1
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Hashemi M, Khoushab S, Aghmiuni MH, Anaraki SN, Alimohammadi M, Taheriazam A, Farahani N, Entezari M. Non-coding RNAs in oral cancer: Emerging biomarkers and therapeutic frontier. Heliyon 2024; 10:e40096. [PMID: 39583806 PMCID: PMC11582460 DOI: 10.1016/j.heliyon.2024.e40096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Around the world, oral cancer (OC) is a major public health problem, resulting in a significant number of deaths each year. Early detection and treatment are crucial for improving patient outcomes. Recent progress in DNA sequencing and transcriptome profiling has revealed extensive non-coding RNAs (ncRNAs) transcription, underscoring their regulatory importance. NcRNAs influence genomic transcription and translation and molecular signaling pathways, making them valuable for various clinical applications. Combining spatial transcriptomics (ST) and spatial metabolomics (SM) with single-cell RNA sequencing provides deeper insights into tumor microenvironments, enhancing diagnostic and therapeutic precision for OC. Additionally, the exploration of salivary biomarkers offers a non-invasive diagnostic avenue. This article explores the potential of ncRNAs as diagnostic and therapeutic tools for OC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeid Nemati Anaraki
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Operative, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University,Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Wang W, Liu Y, Wu J. The roles of lncRNAs in the development of drug resistance of oral cancers. Biomed Pharmacother 2024; 180:117458. [PMID: 39413618 DOI: 10.1016/j.biopha.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Oral cancers are a significant global health concern, with a high incidence of treatment failure primarily due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression, playing pivotal roles in various cellular processes, including tumor progression and response to therapy. This review explores the multifaceted roles of lncRNAs in the development of drug resistance in oral cancers. We highlight the mechanisms by which lncRNAs modulate drug efflux, apoptosis, epithelial-mesenchymal transition (EMT), and other pathways associated with chemoresistance. Key lncRNAs implicated in resistance to commonly used chemotherapeutic agents in oral cancers are discussed, along with their potential as therapeutic targets. Understanding the involvement of lncRNAs in drug resistance mechanisms offers promising avenues for overcoming treatment barriers and improving patient outcomes. This review underscores the need for further research to elucidate the precise roles of lncRNAs in oral cancer resistance and their translation into clinical interventions.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Yi Liu
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei 434000, China.
| |
Collapse
|
4
|
Lu J, Zhu Y, Zhang J, Cao N. Exploring the effects of matrix metalloproteinase-13 on the malignant biological behavior of tongue squamous cell carcinoma via the TNF signaling pathway based on bioinformatics methods. Transl Cancer Res 2024; 13:3814-3825. [PMID: 39145072 PMCID: PMC11319986 DOI: 10.21037/tcr-24-1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Background Identification of the etiology, molecular mechanisms, and carcinogenic pathways of tongue squamous cell carcinoma (TSCC) is crucial for developing new diagnostic and therapeutic strategies. This study used bioinformatics methods to identify key genes in TSCC and explored the potential functions and pathway mechanisms related to the malignant biological behavior of TSCC. Methods Gene chip data sets (i.e., GSE13601 and GSE34106) containing the data of both TSCC patients and normal control subjects were selected from the Gene Expression Omnibus (GEO) database. Using a gene expression analysis tool (GEO2R) of the GEO database, the differentially expressed genes (DEGs) were identified using the following criteria: |log fold change| >1, and P<0.05. The GEO2R tool was also used to select the upregulated DEGs in the chip candidates based on a P value <0.05. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Ontology (GO) function analysis, and a protein-protein interaction (PPI) network analysis were then conducted. The results were displayed using R language packages, including volcano plots, Venn diagrams, heatmaps, and enriched pathway bubble charts. Genes from the MalaCards database were compared with the candidate genes, and a thorough review of the literature was conducted to determine the clinical significance of these genes. Finally, feature gene-directed chemical drugs or targeted drugs were predicted using the Comparative Toxicogenomics Database (CTD). Results In total, 767 upregulated DEGs were identified from GSE13601 and 695 from GSE34106. By intersecting the upregulated DEGs from both data sets using a Venn diagram, 100 DEGs related to TSCC were identified. The enrichment analysis of the KEGG signaling pathways identified the majority of the pathways associated with the upregulated DEGs, including the Toll-like receptor signaling pathway, the extracellular matrix-receptor interaction, the tumor necrosis factor (TNF) signaling pathway, cytokine-cytokine receptor interaction, the chemokine signaling pathway, the interlukin-17 signaling pathway, and natural killer cell-mediated cytotoxicity. The PPI network and module analyses of the shared DEGs ultimately resulted in five clusters and 55 candidate genes. A further intersection analysis of the TSCC-related genes in the MalaCards database via a Venn diagram identified three important shared DEGs; that is, matrix metalloproteinase-1 (MMP1), MMP9, and MMP13. In the CTD, seven drugs related to MMP13 were identified for treating tongue tumors. Conclusions This study identified key genes and signaling pathways involved in TSCC and thus extended understandings of the molecular mechanisms that underlie the development and progression of TSCC. Additionally, this study showed that MMP13 may influence the malignant biological behavior of TSCC through the TNF signaling pathway. This finding could provide a theoretical basis for research into early differential diagnosis and targeted treatment.
Collapse
Affiliation(s)
- Junqin Lu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yeqian Zhu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Zhang
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ningning Cao
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Maurya SK, Rehman AU, Zaidi MAA, Khan P, Gautam SK, Santamaria-Barria JA, Siddiqui JA, Batra SK, Nasser MW. Epigenetic alterations fuel brain metastasis via regulating inflammatory cascade. Semin Cell Dev Biol 2024; 154:261-274. [PMID: 36379848 PMCID: PMC10198579 DOI: 10.1016/j.semcdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | | | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA.
| |
Collapse
|
6
|
Zhang X, Li Y, Huan C, Hou Y, Liu R, Shi H, Zhang P, Zheng B, Wang Y, Wang H, Zhang W. LncRNA NKILA inhibits HBV replication by repressing NF-κB signalling activation. Virol Sin 2024; 39:44-55. [PMID: 37832719 PMCID: PMC10877346 DOI: 10.1016/j.virs.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Hepatitis B virus (HBV) infection results in liver cirrhosis and hepatocellular carcinoma (HCC). HBx/nuclear factor (NF)-κB pathway plays a role in HBV replication. However, whether NF-κB-interacting long noncoding RNA (NKILA), a suppressor of NF-κB activation, regulates HBV replication remains largely unknown. In this study, gain-and-loss experiments showed that NKILA inhibited HBV replication by inhibiting NF-κB activity. In turn, HBV infection down-regulated NKILA expression. In addition, expression levels of NKILA were lower in the peripheral blood-derived monocytes (PBMCs) of HBV-positive patients than in healthy individuals, which were correlated with HBV viral loads. And a negative correlation between NKILA expression level and HBV viral loads was observed in blood serum from HBV-positive patients. Lower levels of endogenous NKILA were also observed in HepG2 cells expressing a 1.3-fold HBV genome, HBV-infected HepG2-NTCP cells, stable HBV-producing HepG2.2.15 and HepAD38 cells, compared to those HBV-negative cells. Furthermore, HBx was required for NKILA-mediated inhibition on HBV replication. NKILA decreased HBx-induced NF-κB activation by interrupting the interaction between HBx and p65, whereas NKILA mutants lack of essential domains for NF-ĸB inhibition, lost the ability to inhibit HBV replication. Together, our data demonstrate that NKILA may serve as a suppressor of HBV replication via NF-ĸB signalling.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China; Department of Ophthalmology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yuanyuan Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Chen Huan
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yubao Hou
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Rujia Liu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Hongyun Shi
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Peng Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yingchao Wang
- Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130012, China.
| | - Hong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China.
| | - Wenyan Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China.
| |
Collapse
|
7
|
Gautam P, Gupta S, Sachan M. Genome-wide expression profiling reveals novel biomarkers in epithelial ovarian cancer. Pathol Res Pract 2023; 251:154840. [PMID: 37844484 DOI: 10.1016/j.prp.2023.154840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/18/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most aggressive and frequent malignancy detected among women worldwide. The pathophysiology of OC should, therefore be better understood to identify diagnostic, prognostic, and predictive novel biomarkers necessary for early detection, management, and prognostication. In this study, we aimed to investigate transcriptomic landscape and biomarker through RNA-seq data analysis. Further analysis by Protein Protein network identified top 10 Differentially Expressed Genes (DEGs). KEGG pathway enrichment analysis revealed the significant enrichment of DEGs in basal cell carcinoma, cell cycle and FoxO signalling pathway. The RNA-seq results of 10 DEGs were validated by QRT-PCR and TCGA database. Correlation studies were also performed between gene expression and clinical characteristics followed by survival analysis. Finally, 8 DEGs (CDKN1A, BCL6, CDC45, WNT2, TLR5, AQP5) including two novel DEGs (CSN1S1 and NKILA) were identified showing significant correlations with EOC characteristics. These may serve as interesting biomarkers and novel treatment targets and warrant further investigation into the functional outcome of EOC.
Collapse
Affiliation(s)
- Priyanka Gautam
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj 211004, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj 211004, India.
