1
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact. Matrix Biol 2024; 134:1-22. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
2
|
Campos I, Richter B, Thomas SM, Czaya B, Yanucil C, Kentrup D, Fajol A, Li Q, Secor SM, Faul C. FGFR4 Is Required for Concentric Growth of Cardiac Myocytes during Physiologic Cardiac Hypertrophy. J Cardiovasc Dev Dis 2024; 11:320. [PMID: 39452290 PMCID: PMC11508992 DOI: 10.3390/jcdd11100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Fibroblast growth factor (FGF) 23 is a bone-derived hormone that promotes renal phosphate excretion. Serum FGF23 is increased in chronic kidney disease (CKD) and contributes to pathologic cardiac hypertrophy by activating FGF receptor (FGFR) 4 on cardiac myocytes, which might lead to the high cardiovascular mortality in CKD patients. Increases in serum FGF23 levels have also been observed following endurance exercise and in pregnancy, which are scenarios of physiologic cardiac hypertrophy as an adaptive response of the heart to increased demand. To determine whether FGF23/FGFR4 contributes to physiologic cardiac hypertrophy, we studied FGFR4 knockout mice (FGFR4-/-) during late pregnancy. In comparison to virgin littermates, pregnant wild-type and FGFR4-/- mice showed increases in serum FGF23 levels and heart weight; however, the elevation in myocyte area observed in pregnant wild-type mice was abrogated in pregnant FGFR4-/- mice. This outcome was supported by treatments of cultured cardiac myocytes with serum from fed Burmese pythons, another model of physiologic hypertrophy, where the co-treatment with an FGFR4-specific inhibitor abrogated the serum-induced increase in cell area. Interestingly, we found that in pregnant mice, the heart, and not the bone, shows elevated FGF23 expression, and that increases in serum FGF23 are not accompanied by changes in phosphate metabolism. Our study suggests that in physiologic cardiac hypertrophy, the heart produces FGF23 that contributes to hypertrophic growth of cardiac myocytes in a paracrine and FGFR4-dependent manner, and that the kidney does not respond to heart-derived FGF23.
Collapse
Affiliation(s)
- Isaac Campos
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Beatrice Richter
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Sarah Madison Thomas
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Brian Czaya
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Christopher Yanucil
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Dominik Kentrup
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Abul Fajol
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Qing Li
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Stephen M. Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Christian Faul
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| |
Collapse
|
3
|
Deng C, Wu Y. Vitamin D-Parathyroid Hormone-Fibroblast Growth Factor 23 Axis and Cardiac Remodeling. Am J Cardiovasc Drugs 2024:10.1007/s40256-024-00688-8. [PMID: 39392562 DOI: 10.1007/s40256-024-00688-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cardiac remodeling is a compensatory adaptive response to chronic heart failure (HF) altering the structure, function, and metabolism of the heart. Many nutritional and metabolic diseases can aggravate the pathophysiological development of cardiac remodeling. Vitamin D deficiency leads to cardiac remodeling by activating the renin-angiotensin-aldosterone system (RAAS), resulting in enhanced inflammation and directly promoting cardiac fibrosis and extracellular matrix deposition. Hyperparathyroidism upregulates protein kinase A or protein kinase C, enhances intracellular calcium influx, promotes oxidative stress, activates RAAS, and increases aldosterone levels, thereby aggravating cardiac remodeling. Besides, fibroblast growth factor 23 (FGF23) plays a direct role in the heart, resulting in ventricular hypertrophy and myocardial fibrosis. Vitamin D deficiency leads to hyperparathyroidism, which in turn increases the level of FGF23. Elevated levels of FGF23 further inhibit vitamin D synthesis. Evidence exists that vitamin D deficiency, hyperparathyroidism, and marked elevations in FGF23 concentration form a vicious cycle and are believed to contribute directly to cardiac remodeling. Therefore, the purpose of this article is to introduce the specific effects of the above substances on the heart and to explain the significance of understanding the vitamin D-parathyroid hormone-FGF23 axis in improving or even reversing cardiac remodeling, thus contributing to the treatment of patients with HF.
Collapse
Affiliation(s)
- Cuiyun Deng
- Special Demand Medical Care Ward, Beijing Anzhen Hospital Jilin Hospital (Changchun Central Hospital), Changchun, China
| | - Yihang Wu
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
4
|
Ghanem M, Archer G, Crestani B, Mailleux AA. The endocrine FGFs axis: A systemic anti-fibrotic response that could prevent pulmonary fibrogenesis? Pharmacol Ther 2024; 259:108669. [PMID: 38795981 DOI: 10.1016/j.pharmthera.2024.108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease for which therapeutic options are limited, with an unmet need to identify new therapeutic targets. IPF is thought to be the consequence of repeated microlesions of the alveolar epithelium, leading to aberrant epithelial-mesenchymal communication and the accumulation of extracellular matrix proteins. The reactivation of developmental pathways, such as Fibroblast Growth Factors (FGFs), is a well-described mechanism during lung fibrogenesis. Secreted FGFs with local paracrine effects can either exert an anti-fibrotic or a pro-fibrotic action during this pathological process through their FGF receptors (FGFRs) and heparan sulfate residues as co-receptors. Among FGFs, endocrine FGFs (FGF29, FGF21, and FGF23) play a central role in the control of metabolism and tissue homeostasis. They are characterized by a low affinity for heparan sulfate, present in the cell vicinity, allowing them to have endocrine activity. Nevertheless, their interaction with FGFRs requires the presence of mandatory co-receptors, alpha and beta Klotho proteins (KLA and KLB). Endocrine FGFs are of growing interest for their anti-fibrotic action during liver, kidney, or myocardial fibrosis. Innovative therapies based on FGF19 or FGF21 analogs are currently being studied in humans during liver fibrosis. Recent data report a similar anti-fibrotic action of endocrine FGFs in the lung, suggesting a systemic regulation of the pulmonary fibrotic process. In this review, we summarize the current knowledge on the protective effect of endocrine FGFs during the fibrotic processes, with a focus on pulmonary fibrosis.
Collapse
Affiliation(s)
- Mada Ghanem
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France
| | - Gabrielle Archer
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France
| | - Bruno Crestani
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, FHU APOLLO, Paris, France
| | - Arnaud A Mailleux
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France.
| |
Collapse
|
5
|
Martínez-Heredia L, Canelo-Moreno JM, García-Fontana B, Muñoz-Torres M. Non-Classical Effects of FGF23: Molecular and Clinical Features. Int J Mol Sci 2024; 25:4875. [PMID: 38732094 PMCID: PMC11084844 DOI: 10.3390/ijms25094875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This article reviews the role of fibroblast growth factor 23 (FGF23) protein in phosphate metabolism, highlighting its regulation of vitamin D, parathyroid hormone, and bone metabolism. Although it was traditionally thought that phosphate-calcium homeostasis was controlled exclusively by parathyroid hormone (PTH) and calcitriol, pathophysiological studies revealed the influence of FGF23. This protein, expressed mainly in bone, inhibits the renal reabsorption of phosphate and calcitriol formation, mediated by the α-klotho co-receptor. In addition to its role in phosphate metabolism, FGF23 exhibits pleiotropic effects in non-renal systems such as the cardiovascular, immune, and metabolic systems, including the regulation of gene expression and cardiac fibrosis. Although it has been proposed as a biomarker and therapeutic target, the inhibition of FGF23 poses challenges due to its potential side effects. However, the approval of drugs such as burosumab represents a milestone in the treatment of FGF23-related diseases.
Collapse
Affiliation(s)
- Luis Martínez-Heredia
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Manuel Muñoz-Torres
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
6
|
Perwad F, Akwo EA, Vartanian N, Suva LJ, Friedman PA, Robinson-Cohen C. Multi-trait Analysis of GWAS for circulating FGF23 Identifies Novel Network Interactions Between HRG-HMGB1 and Cardiac Disease in CKD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303051. [PMID: 38496593 PMCID: PMC10942519 DOI: 10.1101/2024.03.04.24303051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Genome-wide association studies (GWAS) have identified numerous genetic loci associated with mineral metabolism (MM) markers but have exclusively focused on single-trait analysis. In this study, we performed a multi-trait analysis of GWAS (MTAG) of MM, exploring overlapping genetic architecture between traits, to identify novel genetic associations for fibroblast growth factor 23 (FGF23). Methods We applied MTAG to genetic variants common to GWAS of 5 genetically correlated MM markers (calcium, phosphorus, FGF23, 25-hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH)) in European-ancestry subjects. We integrated information from UKBioBank GWAS for blood levels for phosphate, 25(OH)D and calcium (n=366,484), and CHARGE GWAS for PTH (n=29,155) and FGF23 (n=16,624). We then used functional genomics to model interactive and dynamic networks to identify novel associations between genetic traits and circulating FGF23. Results MTAG increased the effective sample size for all MM markers to n=50,325 for FGF23. After clumping, MTAG identified independent genome-wide significant SNPs for all traits, including 62 loci for FGF23. Many of these loci have not been previously reported in single-trait analyses. Through functional genomics we identified Histidine-rich glycoprotein (HRG) and high mobility group box 1(HMGB1) genes as master regulators of downstream canonical pathways associated with FGF23. HRG-HMGB1 network interactions were also highly enriched in left ventricular heart tissue of a cohort of deceased hemodialysis patients. Conclusion Our findings highlight the importance of MTAG analysis of MM markers to boost the number of genome-wide significant loci for FGF23 to identify novel genetic traits. Functional genomics revealed novel networks that inform unique cellular functions and identified HRG-HMGB1 as key master regulators of FGF23 and cardiovascular disease in CKD. Future studies will provide a deeper understanding of genetic signatures associated with FGF23 and its role in health and disease.
Collapse
Affiliation(s)
- Farzana Perwad
- University of California San Francisco, San Francisco, CA
| | - Elvis A Akwo
- Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | |
Collapse
|
7
|
Chiuariu T, Șalaru D, Ureche C, Vasiliu L, Lupu A, Lupu VV, Șerban AM, Zăvoi A, Benchea LC, Clement A, Tudurachi BS, Sascău RA, Stătescu C. Cardiac and Renal Fibrosis, the Silent Killer in the Cardiovascular Continuum: An Up-to-Date. J Cardiovasc Dev Dis 2024; 11:62. [PMID: 38392276 PMCID: PMC10889423 DOI: 10.3390/jcdd11020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiovascular disease (CVD) and chronic kidney disease (CKD) often coexist and have a major impact on patient prognosis. Organ fibrosis plays a significant role in the pathogenesis of cardio-renal syndrome (CRS), explaining the high incidence of heart failure and sudden cardiac death in these patients. Various mediators and mechanisms have been proposed as contributors to the alteration of fibroblasts and collagen turnover, varying from hemodynamic changes to the activation of the renin-angiotensin system, involvement of FGF 23, and Klotho protein or collagen deposition. A better understanding of all the mechanisms involved has prompted the search for alternative therapeutic targets, such as novel inhibitors of the renin-angiotensin-aldosterone system (RAAS), serelaxin, and neutralizing interleukin-11 (IL-11) antibodies. This review focuses on the molecular mechanisms of cardiac and renal fibrosis in the CKD and heart failure (HF) population and highlights the therapeutic alternatives designed to target the responsible pathways.
Collapse
Affiliation(s)
- Traian Chiuariu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Delia Șalaru
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Carina Ureche
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Laura Vasiliu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Ancuta Lupu
- Department of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adela Mihaela Șerban
- Cardiology Department, Heart Institute Niculae Stăncioiu, 19-21 Motilor Street, 400001 Cluj-Napoca, Romania
| | - Alexandra Zăvoi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Laura Catalina Benchea
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Alexandra Clement
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Bogdan-Sorin Tudurachi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Radu Andy Sascău
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Cristian Stătescu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| |
Collapse
|
8
|
Shaik SP, Karan HH, Singh A, Attuluri SK, Khan AAN, Zahid F, Patil D. HFpEF: New biomarkers and their diagnostic and prognostic value. Curr Probl Cardiol 2024; 49:102155. [PMID: 37866418 DOI: 10.1016/j.cpcardiol.2023.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Heart failure characterized by preserved ejection fraction (HFpEF) poses a substantial challenge to healthcare systems worldwide and the diagnostic algorithms used currently mirror those utilized for reduced Ejection Fraction (HFrEF). This literature review aims to explore the diagnostic and prognostic credibility of numerous emerging biomarkers associated with HFpEF. We conducted a thorough analysis of the available medical literature and selected the biomarkers which yielded the maximum amount of published information. After reviewing the current literature we conclude that there are no biomarkers at present which are superior to natriuretic peptides in terms of diagnosis and prognosis of HFpEF. However biomarkers like Suppression of tumorigenicity2, Galectin3 and microRNAs are promising and can be researched further for future use. Although newer individual biomarkers may not be useful in diagnosing and prognosis of HFpEF, we believe that a specific biomarker profile may be identified in each phenotype,which can be used in future.
