1
|
Aldor NL, Jadaa NA, Miller SY, Alla I, Richardson S, Kitaev V, Poynter SJ. Cationic Polystyrene Latex Nanocarriers for Immunostimulatory Long Double-Stranded RNA Delivery to Ovarian Cancer Cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35487. [PMID: 39318330 DOI: 10.1002/jbm.b.35487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/05/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Long double-stranded (ds)RNA, a potent stimulator of type I interferon and the innate immune response. In the present study, we demonstrated, for the first time, the efficacy of cationic polystyrene latex nanostructures (clNPs) as a dsRNA carrier, improving cellular delivery and robustly potentiating the immunostimulatory capacity of dsRNA in the ovarian cancer cell line SKOV3. The clNPs complexed with an in vitro transcribed dsRNA molecule, were bound by SKOV3 cells, and had increased cellular association compared to uncomplexed clNPs. clNPs complexed with dsRNA induced a more robust innate immune response compared to dsRNA alone. Transcript expression of two interferon-stimulated genes, were increased 47- and 108-fold over dsRNA and induced a significant antiviral state against vesicular-stomatitis virus, resulting in a 3.3-fold improvement on the efficacy of dsRNA. These data highlight the potential of polystyrene latex nanostructures as dsRNA carriers for anticancer immunotherapies, improving the uptake and efficacy of the nucleic acid.
Collapse
Affiliation(s)
- N L Aldor
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - N A Jadaa
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S Y Miller
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - I Alla
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S Richardson
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - V Kitaev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S J Poynter
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Schneegans S, Löptien J, Mojzisch A, Loreth D, Kretz O, Raschdorf C, Hanssen A, Gocke A, Siebels B, Gunasekaran K, Ding Y, Oliveira-Ferrer L, Brylka L, Schinke T, Schlüter H, Paatero I, Voß H, Werner S, Pantel K, Wikman H. HERC5 downregulation in non-small cell lung cancer is associated with altered energy metabolism and metastasis. J Exp Clin Cancer Res 2024; 43:110. [PMID: 38605423 PMCID: PMC11008035 DOI: 10.1186/s13046-024-03020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Metastasis is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC) patients. We previously showed that low HERC5 expression predicts early tumor dissemination and a dismal prognosis in NSCLC patients. Here, we performed functional studies to unravel the mechanism underlying the "metastasis-suppressor" effect of HERC5, with a focus on mitochondrial metabolism pathways. METHODS We assessed cell proliferation, colony formation potential, anchorage-independent growth, migration, and wound healing in NSCLC cell line models with HERC5 overexpression (OE) or knockout (KO). To study early tumor cell dissemination, we used these cell line models in zebrafish experiments and performed intracardial injections in nude mice. Mass spectrometry (MS) was used to analyze protein changes in whole-cell extracts. Furthermore, electron microscopy (EM) imaging, cellular respiration, glycolytic activity, and lactate production were used to investigate the relationships with mitochondrial energy metabolism pathways. RESULTS Using different in vitro NSCLC cell line models, we showed that NSCLC cells with low HERC5 expression had increased malignant and invasive properties. Furthermore, two different in vivo models in zebrafish and a xenograft mouse model showed increased dissemination and metastasis formation (in particular in the brain). Functional enrichment clustering of MS data revealed an increase in mitochondrial proteins in vitro when HERC5 levels were high. Loss of HERC5 leads to an increased Warburg effect, leading to improved adaptation and survival under prolonged inhibition of oxidative phosphorylation. CONCLUSIONS Taken together, these results indicate that low HERC5 expression increases the metastatic potential of NSCLC in vitro and in vivo. Furthermore, HERC5-induced proteomic changes influence mitochondrial pathways, ultimately leading to alterations in energy metabolism and demonstrating its role as a new potential metastasis suppressor gene.
Collapse
Affiliation(s)
- Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Jana Löptien
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Angelika Mojzisch
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Desirée Loreth
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Raschdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Annkathrin Hanssen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Antonia Gocke
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Bente Siebels
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karthikeyan Gunasekaran
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yi Ding
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hannah Voß
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
3
|
Dorayappan KDP, Wagner V, Park D, Newcomer MM, Lightfoot MDS, Kalaiyarasan D, Sakaue T, Khadraoui W, Yu L, Wang Q, Maxwell GL, O'Malley D, Pollock RE, Cohn DE, Selvendiran K. ISG15 mediates the function of extracellular vesicles in promoting ovarian cancer progression and metastasis. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e92. [PMID: 38939897 PMCID: PMC11080709 DOI: 10.1002/jex2.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2024]
Abstract
The interferon stimulated gene 15 (ISG15), a ubiquitin like protein and its conjugates have been implicated in various human malignancies. However, its role in ovarian cancer progression and metastasis is largely unknown. In high grade serous ovarian cancer (HGSOC), ascites is the major contributor to peritoneal metastasis. In this study, we identified significantly elevated ISG15 protein expression in HGSOC patient ascites, ascites derived primary ovarian cancer cells (POCCs), POCC small extracellular vesicles (sEVs) as well as metastatic tissue. Our results demonstrates that ISG15 increases exocytosis in ascites-derived POCCs by decreasing the endosome-lysosomal fusion, indicating a key role in sEV secretion. Further, knockdown (KD) of ISG15 resulted in a significant decrease in vesicles secretion from HGSOC cells and in vivo mouse models, leading to reduced HGSOC cell migration and invasion. Furthermore, our pre-clinical mouse model studies revealed the influence of vesicular ISG15 on disease progression and metastasis. In addition, knockdown of ISG15 or using the ISG15 inhibitor, DAP5, in combination therapy with carboplatin showed to improve the platinum sensitivity in-vitro and reduce tumour burden in-vivo. We also found that ISG15 expression within sEV represents a promising prognostic marker for HGSOC patients. Our findings suggest that ISG15 is a potential therapeutic target for inhibiting progression and metastasis in HGSOC and that vesicular ISG15 expression could be a promising biomarker in the clinical management of ovarian cancer. Significance: High-grade serous ovarian cancer (HGSOC) has high morbidity and mortality rates, but its progression and metastasis are still poorly understood, and there is an urgent need for early detection and targeted therapies. Our study presents novel findings that implicate ISG15-mediated vesicular proteins in the advancement and spread of HGSOC. These results offer pre-clinical evidence of potential new molecular targets, prognostic markers and therapeutic strategies for HGSOC that could ultimately enhance patient survival.