| |
Collapse
|
8
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Thapa R, Afzal O, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Altamimi ASA, Subramaniyan V, Thangavelu L, Singh SK, Dua K. Unveiling the connection: Long-chain non-coding RNAs and critical signaling pathways in breast cancer. Pathol Res Pract 2023; 249:154736. [PMID: 37579591 DOI: 10.1016/j.prp.2023.154736] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| |
Collapse
|
10
|
Balakittnen J, Weeramange CE, Wallace DF, Duijf PHG, Cristino AS, Kenny L, Vasani S, Punyadeera C. Noncoding RNAs in oral cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1754. [PMID: 35959932 PMCID: PMC10909450 DOI: 10.1002/wrna.1754] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 05/13/2023]
Abstract
Oral cancer (OC) is the most prevalent subtype of cancer arising in the head and neck region. OC risk is mainly attributed to behavioral risk factors such as exposure to tobacco and excessive alcohol consumption, and a lesser extent to viral infections such as human papillomaviruses and Epstein-Barr viruses. In addition to these acquired risk factors, heritable genetic factors have shown to be associated with OC risk. Despite the high incidence, biomarkers for OC diagnosis are lacking and consequently, patients are often diagnosed in advanced stages. This delay in diagnosis is reflected by poor overall outcomes of OC patients, where 5-year overall survival is around 50%. Among the biomarkers proposed for cancer detection, noncoding RNA (ncRNA) can be considered as one of the most promising categories of biomarkers due to their role in virtually all cellular processes. Similar to other cancer types, changes in expressions of ncRNAs have been reported in OC and a number of ncRNAs have diagnostic, prognostic, and therapeutic potential. Moreover, some ncRNAs are capable of regulating gene expression by various mechanisms. Therefore, elucidating the current literature on the four main types of ncRNAs namely, microRNA, lncRNA, snoRNA, piwi-RNA, and circular RNA in the context of OC pathogenesis is timely and would enable further improvements and innovations in diagnosis, prognosis, and treatment of OC. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jaikrishna Balakittnen
- The Centre for Biomedical Technologies, The School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
- Department of Medical Laboratory Sciences, Faculty of Allied Health SciencesUniversity of JaffnaJaffnaSri Lanka
| | - Chameera Ekanayake Weeramange
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Daniel F. Wallace
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Pascal H. G. Duijf
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Queensland University of Technology, School of Biomedical SciencesFaculty of Health at the Translational Research InstituteWoolloongabbaQueenslandAustralia
- Centre for Data Science, Queensland University of Queensland, TechnologyBrisbaneQueenslandAustralia
- Institute of Clinical Medicine, Faculty of Medicine, HerstonUniversity of OsloOsloNorway
- Department of Medical GeneticsOslo University HospitalOsloNorway
- University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Liz Kenny
- Royal Brisbane and Women's Hospital, Cancer Care ServicesHerstonQueenslandAustralia
- Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sarju Vasani
- Royal Brisbane and Women's Hospital, Cancer Care ServicesHerstonQueenslandAustralia
- Department of OtolaryngologyRoyal Brisbane and Women's HospitalHerstonQueenslandAustralia
| | - Chamindie Punyadeera
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
- Queensland University of Technology, School of Biomedical SciencesFaculty of Health at the Translational Research InstituteWoolloongabbaQueenslandAustralia
- Menzies Health InstituteGriffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
11
|
Long Non-Coding RNAs as Novel Targets for Phytochemicals to Cease Cancer Metastasis. Molecules 2023; 28:molecules28030987. [PMID: 36770654 PMCID: PMC9921150 DOI: 10.3390/molecules28030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Metastasis is a multi-step phenomenon during cancer development leading to the propagation of cancer cells to distant organ(s). According to estimations, metastasis results in over 90% of cancer-associated death around the globe. Long non-coding RNAs (LncRNAs) are a group of regulatory RNA molecules more than 200 base pairs in length. The main regulatory activity of these molecules is the modulation of gene expression. They have been reported to affect different stages of cancer development including proliferation, apoptosis, migration, invasion, and metastasis. An increasing number of medical data reports indicate the probable function of LncRNAs in the metastatic spread of different cancers. Phytochemical compounds, as the bioactive agents of plants, show several health benefits with a variety of biological activities. Several phytochemicals have been demonstrated to target LncRNAs to defeat cancer. This review article briefly describes the metastasis steps, summarizes data on some well-established LncRNAs with a role in metastasis, and identifies the phytochemicals with an ability to suppress cancer metastasis by targeting LncRNAs.
Collapse
|
12
|
Wei FS, Rao MW, Huang YL, Chen SB, Wu YQ, Yang L. miR-182-5p Delivered by Plasma Exosomes Promotes Sevoflurane-Induced Neuroinflammation and Cognitive Dysfunction in Aged Rats with Postoperative Cognitive Dysfunction by Targeting Brain-Derived Neurotrophic Factor and Activating NF-κB Pathway. Neurotox Res 2022; 40:1902-1912. [PMID: 36308704 DOI: 10.1007/s12640-022-00597-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 12/31/2022]
Abstract
The objective of this study was to discuss the possible mechanism and effect of miR-182-5p delivered by plasma exosomes on sevoflurane-induced neuroinflammation and cognitive disorder in aged rats with postoperative cognitive dysfunction (POCD). Firstly, aged POCD rat models were constructed by sevoflurane anesthesia and superior mesenteric artery occlusion. Subsequently, exosomes and miR-182-5p were inhibited by injection of GW4869 and miR-182-5p-sponge, respectively. Then, exosomes were extracted from the plasma of rats in each group, followed by the determination of the morphology and diameters of exosomes as well as the expression of exosome markers CD63 and CD81 by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Besides, the Morris water maze (MWM) and fear conditioning test were used to evaluate the learning and memory ability of rats; Western blot to detect the expression levels of neurotrophic factors (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) as well as NF-κB pathway-related proteins (p65 and p-p65) in rat hippocampal tissues or PC-12 cells; qRT-PCR to assess the expression levels of miR-182-5p and BDNF in rat plasma, plasma exosomes, hippocampal tissues, and PC-12 cells; ELISA to evaluate the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in rat hippocampal tissues; and dual-luciferase reporter assay to verify the targeting relationship between miR-182-5p and BDNF. After examination, the results were obtained as follows. miR-182-5p expression was up-regulated in POCD rats and could be delivered by plasma exosomes. Inhibition of plasma exosomes or miR-182-5p could significantly ameliorate learning and memory disorders; decrease the levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β; increase the expression of BDNF and NGF; and inhibit the activity of NF-κB signaling pathway in POCD rat hippocampus. In addition, miR-182-5p could also target and inhibit BDNF. All in all, miR-182-5p delivered by plasma exosomes promotes sevoflurane-induced neuroinflammation and cognitive dysfunction in aged POCD rats by targeting BDNF and activating the NF-κB pathway.
Collapse
Affiliation(s)
- Fu-Sheng Wei
- Department of Anesthesiology and Operation, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, Jiangxi, China
| | - Mu-Wen Rao
- Department of Anesthesiology and Operation, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, Jiangxi, China
| | - Yuan-Lu Huang
- Department of Anesthesiology and Operation, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, Jiangxi, China
| | - Shi-Biao Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, Jiangxi, China
| | - Yu-Qian Wu
- Science and Technology Division, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, Jiangxi, China
| | - Lei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, Jiangxi, China.
| |
Collapse
|
13
|
Circulating Long Non-Coding RNAs Could Be the Potential Prognostic Biomarker for Liquid Biopsy for the Clinical Management of Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14225590. [PMID: 36428681 PMCID: PMC9688117 DOI: 10.3390/cancers14225590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) have little or no coding potential. These transcripts are longer than 200 nucleotides. Since lncRNAs are master regulators of almost all biological processes, recent evidence proves that aberrantly expressed lncRNAs are pathogenic for oral squamous cell carcinoma (OSCC) and other diseases. LncRNAs influence chromatin modifications, transcriptional modifications, post-transcriptional modifications, genomic imprinting, cell proliferation, invasion, metastasis, and apoptosis. Consequently, they have an impact on the disease transformation, progression, and morbidity in OSCC. Therefore, circulating lncRNAs could be the potential cancer biomarker for the better clinical management (diagnosis, prognosis, and monitoring) of OSCC to provide advanced treatment strategies and clinical decisions. In this review, we report and discuss the recent understandings and perceptions of dysregulated lncRNAs with a focus on their clinical significance in OSCC-disease monitoring and treatment. Evidence clearly indicates that a specific lncRNA expression signature could act as an indicator for the early prediction of diagnosis and prognosis for the initiation, progression, recurrence, metastasis and other clinical prognostic-factors (overall survival, disease-free survival, etc.) in OSCC. The present review demonstrates the current knowledge that all potential lncRNA expression signatures are molecular biomarkers for the early prediction of prognosis in OSCC. Finally, the review provides information about the clinical significance, challenges and limitations of the clinical usage of circulating lncRNAs in a liquid biopsy method in early, pre-symptomatic, sub-clinical, accurate OSCC prognostication. More studies on lncRNA are required to unveil the biology of the inherent mechanisms involved in the process of the development of differential prognostic outcomes in OSCC.
