on HNSCC-derived cell lines. Targeting the adenosine receptor A2B (ADORA2B) on these cells with the inverse agonist/antagonist PSB-603 leads to inhibition of cell proliferation, transmigration as well as VEGFA secretion in vitro. At the molecular level, these effects were associated with cell cycle arrest as well as the induction of the apoptotic pathway. In addition, shRNA-mediated downmodulation of ADORA2B expression caused decreased proliferation. Moreover, in in vivo xenograft experiments, chemical and genetic abrogation of ADORA2B activity impaired tumor growth associated with decreased tumor vascularization. Together, our findings characterize ADORA2B as a crucial player in the maintenance of HNSCC and, therefore, as a potential therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Max Wilkat
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Hanna Bast
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Robert Drees
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Johannes Dünser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Amelie Mahr
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Medical Center, Ulm, Germany
| | | | - Felicia Frank
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Magnus Brhel
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Alexey Ushmorov
- Department of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Jens Greve
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Eva Goldberg-Bockhorn
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Marie-Nicole Theodoraki
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Johannes Doescher
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Simon Laban
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Patrick J Schuler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Thomas K Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
36
|
Ledinsky Opačić I, Gršić K, Šitić S, Penavić I, Pastorčić Grgić M, Šarčević B. POSITIVE EXPRESSION OF NEDD9 IN HEAD AND NECK CANCER IS RELATED TO BETTER SURVIVAL PERIOD. Acta Clin Croat 2019; 58:655-661. [PMID: 32595251 PMCID: PMC7314307 DOI: 10.20471/acc.2019.58.04.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim was to determine immunohistochemical expression of NEDD9 protein in head and neck squamous cell carcinoma (HNSCC) and the possible relation of its expression with primary tumor size (T), regional lymph node status (N), stage of disease (TNM) and survival period. A total of 131 patients with primary tumor localization in the area of oropharynx, hypopharynx and larynx, monitored for at least 5 years after initial surgical treatment were analyzed. The study included 128 male and three female patients, median age 62.0 (range 53.0-68.0) years. Of these, 105 (95%) patients showed positive NEDD9 expressed by dyed cytoplasm. There were no significant differences in NEDD9 expression according to TNM tumor status. Patients with positive NEDD9 expression had a significantly higher median (IQR) survival time 51.0 (15.0-60.0) months as compared to 22.5 (9.0-55.0) months in patients with negative NEDD9 expression (p=0.048). NEDD9 negative expression, controlled for the influence of other variables included in the Cox’s proportional hazards model, had a significant hazard ratio (HR) of 2.10 (95% CI: 1.23-3.58; p=0.006). The results of our study showed that NEDD9 expression might be an independent prognostic marker in patients with HNSCC regarding data on overall survival and mortality.
Collapse
Affiliation(s)
| | - Krešimir Gršić
- 1Division of Head and Neck Surgery, Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Otorhinolaryngology and Head and Neck Surgery, Zagreb University Hospital Centre, Zagreb, Croatia; 3Department of Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 4Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Sanda Šitić
- 1Division of Head and Neck Surgery, Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Otorhinolaryngology and Head and Neck Surgery, Zagreb University Hospital Centre, Zagreb, Croatia; 3Department of Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 4Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Ivan Penavić
- 1Division of Head and Neck Surgery, Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Otorhinolaryngology and Head and Neck Surgery, Zagreb University Hospital Centre, Zagreb, Croatia; 3Department of Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 4Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Marija Pastorčić Grgić
- 1Division of Head and Neck Surgery, Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Otorhinolaryngology and Head and Neck Surgery, Zagreb University Hospital Centre, Zagreb, Croatia; 3Department of Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 4Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Božena Šarčević
- 1Division of Head and Neck Surgery, Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Otorhinolaryngology and Head and Neck Surgery, Zagreb University Hospital Centre, Zagreb, Croatia; 3Department of Pathology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 4Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| |
Collapse
|
37
|