Collapse
Affiliation(s)
- Kalpana Deepa Priya Dorayappan
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyComprehensive Cancer Center, The Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Vincent Wagner
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyComprehensive Cancer Center, The Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Dongju Park
- Molecular Genetics, Comprehensive Cancer CenterThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Meghan M. Newcomer
- Department of Anatomy, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Michelle D. S. Lightfoot
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyNYU Langone Health/Perlmutter Cancer CenterNew YorkNew YorkUSA
| | - Deepika Kalaiyarasan
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyComprehensive Cancer Center, The Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Takahiko Sakaue
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyComprehensive Cancer Center, The Ohio State University Wexner Medical CenterColumbusOhioUSA
- Division of Gastroenterology, Department of MedicineKurume University School of MedicineKurumeJapan
| | - Wafa Khadraoui
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyComprehensive Cancer Center, The Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Lianbo Yu
- Department of Biomedical InformaticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Qi‐En Wang
- Department of Radiation OncologyThe Ohio State UniversityColumbusOhioUSA
| | - G. Larry Maxwell
- Inova Women's Service Line and the Inova Schar Cancer InstituteFalls ChurchVirginiaUSA
| | - David O'Malley
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyComprehensive Cancer Center, The Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Raphael E. Pollock
- Division of Surgical Oncology, The James Comprehensive Cancer CenterOhio State UniversityColumbusOhioUSA
| | - David E. Cohn
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyComprehensive Cancer Center, The Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyComprehensive Cancer Center, The Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
4
|
Ding S, Pang X, Luo S, Gao H, Li B, Yue J, Chen J, Hu S, Tu Z, He D, Kuang Y, Dong Z, Zhang M. Dynamic RBM47 ISGylation confers broad immunoprotection against lung injury and tumorigenesis via TSC22D3 downregulation. Cell Death Discov 2023; 9:430. [PMID: 38036512 PMCID: PMC10689852 DOI: 10.1038/s41420-023-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
ISGylation is a well-established antiviral mechanism, but its specific function in immune and tissue homeostasis regulation remains elusive. Here, we reveal that the RNA-binding protein RBM47 undergoes phosphorylation-dependent ISGylation at lysine 329 to regulate immune activation and maintain lung homeostasis. K329R knockin (KI) mice with defective RBM47-ISGylation display heightened susceptibility to LPS-induced acute lung injury and lung tumorigenesis, accompanied with multifaceted immunosuppression characterized by elevated pro-inflammatory factors, reduced IFNs/related chemokines, increased myeloid-derived suppressor cells, and impaired tertiary lymphoid structures. Mechanistically, RBM47-ISGylation regulation of the expression of TSC22D3 mRNA, a glucocorticoid-inducible transcription factor, partially accounts for the effects of RBM47-ISGylation deficiency due to its broad immunosuppressive activity. We further demonstrate the direct inhibitory effect of RBM47-ISGylation on TSC22D3 expression in human cells using a nanobody-targeted E3 ligase to induce site-specific ISGylation. Furthermore, epinephrine-induced S309 phosphorylation primes RBM47-ISGylation, with epinephrine treatment exacerbating dysregulated cytokine expression and ALI induction in K329R KI mice. Our findings provide mechanistic insights into the dynamic regulation of RBM47-ISGylation in supporting immune activation and maintaining lung homeostasis.
Collapse
Affiliation(s)
- Shihui Ding
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiquan Pang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Huili Gao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junqiu Yue
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, 430079, Wuhan, China
| | - Jian Chen
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, 430079, Wuhan, China
| | - Sheng Hu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Wuhan, 430079, China
| | - Zepeng Tu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dong He
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youyi Kuang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, No. 232, Hesong Street, Daoli District, Harbin, 150070, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Min Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Wardlaw CP, Petrini JH. ISG15: A link between innate immune signaling, DNA replication, and genome stability. Bioessays 2023; 45:e2300042. [PMID: 37147792 PMCID: PMC10473822 DOI: 10.1002/bies.202300042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Interferon stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that is highly induced upon activation of interferon signaling and cytoplasmic DNA sensing pathways. As part of the innate immune system ISG15 acts to inhibit viral replication and particle release via the covalent conjugation to both viral and host proteins. Unlike ubiquitin, unconjugated ISG15 also functions as an intracellular and extra-cellular signaling molecule to modulate the immune response. Several recent studies have shown ISG15 to also function in a diverse array of cellular processes and pathways outside of the innate immune response. This review explores the role of ISG15 in maintaining genome stability, particularly during DNA replication, and how this relates to cancer biology. It puts forth the hypothesis that ISG15, along with DNA sensors, function within a DNA replication fork surveillance pathway to help maintain genome stability.