Collapse
|
14
|
Zhang Y, Sun W, Zhang L. Heparin-Binding Protein Aggravates Acute Lung Injury in Septic Rats by Promoting Macrophage M1 Polarization and NF- κB Signaling Pathway Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3315601. [PMID: 36225185 PMCID: PMC9550450 DOI: 10.1155/2022/3315601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
Objective Heparin-binding protein (HBP) plays an important role in sepsis and is a prognostic biomarker in patients with sepsis, but the role of HBP in the pathogenesis of sepsis-associated acute lung injury (ALI) remains unclear. This study aimed to investigate the role of HBP in sepsis-induced ALI and its underlying molecular mechanisms. Methods The cecal ligation and puncture (CLP) model was used to induce ALI in mice and randomly divided into 4 groups: control group, CLP (rats treated with cecal ligation and puncture), HBP (rats treated with CLP and HBP injection), and HBP + UFH (rats treated with CLP and injection of HBP and unfractionated heparin). Subsequently, HBP expression in rat serum and lung tissues was detected by qRT-PCR, edema and pathological changes in lung tissue by lung wet-to-dry weight ratio (W/D) and HE staining, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities in lung tissues by detection kits. Additionally, ELISA and western blot were applied for the determination of IL-6, TNF-α, and IL-1β expression in rat bronchoalveolar lavage fluid, and iNOS, Arg-1, Mrc1, NF-κBp65, IKKα, IκBα, and p-IκBα expression in lung tissues. Results The expression levels of HBP in serum and lung tissues of rats in the HBP group were significantly increased, the lung tissues were severely injured, accompanied by a significant increase in MPO activity but a significant decrease in SOD activity, and the levels of IL-6, TNF-α, and IL-1β in bronchoalveolar lavage fluid were significantly increased. In addition, the expression levels of iNOS, NF-κB p65, IKKα, and p-IκBα in the lung tissues of rats in the HBP group were significantly increased, while the addition of unfractionated heparin reversed the above results. Conclusion HBP aggravates ALI in septic rats, and its mechanism may be related to the promotion of macrophage M1 polarization and activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Diagnostic Ultrasound, Southern War Zone General Hospital, Guangzhou, Guangdong, China
| | - Wenqiao Sun
- Minimally Invasive Interventional Oncology Department, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Licheng Zhang
- Minimally Invasive Interventional Oncology Department, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Barwal TS, Singh N, Sharma U, Bazala S, Rani M, Behera A, Kumawat RK, Kumar P, Uttam V, Khandelwal A, Barwal J, Jain M, Jain A. miR-590-5p: A double-edged sword in the oncogenesis process. Cancer Treat Res Commun 2022; 32:100593. [PMID: 35752082 DOI: 10.1016/j.ctarc.2022.100593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Accumulating evidence suggests the critical role of miR-590-5p in various aspects of cellular homeostasis, including cancer. Furthermore, we and others have recently demonstrated that miRNA-590-5p acts as an oncogene in some cancers while it acts as a tumor-suppressor in others. However, the role of miR-590-5p in oncogenesis is more complex, like a double-edged sword. Thus, this systematic review introduces the concept, mechanism, and biological function of miR-590-5p to resolve this apparent paradox. We have also described the involvement of miR-590-5p in crucial cancer-hallmarks processes like proliferation, invasion, metastasis, and chemo radioresistance. Finally, we have presented the possible genes/pathways targets of miR-590-5p through bioinformatics analysis. This review may help in designing better biomarkers and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India; GreyB consultancy services, Mohali, Punjab 160062, India
| | - Neha Singh
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sonali Bazala
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Medha Rani
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Alisha Behera
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Ram Kumar Kumawat
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Pawan Kumar
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Akanksha Khandelwal
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Jyoti Barwal
- Department of Zoology, Government Post Graduate College, Bilaspur, Himachal Pradesh, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
16
|
Tyagi S, Chan EC, Barker D, McElduff P, Taylor KA, Riveros C, Singh E, Smith R. Transcriptomic analysis reveals myometrial topologically associated domains linked to onset of human term labor. Mol Hum Reprod 2022; 28:6527642. [PMID: 35150271 PMCID: PMC8903000 DOI: 10.1093/molehr/gaac003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Changes in cell phenotype are thought to occur through the expression of groups of co-regulated genes within topologically associated domains (TADs). In this paper we allocate genes expressed within the myometrium of the human uterus during the onset of term labor into TADs. Transformation of the myometrial cells of the uterus into a contractile phenotype during term human labor is the result of a complex interaction of different epigenomic and genomic layers. Recent work suggests that the transcription factor RELA lies at the top of this regulatory network. Using deep RNA sequencing (RNAseq) analysis of myometrial samples (n = 16) obtained at term from women undergoing Caesarean section prior to or after the onset of labor we have identified evidence for how other gene expression regulatory elements interact with transcription factors in the labor phenotype transition. Gene set enrichment analysis of our RNAseq data identified three modules of enriched genes (M1, M2 and M3), which in gene ontology studies are linked to matrix degradation, smooth muscle and immune gene signatures, respectively. These genes were predominantly located within chromosomal TADs suggesting co-regulation of expression. Our transcriptomic analysis also identified significant differences in the expression of long non-coding RNAs (lncRNA), microRNAs (miRNA) and transcription factors that were predicted to target genes within the TADs. Additionally, network analysis revealed 15 new lncRNA (MCM3AP-AS1, TUG1, MIR29B2CHG, HCG18, LINC00963, KCNQ1OT1, NEAT1, HELLPAR, SNHG16, NUTM2B-AS1, MALAT1, PSMA3-AS1, GABPB1-AS1, NORAD, NKILA) and four miRNA (mir-145, mir-223, mir-let-7a, mir-132) as top gene hubs with three transcription factors (NFKB1, RELA, ESR1) as master regulators. Together, these factors are likely to be involved in co-regulatory networks driving a myometrial transformation to generate an estrogen sensitive phenotype. We conclude that lncRNA and miRNA targeting the estrogen receptor 1 and nuclear factor kappa B pathways play a key role in the initiation of human labor. For the first time we perform an integrative analysis to present a multi-level genomic signature made of mRNA, ncRNA and transcription factors in the myometrium for spontaneous term labor.
Collapse
Affiliation(s)
- Sonika Tyagi
- Central Clinical School, Monash University and the Alfred Hospital, Melbourne, VIC, Australia
| | - Eng-Cheng Chan
- Mothers and Babies Research Centre, HMRI University of Newcastle, NSW, Australia
| | | | | | - Kelly A Taylor
- Mothers and Babies Research Centre, HMRI University of Newcastle, NSW, Australia
| | | | - Esha Singh
- Department of Biotechnology and Biochemical Engineering, Indian Institute of Technology, New Delhi, India
| | - Roger Smith
- Mothers and Babies Research Centre, HMRI University of Newcastle, NSW, Australia.,University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
17
|
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer. Biomolecules 2022; 12:biom12020284. [PMID: 35204785 PMCID: PMC8961659 DOI: 10.3390/biom12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis.
Collapse
|
18
|
Epigenetic Silencing of Tumor Suppressor lncRNA NKILA: Implication on NF-κB Signaling in Non-Hodgkin’s Lymphoma. Genes (Basel) 2022; 13:genes13010128. [PMID: 35052468 PMCID: PMC8774545 DOI: 10.3390/genes13010128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
The long non-coding RNA (lncRNA) NKILA, localized to 20q13.31, is a negative regulator of NF-κB signaling implicated in carcinogenesis. As a CpG island is embedded in the promoter region of NKILA, it is hypothesized as a tumor suppressor lncRNA silenced by promoter DNA methylation in non-Hodgkin’s lymphoma (NHL). By pyrosequencing-verified methylation-specific PCR, NKILA methylation was detected in 1/10 (10%) NHL cell lines, but not in normal peripheral blood buffy coats or tonsils. NKILA methylation correlated with the repression of NKILA in cell lines. Hypomethylation treatment with 5-Aza-2′-deoxycytidine resulted in promoter demethylation and the re-expression of NKILA. In 102 NHL primary samples, NKILA was methylated in 29 (51.79%) diffuse large B-cell lymphoma (DLBCL) and 4 (20%) peripheral T-cell lymphoma cases, but unmethylated in all 26 mantle cell lymphoma cases. Mechanistically, the knockdown of NKILA resulted in promoting IkBα phosphorylation, associated with nucleus translocation of total p65 and phosphorylated p65 in SU-DHL-1 cells, hence constitutive NF-κB activation. Functionally, the knockdown of NKILA in SU-DHL-1 cells led to decreased cell death and increased cellular proliferation. Collectively, NKILA was a tumor suppressor lncRNA frequently hypermethylated in DLBCL. Promoter DNA methylation-mediated NKILA silencing resulted in increased cellular proliferation and decreased cell death via the repression of NF-κB signaling in NHL.
Collapse
|
19
|
Tang J, Fang X, Chen J, Zhang H, Tang Z. Long Non-Coding RNA (lncRNA) in Oral Squamous Cell Carcinoma: Biological Function and Clinical Application. Cancers (Basel) 2021; 13:cancers13235944. [PMID: 34885054 PMCID: PMC8656574 DOI: 10.3390/cancers13235944] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Increasing evidence has revealed the regulatory roles of long non-coding RNAs (lncRNAs) in the initiation and progress of oral squamous cell carcinoma (OSCC). As some novel lncRNA-targeted techniques combined with immune checkpoint therapies have emerged, they provide a new strategy for OSCC treatment. This review summarizes current knowledge regarding the involvement of lncRNAs in OSCC along with their possible use as diagnostic and prognostic biomarker and therapeutic targets. Abstract Oral squamous cell carcinoma (OSCC) is a type of malignancy with high mortality, leading to poor prognosis worldwide. However, the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Recently, the discovery and characterization of long non-coding RNAs (lncRNAs) have revealed their regulatory importance in OSCC. Abnormal expression of lncRNAs has been broadly implicated in the initiation and progress of tumors. In this review, we summarize the functions and molecular mechanisms regarding these lncRNAs in OSCC. In addition, we highlight the crosstalk between lncRNA and tumor microenvironment (TME), and discuss the potential applications of lncRNAs as diagnostic and prognostic tools and therapeutic targets in OSCC. Notably, we also discuss lncRNA-targeted therapeutic techniques including CRISPR-Cas9 as well as immune checkpoint therapies to target lncRNA and the PD-1/PD-L1 axis. Therefore, this review presents the future perspectives of lncRNAs in OSCC therapy, but more research is needed to allow the applications of these findings to the clinic.
Collapse
Affiliation(s)
- Jianfei Tang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Xiaodan Fang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Juan Chen
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Haixia Zhang
- The Oncology Department of Xiangya Second Hospital, Central South University, Changsha 410008, China
- Correspondence: (H.Z.); (Z.T.); Tel.: +86-139-7313-0429 (H.Z.); +86-139-0731-7983 (Z.T.)
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Correspondence: (H.Z.); (Z.T.); Tel.: +86-139-7313-0429 (H.Z.); +86-139-0731-7983 (Z.T.)
| |
Collapse
|
20
|
Barik GK, Sahay O, Behera A, Naik D, Kalita B. Keep your eyes peeled for long noncoding RNAs: Explaining their boundless role in cancer metastasis, drug resistance, and clinical application. Biochim Biophys Acta Rev Cancer 2021; 1876:188612. [PMID: 34391844 DOI: 10.1016/j.bbcan.2021.188612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer metastasis and drug resistance are two major obstacles in the treatment of cancer and therefore, the leading cause of cancer-associated mortalities worldwide. Hence, an in-depth understanding of these processes and identification of the underlying key players could help design a better therapeutic regimen to treat cancer. Earlier thought to be merely transcriptional junk and having passive or secondary function, recent advances in the genomic research have unravelled that long noncoding RNAs (lncRNAs) play pivotal roles in diverse physiological as well as pathological processes including cancer metastasis and drug resistance. LncRNAs can regulate various steps of the complex metastatic cascade such as epithelial-mesenchymal transition (EMT), invasion, migration and metastatic colonization, and also affect the sensitivity of cancer cells to various chemotherapeutic drugs. A substantial body of literature for more than a decade of research evince that lncRNAs can regulate gene expression at different levels such as epigenetic, transcriptional, posttranscriptional, translational and posttranslational levels, depending on their subcellular localization and through their ability to interact with DNA, RNA and proteins. In this review, we mainly focus on how lncRNAs affect cancer metastasis by modulating expression of key metastasis-associated genes at various levels of gene regulation. We also discuss how lncRNAs confer cancer cells either sensitivity or resistance to various chemo-therapeutic drugs via different mechanisms. Finally, we highlight the immense potential of lncRNAs as prognostic and diagnostic biomarkers as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Debasmita Naik
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bhargab Kalita
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
21
|
Wang X, Gong Z, Ma L, Wang Q. LncRNA GACAT1 induces tongue squamous cell carcinoma migration and proliferation via miR-149. J Cell Mol Med 2021; 25:8215-8221. [PMID: 34378327 PMCID: PMC8419168 DOI: 10.1111/jcmm.16690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Recent studies have observed that lncRNAs (long non‐coding RNAs) are involved in the progression of various tumours including tongue squamous cell carcinoma (TSCC). Recently, a new lnRNA, GACAT1, has been firstly identified in gastric cancer. However, its potential role in TSCC remains unknown. In this reference, we observed that GACAT1 was overexpressed in TSCC samples and cell lines. Of 25 TSCC specimens, GACAT1 expression was overexpressed in 18 patients (18/25, 72%) compared to non‐tumour specimens. Ectopic expression of GACAT1 induced cell growth and migration and promoted epithelial to mesenchymal transition in TSCC. In addition, ectopic expression of GACAT1 decreased miR‐149 expression in SCC1 cell. We observed that miR‐149 expression was down‐regulated in TSCC cell lines. Moreover, we observed that GACAT1 expression was negatively correlated with miR‐149 expression. GACAT1 overexpression induced TSCC cell growth and migration via regulating miR‐149 expression. These data provided that GACAT1 played an oncogenic role in the progression of TSCC partly through modulating miR‐149 expression.