de Leve S, Wirsdörfer F, Jendrossek V. The CD73/Ado System-A New Player in RT Induced Adverse Late Effects. Cancers (Basel) 2019; 11:cancers11101578. [PMID: 31623231 PMCID: PMC6827091 DOI: 10.3390/cancers11101578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a central component of standard treatment for many cancer patients. RT alone or in multimodal treatment strategies has a documented contribution to enhanced local control and overall survival of cancer patients, and cancer cure. Clinical RT aims at maximizing tumor control, while minimizing the risk for RT-induced adverse late effects. However, acute and late toxicities of IR in normal tissues are still important biological barriers to successful RT: While curative RT may not be tolerable, sub-optimal tolerable RT doses will lead to fatal outcomes by local recurrence or metastatic disease, even when accepting adverse normal tissue effects that decrease the quality of life of irradiated cancer patients. Technical improvements in treatment planning and the increasing use of particle therapy have allowed for a more accurate delivery of IR to the tumor volume and have thereby helped to improve the safety profile of RT for many solid tumors. With these technical and physical strategies reaching their natural limits, current research for improving the therapeutic gain of RT focuses on innovative biological concepts that either selectively limit the adverse effects of RT in normal tissues without protecting the tumor or specifically increase the radiosensitivity of the tumor tissue without enhancing the risk of normal tissue complications. The biology-based optimization of RT requires the identification of biological factors that are linked to differential radiosensitivity of normal or tumor tissues, and are amenable to therapeutic targeting. Extracellular adenosine is an endogenous mediator critical to the maintenance of homeostasis in various tissues. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (NT5E, CD73) that catabolize ATP to adenosine. Recent work revealed a role of the immunoregulatory CD73/adenosine system in radiation-induced fibrotic disease in normal tissues suggesting a potential use as novel therapeutic target for normal tissue protection. The present review summarizes relevant findings on the pathologic roles of CD73 and adenosine in radiation-induced fibrosis in different organs (lung, skin, gut, and kidney) that have been obtained in preclinical models and proposes a refined model of radiation-induced normal tissue toxicity including the disease-promoting effects of radiation-induced activation of CD73/adenosine signaling in the irradiated tissue environment. However, expression and activity of the CD73/adenosine system in the tumor environment has also been linked to increased tumor growth and tumor immune escape, at least in preclinical models. Therefore, we will discuss the use of pharmacologic inhibition of CD73/adenosine-signaling as a promising strategy for improving the therapeutic gain of RT by targeting both, malignant tumor growth and adverse late effects of RT with a focus on fibrotic disease. The consideration of the therapeutic window is particularly important in view of the increasing use of RT in combination with various molecularly targeted agents and immunotherapy to enhance the tumor radiation response, as such combinations may result in increased or novel toxicities, as well as the increasing number of cancer survivors.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| |
Collapse
|
38
|
Aoki M, Koga K, Miyazaki M, Hamasaki M, Koshikawa N, Oyama M, Kozuka-Hata H, Seiki M, Toole BP, Nabeshima K. CD73 complexes with emmprin to regulate MMP-2 production from co-cultured sarcoma cells and fibroblasts. BMC Cancer 2019; 19:912. [PMID: 31510956 PMCID: PMC6739984 DOI: 10.1186/s12885-019-6127-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background Interaction between cancer cells and fibroblasts mediated by extracellular matrix metalloproteinase inducer (emmprin, CD147) is important in the invasion and proliferation of cancer cells. However, the exact mechanism of emmprin mediated stimulation of matrix metalloprotease-2 (MMP-2) production from fibroblasts has not been elucidated. Our previous studies using an inhibitory peptide against emmprin suggested the presence of a molecule on the cell membrane which forms a complex with emmprin. Here we show that CD73 expressed on fibroblasts interacts with emmprin and is a required factor for MMP-2 production in co-cultures of sarcoma cells with fibroblasts. Methods CD73 along with CD99 was identified by mass spectrometry analysis as an emmprin interacting molecule from a co-culture of cancer cells (epithelioid sarcoma cell line FU-EPS-1) and fibroblasts (immortalized fibroblasts cell line ST353i). MMP-2 production was measured by immunoblot and ELISA. The formation of complexes of CD73 with emmprin was confirmed by immunoprecipitation, and their co-localization in tumor cells and fibroblasts was shown by fluorescent immunostaining and proximity ligation assays. Results Stimulated MMP-2 production in co-culture of cancer cells and fibroblasts was completely suppressed by siRNA knockdown of CD73, but not by CD99 knockdown. MMP-2 production was not suppressed by CD73-specific enzyme inhibitor (APCP). However, MMP-2 production was decreased by CD73 neutralizing antibodies, suggesting that CD73-mediated suppression of MMP-2 production is non-enzymatic. In human epithelioid sarcoma tissues, emmprin was immunohistochemically detected to be mainly expressed in tumor cells, and CD73 was expressed in fibroblasts and tumor cells: emmprin and CD73 were co-localized predominantly on tumor cells. Conclusion This study provides a novel insight into the role of CD73 in emmprin-mediated regulation of MMP-2 production.