Collapse
Affiliation(s)
- Shahanaz Parveen Shaik
- Junior Resident, Internal Medicine, DR. Y.S.R University of Health Sciences, Andhra Pradesh, India.
| | - Hasnain Hyder Karan
- Resident, Internal Medicine, San Joaquin General Hospital,French Camp, CA, United States
| | - Arkaja Singh
- Junior Resident, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Sai Kiran Attuluri
- Junior Resident, Internal Medicine, DR. Y.S.R University of Health Sciences, Andhra Pradesh, India
| | - Afnan Akram Nawaz Khan
- Junior Resident, Internal Medicine, Vydehi Institute of Medical Sciences, Bangalore, India
| | - Fazila Zahid
- Resident, Internal Medicine, OSF St Francis Hospital, University of Illinois College of Medicine; IL; USA
| | - Dhrumil Patil
- Postdoctoral Research fellow, Cardiology department, Beth Israel Deaconess Medical Center, Harvard University, USA
| |
Collapse
|
9
|
Alake SE, Ice J, Robinson K, Price P, Hatter B, Wozniak K, Lin D, Chowanadisai W, Smith BJ, Lucas EA. Reduced estrogen signaling contributes to bone loss and cardiac dysfunction in interleukin-10 knockout mice. Physiol Rep 2024; 12:e15914. [PMID: 38217044 PMCID: PMC10787104 DOI: 10.14814/phy2.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
Characterization of the interleukin (IL)-10 knockout (KO) mouse with chronic gut inflammation, cardiovascular dysfunction, and bone loss suggests a critical role for this cytokine in interorgan communication within the gut, bone, and cardiovascular axis. We sought to understand the role of IL-10 in the cross-talk between these systems. Six-week-old IL-10 KO mice and their wild type (WT) counterparts were maintained on a standard rodent diet for 3 or 6 months. Gene expression of proinflammatory markers and Fgf23, serum 17β-estradiol (E2), and cardiac protein expression were assessed. Ileal Il17a and Tnf mRNA increased while Il6 mRNA increased in the bone and heart by at least 2-fold in IL-10 KO mice. Bone Dmp1 and Phex mRNA were repressed at 6 months in IL-10 KO mice, resulting in increased Fgf23 mRNA (~4-fold) that contributed to increased fibrosis. In the IL-10 KO mice, gut bacterial β-glucuronidase activity and ovarian Cyp19a1 mRNA were lower (p < 0.05), consistent with reduced serum E2 and reduced cardiac pNOS3 (Ser1119 ) in these mice. Treatment of ileal lymphocytes with E2 reduced gut inflammation in WT but not IL-10 KO mice. In conclusion, our data suggest that diminished estrogen and defective bone mineralization increased FGF23 which contributed to cardiac fibrosis in the IL-10 KO mouse.
Collapse
Affiliation(s)
- Sanmi E. Alake
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - John Ice
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Kara Robinson
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Payton Price
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Bethany Hatter
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Karen Wozniak
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Dingbo Lin
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Winyoo Chowanadisai
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Brenda J. Smith
- Department of Obstetrics and GynecologyIndiana School of MedicineIndianapolisIndianaUSA
- Indiana Center for Musculoskeletal HealthIndiana School of MedicineIndianapolisIndianaUSA
| | - Edralin A. Lucas
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
10
|
Watanabe K, Fujii H, Okamoto K, Kono K, Goto S, Nishi S. Exploring the implications of blocking renin-angiotensin-aldosterone system and fibroblast growth factor 23 in early left ventricular hypertrophy without chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1276664. [PMID: 38174329 PMCID: PMC10762797 DOI: 10.3389/fendo.2023.1276664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Background Whether fibroblast growth factor 23 (FGF23) directly induces left ventricular hypertrophy (LVH) remains controversial. Recent studies showed an association between FGF23 and the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to investigate changes in FGF23 levels and RAAS parameters and their influences on LVH. Methods In the first experiment, male C57BL/6J mice were divided into sham and transverse aortic constriction (TAC) groups. The TAC group underwent TAC at 8 weeks of age. At 1, 2, 3, and 4 weeks after TAC, the mice were sacrificed, and blood and urine samples were obtained. Cardiac expressions of FGF23 and RAAS-related factors were evaluated, and cardiac histological analyses were performed. In the second experiment, the sham and TAC groups were treated with vehicle, angiotensin-converting enzyme (ACE) inhibitor, or FGF receptor 4 (FGFR4) inhibitor and then evaluated in the same way as in the first experiment. Results In the early stage of LVH without chronic kidney disease, serum FGF23 levels did not change but cardiac FGF23 expression significantly increased along with LVH progression. Moreover, serum aldosterone and cardiac ACE levels were significantly elevated, and cardiac ACE2 levels were significantly decreased. ACE inhibitor did not change serum FGF23 levels but significantly decreased cardiac FGF23 levels with improvements in LVH and RAAS-related factors, while FGFR4 inhibitor did not change the values. Conclusions Not serum FGF23 but cardiac FGF23 levels and RAAS parameters significantly changed in the early stage of LVH without chronic kidney disease. RAAS blockade might be more crucial than FGF23 blockade for preventing LVH progression in this condition.
Collapse
Affiliation(s)
| | - Hideki Fujii
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | |
Collapse
|
11
|
Widmann L, Keranov S, Jafari L, Liebetrau C, Keller T, Troidl C, Kriechbaum S, Voss S, Arsalan M, Richter MJ, Tello K, Gall H, Ghofrani HA, Guth S, Seeger W, Hamm CW, Dörr O, Nef H. Fibroblast growth factor 23 as a biomarker of right ventricular dysfunction in pulmonary hypertension. Clin Res Cardiol 2023; 112:1382-1393. [PMID: 36790465 PMCID: PMC10562503 DOI: 10.1007/s00392-023-02162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF-23) has been associated with left ventricular hypertrophy (LVH) and heart failure. However, its role in right ventricular (RV) remodeling and RV failure is unknown. This study analyzed the utility of FGF-23 as a biomarker of RV function in patients with pulmonary hypertension (PH). METHODS In this observational study, FGF-23 was measured in the plasma of patients with PH (n = 627), dilated cardiomyopathy (DCM, n = 59), or LVH with severe aortic stenosis (n = 35). Participants without LV or RV abnormalities served as controls (n = 36). RESULTS Median FGF-23 plasma levels were higher in PH patients than in healthy controls (p < 0.001). There were no significant differences between PH, DCM, and LVH patients. Analysis across tertiles of FGF-23 levels in PH patients revealed an association between higher FGF-23 levels and higher levels of NT-proBNP and worse renal function. Furthermore, patients in the high-FGF-23 tertile had a higher pulmonary vascular resistance (PVR), mean pulmonary artery pressure, and right atrial pressure and a lower cardiac index (CI) than patients in the low tertile (p < 0.001 for all comparisons). Higher FGF-23 levels were associated with higher RV end-diastolic diameter and lower tricuspid annular plane systolic excursions (TAPSE) and TAPSE/PASP. Receiver operating characteristic analysis revealed FGF-23 as a good predictor of RV maladaptation, defined as TAPSE < 17 mm and CI < 2.5 L/min/m2. Association of FGF-23 with parameters of RV function was independent of the glomerular filtration rate in regression analysis. CONCLUSION FGF-23 may serve as a biomarker for maladaptive RV remodeling in patients with PH.
Collapse
Affiliation(s)
- Laila Widmann
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
| | - Stanislav Keranov
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany.
| | - Leili Jafari
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | | | - Till Keller
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Christian Troidl
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Steffen Kriechbaum
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Sandra Voss
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Mani Arsalan
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
| | - Manuel J Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Henning Gall
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein A Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Guth
- Department of Thoracic Surgery, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christian W Hamm
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Oliver Dörr
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
| | - Holger Nef
- Department of Cardiology and Angiology, University of Giessen, Klinikstr. 33, 35392, Giessen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site RheinMain, Bad Nauheim, Germany
| |
Collapse
|
12
|
Benes J, Kroupova K, Kotrc M, Petrak J, Jarolim P, Novosadova V, Kautzner J, Melenovsky V. FGF-23 is a biomarker of RV dysfunction and congestion in patients with HFrEF. Sci Rep 2023; 13:16004. [PMID: 37749114 PMCID: PMC10520041 DOI: 10.1038/s41598-023-42558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
There is no biomarker reflecting right ventricular dysfunction in HFrEF patients used in clinical practice. We have aimed to look for a circulating marker of RV dysfunction employing a quantitative proteomic strategy. The Olink Proteomics Multiplex panels (Cardiovascular Disease II, III, Cardiometabolic, and Inflammation Target Panels) identified FGF-23 to be the most differentially abundant (more than 2.5-fold) in blood plasma of HF patients with severe RV dysfunction (n = 30) compared to those with preserved RV function (n = 31). A subsequent ELISA-based confirmatory analysis of circulating FGF-23 in a large cohort of patients (n = 344, 72.7% NYHA III/IV, LVEF 22.5%, 54.1% with moderate/severe RV dysfunction), followed by multivariable regression analysis, revealed that the plasma FGF-23 level was most significantly associated with RV dysfunction grade (p = 0.0004) and congestion in the systemic circulation (p = 0.03), but not with LV-ejection fraction (p = 0.69) or estimated glomerular filtration rate (eGFR, p = 0.08). FGF-23 was associated with the degree of RV dysfunction in both sub-cohorts (i.e. in patients with and without congestion, p < 0.0001). The association between FGF-23 and RV-dysfunction remained significant after the adjustment for BNP (p = 0.01). In contrast, when adjusted for BNP, FGF-23 was no longer associated with LV dysfunction (p = 0.59). The Cox proportional hazard model revealed that circulating FGF-23 was significantly associated with adverse outcomes even after adjusting for BNP, LVEF, RV dysfunction grade and eGFR. Circulating FGF-23 is thus a biomarker of right ventricular dysfunction in HFrEF patients regardless of congestion status.
Collapse
Affiliation(s)
- Jan Benes
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Videnska 1958/9, 140 21 Praha 4, Prague, Czech Republic.
| | - Katerina Kroupova
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Videnska 1958/9, 140 21 Praha 4, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Kotrc
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Videnska 1958/9, 140 21 Praha 4, Prague, Czech Republic
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vendula Novosadova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Videnska 1958/9, 140 21 Praha 4, Prague, Czech Republic
| | - Vojtech Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Videnska 1958/9, 140 21 Praha 4, Prague, Czech Republic
| |
Collapse
|
13
|
Vergaro G, Del Franco A, Aimo A, Gentile F, Castiglione V, Saponaro F, Masotti S, Prontera C, Fusari N, Emdin M, Passino C. Intact fibroblast growth factor 23 in heart failure with reduced and mildly reduced ejection fraction. BMC Cardiovasc Disord 2023; 23:433. [PMID: 37658340 PMCID: PMC10474676 DOI: 10.1186/s12872-023-03441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Fibroblast growth factor-23 (FGF23) has been associated to left ventricular (LV) hypertrophy and heart failure (HF) severity. We aimed to investigate the clinical correlates and prognostic value of intact FGF23 (iFGF23) in HF patients. METHODS Patients with stable HF and left ventricular ejection fraction (LVEF) < 50% were prospectively enrolled, managed according to current recommendations and followed over time. iFGF23 was measured at baseline with a fully automated immuno-chemiluminescent assay. RESULTS We enrolled 150 patients (82% males; median age 65 years). First, second, and third iFGF23 tertiles were < 35.2 pg/mL, 35.2-50.9 pg/mL, and > 50.9 pg/mL. LVEF decreased from the first iFGF23 tertile to the third tertile (p = 0.014). N-terminal pro-B-type natriuretic peptide (NT-proBNP) increased from the first to the third tertile (p = 0.001), while peak oxygen consumption decreased (p < 0.001). Thirty-five patients (23%) experienced the primary endpoint (all-cause death or HF hospitalization at 5 years), and 26 (17%) the secondary endpoint (all-cause death at 5 years). On multivariable analysis, iFGF23 independently predicted the primary endpoint on top of age, gender and LVEF (HR 4.6 [95% CI 2.1-10.3], p < 0.001), age, gender and eGFR (HR 4.1 [95% CI 1.6-10.3], p = 0.003), as well as age, gender and NT-proBNP (HR 3.6 [95% CI 1.6-8.2], p = 0.002). iFGF23 even reclassified patient risk on top of all the 3 models, with NRI values of 0.65 (95% CI 0.30-1.01), 0.55 (95% CI 0.25-0.88), and 0.60 (95% CI 0.24-0.96), respectively (both p < 0.001). CONCLUSIONS Circulating iFGF23 is associated with disease severity and outcome in HF patients with reduced and mildly reduced ejection fraction.