Collapse
Affiliation(s)
- Xueling Wang
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Zuode Gong
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Long Ma
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Qibao Wang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| |
Collapse
|
22
|
Sharma A, Kansara S, Mahajan M, Yadav B, Garg M, Pandey AK. Long non-coding RNAs orchestrate various molecular and cellular processes by modulating epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166240. [PMID: 34363933 DOI: 10.1016/j.bbadis.2021.166240] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) regulate various hallmarks associated with the progression of human cancers through their binding with RNA, DNA, and proteins. Epithelial-Mesenchymal Transition (EMT) is a cardinal and multi-stage process where epithelial cells acquire a mesenchymal-like phenotype that is instrumental for tumor cells to initiate invasion and metastasis. LncRNAs can potentially promote tumor onset and progression as well as drug resistance by directly or indirectly altering the EMT program. Head and neck squamous cell carcinoma (HNSCC) are a dreadful malignancy affecting public health globally. The past few years have provided a better insight into the mechanism of EMT in HNSCC. The differential expression of the lncRNAs that can act either as promoters or suppressors in the process of EMT is of great importance. In this review, we aim to sum up, the highly structured mechanism with the diverse role of lncRNAs and their interaction with different molecules in the regulation of EMT. Moreover, discussing principal EMT pathways modulated by lncRNAs and their prospective potential value as therapeutic targets.
Collapse
Affiliation(s)
- Ayushi Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India.
| | - Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Mehul Mahajan
- Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India.
| |
Collapse
|
23
|
Ahmad S, Abbas M, Ullah MF, Aziz MH, Beylerli O, Alam MA, Syed MA, Uddin S, Ahmad A. Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. Semin Cancer Biol 2021; 85:155-163. [PMID: 34314819 DOI: 10.1016/j.semcancer.2021.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Cancer metastasis is a major reason for the cancer-associated deaths and a role of long non-coding RNAs (lncRNAs) in cancer metastasis is increasingly being realized. Among the many oncogenic pathways, NF-κB signalling's involvement in cancer metastasis as a key inflammation-regulatory transcription factor has been a subject of interest for long time. Accumulating data from in vitro as well as in vivo studies along with analysis of clinical cancer tissues points to regulation of NF-κB signalling by lncRNAs with implications toward the onset of cancer metastasis. LncRNAs FOXD2-AS1, KRT19P3 and the NF-κB interacting lncRNA (NKILA) associate with lymph node metastasis and poor prognosis of individual cancers. The role of epithelial-mesenchymal transition (EMT) in cancer metastasis is well known. EMT is regulated by NF-κB and regulation of NF-κB/EMT-induced metastasis by lncRNAs remains a hot topic of research with indications for such roles of lncRNAs MALAT1, SNHG15, CRNDE and AC007271.3. Among the many lncRNAs, NKILA stands out as the most investigated lncRNA for its regulation of NF-κB. This tumor suppressive lncRNA has been reported downregulated in clinical samples representing different human cancers. Mechanistically, NKILA has been consistently shown to inhibit NF-κB activation via inhibition of IκBα phosphorylation and the resulting suppression of EMT. NKILA is also a target of natural anticancer compounds. Given the importance of NF-κB as a master regulatory transcription factor, lncRNAs, as the modulators of NF-κB signaling, can provide alternate targets for metastatic cancers with constitutively active NF-κB.
Collapse
Affiliation(s)
- Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Madiha Abbas
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Moammir H Aziz
- James H. Quillen VA Medical Center, Johnson City, TN, 37604, USA
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Majid Ali Alam
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahab Uddin
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Center, Qatar University, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
24
|
Long non-coding RNA NKILA regulates expression of HSP90α, NF-κB and β-catenin proteins in the MCF-7 breast cancer cell line. Mol Biol Rep 2021; 48:4563-4571. [PMID: 34125329 DOI: 10.1007/s11033-021-06482-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Non-coding RNAs are increasingly being investigated and have shown great potential for diagnosis, prognosis and treatment of cancer. Thus, we have investigated a possible regulatory mechanism between NF-κB suppressor-NKILA, and HSP90, NF-κB, and β-catenin molecules in MCF-7 breast cancer cells. HSP90 is an important stress protein and together with β-catenin and NF-κB molecules can be responsible for cancer cell development. However, there is no comprehensive data available on the novel molecule NKILA unlike for HSP90, β-catenin and NF-κB alone. Therefore, we suggest there might be a correlation between NKILA and these proteins. To investigate the NKILA role on HSP90, NF-κB and β-catenin proteins we inhibited the NKILA by using transfection in MCF-7 breast cancer cells. NKILA-siRNA transfected cells were incubated for 5 h. Then, cells were collected and proteins were extracted to be separated by SDS-PAGE. The aforementioned proteins of siRNA transfected group were evaluated by quantification and comparison of their relative expression levels with the control group by immunoblotting. Results showed, HSP90 and NF-κB/p105, NF-κB/p65 and NF-κB/p50 subunits significantly increased while the level of β-catenin decreased after NKILA inhibition. For the first time we have demonstrated that HSP90 and expression levels of beta-catenin are associated with NKILA levels which may be closely related to the canonical NF-κB pathway in MCF-7 cells. These novel findings may have significant implications in cancer cells development and possibly present important hints for the future studies of the cancer cell targeted therapy.
Collapse
|
25
|
NF-KappaB interacting LncRNA: Review of its roles in neoplastic and non-neoplastic conditions. Biomed Pharmacother 2021; 139:111604. [PMID: 33895520 DOI: 10.1016/j.biopha.2021.111604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
NF-κB Interacting LncRNA (NKILA) is a long non-coding RNA (lncRNA) which has inhibitory roles on NF-κB. NF-κB regulates expression of several molecules participating in various crucial physiological reaction including immune responses, cell proliferation and differentiation, as well as cell death. Therefore, NKILA can be involved in the pathogenesis of a wide spectrum of human disorders. Numerous studies in hepatocellular carcinoma, breast cancer, melanoma, glioma and other types of neoplasms have indicated the role of NKILA in blockage of tumor growth and inhibition of metastasis. Further in vitro and in vivo assays including apoptosis assays, knock-down and knock-in experiments have verified such roles. In addition to its roles in neoplastic conditions, NKILA is involved in the pathogenesis of immune-related disorders. Dysregulation of expression of NKILA has been reported in patients with diverse conditions such as epilepsy, osteoarthritis, periodontitis and coronary artery disease. In this paper, we recapitulate the contribution of NKILA in neoplastic and non-neoplastic conditions.
Collapse
|
26
|
Ming H, Li B, Zhou L, Goel A, Huang C. Long non-coding RNAs and cancer metastasis: Molecular basis and therapeutic implications. Biochim Biophys Acta Rev Cancer 2021; 1875:188519. [PMID: 33548345 DOI: 10.1016/j.bbcan.2021.188519] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cancer metastasis, defined by the epithelial to mesenchymal transition (EMT) of tumor cells, disseminates from the primary site to progressively colonize in distant tissues, and accounts for most cancer-associated deaths. However, studies on the molecular basis of cancer metastasis are still in their infancy. Besides genetic mutations, accumulating evidence indicates that epigenetic alterations also contribute in a major way to the refractory nature of cancer metastasis. Considered as one of the essential epigenetic regulators, long non-coding RNAs (lncRNAs) can act as signaling regulators, decoys, guides and scaffolds, modulating key molecules in every step of cancer metastasis including dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Although still having limited clinical application, it is encouraging to witness that several lncRNAs, including CCAT1 and HOTAIR, are under clinical evaluation as potential biomarkers for cancer staging and assessment of metastatic potential. In this review, we focus on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis and discuss their clinical potential as novel therapeutic targets as well as their diagnostic and prognostic significance for cancer treatment. Gaining clear insights into the detailed molecular basis underlying lncRNA-modulated cancer metastasis may provide previously unrecognized diagnostic and therapeutic strategies for metastatic patients.
Collapse
Affiliation(s)
- Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, 1218 S. Fifth Avenue, Suite 2226, Biomedical Research Center, Monrovia, CA 91016, USA.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
27
|
Hou C, Dong Y, Du B. Long Non-Coding RNA LINC00466 Knockdown Inhibits Tongue Squamous Cell Carcinoma Malignancy by Targeting microRNA-493/HMGA2. Cancer Manag Res 2020; 12:13071-13084. [PMID: 33376400 PMCID: PMC7764812 DOI: 10.2147/cmar.s282625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 01/12/2023] Open
Abstract
Purpose Long intergenic non-protein-coding RNA 00466 (LINC00466) promotes lung adenocarcinoma progression. Nonetheless, the expression and precise roles of LINC00466 in tongue squamous cell carcinoma (TSCC) remains uncertain and warrant further investigation. Hence, the present study aimed to examine the LINC00466 effects on the aggressive TSCC cell characteristics and to elucidate the potential underlying mechanisms. Methods First, LINC00466 expression in TSCC was determined by reverse transcription-quantitative PCR. Subsequently, cell proliferation, apoptosis, migration, and invasion in vitro, as well as tumor growth in vivo were assessed to examine the LINC00466 effects on TSCC cells. Results LINC00466 was upregulated in TSCC. This upregulation was notably associated with shorter overall TSCC patient survival. In vitro experiments indicated that LINC00466 depletion suppressed TSCC cell proliferation, migration and invasion, and promoted apoptosis. An in vivo experiment revealed that LINC00466 downregulation attenuated TSCC tumor growth in vivo. Mechanistic analysis revealed that LINC00466 functions as a microRNA-493 (miR-493) molecular sponge, a miRNA that targets high-mobility group AT-hook 2 (HMGA2) mRNA. LINC00466 upregulated HMGA2 in TSCC cells, and this phenomenon was regulated by the miR-493 sponge. Rescue experiments revealed a decrease in the miR-493/HMGA2 axis output, partially reversing the effects of LINC00466 downregulation on aggressive TSCC cell behavior. Conclusion These findings demonstrate that LINC00466 promotes TSCC cell oncogenicity in vitro and in vivo by upregulating the miR-493/HMGA2 axis output. These results may provide a new perspective and new insight into the molecular mechanisms of TSCC.