Collapse
Affiliation(s)
- M Aoki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - K Koga
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - M Miyazaki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - M Hamasaki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - N Koshikawa
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - M Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - H Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - M Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - B P Toole
- Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, USA
| | - K Nabeshima
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
39
|
Arab S, Hadjati J. Adenosine Blockage in Tumor Microenvironment and Improvement of Cancer Immunotherapy. Immune Netw 2019; 19:e23. [PMID: 31501711 PMCID: PMC6722273 DOI: 10.4110/in.2019.19.e23] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/30/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been introduced into cancer treatment methods, but different problems have restricted the efficacy of these protocols in clinical trials such as the presence of various immunomodulatory factors in the tumor microenvironment. Adenosine is an immunosuppressive metabolite produced by the tumor to promote growth, invasion, metastasis, and immune evasion. Many studies about adenosine and its metabolism in cancer have heightened interest in pursuing this treatment approach. It seems that targeting the adenosine pathway in combination with immunotherapy may lead to efficient antitumor response. In this review, we provide information on the roles of both adenosine and CD73 in the immune system and tumor development. We also describe recent studies about combination therapy with both purinergic inhibitors and other immunotherapeutic methods.
Collapse
Affiliation(s)
- Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Song Y, Pan Y, Liu J. The relevance between the immune response-related gene module and clinical traits in head and neck squamous cell carcinoma. Cancer Manag Res 2019; 11:7455-7472. [PMID: 31496804 PMCID: PMC6689548 DOI: 10.2147/cmar.s201177] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
Purpose Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer in the world, accounting for more than 90% of head and neck malignant tumors. However, its molecular mechanism is largely unknown. To help elucidate the potential mechanism of HNSCC tumorigenesis, we investigated the gene interaction patterns associated with tumorigenesis. Methods Weighted gene co-expression network analysis (WGCNA) can help us to predict the intrinsic relationship or correlation between gene expression. Additionally, we further explored the combination of clinical information and module construction. Results Sixteen modules were constructed, among which the key module most closely associated with clinical information was identified. By analyzing the genes in this module, we found that the latter may be related to the immune response, inflammatory response and formation of the tumor microenvironment. Sixteen hub genes were identified-ARHGAP9, SASH3, CORO1A, ITGAL, PPP1R16B, TBC1D10C, IL10RA, ITK, AKNA, PRKCB, TRAF3IP3, GIMAP4, CCR7, P2RY8, GIMAP7, and SP140. We further validated these genes at the transcriptional and translation levels. Conclusion The innovative use of a weighted network to analyze HNSCC samples provides new insights into the molecular mechanism and prognosis of HNSCC. Additionally, the hub genes we identified can be used as biomarkers and therapeutic targets of HNSCC, laying the foundation for the accurate diagnosis and treatment of HNSCC in clinical and research in the future.