Collapse
Affiliation(s)
| | - John H.J. Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Shen J, Wang Z, Liu M, Zhu YJ, Zheng L, Wang LL, Cheng JL, Liu TT, Zhang GD, Yang TY, Wang X, Zhang L. LincRNA-ROR/miR-145/ZEB2 regulates liver fibrosis by modulating HERC5-mediated p53 ISGylation. FASEB J 2023; 37:e22936. [PMID: 37144417 DOI: 10.1096/fj.202201182rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The tumor suppressor p53 has been implicated in the pathogenesis of liver fibrosis. HERC5-mediated posttranslational ISG modification of the p53 protein is critical for controlling its activity. Here, we demonstrated that the expression of HERC5 and ISG15 is highly elevated, whereas p53 is downregulated, in fibrotic liver tissues of mice and transforming growth factor-β1 (TGF-β1)-induced LX2 cells. HERC5 siRNA clearly increased the protein expression of p53, but the mRNA expression of p53 was not obviously changed. The inhibition of lincRNA-ROR (ROR) downregulated HERC5 expression and elevated p53 expression in TGF-β1-stimulated LX-2 cells. Furthermore, the expression of p53 was almost unchanged after TGF-β1-stimulated LX-2 cells were co-transfected with a ROR-expressing plasmid and HERC5 siRNA. We further confirmed that miR-145 is a target gene of ROR. In addition, we also showed that ROR regulates the HERC5-mediated ISGylation of p53 through mir-145/ZEB2. Together, we propose that ROR/miR-145/ZEB2 might be involved in the course of liver fibrosis by regulating ISGylation of the p53 protein.
Collapse
Affiliation(s)
- Jie Shen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zhu Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Mei Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yu-Jie Zhu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Zheng
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Li-Li Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jie-Ling Cheng
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Tong-Tong Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Guo-Dong Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Tian-Yu Yang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao Wang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
7
|
MicroRNA-370 as a negative regulator of signaling pathways in tumor cells. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
8
|
Li Q, Ding Y, Ou Y, Li M, Jithavech P, Buranasudja V, Sritularak B, Xu Y, Rojsitthisak P, Han J. Curcuminoids Modulated the IL-6/JAK/STAT3 Signaling Pathway in LoVo and HT-29 Colorectal Cancer Cells. Curr Pharm Des 2023; 29:2867-2876. [PMID: 37957863 DOI: 10.2174/0113816128263974231029180947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Curcuminoids, including curcumin, desmethoxycurcumin, and bisdesmethoxycurcumin, are natural polyphenolic compounds that exhibit various biological properties, such as antioxidant, anti-inflammatory, and anticancer activities. Dysregulation of the interleukin (IL)-6-mediated Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway is closely associated with the development of colorectal cancer (CRC). METHODS Here, we have evaluated the modulation of the IL-6/JAK/STAT3 pathway of curcumin, desmethoxycurcumin, and bisdesmethoxycurcumin in LoVo and HT-29 colorectal cancer cells with a single molecular array (Simoa), western blot analysis, real-time polymerase chain reaction (PCR), and pathway analysis system. RESULTS The study showed that curcuminoids suppressed the amount of IL-6 in LoVo and HT-29 colorectal cancer cells. Meanwhile, curcuminoids inhibited the expression of inflammation regulator-related microRNA (miRNA). We also found that the expression of total STAT3 was downregulated by curcuminoids. Moreover, the pathway analysis system showed that curcuminoids inactivated the JAK/STAT3 signaling pathway. Taken together, we demonstrated that the anti-cancer activities of curcuminoids against colorectal cancer are due to the modulation of the IL-6/JAK/STAT3 cascade. CONCLUSION Curcuminoids could be a promising anti-cancer agent for the treatment of human colorectal cancer.
Collapse
Affiliation(s)
- Qian Li
- National Engineering Research Center for Biochip at Shanghai, Shanghai Biochip Limited Corporation, Shanghai 201203, PR China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, PR China
| | - Yanting Ding
- National Engineering Research Center for Biochip at Shanghai, Shanghai Biochip Limited Corporation, Shanghai 201203, PR China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, PR China
| | - Ying Ou
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, PR China
| | - Manjing Li
- National Engineering Research Center for Biochip at Shanghai, Shanghai Biochip Limited Corporation, Shanghai 201203, PR China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, PR China
| | - Ponsiree Jithavech
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Visarut Buranasudja
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Yichun Xu
- National Engineering Research Center for Biochip at Shanghai, Shanghai Biochip Limited Corporation, Shanghai 201203, PR China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, PR China
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Junsong Han
- National Engineering Research Center for Biochip at Shanghai, Shanghai Biochip Limited Corporation, Shanghai 201203, PR China
| |
Collapse
|
9
|
Zhang Z, Li D, Yun H, Tong J, Liu W, Chai K, Zeng T, Gao Z, Xie Y. Opportunities and challenges of targeting c-Met in the treatment of digestive tumors. Front Oncol 2022; 12:923260. [PMID: 35978812 PMCID: PMC9376446 DOI: 10.3389/fonc.2022.923260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
At present, a large number of studies have demonstrated that c-Met generally exerts a crucial function of promoting tumor cells proliferation and differentiation in digestive system tumors. c-Met also mediates tumor progression and drug resistance by signaling interactions with other oncogenic molecules and then activating downstream pathways. Therefore, c-Met is a promising target for the treatment of digestive system tumors. Many anti-tumor therapies targeting c-Met (tyrosine kinase inhibitors, monoclonal antibodies, and adoptive immunotherapy) have been developed in treating digestive system tumors. Some drugs have been successfully applied to clinic, but most of them are defective due to their efficacy and complications. In order to promote the clinical application of targeting c-Met drugs in digestive system tumors, it is necessary to further explore the mechanism of c-Met action in digestive system tumors and optimize the anti-tumor treatment of targeting c-Met drugs. Through reading a large number of literatures, the author systematically reviewed the biological functions and molecular mechanisms of c-Met associated with tumor and summarized the current status of targeting c-Met in the treatment of digestive system tumors so as to provide new ideas for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Dong Li
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jie Tong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Wei Liu
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Tongwei Zeng
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenghua Gao
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| | - Yongqiang Xie
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| |
Collapse
|
10
|
Sunitha P, Arya KR, Nair AS, Oommen OV, Sudhakaran PR. Metabolite Effect on Angiogenesis: Insights from Transcriptome Analysis. Cell Biochem Biophys 2022; 80:519-536. [PMID: 35701692 DOI: 10.1007/s12013-022-01078-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022]
Abstract
Metabolic status of the cells is important in the expression of the angiogenic phenotype in endothelial cells. Our earlier studies demonstrated the effects of metabolites such as lactate, citrate and lipoxygenase products, on VEGFA-VEGFR2 signaling pathway. Though this link between metabolite status and molecular mechanisms of angiogenesis is becoming evident, it is not clear how it affects genome-level expression in endothelial cells, critical to angiogenesis. In the present study, computational analysis was carried out on the transcriptome data of 4 different datasets where HUVECs were exposed to low and high glucose, both in vitro and in vivo, and the expression of a key enzyme involved in glucose metabolism is altered. The differentially expressed genes belonging to both VEGFA-VEGFR2 signaling pathway, as well as several VEGF signature genes as hub genes were also identified. These findings suggest the metabolite dependence, particularly glucose dependence, of angiogenesis, involving modulation of genome-level expression of angiogenesis- functional genome. This is important in tumor angiogenesis where reprogramming of metabolism is critical.