Collapse
Affiliation(s)
- Chao Hou
- Department of Stomatology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, People's Republic of China
| | - Yanli Dong
- Department of Stomatology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, People's Republic of China
| | - Bo Du
- Department of Stomatology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, People's Republic of China
| |
Collapse
|
28
|
Hu D, Zhong T, Dai Q. Long Non-Coding RNA NKILA Reduces Oral Squamous Cell Carcinoma Development Through the NF-KappaB Signaling Pathway. Technol Cancer Res Treat 2020; 19:1533033820960747. [PMID: 33143574 PMCID: PMC7645807 DOI: 10.1177/1533033820960747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: Emerging studies have identified that long non-coding RNAs (lncRNAs) play
critical roles in cancer development. This study aims to explore the
mechanism of NF-KappaB (NF-κB) interacting lncRNA (NKILA) in the
pathological process of oral squamous cell carcinoma (OSCC). Methods: NKILA expression in OSCC tissues, paracancerous tissues, and normal human
oral keratinocytes and OSCC cell lines was detected using RT-qPCR. KB cells
were selected for the follow-up experiments. The role of NKILA in cell
proliferation, migration, invasion, and NF-κB signaling pathway was
identified using the gain- and loss-of function of NKILA in OSCC cells.
Additionally, the role of NKILA in vitro was determined by
inducing xenograft tumors in nude mice. Results: NKILA was poorly expressed in OSCC tissues and cells. Cell proliferation,
invasion and migration, tumor volume and weight were significantly
suppressed in cells with overexpressed NKILA, while silencing NKILA led to
opposite trends. Moreover, the protein levels of p-IκBα and nuclear-p65 were
markedly decreased, while the levels of IκBα and cytoplasm-p65 were enhanced
in cells with overexpressed NKILA. Conclusion: This study provided evidence that NKILA could reduce proliferation, invasion
and migration of OSCC cells through inhibiting the NF-κB signaling pathway.
The findings may offer new insights for OSCC prevention and treatment.
Collapse
Affiliation(s)
- Daoyong Hu
- Department of General Dentistry, 47861The Affiliated Stomatological Hospital of Nanchang University and The Key Laboratory of Oral Biomedicine, Jiangxi Province, People's Republic of China
| | - Tian Zhong
- Department of Pediatric Dentistry, 47861The Affiliated Stomatological Hospital of Nanchang University and The Key Laboratory of Oral Biomedicine, Jiangxi Province, People's Republic of China
| | - Qun Dai
- Department of General Dentistry, 47861The Affiliated Stomatological Hospital of Nanchang University and The Key Laboratory of Oral Biomedicine, Jiangxi Province, People's Republic of China
| |
Collapse
|
29
|
Pan L, Xiao X, Zhao Y, Yin L, Fu M, Zhang X, Jiang P. The functional roles of long noncoding RNA DANCR in Human Cancers. J Cancer 2020; 11:6970-6981. [PMID: 33123287 PMCID: PMC7591992 DOI: 10.7150/jca.44384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been wildly explored in various cellular processes and their aberrant expression could lead to tumorigenesis, development and progression. Differentiation antagonizing non-protein coding RNA (DANCR), a well-known lncRNA that is aberrant expression in various tumors, including hepatocellular carcinoma, gastric cancer, colorectal cancer, breast cancer, lung cancer and glioma and so on, in which it functions as oncogene mainly, contributing to cancer development and progression. High expressed DANCR is correlated with poor prognosis. In the present review, we summarize recent progression concerning the role, potential clinical utilities and underlying molecular mechanisms of DANCR related to occurrence and development of multiple cancers.
Collapse
Affiliation(s)
- Lei Pan
- Department of Breast Surgery, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212002, China
| | - Xiudi Xiao
- Department of Breast Surgery, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212002, China
| | - Yuan Zhao
- Department of Breast Surgery, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212002, China
| | - Liang Yin
- Department of Breast Surgery, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212002, China
| | - Min Fu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.,Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212002, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Pengcheng Jiang
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212002, China
| |
Collapse
|
30
|
Wang Y, Wang S, Ren Y, Zhou X. The Role of lncRNA Crosstalk in Leading Cancer Metastasis of Head and Neck Squamous Cell Carcinoma. Front Oncol 2020; 10:561833. [PMID: 33123473 PMCID: PMC7566906 DOI: 10.3389/fonc.2020.561833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of human malignancy. For decades, research into HNSCC invasion and metastasis has been dedicated to the study of protein-coding genes. Along with whole-genome and transcriptome sequencing development, long non-coding RNA (lncRNA) has attracted greater attention. Compelling evidence has proven the critical role of lncRNAs in the occurrence and development of HNSCC by means of epigenetic modifications, regulation of gene transcription, and post-transcription level. More importantly, crosstalk between lncRNAs and microRNAs was recently proven to regulate HNSCC metastasis through EMT modification. Based on these, this review summarizes the critical roles of lncRNAs in HNSCC metastasis and the crosstalk between lncRNAs and microRNAs as well as the detailed regulatory mechanism of the interaction. Thus, a deeper understanding of the lncRNA network in cancer metastasis is finally uncovered in order to provide a rationale and innovative concepts toward new therapeutic strategies for the highly metastatic HNSCC.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, China
| | - Yu Ren
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
31
|
Yan J, Wang ZH, Yan Y, Luo HN, Ren XY, Li N, Zheng GX, Hou J. RP11‑156L14.1 regulates SSR1 expression by competitively binding to miR‑548ao‑3p in hypopharyngeal squamous cell carcinoma. Oncol Rep 2020; 44:2080-2092. [PMID: 33000261 PMCID: PMC7551335 DOI: 10.3892/or.2020.7762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging studies have demonstrated that long non-coding RNAs (lncRNAs) play essential roles in tumorigenesis. However, the role and function of lncRNAs in hypopharyngeal squamous cell carcinoma (HSCC) have not been completely elucidated. The present study explored the function of a novel lncRNA, RP11-156L14.1, in HSCC. RP11-156L14.1 was revealed to be highly expressed in HSCC tissues and cell lines. Knockdown of RP11-156L14.1 inhibited proliferation, migration, and invasion in HSCC cells. Furthermore, RP11-156L14.1 regulated epithelial-mesenchymal transition (EMT) by controlling EMT-related protein expression. Mechanistically, RP11-156L14.1 exerted its function as a competing endogenous RNA (ceRNA) and directly interacted with miR-548ao-3p. The present study also demonstrated that miR-548ao-3p regulated signal sequence receptor subunit 1 (SSR1) expression by targeting SSR1 3′-UTR. Moreover, the xenograft HSCC tumor model revealed that knockdown of RP11-156L14.1 markedly suppressed HSCC tumor growth in vivo. In summary, these findings indicated that the lncRNA RP11-156L14.1 functions as an oncogene in HSCC by competing with miR-548ao-3p in regulating SSR1 expression. The RP11-156L14.1/miR-548ao-3p/SSR1 axis could be utilized as a potential novel biomarker and therapeutic target for HSCC.
Collapse
Affiliation(s)
- Jing Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zheng-Hui Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hua-Nan Luo
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiao-Yong Ren
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Na Li
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Guo-Xi Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
32
|
Expression Level and Clinical Significance of NKILA in Human Cancers: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4540312. [PMID: 32851072 PMCID: PMC7441412 DOI: 10.1155/2020/4540312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
Background A number of researches focused on the study of tumors have concluded that the expression level of lncRNA NKILA was decreased in different tumors. This is an indication that NKILA might influence the start and growth of a cancer. In addition, studies have fatalities and worsening health of cancer patients is associated with a reduced level of NKILA. Results The results are the collective screening of nine total studies which included 937 cancer patients. The prognosis of the meta-analysis indicated that cancer patients with a higher expression of NKILA had an overall longer survival (OS) (HR = 0.808, 95% CI: 0.736, 0.887); with regard to the clinical prognosis, the results indicated that reduced NKILA was associated with advanced clinical stage (OR = 0.313, 95% CI: 0.225, 0.434), poor histological grades (OR = 0.833, 95% CI: 0.508, 1.367), positive lymph node metastasis (OR = 0.253, 95% CI: 0.144, 0.444), and additional tumor invasion depth (OR = 0.326, 95% CI: 0.234, 0.454). Materials and Methods Related research conducted was accessed by searching in PubMed and Web of Science with the keywords. The accessed material was till the 25th of February, 2020. The present quantitative meta-analysis was done using Stata SE12.0. The aim of the meta-analysis was to investigate the relationship between NKILA expression level and clinical prognosis. Conclusions In the result of this meta-analysis, decreased NKILA expression is typical of different kinds of cancer. Moreover, it can perform as a predictive element of prognosis in varied kinds of cancer. Nonetheless, till now, it is deemed essential to carry out larger-size as well as better designed research works for the confirmation of our findings.
Collapse
|
33
|
Sun XH, Fan X, Hu KL, Hu WT. [Effects of RAB1A on the proliferation, invasion, and metastasis of tongue squamous cell carcinoma cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:245-249. [PMID: 32573129 DOI: 10.7518/hxkq.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to investigate the molecular mechanism of RAB1A in the proliferation, invasion, and metastasis of human tongue squamous cell carcinoma. METHODS Western blot was used to detect the expression of RAB1A protein in human normal tongue epithelial cells (Hacat) and tongue squamous cell carcinoma Tca8113. The changes in RAB1A after plasmid transfection were also studied. The Tca8113 cells were named SiRAB1A/Tca8113 after RAB1A plasmid transfection. The expression of the epithelial-mesenchymal transition (EMT)-related markers of SiRAB1A/Tca8113 cells was also detected. CCK-8 assay was used to detect the proliferation of SiRAB1A/Tca8113 cells. Transwell and wound healing assays were used to detect the invasive and metastatic abilities of SiRAB1A/Tca8113 cells, respectively. RESULTS Western blot results showed that the expression of RAB1A in tongue squamous cell carcinoma cells was significantly higher than that in Hacat. RAB1A decreased significantly after SiRAB1A plasmid transfection. CCK-8 proliferation assay showed that the proliferation of SiRAB1A/Tca8113 cells also decreased significantly. Transwell and wound healing assays demonstrated that the invasive and metastatic abilities of SiRAB1A/Tca8113 cells decreased significantly, respectively. In addition, Western blot results demonstrated that RAB1A deletion significantly increased the expression of E-cadherin and inhibited the expression of Vimentin. CONCLUSIONS RAB1A could promote the proliferation, invasion, and metastasis of tongue squamous cell carcinoma cells.