Collapse
Affiliation(s)
- Yidan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yihua Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
41
|
NT5E is associated with unfavorable prognosis and regulates cell proliferation and motility in gastric cancer. Biosci Rep 2019; 39:BSR20190101. [PMID: 30992388 PMCID: PMC6522745 DOI: 10.1042/bsr20190101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Ecto-5′-nucleotidase (NT5E) is a glycosylphosphatidylinositol anchored cell surface protein, and has been suggested to be dysregulated in most types of human cancer including gastric cancer. The aim of the present study was to present more evidence about the clinical and prognostic value of Ecto-5′-nucleotidase in gastric cancer patients, and preliminarily explore the biological function of Ecto-5′-nucleotidase in gastric cancer cells. In our study, high Ecto-5′-nucleotidase expression was observed in gastric cancer tissues and cell lines, respectively, compared with normal gastric mucosa tissues cells. Meanwhile, TCGA database also indicated that Ecto-5′-nucleotidase expression levels were notably elevated in gastric cancer tissues compared with normal gastric mucosa tissues. Furthermore, high-expression of Ecto-5′-nucleotidase was obviously associated with advanced clinical stage, deep tumor invasion, lymph node metastasis and distant metastasis in gastric cancer patients. The survival analyses of TCGA database and our study consistent suggested high Ecto-5′-nucleotidase expression was negatively correlated with overall survival time in gastric cancer patients. The univariate and multivariate Cox proportional hazards regression model showed high Ecto-5′-nucleotidase expression was an independent poor prognostic factor for gastric cancer patients. Moreover, silencing of Ecto-5′-nucleotidase expression suppressed cell proliferation, migration and invasion in vitro in gastric cancer. In conclusion, Ecto-5′-nucleotidase is a credible prognostic biomarker, and serves as a potential therapeutic target in gastric cancer.
Collapse
|
42
|
Wang G, Fu S, Li D, Chen Y. Expression and clinical significance of serum NT5E protein in patients with colorectal cancer. Cancer Biomark 2019; 24:461-468. [PMID: 30932882 DOI: 10.3233/cbm-182207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gang Wang
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Zhejiang, China
| | - Shan Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Medical School of Zhejiang University, Zhejiang, China
| | - Dechuan Li
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Zhejiang, China
| | - Yinbo Chen
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Zhejiang, China
| |
Collapse
|
43
|
Zhang C, Qiao H, Guo W, Liu Y, Yang L, Liu Y, Jin B, Fu M, Wang G, Li W. CD100-plexin-B1 induces epithelial-mesenchymal transition of head and neck squamous cell carcinoma and promotes metastasis. Cancer Lett 2019; 455:1-13. [PMID: 30981760 DOI: 10.1016/j.canlet.2019.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most lethal cancers mainly due to the high rate of metastasis. Here, we find that the expression level of CD100 in HNSCC is positively correlated with the T category, pathological grade and lymph node metastasis of the tumor. The level of soluble CD100 (sCD100) is highly increased in serum of HNSCC patients, and sCD100 markedly induces the epithelial-mesenchymal transition (EMT) of HNSCC through its receptor, Plexin-B1 (PlxnB1), and promotes the metastasis in a xenograft mouse model. Furthermore, sCD100 promotes the stabilization of Snail through the regulation of the Vav1-Rac1/RhoA-p21-activated kinase pathway for the induction of EMT. Anti-CD100 antibody abolishes the CD100-induced EMT and prevents the metastasis of HNSCC, and anti-CD100 antibody also increases the drug sensitivity of HNSCC. Taken together, our study shows for the first time that CD100 induces the EMT of HNSCC and promotes the metastasis, and CD100 would be a candidate as a novel prognostic biomarker and a potential therapeutic target for HNSCC.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/blood
- Antigens, CD/metabolism
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Epithelial-Mesenchymal Transition
- Female
- Head and Neck Neoplasms/blood
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Heterografts
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Neoplasm Metastasis
- Neoplasm Staging
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/metabolism
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- Semaphorins/biosynthesis
- Semaphorins/blood
- Semaphorins/metabolism
- Squamous Cell Carcinoma of Head and Neck/blood
- Squamous Cell Carcinoma of Head and Neck/metabolism
- Squamous Cell Carcinoma of Head and Neck/pathology
Collapse
Affiliation(s)
- Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Histology and Pathology, Fourth Military Medical University, Xi'an, 710032, China
| | - Luting Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
44
|
Chen X, Song X, Li K, Zhang T. FcγR-Binding Is an Important Functional Attribute for Immune Checkpoint Antibodies in Cancer Immunotherapy. Front Immunol 2019; 10:292. [PMID: 30863404 PMCID: PMC6399403 DOI: 10.3389/fimmu.2019.00292] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022] Open
Abstract
T cells play critical roles in anti-tumor immunity. Up-regulation of immune checkpoint molecules (PD-1, PD-L1, CTLA-4, TIM-3, Lag-3, TIGIT, CD73, VISTA, B7-H3) in the tumor microenvironment is an important mechanism that restrains effector T cells from the anti-tumor activity. To date, immune checkpoint antibodies have demonstrated significant clinical benefits for cancer patients treated with mono- or combination immunotherapies. However, many tumors do not respond to the treatment well, and merely blocking the immune suppression pathways by checkpoint-regulatory antibodies may not render optimal tumor growth inhibition. Binding of the antibody Fc-hinge region to Fc gamma receptors (FcγRs) has been shown to exert a profound impact on antibody function and in vivo efficacy. Investigation of immune checkpoint antibodies regarding their effector functions and impact on therapeutic efficacy has gained more attention in recent years. In this review, we discuss Fc variants of antibodies against immune checkpoint targets and the potential mechanisms of how FcγR-binding could influence the anti-tumor activity of these antibodies.