Collapse
Affiliation(s)
- Giuseppe Vergaro
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, Pisa, 56127, Italy.
- Health Science Interdisciplinary Center , Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Annamaria Del Franco
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, Pisa, 56127, Italy
- Health Science Interdisciplinary Center , Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Aimo
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, Pisa, 56127, Italy
- Health Science Interdisciplinary Center , Scuola Superiore Sant'Anna, Pisa, Italy
| | - Francesco Gentile
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, Pisa, 56127, Italy
| | - Vincenzo Castiglione
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, Pisa, 56127, Italy
| | | | - Silvia Masotti
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, Pisa, 56127, Italy
| | - Concetta Prontera
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, Pisa, 56127, Italy
| | - Niccolò Fusari
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, Pisa, 56127, Italy
| | - Michele Emdin
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, Pisa, 56127, Italy
- Health Science Interdisciplinary Center , Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudio Passino
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, Pisa, 56127, Italy
- Health Science Interdisciplinary Center , Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
14
|
Xie J, Zheng C, Shen M, Lu W, Li M, He M, Chen L, Ma S, Zhu Y, Lin H, Xiu J, Liao W, Bin J, Liao Y. Pregnancy-induced physiological hypertrophic preconditioning attenuates pathological myocardial hypertrophy by activation of FoxO3a. Cell Mol Life Sci 2023; 80:267. [PMID: 37626241 PMCID: PMC11072725 DOI: 10.1007/s00018-023-04909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Previous studies show a woman's pregnancy is correlated with post-reproductive longevity, and nulliparity is associated with higher risk of incident heart failure, suggesting pregnancy likely exerts a cardioprotection. We previously reported a cardioprotective phenomenon termed myocardial hypertrophic preconditioning, but it is unknown whether pregnancy-induced physiological hypertrophic preconditioning (PHP) can also protect the heart against subsequent pathological hypertrophic stress. We aimed to clarify the phenomenon of PHP and its mechanisms. The pluripara mice whose pregnancy-induced physiological hypertrophy regressed and the nulliparous mice underwent angiotensin II (Ang II) infusion or transverse aortic constriction (TAC). Echocardiography, invasive left ventricular hemodynamic measurement and histological analysis were used to evaluate cardiac remodeling and function. Silencing or overexpression of Foxo3 by adeno-associated virus was used to investigate the role of FoxO3a involved in the antihypertrophic effect. Compared with nulliparous mice, pathological cardiac hypertrophy induced by Ang II infusion, or TAC was significantly attenuated and heart failure induced by TAC was markedly improved in mice with PHP. Activation of FoxO3a was significantly enhanced in the hearts of postpartum mice. FoxO3a inhibited myocardial hypertrophy by suppressing signaling pathway of phosphorylated glycogen synthase kinase-3β (p-GSK3β)/β-catenin/Cyclin D1. Silencing or overexpression of Foxo3 attenuated or enhanced the anti-hypertrophic effect of PHP in mice with pathological stimulation. Our findings demonstrate that PHP confers resistance to subsequent hypertrophic stress and slows progression to heart failure through activation of FoxO3a/GSK3β pathway.
Collapse
Affiliation(s)
- Jiahe Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
- Department of Cardiology, First Affiliated Hospital, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Mengjia Shen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Weiling Lu
- Department of Cardiology, First Affiliated Hospital, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Mingyuan He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jiancheng Xiu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Ramamoorthy R, Hussain H, Ravelo N, Sriramajayam K, Di Gregorio DM, Paulrasu K, Chen P, Young K, Masciarella AD, Jayakumar AR, Paidas MJ. Kidney Damage in Long COVID: Studies in Experimental Mice. BIOLOGY 2023; 12:1070. [PMID: 37626956 PMCID: PMC10452084 DOI: 10.3390/biology12081070] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Signs and symptoms involving multiple organ systems which persist for weeks or months to years after the initial SARS-CoV-2 infection (also known as PASC or long COVID) are common complications of individuals with COVID-19. We recently reported pathophysiological changes in various organs post-acute infection of mice with mouse hepatitis virus-1 (MHV-1, a coronavirus) (7 days) and after long-term post-infection (12 months). One of the organs severely affected in this animal model is the kidney, which correlated well with human studies showing kidney injury post-SARS-CoV-2 infection. Our long-term post-infection pathological observation in kidneys includes the development of edema and inflammation of the renal parenchyma, severe acute tubular necrosis, and infiltration of macrophages and lymphocytes, in addition to changes observed in both acute and long-term post-infection, which include tubular epithelial cell degenerative changes, peritubular vessel congestion, proximal and distal tubular necrosis, hemorrhage in the interstitial tissue, and vacuolation of renal tubules. These findings strongly suggest the possible development of renal fibrosis, in particular in the long-term post-infection. Accordingly, we investigated whether the signaling system that is known to initiate the above-mentioned changes in kidneys in other conditions is also activated in long-term post-MHV-1 infection. We found increased TGF-β1, FGF23, NGAL, IL-18, HIF1-α, TLR2, YKL-40, and B2M mRNA levels in long-term post-MHV-1 infection, but not EGFR, TNFR1, BCL3, and WFDC2. However, only neutrophil gelatinase-associated lipocalin (NGAL) increased in acute infection (7 days). Immunoblot studies showed an elevation in protein levels of HIF1-α, TLR-2, and EGFR in long-term post-MHV-1 infection, while KIM-1 and MMP-7 protein levels are increased in acute infection. Treatment with a synthetic peptide, SPIKENET (SPK), which inhibits spike protein binding, reduced NGAL mRNA in acute infection, and decreased TGF-β1, BCL3 mRNA, EGFR, HIF1-α, and TLR-2 protein levels long-term post-MHV-1 infection. These findings suggest that fibrotic events may initiate early in SARS-CoV-2 infection, leading to pronounced kidney fibrosis in long COVID. Targeting these factors therapeutically may prevent acute or long-COVID-associated kidney complications.
Collapse
Affiliation(s)
- Rajalakshmi Ramamoorthy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
| | - Hussain Hussain
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA;
| | - Natalia Ravelo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
| | - Kannappan Sriramajayam
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Dibe M. Di Gregorio
- University of Miami College of Arts and Sciences, Coral Gables, FL 33146, USA;
| | - Kodisundaram Paulrasu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.C.); (K.Y.)
| | - Karen Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.C.); (K.Y.)
| | | | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
16
|
Akwo EA, Robinson-Cohen C. Mendelian randomization and the association of fibroblast growth factor-23 with heart failure with preserved ejection fraction. Curr Opin Nephrol Hypertens 2023; 32:305-312. [PMID: 37016957 PMCID: PMC10313786 DOI: 10.1097/mnh.0000000000000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
PURPOSE OF REVIEW Observational data provide compelling evidence for elevated fibroblast growth factor-23 (FGF23) as a risk factor for heart failure (HF), particularly heart failure with preserved ejection fraction (HFpEF). Given the limitations of observational studies, uncertainties persist regarding the causal role of FGF23 in the pathogenesis of HF and HFpEF. Recently, Mendelian randomization (MR) studies have been performed to examine causal associations between FGF23 and HF phenotypes. RECENT FINDINGS The current review describes the methodological basis of the MR techniques used to examine the causal role of FGF23 on HF phenotypes, highlighting the importance of large-scale multiomics data. The findings from most of the MR studies indicate an absence of evidence of a causal effect of FGF23 on the risk of HF in general population settings. However, analysis using individual-level data showed a strong association between genetically-predicted FGF23 and HFpEF in individuals with a genetic predisposition to low estimated glomerular filtration (eGFR). SUMMARY Evidence from MR analysis suggests a causal role of FGF23 in the pathogenesis of HFpEF in low eGFR settings - a finding supported by experimental, clinical, and epidemiological data. While future MR studies of FGF23 and HFpEF could provide further evidence, randomized trials of FGF23-lowering agents could provide the most definitive answers on the association in chronic kidney disease populations.
Collapse
Affiliation(s)
- Elvis A. Akwo
- Vanderbilt O’Brien Kidney Center, Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN
| | - Cassianne Robinson-Cohen
- Vanderbilt O’Brien Kidney Center, Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN
| |
Collapse
|
17
|
Sharma S, Patel NR, Hanudel MR, Ix JH, Salusky IB, Nguyen KL. Plasma FGF23 is associated with left atrial remodeling in children on hemodialysis. Pediatr Nephrol 2023; 38:2179-2187. [PMID: 36508050 PMCID: PMC10247494 DOI: 10.1007/s00467-022-05812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND FGF23 mediates cardiac fibrosis through the activation of pro-fibrotic factors in in vitro models and is markedly elevated in kidney disease. Left atrial global longitudinal strain (LA GLS) derived by echocardiographic speckle-tracking measures longitudinal shortening of the LA walls, quantifies atrial performance and may enable detection of early LA remodeling in the setting of normal ventricular function. We hypothesized that LA GLS is abnormal in children on hemodialysis (HD) compared to healthy controls of comparable age/sex distribution and that, among HD patients, greater FGF23 levels are associated with abnormal LA GLS. METHODS Clinical and echocardiographic data from 29 children receiving HD and 13 healthy controls were collected in a cross-sectional single-center study. Plasma FGF23 concentrations were measured using ELISA. The primary outcome was LA GLS measured using 2D speckle-tracking strain analysis. Linear regression analysis was used to investigate predictors of LA GLS in HD. RESULTS Median dialysis vintage was 1.5 (IQR 0.5-4.3) years. Median intact FGF23 levels were substantially higher in the HD vs. control group (1206 [215, 4707] vs. 51 [43, 66.5] pg/ml; P = 0.0001), and LA GLS was 39.9% SD 11.6 vs. 32.8% SD 5.7 (P = 0.04). Among HD patients, higher FGF23 was associated with lower LA GLS (β per unit Ln-FGF23: - 2.7; 95% CI slope - 5.4, - 0.1; P = 0.04 after adjustment for age, body size, and HD vintage. FGF23 was not associated with LA phasic reservoir, conduit, or contractile strain. CONCLUSIONS In children on HD and preserved left ventricular ejection fraction, greater FGF23 is associated with lower LA GLS (indicative of impaired atrial performance). A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Shilpa Sharma
- Division of Nephrology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Room 6030, Los Angeles, CA, 90073, USA.
| | - Nisha R Patel
- Stritch School of Medicine, Loyola University Chicago, IL, Maywood, USA
| | - Mark R Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
18
|
Hagmayer L, Mayer C, Ebert N, Amann K, Daniel C. Experimental renal transplantation in rats improves cardiac dysfunction caused by chronic kidney disease while LVH persists. Front Cardiovasc Med 2023; 10:1200323. [PMID: 37456824 PMCID: PMC10340545 DOI: 10.3389/fcvm.2023.1200323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Background Chronic kidney disease (CKD) causes congestive heart failure (CHF) with systolic dysfunction and left ventricular hypertrophy (LVH), which is a major contributor to increased mortality in CKD patients. It remains unclear whether cardiovascular changes that occur during the course of CKD can be reversed when renal function is restored by transplantation. Methods To investigate this, chronic kidney disease was established in F344 rats by subtotal nephrectomy (SNx) for 8 weeks, followed by transplantation of a functional kidney from an isogenic F344 donor. SNx rats without transplantation and sham-operated animals served as controls. Renal function was assessed before and throughout the experiment. In addition, cardiac ultrasound was performed at weeks 0, 8, 12 and 16. At the end of the experiment, intra-arterial blood pressure was measured and kidneys and hearts were histologically and molecularly examined. Results Eight weeks after SNx, rats developed marked renal dysfunction associated with significant glomerulosclerosis and tubulointerstitial fibrosis, but also an increase in left ventricular mass. After transplantation, renal function normalized but relative heart weight and ventricular mass as assessed by ultrasound scans showed no reduction compared with SNx controls. However, left ventricular wall thickness, fractional shortening and ejection fraction was normalized by renal transplantation. At 8 weeks after kidney transplantation, cardiac expression of BNP and FGF23 was also at levels comparable to healthy controls, whereas these factors were significantly increased in SNx rats. Cardiac fibrosis, as measured by fibronectin mRNA expression, was completely normalized, whereas cardiac fibronectin protein was still slightly but not significantly increased in transplanted animals compared to controls. In addition, the myofibroblast marker collagen 1, as assessed by immunohistochemistry, was significantly increased in SNx rats and also normalized by renal transplantation. Interestingly, CD68+ macrophages were significantly reduced in the hearts of SNx rats and in transplanted animals at slightly higher levels compared to controls. Conclusion Restoration of renal function by kidney transplantation normalized early cardiac changes at most functional and molecular levels, but did not completely reverse LVH. However, further studies are needed to determine whether restoration of renal function can also reverse LVH at a later time point.