Collapse
Affiliation(s)
- Xue-Hui Sun
- Dept. of Oral and Maxillofacial Surgery, The Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Xin Fan
- Dept. of Stomatology, The Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Kai-Li Hu
- School of Stomatology, Weifang Medical University, Weifang 261021, China
| | - Wen-Ting Hu
- Dept. of Oral and Maxillofacial Surgery, The Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| |
Collapse
|
34
|
Chen J, Zhang M, Zhang S, Wu J, Xue S. Rno-microRNA-30c-5p promotes myocardial ischemia reperfusion injury in rats through activating NF-κB pathway and targeting SIRT1. BMC Cardiovasc Disord 2020; 20:240. [PMID: 32434515 PMCID: PMC7238603 DOI: 10.1186/s12872-020-01520-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background This study aimed to investigate the regulatory effect of rno-microRNA-30c-5p (rno-miR-30c-5p) on myocardial ischemia reperfusion (IR) injury in rats and the underlying molecular mechanisms. Methods A rat model of myocardial IR injury was established. The infarct size was detected by 2,3,5-triphenyltetrazolium chloride staining. The pathologic changes of myocardial tissues were detected by hematoxylin-eosin staining. The apoptosis of myocardial cells was measured by TUNEL staining and flow cytometry. The mRNA expression of rno-miR-30c-5p and Sirtuin 1 (SIRT1) was detected by quantitative real-time PCR. The levels of IL-1β, IL-6 and TNF-α were detected by enzyme linked immunosorbent assay. The protein expression of Bax, Bcl-2, caspase-3, p-IκBα, IκBα, p-NF-κB p65, NF-κB p65 and SIRT1 was detected by Western blot. The interaction between rno-miR-30c-5p and SIRT1 was predicted by TargetScan, and further identified by dual luciferase reporter gene and RNA immunoprecipitation assay. Results The myocardial IR injury model was successfully established in rats. IR induced the myocardial injury in rats and increased the expression of rno-miR-30c-5p. Overexpression of rno-miR-30c-5p enhanced the inflammation, promoted the apoptosis, and activated NF-κB pathway in IR myocardial cells. SIRT1 was the target gene of rno-miR-30c-5p. Silencing of SIRT1 reversed the effects of rno-miR-30c-5p inhibitor on the apoptosis and NF-κB pathway in IR myocardial cells. Conclusions Rno-miR-30c-5p promoted the myocardial IR injury in rats through activating NF-κB pathway and down-regulating SIRT1.
Collapse
Affiliation(s)
- Jianfeng Chen
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288, Zhongzhou Middle Road, Luoyang City, 471000, Henan Province, China
| | - Mingming Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288, Zhongzhou Middle Road, Luoyang City, 471000, Henan Province, China
| | - Shouyan Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288, Zhongzhou Middle Road, Luoyang City, 471000, Henan Province, China.
| | - Junlong Wu
- Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288, Zhongzhou Middle Road, Luoyang City, 471000, Henan Province, China
| | - Shufeng Xue
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288, Zhongzhou Middle Road, Luoyang City, 471000, Henan Province, China
| |
Collapse
|
35
|
NF-κB interaction long non-coding RNA inhibits migration, invasion and epithelial-mesenchymal transition of cervical cancer cells through inhibiting NF-κB signaling pathways. Exp Ther Med 2020; 20:1039-1047. [PMID: 32765657 PMCID: PMC7388573 DOI: 10.3892/etm.2020.8752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
The long non-coding RNA (lncRNA) NF-κB interaction lncRNA (NKILA) has been found to exert tumor suppressive effects in numerous types of carcinoma; however, the relationship between NKILA and cervical cancer (CC) remains largely unclear. The present study aimed to investigate the effects of NKILA on the proliferation and metastasis of CC cell lines, in addition to the related molecular mechanisms. Reverse transcription-quantitative PCR was used to detect the expression levels of NKILA in cancer tissues and cell lines. The constructed overexpression vector, pcDNA3.1NKILA, and its corresponding negative control sequence were transfected into CaSki cells and short hairpin RNA targeting NKILA and the corresponding negative control sequence were transfected into C-33A cells. Subsequently, the proliferative, migratory and invasive ability, as well as the process of epithelial-mesenchymal transition (EMT) of C-33 A and CaSki cells were analyzed by performing Cell Counting Kit-8, wound healing, Matrigel invasion and western blot assays, respectively. The expression levels of proteins were detected using western blot analysis. The expression levels of NKILA were decreased in CC tissues and CC cell lines (SiHa, C-33A, CaSki and HeLa) and the downregulation of NKILA expression using shRNA was observed to significantly increase the proliferation of CC cells. Conversely, the upregulation of NKILA inhibited the proliferation of CC cells, in addition to significantly inhibiting the migration and invasion of CaSki cells, whereas the knockdown of NKILA promoted the invasion of C-33A cells. Thus, it was hypothesized that NKILA may inhibit the migration and invasion of CC cells via regulation of EMT processes, which was reflected by the expression of ZO-1, E-cadherin, N-cadherin and Vimentin. Furthermore, the overexpression of NKILA significantly inhibited the activation of NF-κB in CaSki cells, whereas the knockdown of NKILA expression promoted the degradation of inhibitory protein-κB and promoted the transfer of p65 into the nucleus in C-33A cells. In conclusion, the results from the present study suggested that NKILA may be involved in the inhibition of migration and invasion in CC cells through regulating EMT processes, which may be related to its inhibition of NF-κB activation.
Collapse
|
36
|
Lin X, Tang X, Zheng T, Qiu J, Hua K. Long non-coding RNA AOC4P suppresses epithelial ovarian cancer metastasis by regulating epithelial-mesenchymal transition. J Ovarian Res 2020; 13:45. [PMID: 32334623 PMCID: PMC7183637 DOI: 10.1186/s13048-020-00644-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/03/2020] [Indexed: 11/15/2022] Open
Abstract
Objective Currently, the function and mechanisms of long non-coding RNAs (lncRNAs) involved in the metastasis of epithelial ovarian cancer (EOC), especially those of the lncRNAs participated in the epithelial-mesenchymal transition (EMT) process, remains largely unknown. Here, we focused on a lncRNA named AOC4P and analysed its role in EOC. Materials and methods The expression of AOC4P gene was examined with quantitative real-time quantitative PCR (qRT-PCR). The cell migration and invasion were detected by Transwell and scratch assays. The in vivo metastatic activity was evaluated by intraperitoneal metastasis model. The downstream genes were investigated by a tumour EMT real-time polymerase chain reaction (RT-PCR) array, and validated by qRT-PCR and Western blot. Results The results showed that AOC4P expression levels were decreased in EOC tissues and cell lines, and that the under-expression of AOC4P was positively correlated with FIGO stage and lymph node metastasis. Furthermore, the knockdown of AOC4P expression in poorly metastatic EOC cell lines remarkably facilitated cell migration/invasion while the overexpression of AOC4P in highly metastatic EOC cell lines reduced the metastatic ability of these cells in vitro. Consistently, the anti-metastatic role of AOC4P in vivo was also verified by bioluminescence imaging and tumour dissection. Mechanistically, the anti-metastatic effect of AOC4P in EOC was partially mediated by the EMT process accompanied by the alterations in MMP9 and COL1A2 expression. Conclusion These data highlight that AOC4P plays a critical role in EOC invasion/metastasis and could function as a novel and effective target for the lncRNA-based anti-metastatic clinical management of EOC.
Collapse
Affiliation(s)
- Xiaojing Lin
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China.,Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China
| | - Tingting Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China.
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China.
| |
Collapse
|
37
|
Shen X, Zhao W, Zhang Y, Liang B. Long Non-Coding RNA-NEAT1 Promotes Cell Migration and Invasion via Regulating miR-124/NF-κB Pathway in Cervical Cancer. Onco Targets Ther 2020; 13:3265-3276. [PMID: 32368085 PMCID: PMC7173957 DOI: 10.2147/ott.s220306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to investigate the regulatory role of lncRNA-NEAT1 on cervical cancer (CC) and the underlying molecular mechanisms. Methods The expression of lncRNA-NEAT1 and miR-124 was detected in CC tissues and cells (HeLa and SiHa cells) by qRT-RCR. The relation between lncRNA-NEAT1 expression and clinical parameters of CC patients was explored. The cell migration and invasion were detected by wound healing assay and transwell assay. The cell proliferation was detected by CCK-8 and anchorage-independent colony assay. The targeting relation between miR-124 and lncRNA-NEAT1 was predicted by TargetScan and identified by dual luciferase reporter gene and RNA pull-down assay. The expression of metastasis- (MMP-2 and MMP), EMT- (E-cadherin, N-cadherin and Vimentin), and NF-κB pathway-related factors (NF-κB p65, p-NF-κB p65 and IκBα) was detected by Western blot. Results The expression of lncRNA-NEAT1 was upregulated in CC tissues and cells and positively correlated with TNM stage and lymph node metastasis. Overexpression of lncRNA-NEAT1 promoted the proliferation, migration and invasion, influenced the expression of EMT markers, and activated NF-κB pathway in HeLa and SiHa cells. Silencing of lncRNA-NEAT1 exhibited opposite effects on HeLa and SiHa cells. LncRNA-NEAT1 could negatively regulate its target miR-124. MiR-124 reversed the effects of lncRNA-NEAT1 on the migration, invasion, EMT and NF-κB pathway of HeLa cells. Conclusion LncRNA-NEAT1 promoted the migration and invasion of CC cells via regulating miR-124/NF-κB pathway.
Collapse
Affiliation(s)
- Xiaofang Shen
- Department of Obstetrics-Gynecology, Dongying City People's Hospital, Dongying City, Shandong Province 257091, People's Republic of China
| | - Wei Zhao
- Department of Obstetrics-Gynecology, Dongying City People's Hospital, Dongying City, Shandong Province 257091, People's Republic of China
| | - Yumei Zhang
- Department of Obstetrics-Gynecology, Dongying City Dongying District People's Hospital, Dongying City, Shandong Province 257000, People's Republic of China
| | - Bin Liang
- Department of Obstetrics-Gynecology, Dongying City Dongying District People's Hospital, Dongying City, Shandong Province 257000, People's Republic of China
| |
Collapse
|
38
|
Jafari D, Noorbakhsh F, Delavari A, Tavakkoli-Bazzaz J, Farashi-Bonab S, Abdollahzadeh R, Rezaei N. Expression level of long noncoding RNA NKILAmiR103-miR107 inflammatory axis and its clinical significance as potential biomarker in patients with colorectal cancer. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:41. [PMID: 32582347 PMCID: PMC7306231 DOI: 10.4103/jrms.jrms_943_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022]
Abstract
Background: Inflammatory cytokines have been observed in colorectal cancer (CRC) tissues and can promote the susceptibility to metastasis of CRC cells. Diverse regulatory mechanisms of long ncRNAs (lncRNAs) and microRNAs (miRNAs) involved in the inflammatory responses are associated with tumor progression. The aim of this research was to investigate the expression level of the nuclear factor-kappa B interacting lncRNA (NKILA)‐miR103-miR107 regulatory axis and its clinical significance as a potential biomarker in patients with CRC. Materials and Methods: In the present study, we investigated the expression levels of miR103, miR107, and NKILA in 21 paired CRC tissues and corresponding adjacent tissues, using real‐time polymerase chain reaction technique. Receiver operating characteristic (ROC) curve was used to analyze the prognostic value of biomarkers and to compare their predictive value. Results: It was found that the expression level of miR103 was significantly increased with the development of CRC (cancerous vs. corresponding normal tissues; 2.29 ± 1.65 vs. 1.16 ± 0.64, P = 0.003). Moreover, miR107 was upregulated in CRC tissues compared with paired normal tissues (2.1 ± 1.4 vs. 1.25 ± 0.83, P = 0.005), while NKILA displayed an opposite expression pattern versus miR103/107, but it was not statistically significant (3.69 ± 5.2 vs. 4.35 ± 5.99, P > 0.05). The ROC analysis demonstrated that miR103 had the best diagnostic ability performance with area under curve of 0.723 (0.545–0.901). Conclusion: We identified miR103/107 as tumor-promoting miRNAs with diagnostic value in cancer patients and presumptive negative regulators of NKILA, a potential cancer metastatic suppressor. Strategies that disrupt this regulatory axis might block CRC progression.