Collapse
Affiliation(s)
- Xin Chen
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | | | - Kang Li
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Tong Zhang
- BeiGene (Beijing) Co., Ltd., Beijing, China
| |
Collapse
|
45
|
Torres Á, Erices JI, Sanchez F, Ehrenfeld P, Turchi L, Virolle T, Uribe D, Niechi I, Spichiger C, Rocha JD, Ramirez M, Salazar-Onfray F, San Martín R, Quezada C. Extracellular adenosine promotes cell migration/invasion of Glioblastoma Stem-like Cells through A 3 Adenosine Receptor activation under hypoxia. Cancer Lett 2019; 446:112-122. [PMID: 30660649 DOI: 10.1016/j.canlet.2019.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 01/18/2023]
Abstract
Glioblastoma (GBM) is the brain tumor with the worst prognosis composed of a cell subpopulation called Glioblastoma Stem-like Cells (GSCs) responsible for tumor recurrence mediated by cell invasion. GSCs persist in a hypoxic microenvironment which promotes extracellular adenosine production and activation of the A3 Adenosine Receptor (A3AR), therefore, the aim of this study was to determine the role of extracellular adenosine and A3AR on GSCs invasion under hypoxia. GSCs were obtained from a U87MG cell line and primary cultures of GBM patients, and then incubated under normoxia or hypoxia. Gene expression was evaluated by RNAseq, RT-qPCR, and western blot. Cell migration was measured by spreading and transwell boyden chamber assays; cell invasion was evaluated by Matrigel-coated transwell, ex vivo brain slice, and in vivo xenograft assays. The contribution of A3AR on cell migration/invasion was evaluated using the A3AR antagonist, MRS1220. Extracellular adenosine production was higher under hypoxia than normoxia, mainly by the catalytic action of the prostatic acid phosphatase (PAP), promoting cell migration/invasion in a HIF-2-dependent process. A3AR blockade decreased cell migration/invasion and the expression of Epithelial-Mesenchymal Transition markers. In conclusion, high levels of extracellular adenosine production enhance cell migration/invasion of GSCs, through HIF-2/PAP-dependent activation of A3AR under hypoxia.
Collapse
Affiliation(s)
- Ángelo Torres
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Ignacio Erices
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Fabiola Sanchez
- Instituto de Inmunología, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Patología Celular, Instituto de Anatomia, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile; Université Côte d'Azur, Nice, F-06108, France
| | - Laurent Turchi
- Université Côte d'Azur, Nice, F-06108, France; CNRS, UMR7277, F-06108, France; Inserm, U1091, Nice, F-06108, France
| | - Thierry Virolle
- Université Côte d'Azur, Nice, F-06108, France; CNRS, UMR7277, F-06108, France; Inserm, U1091, Nice, F-06108, France
| | - Daniel Uribe
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Niechi
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Spichiger
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - José Dellis Rocha
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Marcos Ramirez
- Servicio de Neurocirugía, Instituto de Neurocirugía Dr. Asenjo, Santiago, Chile; Hospital Clínico Universidad de Chile, Santiago, Chile; Instituto Oncológico Fundación Arturo Lopez Perez (FALP), Santiago, Chile
| | - Flavio Salazar-Onfray
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Quezada
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
46
|
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19123837. [PMID: 30513816 PMCID: PMC6321150 DOI: 10.3390/ijms19123837] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of ‘checkpoint blockade’ and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient’s own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A1R, A2AR, A2BR, A3R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Christina Mølck
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia.