Collapse
Affiliation(s)
- P Sunitha
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Kesavan R Arya
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Oommen V Oommen
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Perumana R Sudhakaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
11
|
Zhang M, Li J, Yan H, Huang J, Wang F, Liu T, Zeng L, Zhou F. ISGylation in Innate Antiviral Immunity and Pathogen Defense Responses: A Review. Front Cell Dev Biol 2021; 9:788410. [PMID: 34901029 PMCID: PMC8662993 DOI: 10.3389/fcell.2021.788410] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
The interferon-stimulating gene 15 (ISG15) protein is a ubiquitin-like protein induced by interferons or pathogens. ISG15 can exist in free form or covalently bind to the target protein through an enzymatic cascade reaction, which is called ISGylation. ISGylation has been found to play an important role in the innate immune responses induced by type I interferon, and is, thus, critical for the defense of host cells against RNA, DNA, and retroviruses. Through covalent binding with the host and viral target proteins, ISG15 inhibits the release of viral particles, hinder viral replication, and regulates the incubation period of viruses, thereby exerting strong antiviral effects. The SARS-CoV-2 papain-like protease, a virus-encoded deubiquitinating enzyme, has demonstrated activity on both ubiquitin and ISG15 chain conjugations, thus playing a suppressive role against the host antiviral innate immune response. Here we review the recent research progress in understanding ISG15-type ubiquitin-like modifications, with an emphasis on the underlying molecular mechanisms. We provide comprehensive references for further studies on the role of ISG15 in antiviral immunity, which may enable development of new antiviral drugs.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jingxian Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Haiyan Yan
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jun Huang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ting Liu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Fangfang Zhou
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Taillandier D. [Metabolic pathways controlled by E3 ligases: an opportunity for therapeutic targeting]. Biol Aujourdhui 2021; 215:45-57. [PMID: 34397374 DOI: 10.1051/jbio/2021006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/14/2022]
Abstract
Since its discovery, the Ubiquitin Proteasome System (UPS) has been recognized for its major role in controlling most of the cell's metabolic pathways. In addition to its essential role in the degradation of proteins, it is also involved in the addressing, signaling or repair of DNA, which makes it a key player in cellular homeostasis. Although other control systems exist in the cell, the UPS is often referred to as the conductor. In view of its importance, any dysregulation of the UPS leads to more or less severe disorders for the cell and therefore the body, which accounts for UPS implication in many pathologies (cancer, Alzheimer's disease, Huntington's disease, etc.). UPS is made up of more than 1000 different proteins, the combinations of which allow the fine targeting of virtually all proteins in the body. UPS uses an enzymatic cascade (E1, 2 members; E2 > 35; E3 > 800) which allows the transfer of ubiquitin, a small protein of 8.5 kDa onto the protein to be targeted either for its degradation or to modify its activity. This ubiquitinylation signal is reversible and many deubiquitinylases (DUB, ∼ 80 isoforms) also have an important role. E3 enzymes are the most numerous and their function is to recognize the target protein, which makes them important players in the specific action of UPS. The very nature of E3 and the complexity of their interactions with different partners offer a very broad field of investigation and therefore significant potential for the development of therapeutic approaches. Without being exhaustive, this review illustrates the different strategies that have already been implemented to fight against different pathologies (excluding bacterial or viral infections).
Collapse
Affiliation(s)
- Daniel Taillandier
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, 63000 Clermont-Ferrand, France
| |
Collapse
|
13
|
Wang Y, Ma Q, Huo Z. Identification of hub genes, pathways, and related transcription factors in systemic lupus erythematosus: A preliminary bioinformatics analysis. Medicine (Baltimore) 2021; 100:e26499. [PMID: 34160465 PMCID: PMC8238284 DOI: 10.1097/md.0000000000026499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ damage and the production of a variety of autoantibodies. The pathogenesis of SLE has not been fully defined, and it is difficult to treat. Our study aimed to identify candidate genes that may be used as biomarkers for the screening, diagnosis, and treatment of SLE. METHODS We used the GEO2R tool to identify the differentially expressed genes (DEGs) in SLE-related datasets retrieved from the Gene Expression Omnibus (GEO). In addition, we also identified the biological functions of the DEGs by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Additionally, we constructed protein-protein interaction (PPI) networks to identify hub genes, as well as the regulatory network of transcription factors related to DEGs. RESULTS Two datasets were identified for use from the GEO (GSE50772, GSE4588), and 34 up-regulated genes and 4 down-regulated genes were identified by GEO2R. Pathway analysis of the DEGs revealed enrichment of the interferon alpha/beta signaling pathway; GO analysis was mainly enriched in response to interferon alpha, regulation of ribonuclease activity. PPIs were constructed through the STRING database and 14 hub genes were selected and 1 significant module (score = 12.923) was obtained from the PPI network. Additionally, 11 key transcription factors that interacted closely with the 14 hub DEGs were identified from the gene transcription factor network. CONCLUSIONS Bioinformatic analysis is an effective tool for screening the original genomic data in the GEO database, and a large number of SLE-related DEGs were identified. The identified hub DEGs may be potential biomarkers of SLE.