Collapse
Affiliation(s)
- Davood Jafari
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Delavari
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoli-Bazzaz
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Farashi-Bonab
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Abdollahzadeh
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| |
Collapse
|
39
|
Liu X, Zhang B, Jia Y, Fu M. SNHG17 enhances the malignant characteristics of tongue squamous cell carcinoma by acting as a competing endogenous RNA on microRNA-876 and thereby increasing specificity protein 1 expression. Cell Cycle 2020; 19:711-725. [PMID: 32089063 PMCID: PMC7145335 DOI: 10.1080/15384101.2020.1727399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
A long noncoding RNA called SNHG17 (small nucleolar RNA host gene 17) is aberrantly expressed and plays essential roles in multiple human cancer types. Nevertheless, its expression pattern and specific functions in tongue squamous cell carcinoma (TSCC) have not been well studied until now. Hence, in this study, we aimed to measure SNHG17 expression in TSCC and to examine the actions of SNHG17 on the malignant characteristics of TSCC cells. The regulatory mechanism that mediates the oncogenic effects of SNHG17 on TSCC cells was investigated too. In this study, SNHG17 was found to be upregulated in TSCC, and this overexpression closely correlated with adverse clinical parameters and shorter overall survival among the patients with TSCC. The SNHG17 knockdown significantly decreased TSCC cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanism investigation revealed that SNHG17 acts as a competing endogenous RNA on microRNA-876 (miR-876) in TSCC cells. In addition, specificity protein 1 (SP1) was validated as a direct target gene of miR-876 in TSCC cells. SP1 expression restoration in TSCC cells reversed miR-876 overexpression-induced anticancer effects. MiR-876 downregulation strongly attenuated the actions of the SNHG17 knockdown in TSCC cells. SNHG17 plays an oncogenic part in TSCC cells both in vitro and in vivo via sponging of miR-876 and thereby upregulating SP1, which could be regarded as a promising target for TSCC therapy.
Collapse
Affiliation(s)
- Xiaoming Liu
- Institute of Oral Diseases, Oral Medicine Center, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Baorong Zhang
- Institute of Oral Diseases, Oral Medicine Center, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Yue Jia
- Institute of Oral Diseases, Oral Medicine Center, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Ming Fu
- Institute of Oral Diseases, Oral Medicine Center, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
40
|
Wang DP, Tang XZ, Liang QK, Zeng XJ, Yang JB, Xu J. Overexpression of long noncoding RNA SLC26A4-AS1 inhibits the epithelial-mesenchymal transition via the MAPK pathway in papillary thyroid carcinoma. J Cell Physiol 2020; 235:2403-2413. [PMID: 31556116 DOI: 10.1002/jcp.29145] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
Papillary thyroid carcinoma (PTC) is recognized as one of the most prevalent types of thyroid cancer with poor prognosis. Long noncoding RNA (lncRNA) has undergone an intensive study for their involvement in tumor treatment. This study intends to unravel the association of lncRNA SLC26A4-AS1 with PTC. Initially, PTC-related expression profiling data (GSE33630) was utilized to screen differentially expressed lncRNAs in PTC and the underlying mechanisms involved with the mitogen-activated protein kinase (MAPK) pathway. Moreover, PTC tumor tissues and paracancerous tissues were arranged to determine expressions of TP53, SLC26A4-AS1, and genes related to epithelial-mesenchymal transition (EMT) and the MAPK pathway. Furthermore, SLC26A4-AS1 was overexpressed or underexpressed and JNK was underexpressed through cell transfection to examine the effect of SLC26A4-AS1 on PTC via MAPK pathway. Besides, tumor formation in nude mice was used to verify the fore experiment. LncRNA SLC26A4-AS1 regulating TP53 had the potential to participate in PTC by regulating the MAPK pathway. SLC26A4-AS1 was expressed poorly in PTC. Notably, SLC26A4-AS1 elevated E-cadherin expression while it reduced that of ERK and Vimentin. In addition, the overexpression of SLC26A4-AS1 inactivated the MAPK pathway by promoting TP53 and decreased cell migration, proliferation, and invasion. In addition to all these effects, the overexpression of SLC26A4-AS1 promoted apoptosis of TPC-1 cells. Additionally, the overexpression of lncRNA SLC26A4-AS1 reduced xenograft tumor volume in nude mice. Furthermore, the effect of SLC26A4-AS1 overexpression was found to be promoted after the MAPK pathway inactivation. Taken together, the overexpression of lncRNA SLC26A4-AS1 coffered anti-oncogenic effects on PTC through the inactivation of the MAPK pathway.
Collapse
Affiliation(s)
- Duo-Ping Wang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Zhun Tang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Quan-Kun Liang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xian-Jie Zeng
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jian-Bo Yang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jian Xu
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
41
|
Chaudhary R, Wang X, Cao B, De La Iglesia J, Masannat J, Song F, Hernandez-Prera JC, Gimbrone NT, Slebos RJC, Chung CH. Long noncoding RNA, LINC00460, as a prognostic biomarker in head and neck squamous cell carcinoma (HNSCC). Am J Transl Res 2020; 12:684-696. [PMID: 32194915 PMCID: PMC7061833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive epithelial malignancy characterized by frequent mutations and metastasis. Long noncoding RNAs (lncRNAs) have been implicated in tumorigenesis and serve as novel prognostic biomarkers in different cancers. To enhance our understanding of lncRNAs that may have biological significance in HNSCC and may serve as prognostic biomarkers, we globally profiled lncRNAs in HNSCC by analyzing the RNA-seq data from The Atlas of Noncoding RNAs in Cancer (TANRIC) database. Of 3576 lncRNAs, we identified 926 (higher-688, lower-238) lncRNAs with a 2-fold abundance difference among the forty HNSCC and paired adjacent normal tissue. We investigated differential abundance of lncRNAs based on TP53 mutation and p16 status. We found 133 lncRNAs to have differential abundance by 2-fold among the mutant vs wild-type TP53 samples, whereas among p16-negative vs positive samples, we identified 710 lncRNAs with the same criteria. Meanwhile, analysis of the 15 most abundant lncRNAs in the tumor samples identified five lncRNAs whose higher abundance was associated with poor overall patient survival. Among these five, higher abundance of LINC00460 associated with poor patient survival in an independent cohort of 82 HNSCC patients. To further evaluate the potential function of LINC00460, we performed lncRNA-mRNAs co-expression analysis and found that higher abundance of LINC00460 associated with cancer-related biological pathways including EMT and other inflammatory response pathways. In summary, we report LINC00460 is more abundant in tumors compared to adjacent normal tissue and that it may serve as a potential prognostic biomarker in HNSCC.
Collapse
Affiliation(s)
- Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer CenterTampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, Moffitt Cancer CenterTampa, FL, USA
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, Moffitt Cancer CenterTampa, FL, USA
| | - Janis De La Iglesia
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer CenterTampa, FL, USA
| | - Jude Masannat
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer CenterTampa, FL, USA
| | - Feifei Song
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer CenterTampa, FL, USA
| | | | - Nicholas T Gimbrone
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer CenterTampa, FL, USA
| | - Robbert JC Slebos
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer CenterTampa, FL, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer CenterTampa, FL, USA
| |
Collapse
|
42
|
Long non-coding RNAs in immune regulation and their potential as therapeutic targets. Int Immunopharmacol 2020; 81:106279. [PMID: 32058929 DOI: 10.1016/j.intimp.2020.106279] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs (lncRNAs) are potent regulators of immune cell development and function. Their implication in multiple immune-mediated disorders highlights lncRNAs as exciting biomarkers and potential drug targets. Recent technological innovations in oligo-based therapeutics, development of RNA-targeting small molecules, and CRISPR-based approaches, position RNA as the next therapeutic frontier. Here, we review the latest advances made toward understanding the role of lncRNAs in human immunological disorders and further discuss RNA-targeting approaches that could be potentially exploited to manipulate lncRNA function as a clinical intervention.
Collapse
|
43
|
Shen H, Sun B, Yang Y, Cai X, Bi L, Deng L, Zhang L. MIR4435-2HG regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by upregulating TGF-β1. Odontology 2020; 108:553-559. [PMID: 32016787 DOI: 10.1007/s10266-020-00488-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022]
Abstract
MIR4435-2HG has been characterized as an oncogenic lncRNA in several types of cancer, while its role in oral squamous cell carcinoma (OSCC, a major subtype of oral cancer) has not been characterized. We explored the functionality of MIR4435-2HG in OSCC and investigated its interactions with TGF-β1. Blood samples were extracted from OSCC patients (n = 44) and healthy volunteers (n = 38), RT-qPCR, CCK-8, Transwell assays and western blot were performed in this study. The results showed that levels of MIR4435-2HG and TGF-β1 in plasma were upregulated in OSCC. Across OSCC plasma samples, TGF-β1 and MIR4435-2HG were significantly and positively correlated. Overexpression of MIR4435-2HG resulted in upregulated TGF-β1 expression, while exogenous TGF-β1 treatment had no effect on the expression of MIR4435-2HG. Overexpression of MIR4435-2HG and exogenous TGF-β1 treatment led to promoted, while TGF-β inhibitor led to inhibited migration, proliferation and invasion of cancer cells. Moreover, TGF-β inhibitor led to reduced effects of overexpressing MIR4435-2HG. Therefore, MIR4435-2HG regulates the behaviors of OSCC cells by promoting the expression of TGF-β1.