Collapse
|
19
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
20
|
FGF23 in Chronic Kidney Disease: Bridging the Heart and Anemia. Cells 2023; 12:cells12040609. [PMID: 36831276 PMCID: PMC9954184 DOI: 10.3390/cells12040609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced mainly in osteocytes. In chronic kidney disease (CKD) FGF23 levels increase due to higher production, but also as the result of impaired cleavage and reduced excretion from the body. FGF23 has a significant role in disturbed bone and mineral metabolism in CKD, which leads to a higher cardiovascular risk and mortality in these patients. Current research has emphasized the expression of FGF23 in cardiac myocytes, fibroblasts, and endothelial cells, and in addition to the effects on the kidney, its primary role is in cardiac remodeling in CKD patients. Recent discoveries found a significant link between increased FGF23 levels and anemia development in CKD. This review describes the FGF23 role in cardiac hypertrophy and anemia in the setting of CKD and discusses the best therapeutical approach for lowering FGF23 levels.
Collapse
|
21
|
Megahed A, Gadalla H, Abdelhamid FM, Almehmadi SJ, Khan AA, Albukhari TA, Risha EF. Vitamin D Ameliorates the Hepatic Oxidative Damage and Fibrotic Effect Caused by Thioacetamide in Rats. Biomedicines 2023; 11:biomedicines11020424. [PMID: 36830960 PMCID: PMC9953330 DOI: 10.3390/biomedicines11020424] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Vitamin D3 (VD3) is a sunshine hormone that regulates cellular proliferation, differentiation, apoptosis, and angiogenesis related to liver parenchyma. We used a thioacetamide (TAA)-induced hepatic fibrosis rat model in our study to investigate the beneficial roles of VD3 to overcome extensive liver fibrosis. Randomly, four equal groups (eight rats per group) underwent therapy for eight successive weeks: a control group, a group treated with TAA 100 mg/kg BW IP every other day, a group treated with VD3 1000 IU/kg BW IM every day, and a TAA+VD group treated with both therapies. Treatment with VD3 after TAA-induced hepatic fibrosis was found to alleviate elevated liver function measures by decreasing ALT, AST, and ALP activity; decreasing total bilirubin, direct bilirubin, cholesterol, and triglyceride levels; and increasing glucose and 25[OH]D3. Rats treated with VD3 showed marked decreases in MDA and increased SOD, CAT, and GSH levels. In addition, CD34 and FGF23 gene expressions were reduced after dual therapy. Liver sections from the TAA+VD group showed markedly decreased hepatic lesions, and Masson's trichrome stain showed a marked decrease in dense bluish-stained fibrous tissue. The immunohistochemical expression of TGF-β and α-SMA showed markedly decreased positive brown cytoplasmic expression in a few hepatocytes, clarifying the antifibrotic effect of VD3 in hepatic fibrosis. In conclusion, VD3 alleviates hepatotoxicity and fibrosis caused by TAA.
Collapse
Affiliation(s)
- Aya Megahed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansour 35516, Egypt
| | - Hossam Gadalla
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansour 35516, Egypt
| | - Fatma M. Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansour 35516, Egypt
| | - Samah J. Almehmadi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Anmar A. Khan
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Talat A. Albukhari
- Department of Immunology and Hematology, Faculty of Medicine, Umm Al-Qura University, Makkah P.O. Box 7607, Saudi Arabia
| | - Engy F. Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansour 35516, Egypt
- Correspondence: ; Tel.: +20-120-534-8354
| |
Collapse
|
22
|
Wang Y, Mao X, Shi S, Xu X, Lv J, Zhang B, Wu H, Song Q. SGLT2 inhibitors in the treatment of type 2 cardiorenal syndrome: Focus on renal tubules. FRONTIERS IN NEPHROLOGY 2023; 2:1109321. [PMID: 37674989 PMCID: PMC10479647 DOI: 10.3389/fneph.2022.1109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/22/2022] [Indexed: 09/08/2023]
Abstract
The pathogenesis of type 2 cardiorenal syndrome (CRS) is mostly associated with reduced cardiac output, increased central venous pressure (CVP), activation of the renin-angiotensin-aldosterone system (RAAS), inflammation, and oxidative stress. As a drug to treat diabetes, sodium-glucose transporter 2 inhibitor (SGLT2i) has been gradually found to have a protective effect on the heart and kidney and has a certain therapeutic effect on CRS. In the process of chronic heart failure (CHF) leading to chronic renal insufficiency, the renal tubular system, as the main functional part of the kidney, is the first to be damaged, but this damage can be reversed. In this review, we focus on the protective mechanisms of SGLT2i targeting renal tubular in the treatment of CRS, including natriuresis and diuresis to relieve renal congestion, attenuate renal tubular fibrosis, improve energy metabolism of renal tubular, and slow tubular inflammation and oxidative stress. This may have beneficial effects on the treatment of CRS and is a direction for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqiao Song
- Guang ‘anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Nakano T, Kishimoto H, Tokumoto M. Direct and indirect effects of fibroblast growth factor 23 on the heart. Front Endocrinol (Lausanne) 2023; 14:1059179. [PMID: 36909314 PMCID: PMC9999118 DOI: 10.3389/fendo.2023.1059179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Fibroblast growth factor (FGF)23 is a bone-derived phosphotropic hormone that regulates phosphate and mineral homeostasis. Recent studies have provided evidence that a high plasma concentration of FGF23 is associated with cardiac disease, including left ventricular hypertrophy (LVH), heart failure, atrial fibrillation, and cardiac death. Experimental studies have shown that FGF23 activates fibroblast growth factor receptor 4 (FGFR4)/phospholipase Cγ/calcineurin/nuclear factor of activated T-cells signaling in cardiomyocytes and induces cardiac hypertrophy in rodents. Activation of FGFR4 by FGF23 normally requires the co-receptor α-klotho, and klotho-independent signaling occurs only under conditions characterized by extremely high FGF23 concentrations. Recent studies have demonstrated that FGF23 activates the renin-angiotensin-aldosterone system (RAAS) and induces LVH, at least in part as a result of lower vitamin D activation. Moreover, crosstalk between FGF23 and RAAS results in the induction of cardiac hypertrophy and fibrosis. In this review, we summarize the results of studies regarding the relationships between FGF23 and cardiac events, and describe the potential direct and indirect mechanisms whereby FGF23 induces LVH.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- *Correspondence: Toshiaki Nakano,
| | - Hiroshi Kishimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Tokumoto
- Department of Nephrology, Fukuoka Red Cross Hospital, Fukuoka, Japan
| |
Collapse
|
24
|
Saito T, Mizobuchi M, Kato T, Ogata H, Koiwa F, Honda H. Fibroblast Growth Factor 23 Exacerbates Cardiac Fibrosis in Deoxycorticosterone Acetate-Salt Mice With Hypertension. J Transl Med 2023; 103:100003. [PMID: 36748187 DOI: 10.1016/j.labinv.2022.100003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is associated with cardiovascular disease in patients with chronic kidney disease; however, the mechanisms underlying the effect of FGF23 on cardiac function remain to be investigated. Herein, we studied the effect of continuous intravenous (CIV) FGF23 loading in a deoxycorticosterone acetate (DOCA)-salt mouse model with mild chronic kidney disease and hypertension as well as heart failure with a preserved ejection fraction. Wild-type male mice were randomly allocated to 4 groups: normal control, vehicle-treated DOCA-salt mice, FGF23-treated DOCA-salt mice, and FGF23- and calcitriol-treated DOCA-salt mice. The DOCA-salt mice received the agents via the CIV route for 10 days using an infusion minipump. DOCA-salt mice that received FGF23 showed a marked increase in the serum FGF23 level, and echocardiography in these mice revealed heart failure with a preserved ejection fraction. These mice also showed exacerbation of myocardial fibrosis, concomitant with an inverse and significant correlation with Cyp27b1 expression. Calcitriol treatment attenuated FGF23-induced cardiac fibrosis and improved diastolic function via inhibition of transforming growth factor-β signaling. This effect was independent of the systemic and local levels of FGF23. These results suggest that CIV FGF23 loading exacerbates cardiac fibrosis and that locally abnormal vitamin D metabolism is involved in this mechanism. Calcitriol attenuates this exacerbation by mediating transforming growth factor-β signaling independently of the FGF23 levels.
Collapse
Affiliation(s)
- Tomohiro Saito
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masahide Mizobuchi
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | - Tadashi Kato
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroaki Ogata
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Fumihiko Koiwa
- Division of Nephrology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Kishimoto H, Nakano T, Torisu K, Tokumoto M, Uchida Y, Yamada S, Taniguchi M, Kitazono T. Indoxyl sulfate induces left ventricular hypertrophy via the AhR-FGF23-FGFR4 signaling pathway. Front Cardiovasc Med 2023; 10:990422. [PMID: 36895836 PMCID: PMC9988908 DOI: 10.3389/fcvm.2023.990422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Background Patients with chronic kidney disease (CKD) have a high risk of left ventricular hypertrophy (LVH). Fibroblast growth factor 23 (FGF23) and indoxyl sulfate (IS) are associated with LVH in patients with CKD, but the interactions between these molecules remain unknown. We investigated whether IS contributes to LVH associated with FGF23 in cultured cardiomyocytes and CKD mice. Methods and results In cultured rat cardiac myoblast H9c2 cells incubated with IS, mRNA levels of the LVH markers atrial natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain were significantly upregulated. Levels of mRNA of the polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), which regulates FGF23 O-glycosylation, and FGF23 were also upregulated in H9c2 cells. Intact FGF23 protein expression and fibroblast growth factor receptor 4 (FGFR4) phosphorylation were increased in cell lysates by IS administration. In C57BL/6J mice with heminephrectomy, IS promoted LVH, whereas the inhibition of FGFR4 significantly reduced heart weight and left ventricular wall thickness in IS-treated groups. While there was no significant difference in serum FGF23 concentrations, cardiac FGF23 protein expression was markedly increased in IS-injected mice. GALNT3, hypoxia-inducible factor 1 alpha, and FGF23 protein expression was induced in H9c2 cells by IS treatment and suppressed by the inhibition of Aryl hydrocarbon receptor which is the receptor for IS. Conclusion This study suggests that IS increases FGF23 protein expression via an increase in GALNT3 and hypoxia-inducible factor 1 alpha expression, and activates FGF23-FGFR4 signaling in cardiomyocytes, leading to LVH.
Collapse
Affiliation(s)
- Hiroshi Kishimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Yushi Uchida
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Ni B, Sun M, Zhao J, Wang J, Cao Z. The role of β-catenin in cardiac diseases. Front Pharmacol 2023; 14:1157043. [PMID: 37033656 PMCID: PMC10073558 DOI: 10.3389/fphar.2023.1157043] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is a classical Wnt pathway that regulates the stability and nuclear localization of β-catenin and plays an important role in adult heart development and cardiac tissue homeostasis. In recent years, an increasing number of researchers have implicated the dysregulation of this signaling pathway in a variety of cardiac diseases, such as myocardial infarction, arrhythmias, arrhythmogenic cardiomyopathy, diabetic cardiomyopathies, and myocardial hypertrophy. The morbidity and mortality of cardiac diseases are increasing, which brings great challenges to clinical treatment and seriously affects patient health. Thus, understanding the biological roles of the Wnt/β-catenin pathway in these diseases may be essential for cardiac disease treatment and diagnosis to improve patient quality of life. In this review, we summarize current research on the roles of β-catenin in human cardiac diseases and potential inhibitors of Wnt/β-catenin, which may provide new strategies for cardiac disease therapies.