| | - Lev Kats
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
- Department of Immunology, Monash University, Clayton 3052, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| |
Collapse
|
47
|
Ramapriyan R, Caetano MS, Barsoumian HB, Mafra ACP, Zambalde EP, Menon H, Tsouko E, Welsh JW, Cortez MA. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther 2018; 195:162-171. [PMID: 30439456 DOI: 10.1016/j.pharmthera.2018.11.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many metabolic alterations, including the Warburg effect, occur in cancer cells that influence the tumor microenvironment, including switching to glycolysis from oxidative phosphorylation, using opportunistic modes of nutrient acquisition, and increasing lipid biosynthesis. The altered metabolic landscape of the tumor microenvironment can suppress the infiltration of immune cells and other functions of antitumor immunity through the production of immune-suppressive metabolites. Metabolic dysregulation in cancer cells further affects the expression of cell surface markers, which interferes with immune surveillance. Immune checkpoint therapies have revolutionized the standard of care for some patients with cancer, but disease in many others is resistant to immunotherapy. Specific metabolic pathways involved in immunotherapy resistance include PI3K-Akt-mTOR, hypoxia-inducible factor (HIF), adenosine, JAK/STAT, and Wnt/Beta-catenin. Depletion of essential amino acids such as glutamine and tryptophan and production of metabolites like kynurenine in the tumor microenvironment also blunt immune cell function. Targeted therapies against metabolic checkpoints could work in synergy with immune checkpoint therapy. This combined strategy could be refined by profiling patients' mutation status before treatment and identifying the optimal sequencing of therapies. This personalized combinatorial approach, which has yet to be explored, may well pave the way for overcoming resistance to immunotherapy.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mauricio S Caetano
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B Barsoumian
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ana Carolina P Mafra
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Erika Pereira Zambalde
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hari Menon
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Efrosini Tsouko
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - James W Welsh
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
48
|
Deng WW, Li YC, Ma SR, Mao L, Yu GT, Bu LL, Kulkarni AB, Zhang WF, Sun ZJ. Specific blockade CD73 alters the "exhausted" phenotype of T cells in head and neck squamous cell carcinoma. Int J Cancer 2018; 143:1494-1504. [PMID: 29663369 PMCID: PMC11523565 DOI: 10.1002/ijc.31534] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/28/2018] [Accepted: 03/26/2018] [Indexed: 01/17/2023]
Abstract
The adenosine-induced immunosuppression hampers the immune response toward tumor cells and facilitates the tumor cells to evade immunosurveillance. CD73, an ecto-5-nucleotidase, is the ectoenzyme dephosphorylating extracellular AMP to adenosine. Here, using immunocompetent transgenic head and neck squamous cell carcinoma (HNSCC) mouse model, immune profiling showed high expression of CD73 on CD4+ and CD8+ T cells was associated with an "exhausted" phenotype. Further, treatment with anti-CD73 monoclonal antibody (mAb) significantly blunted the tumor growth in the mouse model, and the blockade of CD73 reversed the "exhausted" phenotype of CD4+ and CD8+ T cells through downregulation of total expression of PD-1 and CTLA-4 on T cells. Whereas the population of CD4+ CD73hi /CD8+ CD73hi T cells expressed higher CTLA-4 and PD-1 as compared to untreated controls. In addition, the human tissue microarrays showed the expression of CD73 is upregulated on tumor infiltrating immune cells in patients with primary HNSCC. Moreover, CD73 expression is an independent prognostic factor for poor outcome in our cohort of HNSCC patients. Altogether, these findings highlight the immunoregulatory role of CD73 in the development of HNSCC and we propose that CD73 may prove to be a promising immunotherapeutic target for the treatment of HNSCC.