Collapse
|
14
|
Zhang Q, Wang J, Qiao H, Huyan L, Liu B, Li C, Jiang J, Zhao F, Wang H, Yan J. ISG15 is downregulated by KLF12 and implicated in maintenance of cancer stem cell-like features in cisplatin-resistant ovarian cancer. J Cell Mol Med 2021; 25:4395-4407. [PMID: 33797839 PMCID: PMC8093991 DOI: 10.1111/jcmm.16503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Drug resistance is often developed during clinical chemotherapy of ovarian cancers. The ubiquitin‐like protein interferon‐stimulated gene 15 (ISG15) is possibly dependent on tumour context to promote or suppress progression of various tumours. The ubiquitin‐like protein interferon‐stimulated gene 15 (ISG15) was decreased in cisplatin‐resistant ovarian cancer cells. The current study identified that both ectopic wild type and nonISGylatable mutant ISG15 expression inhibited CSC‐like phenotypes of cisplatin‐resistant ovarian cancer cells. Moreover, ectopic ISG15 expression suppressed tumour formation in nude mice. In addition, ISG15 downregulation promoted CSC‐like features of cisplatin‐sensitive ovarian cancer cells. Furthermore, low ISG15 expression was associated with poor prognosis in patients with ovarian cancer. Transcriptional repressor Krüppel‐like factor 12 (KLF12) downregulated ISG15 in cisplatin‐resistant cells. Our data indicated that downregulating ISG15 expression, via weakening effect of KLF12, might be considered as new therapeutic strategy to inhibit CSC phenotypes in the treatment of cisplatin‐resistant ovarian cancer.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China.,Criminal Investigation Police University of China, Shenyang, China
| | - Jiamei Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China.,Clinical Medical Laboratory, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Huaiyu Qiao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Lingyue Huyan
- 5+3 Integrated Clinical Medicine 103K, China Medical University, Shenyang, China
| | - Baoqin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Jingyi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Fuying Zhao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Huaqin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Lo AKF, Dawson CW, Lung HL, Wong KL, Young LS. The Role of EBV-Encoded LMP1 in the NPC Tumor Microenvironment: From Function to Therapy. Front Oncol 2021; 11:640207. [PMID: 33718235 PMCID: PMC7947715 DOI: 10.3389/fonc.2021.640207] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. It is also characterized by heavy infiltration with non-malignant leucocytes. The EBV-encoded latent membrane protein 1 (LMP1) is believed to play an important role in NPC pathogenesis by virtue of its ability to activate multiple cell signaling pathways which collectively promote cell proliferation and survival, angiogenesis, invasiveness, and aerobic glycolysis. LMP1 also affects cell-cell interactions, antigen presentation, and cytokine and chemokine production. Here, we discuss how LMP1 modulates local immune responses that contribute to the establishment of the NPC tumor microenvironment. We also discuss strategies for targeting the LMP1 protein as a novel therapy for EBV-driven malignancies.
Collapse
Affiliation(s)
| | | | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Lawrence S. Young
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
16
|
Kariri YA, Alsaleem M, Joseph C, Alsaeed S, Aljohani A, Shiino S, Mohammed OJ, Toss MS, Green AR, Rakha EA. The prognostic significance of interferon-stimulated gene 15 (ISG15) in invasive breast cancer. Breast Cancer Res Treat 2021; 185:293-305. [PMID: 33073304 PMCID: PMC7867506 DOI: 10.1007/s10549-020-05955-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lymphovascular invasion (LVI) is a prognostic factor in early-stage invasive breast cancer (BC). Through bioinformatics, data analyses of multiple BC cohorts revealed the positive association between interferon-stimulated gene 15 (ISG15) LVI status. Thus, we explored the prognostic significance of ISG15 in BC. METHODS The prognostic significance of ISG15 mRNA was assessed in METABRIC (n = 1980), TCGA (n = 854) and Kaplan-Meier Plotter (n = 3951). ISG15 protein was evaluated using immunohistochemistry (n = 859) in early-stage invasive BC patients with long-term follow-up. The associations between ISG15 expression and clinicopathological features, expression of immune cell markers and patient outcome data were evaluated. RESULTS High mRNA and protein ISG15 expression were associated with LVI, higher histological grade, larger tumour size, hormonal receptor negativity, HER2 positivity, p53 and Ki67. High ISG15 protein expression was associated with HER2-enriched BC subtypes and immune markers (CD8, FOXP3 and CD68). High ISG15 mRNA and ISG15 expressions were associated with poor patient outcome. Cox proportional multivariate analysis revealed that the elevated ISG15 expression was an independent prognostic factor of shorter BC-specific survival. CONCLUSION This study provides evidence for the role of ISG15 in LVI development and BC prognosis. Further functional studies in BC are warranted to evaluate the therapeutic potential of ISG15.
Collapse
Affiliation(s)
- Yousif A Kariri
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
- Department of Laboratory Medical Science, Faculty of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Mansour Alsaleem
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Chitra Joseph
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Sami Alsaeed
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Abrar Aljohani
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Sho Shiino
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Omar J Mohammed
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Michael S Toss
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK.