Collapse
|
27
|
Bai X, Levental M, Karaplis AC. Burosumab Treatment for Autosomal Recessive Hypophosphatemic Rickets Type 1 (ARHR1). J Clin Endocrinol Metab 2022; 107:2777-2783. [PMID: 35896139 PMCID: PMC9516063 DOI: 10.1210/clinem/dgac433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Autosomal recessive hypophosphatemic rickets (ARHR) are rare, heritable renal phosphate-wasting disorders that arise from overexpression of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) leading to impaired bone mineralization (rickets and osteomalacia). Inactivating mutations of Dentin matrix protein 1 (DMP1) give rise to ARHR type 1 (ARHR1). Short stature, prominent bowing of the legs, fractures/pseudofractures, and severe enthesopathy are prominent in this patient population. Traditionally, treatment consists of oral phosphate replacement and the addition of calcitriol but this approach is limited by modest efficacy and potential renal and gastrointestinal side effects. OBJECTIVE The advent of burosumab (Crysvita), a fully humanized monoclonal antibody to FGF23 for the treatment of X-linked hypophosphatemia and tumor-induced osteomalacia, offers a unique opportunity to evaluate its safety and efficacy in patients with ARHR1. RESULTS Monthly administration of burosumab to 2 brothers afflicted with the disorder resulted in normalization of serum phosphate, healing of pseudofracture, diminished fatigue, less bone pain, and reduced incapacity arising from the extensive enthesopathy and soft tissue fibrosis/calcification that characterizes this disorder. No adverse effects were reported following burosumab administration. CONCLUSION The present report highlights the beneficial biochemical and clinical outcomes associated with the use of burosumab in patients with ARHR1.
Collapse
Affiliation(s)
- Xiuying Bai
- Lady Davis Institute for Medical Research, CIUSSS de Centre-Ouest-de-l’île-de-Montréal, Jewish General Hospital, McGill University, Montréal, Quebec, H3T 1E2, Canada
| | - Mark Levental
- Department of Radiology, CIUSSS de Centre-Ouest-de-l’île-de-Montréal, Jewish General Hospital, McGill University, Montréal, Quebec, H3T 1E2, Canada
| | - Andrew C Karaplis
- Correspondence: Andrew C. Karaplis, MD, PhD, Lady Davis Institute for Medical Research, 3755 Cote Steve Catherine, Montreal, QC, H3T 1E2, Canada.
| |
Collapse
|
28
|
Li L, Gan H. Intact Fibroblast Growth Factor 23 Regulates Chronic Kidney Disease–Induced Myocardial Fibrosis by Activating the Sonic Hedgehog Signaling Pathway. J Am Heart Assoc 2022; 11:e026365. [DOI: 10.1161/jaha.122.026365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Clinically, myocardial fibrosis is one of the most common complications caused by chronic kidney disease (CKD). However, the potential mechanisms of CKD‐induced myocardial fibrosis have not been clarified.
Methods and Results
In our in vivo study, a rat model of CKD with 5/6 nephrectomy was established. The CKD model was treated with the glioma 1 (Gli‐1) inhibitor GANT‐61, and myocardial fibrosis and serum intact fibroblast growth factor 23 levels were assessed 16 weeks after nephrectomy. Finally, we found that Gli‐1 and Smoothened in the Sonic Hedgehog (Shh) signaling pathway were activated and that collagen‐1 and collagen‐3, which constitute the fibrotic index, were expressed in CKD myocardial tissue. After administering the Gli‐1 inhibitor GANT‐61, the degree of myocardial fibrosis was reduced, and Gli‐1 expression was also inhibited. We also measured blood pressure, cardiac biomarkers, and other indicators in rats and performed hematoxylin‐eosin staining of myocardial tissue. Furthermore, in vitro studies showed that intact fibroblast growth factor 23 promoted cardiac fibroblast proliferation and transdifferentiation into myofibroblasts by activating the Shh signaling pathway, thereby promoting cardiac fibrosis, as manifested by increased expression of the Shh, Patch 1, and Gli‐1 mRNAs and Shh, Smoothened, and Gli‐1 proteins in the Shh signaling pathway. The protein and mRNA levels of other fibrosis indicators, such as α‐smooth muscle actin, which are also markers of transdifferentiation, collagen‐1, and collagen‐3, were increased.
Conclusions
On the basis of these results, intact fibroblast growth factor 23 promotes CKD‐induced myocardial fibrosis by activating the Shh signaling pathway.
Collapse
Affiliation(s)
- Lanlan Li
- Department of Nephrology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Hua Gan
- Department of Nephrology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
29
|
Ruozi G, Bortolotti F, Mura A, Tomczyk M, Falcione A, Martinelli V, Vodret S, Braga L, Dal Ferro M, Cannatà A, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Cardioprotective factors against myocardial infarction selected in vivo from an AAV secretome library. Sci Transl Med 2022; 14:eabo0699. [PMID: 36044596 DOI: 10.1126/scitranslmed.abo0699] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Therapies for patients with myocardial infarction and heart failure are urgently needed, in light of the breadth of these conditions and lack of curative treatments. To systematically identify previously unidentified cardioactive biologicals in an unbiased manner in vivo, we developed cardiac FunSel, a method for the systematic, functional selection of effective factors using a library of 1198 barcoded adeno-associated virus (AAV) vectors encoding for the mouse secretome. By pooled vector injection into the heart, this library was screened to functionally select for factors that confer cardioprotection against myocardial infarction. After two rounds of iterative selection in mice, cardiac FunSel identified three proteins [chordin-like 1 (Chrdl1), family with sequence similarity 3 member C (Fam3c), and Fam3b] that preserve cardiomyocyte viability, sustain cardiac function, and prevent pathological remodeling. In particular, Chrdl1 exerted its protective activity by binding and inhibiting extracellular bone morphogenetic protein 4 (BMP4), which resulted in protection against cardiomyocyte death and induction of autophagy in cardiomyocytes after myocardial infarction. Chrdl1 also inhibited fibrosis and maladaptive cardiac remodeling by binding transforming growth factor-β (TGF-β) and preventing cardiac fibroblast differentiation into myofibroblasts. Production of secreted and circulating Chrdl1, Fam3c, and Fam3b from the liver also protected the heart from myocardial infarction, thus supporting the use of the three proteins as recombinant factors. Together, these findings disclose a powerful method for the in vivo, unbiased selection of tissue-protective factors and describe potential cardiac therapeutics.
Collapse
Affiliation(s)
- Giulia Ruozi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Francesca Bortolotti
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,Cardiovascular Department, ASUGI, 34149 Trieste, Italy
| | - Antonio Mura
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Mateusz Tomczyk
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK
| | - Antonella Falcione
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Valentina Martinelli
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK
| | | | - Antonio Cannatà
- Cardiovascular Department, ASUGI, 34149 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, ASUGI, 34149 Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
30
|
Binnenmars SH, Hoogslag GE, Yeung SMH, Brouwers FP, Bakker SJL, van Gilst WH, Gansevoort RT, Navis G, Voors AA, de Borst MH. Fibroblast Growth Factor 23 and Risk of New Onset Heart Failure With Preserved or Reduced Ejection Fraction: The PREVEND Study. J Am Heart Assoc 2022; 11:e024952. [PMID: 35876420 PMCID: PMC9375507 DOI: 10.1161/jaha.121.024952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The role of fibroblast growth factor 23 (FGF23) in the development of new‐onset heart failure (HF) with reduced (HFrEF) or preserved ejection fraction (HFpEF) in the general population is unknown. Therefore, we set out to investigate associations of C‐terminal FGF23 with development of new‐onset HF and, more specifically, with HFrEF or HFpEF in a large, prospective, population‐based cohort. Methods and Results We studied 6830 participants (aged 53.8±12.1 years; 49.7% men; estimated glomerular filtration rate, 93.1±15.7 mL/min per 1.73 m2) in the community‐based PREVEND (Prevention of Renal and Vascular End‐Stage Disease) study who were free of HF at baseline. Cross‐sectional multivariable linear regression analysis showed that ferritin (standardized β, −0.24; P<0.001) and estimated glomerular filtration rate (standardized β, −0.13; P<0.001) were the strongest independent correlates of FGF23. Multivariable Cox proportional hazard regression was used to study the association between baseline FGF23 and incident HF, HFrEF (ejection fraction ≤40%) or HFpEF (ejection fraction ≥50%). After median follow‐up of 7.4 [IQR 6.9–7.9] years, 227 individuals (3.3%) developed new‐onset HF, of whom 132 had HFrEF and 88 had HFpEF. A higher FGF23 level was associated with an increased risk of incident HF (fully adjusted hazard ratio, 1.29 [95% CI, 1.06–1.57]) and with an increased risk of incident HFrEF (fully adjusted hazard ratio, 1.31 [95% CI, 1.01–1.69]). The association between FGF23 and incident HFpEF lost statistical significance after multivariable adjustment (hazard ratio, 1.22 [95% CI, 0.87–1.71]). Conclusions Higher FGF23 is independently associated with new‐onset HFrEF in analyses fully adjusted for cardiovascular risk factors and other potential confounders. The association between FGF23 and incident HFpEF lost statistical significance upon multivariable adjustment.
Collapse
Affiliation(s)
- S Heleen Binnenmars
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Georgette E Hoogslag
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Stanley M H Yeung
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Frank P Brouwers
- Department of Cardiology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Wiek H van Gilst
- Department of Cardiology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Gerjan Navis
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Adriaan A Voors
- Department of Cardiology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
31
|
Akwo E, Pike MM, Ertuglu LA, Vartanian N, Farber-Eger E, Lipworth L, Perwad F, Siew E, Hung A, Bansal N, de Boer I, Kestenbaum B, Cox NJ, Ikizler TA, Wells Q, Robinson-Cohen C. Association of Genetically Predicted Fibroblast Growth Factor-23 with Heart Failure: A Mendelian Randomization Study. Clin J Am Soc Nephrol 2022; 17:1183-1193. [PMID: 35902130 PMCID: PMC9435988 DOI: 10.2215/cjn.00960122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/31/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Elevated fibroblast growth factor-23 (FGF23) has been consistently associated with heart failure, particularly heart failure with preserved ejection fraction, among patients with CKD and in the general population. FGF23 may directly induce cardiac remodeling and heart failure. However, biases affecting observational studies impede robust causal inferences. Mendelian randomization leverages genetic determinants of a risk factor to examine causality. We performed a two-sample Mendelian randomization to assess causal associations between FGF23 and heart failure. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Genetic instruments were genome-wide significant genetic variants associated with FGF23, including variants near PIP5K1B, RGS14, LINC01229, and CYP24A1. We analyzed data from the Heart Failure Molecular Epidemiology for Therapeutic Targets and BioVU biobanks to examine associations of the four variants with overall heart failure, heart failure with preserved ejection fraction, and heart failure with reduced and mid-range ejection fraction. We developed an eGFR polygenic risk score using summary statistics from the Chronic Kidney Disease Genetics Consortium (CKDGen) genome-wide association study of eGFR in >1 million individuals and performed stratified analyses across eGFR polygenic risk score strata. RESULTS Genetically determined FGF23 was not associated with overall heart failure in the Heart Failure Molecular Epidemiology for Therapeutic Targets consortium (odds ratio, 1.13; 95% confidence interval, 0.89 to 1.42 per unit higher genetically predicted log FGF23) and the full BioVU sample (odds ratio, 1.32; 95% confidence interval, 0.95 to 1.84). In stratified analyses in BioVU, higher FGF23 was associated with overall heart failure (odds ratio, 3.09; 95% confidence interval, 1.38 to 6.91) among individuals with low eGFR-polygenic risk score (<1 SD below the mean), but not those with high eGFR-polygenic risk score (P interaction = 0.02). Higher FGF23 was also associated with heart failure with preserved ejection fraction among all BioVU participants (odds ratio, 1.47; 95% confidence interval, 1.01 to 2.14) and individuals with low eGFR-polygenic risk score (odds ratio, 7.20; 95% confidence interval, 2.80 to 18.49), but not those high eGFR-polygenic risk score (P interaction = 2.25 × 10-4). No significant associations were observed with heart failure with reduced and midrange ejection fraction. CONCLUSION We found no association between genetically predicted FGF23 and heart failure in the Heart Failure Molecular Epidemiology for Therapeutic Targets consortium. In BioVU, genetically elevated FGF23 was associated with higher heart failure risk, specifically heart failure with preserved ejection fraction, particularly among individuals with low genetically predicted eGFR. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_07_28_CJN00960122.mp3.