Collapse
MESH Headings
- 5'-Nucleotidase/antagonists & inhibitors
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/metabolism
- Animals
- Antibodies, Monoclonal/pharmacology
- Apoptosis
- Biomarkers, Tumor
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- CTLA-4 Antigen/metabolism
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Proliferation
- Follow-Up Studies
- GPI-Linked Proteins/antagonists & inhibitors
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Head and Neck Neoplasms/immunology
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Immune Tolerance/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- PTEN Phosphohydrolase/physiology
- Phenotype
- Prognosis
- Receptor, Transforming Growth Factor-beta Type I/physiology
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi-Cun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Shrestha R, Prithviraj P, Anaka M, Bridle KR, Crawford DHG, Dhungel B, Steel JC, Jayachandran A. Monitoring Immune Checkpoint Regulators as Predictive Biomarkers in Hepatocellular Carcinoma. Front Oncol 2018; 8:269. [PMID: 30057891 PMCID: PMC6053505 DOI: 10.3389/fonc.2018.00269] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
The global burden of hepatocellular carcinoma (HCC), one of the frequent causes of cancer-related deaths worldwide, is rapidly increasing partly due to the limited treatment options available for this disease and recurrence due to therapy resistance. Immune checkpoint inhibitors that are proved to be beneficial in the treatment of advanced melanoma and other cancer types are currently in clinical trials in HCC. These ongoing trials are testing the efficacy and safety of a few select checkpoints in HCC. Similar to observations in other cancers, these immune checkpoint blockade treatments as monotherapy may benefit only a fraction of HCC patients. Studies that assess the prevalence and distribution of other immune checkpoints/modulatory molecules in HCC have been limited. Moreover, robust predictors to identify which HCC patients will respond to immunotherapy are currently lacking. The objective of this study is to perform a comprehensive evaluation on different immune modulators as predictive biomarkers to monitor HCC patients at high risk for poor prognosis. We screened publically available HCC patient databases for the expression of previously well described immune checkpoint regulators and evaluated the usefulness of these immune modulators to predict high risk, patient overall survival and recurrence. We also identified the immune modulators that synergized with known immune evasion molecules programmed death receptor ligand-1 (PD-L1), programmed cell death protein-1 (PD-1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and correlated with worse patient outcomes. We evaluated the association between the expression of epithelial-to-mesenchymal transition (EMT) markers and PD-L1 in HCC patient tumors. We also examined the relationship of tumor mutational burden with HCC patient survival. Notably, expression of immune modulators B7-H4, PD-L2, TIM-3, and VISTA were independently associated with worse prognosis, while B7-H4, CD73, and VISTA predicted low recurrence-free survival. Moreover, the prognosis of patients expressing high PD-L1 with high B7-H4, TIM-3, VISTA, CD73, and PD-L2 expression was significantly worse. Interestingly, PD-L1 expression in HCC patients in the high-risk group was closely associated with EMT marker expression and prognosticates poor survival. In HCC patients, high tumor mutational burden (TMB) predicted worse patient outcomes than those with low TMB.
Collapse
Affiliation(s)
- Ritu Shrestha
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | | | - Matthew Anaka
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kim R Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Darrell H G Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Bijay Dhungel
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Jason C Steel
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Aparna Jayachandran
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Leone RD, Emens LA. Targeting adenosine for cancer immunotherapy. J Immunother Cancer 2018; 6:57. [PMID: 29914571 PMCID: PMC6006764 DOI: 10.1186/s40425-018-0360-8] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint antagonists (CTLA-4 and PD-1/PD-L1) and CAR T-cell therapies generate unparalleled durable responses in several cancers and have firmly established immunotherapy as a new pillar of cancer therapy. To extend the impact of immunotherapy to more patients and a broader range of cancers, targeting additional mechanisms of tumor immune evasion will be critical. Adenosine signaling has emerged as a key metabolic pathway that regulates tumor immunity. Adenosine is an immunosuppressive metabolite produced at high levels within the tumor microenvironment. Hypoxia, high cell turnover, and expression of CD39 and CD73 are important factors in adenosine production. Adenosine signaling through the A2a receptor expressed on immune cells potently dampens immune responses in inflamed tissues. In this article, we will describe the role of adenosine signaling in regulating tumor immunity, highlighting potential therapeutic targets in the pathway. We will also review preclinical data for each target and provide an update of current clinical activity within the field. Together, current data suggest that rational combination immunotherapy strategies that incorporate inhibitors of the hypoxia-CD39-CD73-A2aR pathway have great promise for further improving clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Robert D Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Leisha A Emens
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 409, Cancer Research Building 1, Baltimore, MD, 21231, USA.
| |
Collapse
|