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, NG5 1PB, UK.
| |
Collapse
|
17
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
18
|
Qu T, Zhang W, Qi L, Cao L, Liu C, Huang Q, Li G, Li L, Wang Y, Guo Q, Guo Y, Ren D, Gao Y, Wang J, Meng B, Zhang B, Cao W. ISG15 induces ESRP1 to inhibit lung adenocarcinoma progression. Cell Death Dis 2020; 11:511. [PMID: 32641707 PMCID: PMC7343783 DOI: 10.1038/s41419-020-2706-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/23/2022]
Abstract
Our previous work demonstrated that Epithelial Splicing Regulatory Protein 1 (ESRP1) could inhibit the progression of lung adenocarcinoma (ADC). When ESRP1 was upregulated, the interferon (IFN) pathway was activated and Interferon-stimulated gene 15 (ISG15) expression increased exponentially in our microarray result. In this study, we aim to explore the function of ISG15 and its interactions with ESRP1 and to provide new insights for ADC treatment. ISG15 expression in lung ADC tissues was determined by immunohistochemistry (IHC) staining. The effect of ISG15 on lung ADC progression was examined by in vitro and in vivo assays. The mechanism of action on ESRP1 regulating ISG15 was investigated using Western blotting, RT-qPCR, immunofluorescence staining, chromatin immunoprecipitation, and a dual luciferase reporter system. The ISGylation between ISG15 and ESRP1 was detected by co-immunoprecipitation. Patients with high ISG15 expression were associated with higher survival rates, especially those with ISG15 expression in the nucleus. In vitro and in vivo experiments showed that upregulation of ISG15 inhibited EMT in lung ADC. ESRP1 upregulated the expression of ISG15 through CREB with enriched ISG15 in the nucleus. Importantly, ISG15 promoted ISGylation of ESRP1 and slowed the degradation of ESRP1, which demonstrated that ESRP1 and ISG15 formed a positive feedback loop and jointly suppressed EMT of lung ADC. In conclusion, ISG15 serves as an independent prognostic marker for long-term survival in lung ADC patients. We have revealed the protective effect of ISG15 against lung ADC progression and the combinatorial benefit of ISG15 and ESRP1 on inhibiting EMT. These findings suggest that reconstituting ISG15 and ESRP1 may have the potential for treating lung ADC.
Collapse
Affiliation(s)
- Tongyuan Qu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Wenshuai Zhang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Lu Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Changxu Liu
- Department of Pathology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, 300120, Tianjin, China
| | - Qiujuan Huang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Guangning Li
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Lingmei Li
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Yalei Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Qianru Guo
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Yuhong Guo
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Danyang Ren
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Yanan Gao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Jinpeng Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Bin Meng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China
| | - Bin Zhang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China.
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, 300060, Tianjin, China.
| |
Collapse
|
19
|
Massara L, Khairallah C, Yared N, Pitard V, Rousseau B, Izotte J, Giese A, Dubus P, Gauthereau X, Déchanet-Merville J, Capone M. Uncovering the Anticancer Potential of Murine Cytomegalovirus against Human Colon Cancer Cells. MOLECULAR THERAPY-ONCOLYTICS 2020; 16:250-261. [PMID: 32140563 PMCID: PMC7052516 DOI: 10.1016/j.omto.2020.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 12/28/2022]
Abstract
Human cytomegalovirus (HCMV) components are often found in tumors, but the precise relationship between HCMV and cancer remains a matter of debate. Pro-tumor functions of HCMV were described in several studies, but an association between HCMV seropositivity and reduced cancer risk was also evidenced, presumably relying on recognition and killing of cancer cells by HCMV-induced lymphocytes. This study aimed at deciphering whether CMV influences cancer development in an immune-independent manner. Using immunodeficient mice, we showed that systemic infection with murine CMV (MCMV) inhibited the growth of murine carcinomas. Surprisingly, MCMV, but not HCMV, also reduced human colon carcinoma development in vivo. In vitro, both viruses infected human cancer cells. Expression of human interferon-β (IFN-β) and nuclear domain (ND10) were induced in MCMV-infected, but not in HCMV-infected human colon cancer cells. These results suggest a decreased capacity of MCMV to counteract intrinsic defenses in the human cellular host. Finally, immunodeficient mice receiving peri-tumoral MCMV therapy showed a reduction of human colon cancer cell growth, albeit no clinical sign of systemic virus dissemination was evidenced. Our study, which describes a selective advantage of MCMV over HCMV to control human colon cancer, could pave the way for the development of CMV-based therapies against cancer.