Collapse
Affiliation(s)
- Elvis Akwo
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mindy M. Pike
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lale A. Ertuglu
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicholas Vartanian
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric Farber-Eger
- Division of Cardiovascular Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Loren Lipworth
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Farzana Perwad
- Division of Pediatric Nephrology, University of California San Francisco, San Francisco, California
| | - Edward Siew
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Adriana Hung
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Nisha Bansal
- Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Ian de Boer
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Bryan Kestenbaum
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Nancy J. Cox
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - T. Alp Ikizler
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
32
|
Low-Dose Propranolol Prevents Functional Decline in Catecholamine-Induced Acute Heart Failure in Rats. TOXICS 2022; 10:toxics10050238. [PMID: 35622651 PMCID: PMC9148026 DOI: 10.3390/toxics10050238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Severe hyper-catecholaminergic states likely cause heart failure and cardiac fibrosis. While previous studies demonstrated the effects of beta-blockade in experimental models of single-catecholamine excess states, the detailed benefits of beta-blockade in more realistic models of hyper-adrenergic states are less clearly understood. In this study, we examined different therapeutic dosages and the effects of propranolol in rats with hyper-acute catecholamine-induced heart failure, and subsequent cardiopulmonary changes. Rats (n = 41) underwent a 6 h infusion of epinephrine and norepinephrine alone, with additional low-dose (1 mg/kg) or high-dose propranolol (10 mg/kg) at hour 1. Cardiac and pulmonary tissues were examined after 6 h. Catecholamine-only groups had the lowest survival rate. Higher doses of propranolol (15 mg/kg) caused similarly low survival rates and were not further analyzed. All low-dose propranolol rats survived, with a modest survival improvement in the high-dose propranolol groups. Left ventricular (LV) systolic pressure and LV end-diastolic pressure improved maximally with low-dose propranolol. Cardiac immunohistochemistry revealed an LV upregulation of FGF-23 in the catecholamine groups, and this improved in low-dose propranolol groups. These results suggest catecholamine-induced heart failure initiates early pre-fibrotic pathways through FGF-23 upregulation. Low-dose propranolol exerted cardio-preventative effects through FGF-23 downregulation and hemodynamic-parameter improvement in our model of hyper-acute catecholamine-induced heart failure.
Collapse
|
33
|
Quiroga B, Ortiz A, Navarro-González JF, Santamaría R, de Sequera P, Díez J. From cardiorenal syndromes to cardionephrology: a reflection by nephrologists on renocardiac syndromes. Clin Kidney J 2022; 16:19-29. [PMID: 36726435 PMCID: PMC9871856 DOI: 10.1093/ckj/sfac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiorenal syndromes (CRS) are broadly defined as disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other. CRS are currently classified into five categories, mostly based on disease-initiating events and their acuity or chronicity. CRS types 3 and 4 (also called renocardiac syndromes) refer to acute and chronic kidney dysfunction resulting in acute and chronic heart dysfunction, respectively. The notion of renocardiac syndromes has broadened interest in kidney-heart interactions but uncertainty remains in the nephrological community's understanding of the clinical diversity, pathophysiological mechanisms and optimal management approaches of these syndromes. This triple challenge that renocardiac syndromes (and likely other cardiorenal syndromes) pose to the nephrologist can only be faced through a specific and demanding training plan to enhance his/her cardiological scientific knowledge and through an appropriate clinical environment to develop his/her cardiological clinical skills. The first must be the objective of the subspecialty of cardionephrology (or nephrocardiology) and the second must be the result of collaboration with cardiologists (and other specialists) in cardiorenal care units. This review will first consider various aspects of the challenges that renocardiac syndromes pose to nephrologists and, then, will discuss those aspects of cardionephrology and cardiorenal units that can facilitate an effective response to the challenges.
Collapse
Affiliation(s)
| | | | - Juan F Navarro-González
- RICORS2040, Carlos III Institute of Health, Madrid, Spain,Division of Nephrology and Research Unit, University Hospital Nuestra Señora de Candelaria, and University Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Rafael Santamaría
- RICORS2040, Carlos III Institute of Health, Madrid, Spain,Division of Nephrology, University Hospital Reina Sofia, Cordoba, Spain,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Patricia de Sequera
- Department of Nephrology, University Hospital Infanta Leonor, University Complutense of Madrid, Madrid, Spain
| | | |
Collapse
|
34
|
Wang H, Lin Y, Zhang R, Chen Y, Ji W, Li S, Wang L, Tan R, Yuan J. Programmed Exercise Attenuates Familial Hypertrophic Cardiomyopathy in Transgenic E22K Mice via Inhibition of PKC-α/NFAT Pathway. Front Cardiovasc Med 2022; 9:808163. [PMID: 35265680 PMCID: PMC8899095 DOI: 10.3389/fcvm.2022.808163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHCM), an autosomal dominant disease, is caused by mutations in genes encoding cardiac sarcomeric proteins. E22K, a mutation in the myosin regulatory light chain sarcomere gene, is associated with the development of FHCM. However, the molecular mechanisms by which E22K mutation promotes septal hypertrophy are still elusive. The hypertrophic markers, including beta-myosin heavy chain, atrial natriuretic peptide and B-type natriuretic peptide, were upregulated, as detected by fluorescence quantitative PCR. The gene expression profiles were greatly altered in the left ventricle of E22K mutant mice. Among these genes, nuclear factor of activated T cells (NFAT) and protein kinase C-alpha (PKC-α) were upregulated, and their protein expression levels were also verified to be elevated. The fibrosis markers, such as phosphorylated Smad and transforming growth factor beta receptor, were also elevated in transgenic E22K mice. After receiving 6 weeks of procedural exercise training, the expression levels of PKC-α and NFAT were reversed in E22K mouse hearts. In addition, the expression levels of several fibrosis-related genes such as transforming growth factor beta receptor 1, Smad4, and alpha smooth muscle actin in E22K mouse hearts were also reversed. Genes that associated with cardiac remodeling such as myocyte enhancer factor 2C, extracellular matrix protein 2 and fibroblast growth factor 12 were reduced after exercising. Taken together, our results indicate that exercise can improve hypertrophy and fibrosis-related indices in transgenic E22K mice via PKC-α/NFAT pathway, which provide new insight into the prevention and treatment of familial hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yuedong Lin
- Cardiac Emergency Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ran Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Wei Ji
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Li Wang
- School of Nursing, Medical College, Soochow University, Suzhou, China
- *Correspondence: Li Wang
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
- Rubin Tan
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- Jinxiang Yuan
| |
Collapse
|
35
|
Role and Mechanism of the Renin-Angiotensin-Aldosterone System in the Onset and Development of Cardiorenal Syndrome. J Renin Angiotensin Aldosterone Syst 2022; 2022:3239057. [PMID: 35111237 PMCID: PMC8803448 DOI: 10.1155/2022/3239057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome (CRS), a clinical syndrome involving multiple pathological mechanisms, exhibits high morbidity and mortality. According to the primary activity of the disease, CRS can be divided into cardiorenal syndrome (type I and type II), renal heart syndrome (type III and type IV), and secondary heart and kidney disease (type V). The renin-angiotensin-aldosterone system (RAAS) is an important humoral regulatory system of the body that exists widely in various tissues and organs. As a compensatory mechanism, the RAAS is typically activated to participate in the regulation of target organ function. RAAS activation plays a key role in the pathogenesis of CRS. The RAAS induces the onset and development of CRS by mediating oxidative stress, uremic toxin overload, and asymmetric dimethylarginine production. Research on the mechanism of RAAS-induced CRS can provide multiple intervention methods that are of great significance for reducing end-stage organ damage and further improving the quality of life of patients with CRS.
Collapse
|
36
|
Eitner F, Richter B, Schwänen S, Szaroszyk M, Vogt I, Grund A, Thum T, Heineke J, Haffner D, Leifheit-Nestler M. Comprehensive Expression Analysis of Cardiac Fibroblast Growth Factor 23 in Health and Pressure-induced Cardiac Hypertrophy. Front Cell Dev Biol 2022; 9:791479. [PMID: 35118076 PMCID: PMC8804498 DOI: 10.3389/fcell.2021.791479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Enhanced fibroblast growth factor 23 (FGF23) is associated with left ventricular hypertrophy (LVH) in patients with chronic kidney and heart disease. Experimentally, FGF23 directly induces cardiac hypertrophy and vice versa cardiac hypertrophy stimulates FGF23. Besides the bone, FGF23 is expressed by cardiac myocytes, whereas its synthesis in other cardiac cell types and its paracrine role in the heart in health and disease is unknown. By co-immunofluorescence staining of heart tissue of wild-type mice, we show that Fgf23 is expressed by cardiac myocytes, fibroblasts and endothelial cells. Cardiac Fgf23 mRNA and protein level increases from neonatal to six months of age, whereas no age-related changes in bone Fgf23 mRNA expression were noted. Cardiac myocyte-specific disruption of Fgf23 using Cre-LoxP system (Fgf23fl/fl/cre+) caused enhanced mortality, but no differences in cardiac function or structure. Although pressure overload-induced cardiac hypertrophy induced by transverse aortic constriction (TAC) resulted in a slightly worse phenotype with a more severe reduced ejection fraction, higher end-systolic volume and more enlarged systolic LV diameter in Fgf23fl/fl/cre+ mice compared to controls, this was not translated to any worse cellular hypertrophy, fibrosis or chamber remodeling. TAC induced Fgf23 mRNA expression in whole cardiac tissue in both genotypes. Interestingly, co-immunofluorescence staining revealed enhanced Fgf23 synthesis in cardiac fibroblasts and endothelial cells but not in cardiac myocytes. RNA sequencing of isolated adult cardiac myocytes, cardiac fibroblasts and endothelial cells confirmed significantly higher Fgf23 transcription in cardiac fibroblasts and endothelial cells after TAC. Our data indicate that Fgf23 is physiologically expressed in various cardiac cell types and that cardiac fibroblasts and endothelial cells might be an important source of FGF23 in pathological conditions. In addition, investigations in Fgf23fl/fl/cre+ mice suggest that cardiac myocyte-derived FGF23 is needed to maintain cardiac function during pressure overload.
Collapse
Affiliation(s)
- Fiona Eitner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Beatrice Richter
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Saskia Schwänen
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Malgorzata Szaroszyk
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Isabel Vogt
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Joerg Heineke
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
- *Correspondence: Maren Leifheit-Nestler,
| |
Collapse
|
37
|
Yan Z, Wang G, Shi X. Advances in the Progression and Prognosis Biomarkers of Chronic Kidney Disease. Front Pharmacol 2022; 12:785375. [PMID: 34992536 PMCID: PMC8724575 DOI: 10.3389/fphar.2021.785375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is one of the increasingly serious public health concerns worldwide; the global burden of CKD is increasingly due to high morbidity and mortality. At present, there are three key problems in the clinical treatment and management of CKD. First, the current diagnostic indicators, such as proteinuria and serum creatinine, are greatly interfered by the physiological conditions of patients, and the changes in the indicator level are not synchronized with renal damage. Second, the established diagnosis of suspected CKD still depends on biopsy, which is not suitable for contraindication patients, is also traumatic, and is not sensitive to early progression. Finally, the prognosis of CKD is affected by many factors; hence, it is ineviatble to develop effective biomarkers to predict CKD prognosis and improve the prognosis through early intervention. Accurate progression monitoring and prognosis improvement of CKD are extremely significant for improving the clinical treatment and management of CKD and reducing the social burden. Therefore, biomarkers reported in recent years, which could play important roles in accurate progression monitoring and prognosis improvement of CKD, were concluded and highlighted in this review article that aims to provide a reference for both the construction of CKD precision therapy system and the pharmaceutical research and development.