Collapse
Affiliation(s)
- Huan Shen
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Bin Sun
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Yongjin Yang
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Xingwei Cai
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Lixia Bi
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Lin Deng
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Luyue Zhang
- School of Basic Medical Sciences, The Fourth Military Medical University, No. 147, West of Changle Road, Xincheng District, Xi'an, 710032, Shannxi, People's Republic of China.
| |
Collapse
|
44
|
Ghafouri-Fard S, Mohammad-Rahimi H, Jazaeri M, Taheri M. Expression and function of long non-coding RNAs in head and neck squamous cell carcinoma. Exp Mol Pathol 2020; 112:104353. [DOI: 10.1016/j.yexmp.2019.104353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
|
45
|
Xiong T, Huang C, Li J, Yu S, Chen F, Zhang Z, Zhuang C, Li Y, Zhuang C, Huang X, Ye J, Zhang F, Gui Y. LncRNA NRON promotes the proliferation, metastasis and EMT process in bladder cancer. J Cancer 2020; 11:1751-1760. [PMID: 32194786 PMCID: PMC7052857 DOI: 10.7150/jca.37958] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Bladder cancer (BC) is one of the most common malignancies world-wide with high morbidity and mortality. Long noncoding RNAs (lncRNAs) are thought to play a critical role in cancer development. LncRNA NRON, a repressor of activated T-cell nuclear factor (NFAT), has been shown to be dysregulated in many cancer types. However, the clinical significance and molecular mechanism of NRON in bladder cancer is still unknown. Methods: The expression levels of NRON in BC tissues and cell lines were tested by RT-qPCR. Survival analysis was performed to detect the correlation between NRON expression and clinical outcomes in patients with BC. The biological role of NRON in BC cells proliferation and metastasis was examined in vitro and in vivo. Results: The expression of NRON was significantly upregulated in BC specimens and cell lines compared with paired adjacent normal tissues and normal cell lines. The upregulation of NRON in bladder cancer patients was significantly associated with the depth of bladder tumor invasion and poor prognosis. Knockdown of NRON inhibited BC cells proliferation, migration, invasion and tumorigenicity. Furthermore, NRON promoted epithelial-mesenchymal transition (EMT) progression, and NRON-induced EZH2 expression contributed to this process. Conclusion: In conclusion, our results suggested that NRON acted as an oncogene and tumor biomarker for BC.
Collapse
Affiliation(s)
- Tiefu Xiong
- Graduate School, Guangzhou Medical University, Guangzhou 510182, China.,Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chenchen Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China.,Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Jianfa Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shaokang Yu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fangfang Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zeng Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chengle Zhuang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yawen Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Changshui Zhuang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xinbo Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fangting Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
46
|
Rodríguez Zorrilla S, García García A, Blanco Carrión A, Gándara Vila P, Somoza Martín M, Gallas Torreira M, Pérez Sayans M. Exosomes in head and neck cancer. Updating and revisiting. J Enzyme Inhib Med Chem 2020; 34:1641-1651. [PMID: 31496355 PMCID: PMC6746279 DOI: 10.1080/14756366.2019.1662000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes have gone from being considered simple containers of intracellular waste substances to be considered important carriers of cellular signals. Its broad capacity to promote tumour growth, both in situ and metastatic, has greatly intensified scientific research on them. In the same way and depending on its content, its tumour suppressive properties have opened a window of light and hope in the fight against cancer. In the present review we try to gather in a simple and understandable way the most relevant knowledge to date on the role of exosomes in oral squamous cell carcinoma, helping to understand their process of formation, release and activity on the tumour microenvironment.
Collapse
Affiliation(s)
- Samuel Rodríguez Zorrilla
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Abel García García
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| | - Andrés Blanco Carrión
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Pilar Gándara Vila
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Manuel Somoza Martín
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mercedes Gallas Torreira
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mario Pérez Sayans
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| |
Collapse
|
47
|
Pentenero M, Bowers L, Jayasinghe R, Cheong SC, Farah CS, Kerr AR, Alevizos I. World Workshop on Oral Medicine VII: Functional pathways involving differentially expressed lncRNAs in oral squamous cell carcinoma. Oral Dis 2020; 25 Suppl 1:79-87. [PMID: 31140691 DOI: 10.1111/odi.13051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNA) modulate gene expression at the epigenetic, transcriptional and post-transcriptional levels and are involved in tumorigenesis. They can form complex secondary and tertiary structures and have been shown to act as precursors, enhancers, reservoirs and decoys in the complex endogenous RNA network. They were first reported in relation to oral squamous cell carcinoma (OSCC) in 2013. Here, we summarise the functional roles and pathways of the most commonly studied lncRNAs in OSCC. Existing research demonstrates the involvement of lncRNA within pivotal pathways leading to the development and spread of OSCC, including interactions with key cancer-associated microRNAs such as miR-21. The number of studies on lncRNA and OSCC remains limited in this new field. As evidence grows, the tissue-specific expression patterns of lncRNAs should further advance our understanding of the altered regulatory networks in OSCC and possibly reveal new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Monica Pentenero
- Department of Oncology, Oral Medicine and Oral Oncology Unit, University of Turin, Turin, Italy
| | - Leah Bowers
- Department of Stomatology, Division of Oral Medicine, Medical University of South Carolina, Charleston, Charleston, SC, USA
| | - Ruwan Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sok Ching Cheong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya,, Selangor, Malaysia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research & Education, UWA Dental School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | | | - Ilias Alevizos
- Sjogren's Syndrome and Salivary Gland Dysfunction Unit, NIDCR/NIH, Bethesda, MD, USA
| |
Collapse
|
48
|
Progress in the study of long noncoding RNA in tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129:51-58. [DOI: 10.1016/j.oooo.2019.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
|
49
|
Luo LH, Rao L, Luo LF, Chen K, Ran RZ, Liu XL. Long non-coding RNA NKILA inhibited angiogenesis of breast cancer through NF-κB/IL-6 signaling pathway. Microvasc Res 2019; 129:103968. [PMID: 31862380 DOI: 10.1016/j.mvr.2019.103968] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The relationship between NF-κB Interacting lncRNA (NKILA) and angiogenesis in breast cancer has never been studied. Our study aimed to investigate effect of NKILA on proliferation, migration, apoptosis, as well as angiogenesis in breast cancer. METHODS NKILA was over-expressed in MDA-MB-231 cells by transfection of pcDNA3.1-NKILA vector. Cell viability, apoptosis and migration were measured by MTT, flow cytometry and wound healing assays, respectively. Angiogenesis of human umbilical vein endothelial cells (HUVEC) was measured using tube formation assay. The expression levels of NKILA, IL-6, VEGFA, VEGFR, apoptosis and epithelial-mesenchymal transition (EMT) and NF-κB/IL-6 signaling-related markers were determined using qRT-PCR or Western blotting. RESULTS Cell viability and migration of MDA-MB-231 cells were significantly inhibited, while cell apoptosis was obviously promoted by overexpression of NKILA. Overexpression of NKILA could also inhibit the phosphorylation of IκBα and the nuclear transposition of p65, as well as induce cell apoptosis-related proteins and inhibit epithelial-mesenchymal transition-related proteins. Cell viability and migration of HUVEC were also significantly inhibited when treated with supernatant of cells overexpressed NKILA or treated with BAY11-7028. Exogenous IL-6 significantly increased the cell viability and migration of HUVEC, and overexpression of NKILA could reverse these effects induced by IL-6. Overexpression of NKILA significantly inhibited the protein levels of IL-6 and VEGFA in supernatant, as well as VEGFR in HUVEC, thus inhibited the angiogenesis of HUVEC. NKILA also reversed the above effects on protein levels of IL-6 and VEGFA in supernatant and angiogenesis induced by exogenous IL-6. CONCLUSION Overexpression of NKILA could inhibit cell proliferation, migration and promote apoptosis of breast cancer cells. It could also inhibit cell proliferation, migration and angiogenesis of HUVEC through inhibiting IL-6 secretion via NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li-Hua Luo
- Department of Oncology, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Le Rao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Liu-Fang Luo
- Department of Pediatrics, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Kun Chen
- Department of Oncology, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Rui-Zhi Ran
- Department of Oncology, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Xian-Ling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
50
|
Zheng Y, Zheng B, Meng X, Yan Y, He J, Liu Y. LncRNA DANCR promotes the proliferation, migration, and invasion of tongue squamous cell carcinoma cells through miR-135a-5p/KLF8 axis. Cancer Cell Int 2019; 19:302. [PMID: 31827393 PMCID: PMC6862788 DOI: 10.1186/s12935-019-1016-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background Tongue squamous cell carcinoma (TSCC) is a most invasive cancer with high mortality and poor prognosis. It is reported that lncRNA DANCR has implications in multiple types of cancers. However, its biological role and underlying mechanism in TSCC progress are not well elucidated. Methods Our present study first investigated the function of DANCR on the proliferation, migration and invasion of TSCC cells by silencing or overexpressing DANCR. Further, the miR-135a-5p-Kruppel-like Factor 8 (KLF8) axis was focused on to explore the regulatory mechanism of DANCR on TSCC cell malignant phenotypes. Xenografted tumor growth using nude mice was performed to examine the role of DANCR in vivo. Results DANCR knockdown reduced the viability and inhibited the migration and invasion of TSCC cells in vitro, while ectopic expression of DANCR induced opposite effects. In vivo, the tumor growth and the expression of matrix metalloproteinase (MMP)-2/9 and KLF8 were also blocked by DANCR inhibition. In addition, we found that miR-135-5p directly targeted DANCR, which was negatively correlated with DANCR on TSCC progression. Its inhibition reversed the beneficial effects of DANCR silence on TSCC malignancies. Furthermore, the expression of KLF8 evidently altered by both DANCR and miR-135a-5p. Silencing KLF8 using its specific siRNA showed that KLF8 was responsible for the induction of miR-135a-5p inhibitor on TSCC cell malignancies and MMP-2/9 expression. Conclusions These findings, for the first time, suggest that DANCR plays an oncogenic role in TSCC progression via targeting miR-135a-5p/KLF8 axis, which provides a promising biomarker and treatment approach for preventing TSCC.
Collapse
Affiliation(s)
- Ying Zheng
- 1Department of Orthodontics, School of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002 People's Republic of China
| | - Bowen Zheng
- 1Department of Orthodontics, School of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002 People's Republic of China
| | - Xue Meng
- 2Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, 110004 People's Republic of China
| | - Yuwen Yan
- 1Department of Orthodontics, School of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002 People's Republic of China
| | - Jia He
- 1Department of Orthodontics, School of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002 People's Republic of China
| | - Yi Liu
- 1Department of Orthodontics, School of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002 People's Republic of China
| |
Collapse
|