Collapse
Affiliation(s)
- Layal Massara
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Camille Khairallah
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France
| | - Nathalie Yared
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France
| | - Vincent Pitard
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France.,University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de Cytométrie, 33076 Bordeaux, France
| | - Benoit Rousseau
- University of Bordeaux, Service Commun des Animaleries, Animalerie A2, 33076 Bordeaux, France
| | - Julien Izotte
- University of Bordeaux, Service Commun des Animaleries, Animalerie A2, 33076 Bordeaux, France
| | - Alban Giese
- University of Bordeaux, EA2406 Histologie et Pathologie Moléculaire des Tumeurs, 33076 Bordeaux, France
| | - Pierre Dubus
- University of Bordeaux, EA2406 Histologie et Pathologie Moléculaire des Tumeurs, 33076 Bordeaux, France
| | - Xavier Gauthereau
- University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de PCR Quantitative, 33076 Bordeaux, France
| | - Julie Déchanet-Merville
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France.,University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de Cytométrie, 33076 Bordeaux, France
| | - Myriam Capone
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France.,University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de PCR Quantitative, 33076 Bordeaux, France
| |
Collapse
|
20
|
ISG15 suppresses translation of ABCC2 via ISGylation of hnRNPA2B1 and enhances drug sensitivity in cisplatin resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118647. [PMID: 31926942 DOI: 10.1016/j.bbamcr.2020.118647] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Cisplatin-based chemotherapies have long been considered as a standard chemotherapy in ovarian cancer. However, cisplatin resistance restricts beneficial therapy for patients with ovarian cancer. The ubiquitin-like protein interferon-stimulated gene 15 (ISG15) encodes a 15-kDa protein, that is implicated in the post-translational modification of diverse proteins. In this work, we found that ISG15 was downregulated in cisplatin resistant tissues and cell lines of ovarian cancer. Functional studies demonstrated that overexpression of wild type (WT) ISG15, but not nonISGylatable (Mut) ISG15 increased cell responses to cisplatin in resistant ovarian cancer cells. Furthermore, we found that WT ISG15 decreased ABCC2 expression at the protein level. Importantly, overexpression of ABCC2 blocked sensitizing effect of ISG15 on cisplatin. In addition, we identified that hnRNPA2B1 was recruited to 5'UTR of ABCC2 mRNA and promoted its translation, which was blocked by ISG15. We further demonstrated that hnRNPA2B1 could be ISGylated, and ISGylation blocked its recruitment to ABCC2 mRNA, thereby suppressed translation of ABCC2. Altogether, our data support targeting ISG15 might be a potential therapeutic strategy for patients with cisplatin-resistant ovarian cancer.
Collapse
|
21
|
Huang F, Zheng C, Huang L, Lin C, Wang J. USP18 directly regulates Snail1 protein through ubiquitination pathway in colorectal cancer. Cancer Cell Int 2020; 20:346. [PMID: 32742193 PMCID: PMC7389447 DOI: 10.1186/s12935-020-01442-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common digestive malignant tumors in the world. Ubiquitin-specific peptidase 18 (USP18) plays a regulatory role in tumorigenesis, and abnormal expression of Snail1 is also believed to be related to tumorigenesis. However, whether USP18 could affect colorectal cancer through Snail1 remains unclear. This study was designed to investigate the role of USP18 in colorectal cancer. METHODS USP18 protein and mRNA abundance in clinical tissues and five cell lines were analyzed with quantitative real-time PCR (qRT-PCR) and western blot. USP18 overexpression-treated DLD1 cells and USP18 knockdown-treated SW480 cells were used to study cell proliferation, migration, invasion, and the expression of epithelial-mesenchymal transformation (EMT) biomarkers. Moreover, ubiquitination-related Snail1 degradation was detected with qRT-PCR and western blot. The relationships between USP18 and Snail1 were investigated with western blot, co-immunoprecipitation, migration, and invasion. RESULTS USP18 was highly expressed in colorectal cancer tissues. Overexpression of USP18 could promote proliferation, colony formation, migration, and invasion of colorectal cancer cells. Overexpression of USP18 effectively promoted cell survival after treatment with three different chemotherapy drugs. Moreover, USP18 could regulate Snail1 degradation through ubiquitination pathway. Furthermore, we demonstrated that Snail1 could effectively reverse the influence of USP18 on cell proliferation, migration, invasion, and EMT of CRC cells. CONCLUSION USP18 could promote the proliferation, migration, and invasion of colorectal cancer by deubiquitinating and stabilizing the Snail1 protein in colorectal cancer.
Collapse
Affiliation(s)
- Fakun Huang
- grid.412683.a0000 0004 1758 0400Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350000 Fujian People’s Republic of China
| | - Chengying Zheng
- grid.412683.a0000 0004 1758 0400Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350000 Fujian People’s Republic of China
| | - Longkai Huang
- grid.412683.a0000 0004 1758 0400Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350000 Fujian People’s Republic of China
| | - Changqing Lin
- grid.412683.a0000 0004 1758 0400Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350000 Fujian People’s Republic of China
| | - Jiaxing Wang
- grid.412683.a0000 0004 1758 0400Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350000 Fujian People’s Republic of China
| |
Collapse
|
22
|
Cheriyamundath S, Basu S, Haase G, Doernberg H, Gavert N, Brabletz T, Ben-Ze'ev A. ISG15 induction is required during L1-mediated colon cancer progression and metastasis. Oncotarget 2019; 10:7122-7131. [PMID: 31903170 PMCID: PMC6935256 DOI: 10.18632/oncotarget.27390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperactivation of Wnt/β-catenin target gene expression is a hallmark of colorectal cancer (CRC) development. We identified L1-CAM (L1) and Nr-CAM, members of the immunoglobulin family of nerve cell adhesion receptors, as target genes of the Wnt/β-catenin pathway in CRC cells. L1 overexpression in CRC cells enhances their motile and tumorigenic capacity and promotes liver metastasis. L1 is often localized at the invasive edge of CRC tissue. Using gene arrays and proteomic analyses we identified downstream signaling pathways and targets of L1-mediated signaling. Here, we found that the expression of interferon-stimulated gene 15 (ISG15) that operates much like ubiquitin (is conjugated to proteins by ISGylation), is elevated in the conditioned medium and in CRC cells overexpressing L1. Suppression of endogenous ISG15 levels in L1-expressing cells blocked the increased proliferative, motile, tumorigenic and liver metastatic capacities of CRC cells. ISG15 overexpression, on its own, could enhance these properties in CRC cells, but only to a much lower extent compared to L1. We show that NF-κB signaling is involved in the L1-mediated increase in ISG15, since blocking the NF-κB pathway abolished the induction of ISG15 by L1. Point mutations in the L1 ectodomain that interfere with its binding to L1 ligands, also inhibited the increase in ISG15. We detected high levels of ISG15 in human CRC tissue cells and in the adjacent stroma, but not in the normal mucosa. The results suggest that ISG15 is involved in L1-mediated CRC development and is a potential target for CRC therapy.