Collapse
Affiliation(s)
- Zhonghong Yan
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanran Wang
- Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingyang Shi
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
38
|
Lee TW, Chung CC, Lee TI, Lin YK, Kao YH, Chen YJ. Fibroblast Growth Factor 23 Stimulates Cardiac Fibroblast Activity through Phospholipase C-Mediated Calcium Signaling. Int J Mol Sci 2021; 23:ijms23010166. [PMID: 35008591 PMCID: PMC8745152 DOI: 10.3390/ijms23010166] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor (FGF)-23 induces hypertrophy and calcium (Ca2+) dysregulation in cardiomyocytes, leading to cardiac arrhythmia and heart failure. However, knowledge regarding the effects of FGF-23 on cardiac fibrogenesis remains limited. This study investigated whether FGF-23 modulates cardiac fibroblast activity and explored its underlying mechanisms. We performed MTS analysis, 5-ethynyl-2′-deoxyuridine assay, and wound-healing assay in cultured human atrial fibroblasts without and with FGF-23 (1, 5 and 25 ng/mL for 48 h) to analyze cell proliferation and migration. We found that FGF-23 (25 ng/mL, but not 1 or 5 ng/mL) increased proliferative and migratory abilities of human atrial fibroblasts. Compared to control cells, FGF-23 (25 ng/mL)-treated fibroblasts had a significantly higher Ca2+ entry and intracellular inositol 1,4,5-trisphosphate (IP3) level (assessed by fura-2 ratiometric Ca2+ imaging and enzyme-linked immunosorbent assay). Western blot analysis showed that FGF-23 (25 ng/mL)-treated cardiac fibroblasts had higher expression levels of calcium release-activated calcium channel protein 1 (Orai1) and transient receptor potential canonical (TRPC) 1 channel, but similar expression levels of α-smooth muscle actin, collagen type IA1, collagen type Ⅲ, stromal interaction molecule 1, TRPC 3, TRPC6 and phosphorylated-calcium/calmodulin-dependent protein kinase II when compared with control fibroblasts. In the presence of ethylene glycol tetra-acetic acid (a free Ca2+ chelator, 1 mM) or U73122 (an inhibitor of phospholipase C, 1 μM), control and FGF-23-treated fibroblasts exhibited similar proliferative and migratory abilities. Moreover, polymerase chain reaction analysis revealed that atrial fibroblasts abundantly expressed FGF receptor 1 but lacked expressions of FGF receptors 2-4. FGF-23 significantly increased the phosphorylation of FGF receptor 1. Treatment with PD166866 (an antagonist of FGF receptor 1, 1 μM) attenuated the effects of FGF-23 on cardiac fibroblast activity. In conclusion, FGF-23 may activate FGF receptor 1 and subsequently phospholipase C/IP3 signaling pathway, leading to an upregulation of Orai1 and/or TRPC1-mediated Ca2+ entry and thus enhancing human atrial fibroblast activity.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-W.L.); (T.-I.L.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (Y.-K.L.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-W.L.); (T.-I.L.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (Y.-K.L.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: (Y.-H.K.); (Y.-J.C.)
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: (Y.-H.K.); (Y.-J.C.)
| |
Collapse
|
39
|
Yin C, Ye Z, Wu J, Huang C, Pan L, Ding H, Zhong L, Guo L, Zou Y, Wang X, Wang Y, Gao P, Jin X, Yan X, Zou Y, Huang R, Gong H. Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction. EBioMedicine 2021; 74:103745. [PMID: 34911029 PMCID: PMC8669316 DOI: 10.1016/j.ebiom.2021.103745] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Acute myocardial infarction (AMI)-induced excessive myocardial fibrosis exaggerates cardiac dysfunction. However, serum Wnt2 or Wnt4 level in AMI patients, and the roles in cardiac fibrosis are largely unkown. Methods AMI and non-AMI patients were enrolled to examine serum Wnt2 and Wnt4 levels by ELISA analysis. The AMI patients were followed-up for one year. MI mouse model was built by ligation of left anterior descending branch (LAD). Findings Serum Wnt2 or Wnt4 level was increased in patients with AMI, and the elevated Wnt2 and Wnt4 were correlated to adverse outcome of these patients. Knockdown of Wnt2 and Wnt4 significantly attenuated myocardial remodeling and cardiac dysfunction following experimental MI. In vitro, hypoxia enhanced the secretion and expression of Wnt2 and Wnt4 in neonatal rat cardiac myocytes (NRCMs) or fibroblasts (NRCFs). Mechanistically, the elevated Wnt2 or Wnt4 activated β-catenin /NF-κB signaling to promote pro-fibrotic effects in cultured NRCFs. In addition, Wnt2 or Wnt4 upregulated the expression of these Wnt co-receptors, frizzled (Fzd) 2, Fzd4 and (ow-density lipoprotein receptor-related protein 6 (LRP6). Further analysis revealed that Wnt2 or Wnt4 activated β-catenin /NF-κB by the co-operation of Fzd4 or Fzd2 and LRP6 signaling, respectively. Interpretation Elevated Wnt2 and Wnt4 activate β-catenin/NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 in fibroblasts, which contributes to adverse outcome of patients with AMI, suggesting that systemic inhibition of Wnt2 and Wnt4 may improve cardiac dysfunction after MI.
Collapse
Affiliation(s)
- Chao Yin
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Jian Wu
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chenxing Huang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Le Pan
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huaiyu Ding
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Zhong
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Guo
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Zou
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiang Wang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Wang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Pan Gao
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuejuan Jin
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoxiang Yan
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzeng Zou
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China.
| | - Hui Gong
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
40
|
Bone marrow sinusoidal endothelium controls terminal erythroid differentiation and reticulocyte maturation. Nat Commun 2021; 12:6963. [PMID: 34845225 PMCID: PMC8630019 DOI: 10.1038/s41467-021-27161-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Within the bone marrow microenvironment, endothelial cells (EC) exert important functions. Arterial EC support hematopoiesis while H-type capillaries induce bone formation. Here, we show that BM sinusoidal EC (BM-SEC) actively control erythropoiesis. Mice with stabilized β-catenin in BM-SEC (Ctnnb1OE-SEC) generated by using a BM-SEC-restricted Cre mouse line (Stab2-iCreF3) develop fatal anemia. While activation of Wnt-signaling in BM-SEC causes an increase in erythroblast subsets (PII-PIV), mature erythroid cells (PV) are reduced indicating impairment of terminal erythroid differentiation/reticulocyte maturation. Transplantation of Ctnnb1OE-SEC hematopoietic stem cells into wildtype recipients confirms lethal anemia to be caused by cell-extrinsic, endothelial-mediated effects. Ctnnb1OE-SEC BM-SEC reveal aberrant sinusoidal differentiation with altered EC gene expression and perisinusoidal ECM deposition and angiocrine dysregulation with de novo endothelial expression of FGF23 and DKK2, elevated in anemia and involved in vascular stabilization, respectively. Our study demonstrates that BM-SEC play an important role in the bone marrow microenvironment in health and disease.
Collapse
|
41
|
Martínez-Arias L, Panizo-García S, Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, Avello-Llano N, Miguel-Fernández D, Ruíz Torres MP, Cannata-Andía JB, Carrillo-López N, Naves-Díaz M. Contribution of phosphorus and PTH to the development of cardiac hypertrophy and fibrosis in an experimental model of chronic renal failure. Nefrologia 2021; 41:640-651. [PMID: 36165154 DOI: 10.1016/j.nefroe.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Adequate serum phosphorus levels in patients with chronic kidney disease is essential for their clinical management. However, the control of hyperphosphatemia is difficult because is normally associated with increases in serum PTH. In the present study, the effects of hyperphosphatemia, in the presence of elevated and normal PTH, on cardiac inflammation, hypertrophy and fibrosis in an experimental renal failure model were analyzed. MATERIALS AND METHODS 4 groups of rats were formed. Two groups underwent total parathyroidectomy (PTx). Rats with Ca <7.5 mg/dL and PTH < 50 pg/mL underwent 7/8 nephrectomy (CRF) and a subcutaneous pellet was placed that releases PTH 1-34 (5 µg/kg/day). One group received a diet with normal P (NP) (CRF + PTx + rPTH + NP group) and another with a high P diet (0.9% - HP) (CRF + PTx + rPTH + HP group). Other 2 groups that only had CRF received NP (CRF + NP) and HP (CRF + HP) diet. A SHAM group for nephrectomy and parathyroidectomy was also added. After 14 weeks the rats were sacrificed. RESULTS The groups with a diet high in phosphorus (CRF + H A and CRF + PTx + rPTH + HP) had a significant reduction in creatinine clearance and also in body weight with an increase in serum phosphorus regardless of parathyroidectomy, but not serum levels of calcium, FGF23 and calcitriol that were 2-3 times higher in the group with secondary hyperparathyroidism (CRF + HP). The diameter of the cardiomyocytes was greater in the CRF + HP group, while parathyroidectomy (CRF + PTx + rPTH + HP) significantly reduced them, despite the high and similar serum phosphorus values. TNF-α, Adam17 and cardiac fibrosis at the histological and molecular level showed a similar pattern with increases in the group with severe secondary hyperparathyroidism (CRF + HP). CONCLUSIONS Hyperphosphatemia confirmed its importance in the genesis of secondary hyperparathyroidism, but also of kidney damage that was independent of PTH levels. However, inflammation, fibrosis, and cardiomyocyte growth were more closely related to PTH levels, since in the presence of similar severe hyperphosphatemia, parathyroidectomy reduced the values of inflammatory parameters, cardiac hypertrophy, and fibrosis.
Collapse
Affiliation(s)
- Laura Martínez-Arias
- Unidad de Gestión Clínica de Metabolismo Óseo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, Oviedo, Spain
| | - Sara Panizo-García
- Unidad de Gestión Clínica de Metabolismo Óseo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, Oviedo, Spain
| | - Julia Martín-Vírgala
- Unidad de Gestión Clínica de Metabolismo Óseo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, Oviedo, Spain
| | - Beatriz Martín-Carro
- Unidad de Gestión Clínica de Metabolismo Óseo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, Oviedo, Spain
| | - Sara Fernández-Villabrille
- Unidad de Gestión Clínica de Metabolismo Óseo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, Oviedo, Spain
| | - Noelia Avello-Llano
- Laboratorio de Medicina, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Diego Miguel-Fernández
- Laboratorio de Medicina, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - María Piedad Ruíz Torres
- Departamento de Biología de Sistemas, Unidad de Fisiología, Facultad de Medicina, Universidad de Alcalá de Henares, Retic REDinREN-ISCIII, Madrid, Spain
| | - Jorge B Cannata-Andía
- Unidad de Gestión Clínica de Metabolismo Óseo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, Oviedo, Spain.
| | - Natalia Carrillo-López
- Unidad de Gestión Clínica de Metabolismo Óseo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, Oviedo, Spain
| | - Manuel Naves-Díaz
- Unidad de Gestión Clínica de Metabolismo Óseo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
42
|
Plasma Biomarker Profiling in Heart Failure Patients with Preserved Ejection Fraction before and after Spironolactone Treatment: Results from the Aldo-DHF Trial. Cells 2021; 10:cells10102796. [PMID: 34685778 PMCID: PMC8535031 DOI: 10.3390/cells10102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of heart failure with preserved ejection fraction (HFpEF) is poorly understood and therapeutic strategies are lacking. This study aimed to identify plasma proteins with pathophysiological relevance in HFpEF and with respect to spironolactone-induced effects. We assessed 92 biomarkers in plasma samples from 386 HFpEF patients—belonging to the Aldo-DHF trial—before (baseline, BL) and after one-year treatment (follow up, FU) with spironolactone (verum) or a placebo. At BL, various biomarkers showed significant associations with the two Aldo-DHF primary end point parameters: 33 with E/e’ and 20 with peak VO2. Ten proteins including adrenomedullin, FGF23 and inflammatory peptides (e.g., TNFRSF11A, TRAILR2) were significantly associated with both parameters, suggesting a role in the clinical HFpEF presentation. For 13 proteins, expression changes from BL to FU were significantly different between verum and placebo. Among them were renin, growth hormone, adrenomedullin and inflammatory proteins (e.g., TNFRSF11A, IL18 and IL4RA), indicating distinct spironolactone-mediated effects. BL levels of five proteins, e.g., inflammatory markers such as CCL17, IL4RA and IL1ra, showed significantly different effects on the instantaneous risk for hospitalization between verum and placebo. This study identified plasma proteins with different implications in HFpEF and following spironolactone treatment. Future studies need to define their precise mechanistic involvement.
Collapse
|
43
|
Flores-Vergara R, Olmedo I, Aránguiz P, Riquelme JA, Vivar R, Pedrozo Z. Communication Between Cardiomyocytes and Fibroblasts During Cardiac Ischemia/Reperfusion and Remodeling: Roles of TGF-β, CTGF, the Renin Angiotensin Axis, and Non-coding RNA Molecules. Front Physiol 2021; 12:716721. [PMID: 34539441 PMCID: PMC8446518 DOI: 10.3389/fphys.2021.716721] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Communication between cells is a foundational concept for understanding the physiology and pathology of biological systems. Paracrine/autocrine signaling, direct cell-to-cell interplay, and extracellular matrix interactions are three types of cell communication that regulate responses to different stimuli. In the heart, cardiomyocytes, fibroblasts, and endothelial cells interact to form the cardiac tissue. Under pathological conditions, such as myocardial infarction, humoral factors released by these cells may induce tissue damage or protection, depending on the type and concentration of molecules secreted. Cardiac remodeling is also mediated by the factors secreted by cardiomyocytes and fibroblasts that are involved in the extensive reciprocal interactions between these cells. Identifying the molecules and cellular signal pathways implicated in these processes will be crucial for creating effective tissue-preserving treatments during or after reperfusion. Numerous therapies to protect cardiac tissue from reperfusion-induced injury have been explored, and ample pre-clinical research has attempted to identify drugs or techniques to mitigate cardiac damage. However, despite great success in animal models, it has not been possible to completely translate these cardioprotective effects to human applications. This review provides a current summary of the principal molecules, pathways, and mechanisms underlying cardiomyocyte and cardiac fibroblast crosstalk during ischemia/reperfusion injury. We also discuss pre-clinical molecules proposed as treatments for myocardial infarction and provide a clinical perspective on these potential therapeutic agents.
Collapse
Affiliation(s)
- Raúl Flores-Vergara
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| | - Pablo Aránguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | - Jaime Andrés Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile, Chile
| | - Raúl Vivar
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Zully Pedrozo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| |
Collapse
|
44
|
Cornelissen A, Florescu R, Kneizeh K, Cornelissen C, Brandenburg V, Liehn E, Schuh A. Intact fibroblast growth factor 23 levels and outcome prediction in patients with acute heart failure. Sci Rep 2021; 11:15507. [PMID: 34330955 PMCID: PMC8324826 DOI: 10.1038/s41598-021-94780-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Elevated fibroblast growth factor 23 (FGF23) levels are associated with adverse outcome in populations with cardiovascular disease and chronic kidney failure. It is unclear if FGF23 has significance in prognosis estimation in patients with acute heart failure (HF) when compared to traditional risk estimation tools. Serum levels of intact FGF23 were assessed in 139 patients admitted to the Intermediate Care Unit of a tertiary hospital for acute HF. Patients were followed-up for one year. After exclusion of patients who were lost to follow-up, data outliers, and patients with sampling errors, the final study cohort comprised 133 patients. The Seattle Heart Failure (SHF) Model was used to estimate one-year survival. FGF23 levels correlated with HF severity and were strongly associated with one-year mortality. Associations between one-year outcome and FGF23, assessed on day 1 after admission, were still evident after multivariable adjustment (OR 15.07; 95%CI 1.75-129.79; p = 0.014). FGF23 levels predicted the one-year outcome with similar accuracy as the SHF Model, both if assessed on day 1 and on day 2 after admission (FGF23d1: AUC 0.784; 95%CI 0.669-0.899; FGF23d2: AUC 0.766; 95%CI 0.631-0.901; SHF: AUC 0.771; 95%CI 0.651-0.891). The assessment of FGF23 in patients with acute HF might help identify high-risk patients that are more prone to complications, need a closer follow-up and more aggressive treatment.
Collapse
Affiliation(s)
- Anne Cornelissen
- Department of Cardiology, Angiology and Internal Intensive Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Roberta Florescu
- Department of Cardiology, Angiology and Internal Intensive Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Kinan Kneizeh
- Department of Cardiology, Angiology and Internal Intensive Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Christian Cornelissen
- Department of Pneumology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Vincent Brandenburg
- Department of Cardiology and Nephrology, Rhein-Maas Klinikum, Wuerselen, Germany
| | - Elisa Liehn
- Department of Cardiology, Angiology and Internal Intensive Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Alexander Schuh
- Department of Internal Medicine I, St. Katharinen Hospital Frechen, Kapellenstrasse 1-5, 50226, Frechen, Germany.
| |
Collapse
|
45
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
46
|
Methatham T, Tomida S, Kimura N, Imai Y, Aizawa K. Inhibition of the canonical Wnt signaling pathway by a β-catenin/CBP inhibitor prevents heart failure by ameliorating cardiac hypertrophy and fibrosis. Sci Rep 2021; 11:14886. [PMID: 34290289 PMCID: PMC8295328 DOI: 10.1038/s41598-021-94169-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
In heart failure (HF) caused by hypertension, the myocyte size increases, and the cardiac wall thickens. A low-molecular-weight compound called ICG001 impedes β-catenin-mediated gene transcription, thereby protecting both the heart and kidney. However, the HF-preventive mechanisms of ICG001 remain unclear. Hence, we investigated how ICG001 can prevent cardiac hypertrophy and fibrosis induced by transverse aortic constriction (TAC). Four weeks after TAC, ICG001 attenuated cardiac hypertrophy and fibrosis in the left ventricular wall. The TAC mice treated with ICG001 showed a decrease in the following: mRNA expression of brain natriuretic peptide (Bnp), Klf5, fibronectin, β-MHC, and β-catenin, number of cells expressing the macrophage marker CD68 shown in immunohistochemistry, and macrophage accumulation shown in flow cytometry. Moreover, ICG001 may mediate the substrates in the glycolysis pathway and the distinct alteration of oxidative stress during cardiac hypertrophy and HF. In conclusion, ICG001 is a potential drug that may prevent cardiac hypertrophy and fibrosis by regulating KLF5, immune activation, and the Wnt/β-catenin signaling pathway and inhibiting the inflammatory response involving macrophages.
Collapse
Affiliation(s)
- Thanachai Methatham
- grid.410804.90000000123090000Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498 Japan
| | - Shota Tomida
- grid.410804.90000000123090000Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498 Japan
| | - Natsuka Kimura
- grid.410804.90000000123090000Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498 Japan
| | - Yasushi Imai
- grid.410804.90000000123090000Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498 Japan
| | - Kenichi Aizawa
- grid.410804.90000000123090000Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498 Japan
| |
Collapse
|
47
|
Ferreira JP, Lamiral Z, Bakris G, Mehta C, White WB, Zannad F. Red cell distribution width in patients with diabetes and myocardial infarction: An analysis from the EXAMINE trial. Diabetes Obes Metab 2021; 23:1580-1587. [PMID: 33687751 DOI: 10.1111/dom.14371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
AIM To determine the clinical correlates of increased red blood cell distribution width (RDW), its potential mechanistic association with multiple circulating biomarkers, and its prognostic value in patients with type 2 diabetes (T2D) who had a recent acute coronary syndrome. METHODS We used time-updated Cox models applied to patients enrolled in the Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care (EXAMINE) trial. RESULTS A total of 5380 patients were included, the median age was 61 years and 32% were women. Patients with higher RDW were older, more frequently women, with a longer diabetes duration and increased co-morbidities. An RDW of more than 16.1% (both baseline and time-updated) was independently associated with the study primary composite outcome of non-fatal myocardial infarction, non-fatal stroke or cardiovascular death (time-updated adjusted HR = 1.36, 95% CI = 1.16-1.61, p < .001), all-cause death (time-updated adjusted HR = 2.01, 95% CI = 1.60-2.53, p < .001), as well as mortality from non-cardiovascular causes (time-updated adjusted HR = 2.67, 95% CI = 1.72-4.15, p < .001). RDW had a weak-to-moderate correlation with haemoglobin and circulating markers that reflected inflammation, apoptosis, fibrosis and congestion. Alogliptin did not alter RDW values. CONCLUSIONS RDW is a marker of disease severity associated with a multitude of poor outcomes, including both cardiovascular and non-cardiovascular death. RDW correlated modestly with inflammatory, pro-apoptotic, pro-fibrotic and congestion markers, and its levels were not affected by alogliptin during the course of the trial.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Centre d'Investigations Cliniques Plurithématique Inserm 1433, Université de Lorraine, CHRU de Nancy, Inserm U1116, FCRIN INI-CRCT, Nancy, France
| | - Zohra Lamiral
- Centre d'Investigations Cliniques Plurithématique Inserm 1433, Université de Lorraine, CHRU de Nancy, Inserm U1116, FCRIN INI-CRCT, Nancy, France
| | - George Bakris
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| | | | - William B White
- Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique Inserm 1433, Université de Lorraine, CHRU de Nancy, Inserm U1116, FCRIN INI-CRCT, Nancy, France
| |
Collapse
|
48
|
Seitz T, Hellerbrand C. Role of fibroblast growth factor signalling in hepatic fibrosis. Liver Int 2021; 41:1201-1215. [PMID: 33655624 DOI: 10.1111/liv.14863] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Fibrotic remodelling is a highly conserved protective response to tissue injury and it is essential for the maintenance of structural and functional tissue integrity. Also hepatic fibrosis can be considered as a wound-healing response to liver injury, reflecting a balance between liver repair and scar formation. In contrast, pathological fibrosis corresponds to impaired wound healing. Usually, the liver regenerates after acute injury. However, if the damaging mechanisms persist, the liver reacts with progressive and uncontrolled accumulation of extracellular matrix proteins. Eventually, excessive fibrosis can lead to cirrhosis and hepatic failure. Furthermore, cirrhosis is the major risk factor for the development of hepatocellular cancer (HCC). Therefore, hepatic fibrosis is the most critical pathological factor that determines the morbidity and mortality of patients with chronic liver disease. Still, no effective anti-fibrogenic therapies exist, despite the very high medical need. The regulation of fibroblast growth factor (FGF) signalling is a prerequisite for adequate wound healing, repair and homeostasis in various tissues and organs. The FGF family comprises 22 proteins that can be classified into paracrine, intracrine and endocrine factors. Most FGFs signal through transmembrane tyrosine kinase FGF receptors (FGFRs). Although FGFRs are promising targets for the treatment of HCC, the expression and function of FGFR-ligands in hepatic fibrosis is still poorly understood. This review summarizes the latest advances in our understanding of FGF signalling in hepatic fibrosis. Furthermore, the potential of FGFs as targets for the treatment of hepatic fibrosis and remaining challenges for the field are discussed.
Collapse
Affiliation(s)
- Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
49
|
The Complexity of FGF23 Effects on Cardiomyocytes in Normal and Uremic Milieu. Cells 2021; 10:cells10051266. [PMID: 34065339 PMCID: PMC8161087 DOI: 10.3390/cells10051266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor-23 (FGF23) appears to be one of the most promising biomarkers and predictors of cardiovascular risk in patients with heart disease and normal kidney function, but moreover in those with chronic kidney disease (CKD). This review summarizes the current knowledge of FGF23 mechanisms of action in the myocardium in the physiological and pathophysiological state of CKD, as well as its cross-talk to other important signaling pathways in cardiomyocytes. In this regard, current therapeutic possibilities and future perspectives are also discussed.
Collapse
|
50
|
FGF23: A Review of Its Role in Mineral Metabolism and Renal and Cardiovascular Disease. DISEASE MARKERS 2021; 2021:8821292. [PMID: 34055103 PMCID: PMC8149241 DOI: 10.1155/2021/8821292] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/01/2020] [Accepted: 05/04/2021] [Indexed: 01/03/2023]
Abstract
FGF23 is a hormone secreted mainly by osteocytes and osteoblasts in bone. Its pivotal role concerns the maintenance of mineral ion homeostasis. It has been confirmed that phosphate and vitamin D metabolisms are related to the effect of FGF23 and its excess or deficiency leads to various hereditary diseases. Multiple studies have shown that FGF23 level increases in the very early stages of chronic kidney disease (CKD), and its concentration may also be highly associated with cardiac complications. The present review is limited to some of the most important aspects of calcium and phosphate metabolism. It discusses the role of FGF23, which is considered an early and sensitive marker for CKD-related bone disease but also as a novel and potent cardiovascular risk factor. Furthermore, this review gives particular attention to the reliability of FGF23 measurement and various confounding factors that may impact on the clinical utility of FGF23. Finally, this review elaborates on the clinical usefulness of FGF23 and evaluates whether FGF23 may be considered a therapeutic target.
Collapse
|