Collapse
Affiliation(s)
- Sanith Cheriyamundath
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sayon Basu
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gal Haase
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry Doernberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thomas Brabletz
- Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Avri Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Zhang J, Zhang Y, Li Z, Wu H, Xun J, Feng H. Bioinformatics analysis of Ewing's sarcoma: Seeking key candidate genes and pathways. Oncol Lett 2019; 18:6008-6016. [PMID: 31788075 PMCID: PMC6865160 DOI: 10.3892/ol.2019.10936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Ewing's sarcoma (ES) is the second most common bone tumor among children and adolescents worldwide. However, the genes and signaling pathways involved in ES tumorigenesis and progression remain unclear. The present study used two gene-expression profile datasets (GSE17674 and GSE31215) to elucidate key potential candidate genes and pathways in ES. Differentially expressed genes (DEGs) were identified and a functional enrichment analysis was performed. A protein-protein interaction (PPI) network was constructed, and the most significant module in the PPI network was selected from the Search Tool for the Retrieval of Interacting Genes/Proteins database. A total of 278 genes were identified by comparing the tumor samples with non-cancerous samples; these included 272 upregulated and 6 downregulated genes. The pathway analysis demonstrated significant enrichment in the positive regulation of transcription in the DEGs coding for RNA polymerase II promoter, plasma membrane and chromatin binding pathways in cancer in general. There were 269 nodes and 292 edges in the PPI network. Finally, MYC, IGF1, OAS1, EZH2 and ISG15 were identified as the hub genes according to the degree levels. The survival analysis revealed that EZH2 is associated with a poor prognosis in patients with ES. In conclusion, the DEGs, associated pathways and hub genes identified in the present study help elucidate the underlying molecular mechanisms of ES carcinogenesis and progression, and provide potential molecular targets and biomarkers for ES.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Orthopedics, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yao Zhang
- Department of Breast Cancer Center, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Ze Li
- Department of Emergency, Hebei Medical University Second Affiliated Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Hongzeng Wu
- Department of Orthopedics, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Jianjun Xun
- Department of Orthopedics, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Helin Feng
- Department of Orthopedics, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
24
|
ISG15 pathway knockdown reverses pancreatic cancer cell transformation and decreases murine pancreatic tumor growth via downregulation of PDL-1 expression. Cancer Immunol Immunother 2019; 68:2029-2039. [PMID: 31709456 PMCID: PMC9886270 DOI: 10.1007/s00262-019-02422-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/22/2019] [Indexed: 02/01/2023]
Abstract
Interferon-stimulated gene 15 (ISG15) is a 15 kDa protein induced by type I interferons (IFN-α and IFN-β) and is a member of the ubiquitin-like superfamily of proteins. The ISG15 pathway is highly expressed in various malignancies, including pancreatic ductal adenocarcinoma (PDAC), suggesting a potential role of the ISG15 pathway (free ISG15 and ISG15 conjugates) in pancreatic carcinogenesis. However, very little is known about how the ISG15 pathway may contribute to pancreatic tumorigenesis. In the current study, we demonstrate that ISG15 pathway knockdown reverses the KRAS-associated phenotypes of PDAC cells such as increased proliferation and colony formation. Furthermore, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated ISG15 knockdown decreased tumor programmed death ligand-1 (PDL-1) expression leading to increased number of CD8+ tumor-infiltrating lymphocytes and decreased pancreatic tumor growth. In addition, the syngeneic subcutaneous mouse model revealed that knocking down the ISG15 pathway significantly decreased the rate of tumor incidence and increased the survival rate. Interestingly, the ISG15 knockdown-mediated PDL-1 downregulation in pancreatic tumors increased the efficacy of anti-programmed cell death protein-1 (PD-1) treatment. ISG15 knockdown in combination with anti-PD-1 treatment synergistically increased the number of CD8+ tumor-infiltrating lymphocytes. Additionally, ISG15 knockdown alone significantly decreased the number of tumor-infiltrating regulatory T cells (Tregs) compared to wild type tumors treated with anti-PD-1 antibody. Overall, these findings suggest that strategies to target the ISG15 pathway by itself or in combination with immunotherapy may lead to improved survival for patients diagnosed with PDAC.
Collapse
|
25
|
Wang P, Wang Y, Langley SA, Zhou YX, Jen KY, Sun Q, Brislawn C, Rojas CM, Wahl KL, Wang T, Fan X, Jansson JK, Celniker SE, Zou X, Threadgill DW, Snijders AM, Mao JH. Diverse tumour susceptibility in Collaborative Cross mice: identification of a new mouse model for human gastric tumourigenesis. Gut 2019; 68:1942-1952. [PMID: 30842212 PMCID: PMC6839736 DOI: 10.1136/gutjnl-2018-316691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The Collaborative Cross (CC) is a mouse population model with diverse and reproducible genetic backgrounds used to identify novel disease models and genes that contribute to human disease. Since spontaneous tumour susceptibility in CC mice remains unexplored, we assessed tumour incidence and spectrum. DESIGN We monitored 293 mice from 18 CC strains for tumour development. Genetic association analysis and RNA sequencing were used to identify susceptibility loci and candidate genes. We analysed genomes of patients with gastric cancer to evaluate the relevance of genes identified in the CC mouse model and measured the expression levels of ISG15 by immunohistochemical staining using a gastric adenocarcinoma tissue microarray. Association of gene expression with overall survival (OS) was assessed by Kaplan-Meier analysis. RESULTS CC mice displayed a wide range in the incidence and types of spontaneous tumours. More than 40% of CC036 mice developed gastric tumours within 1 year. Genetic association analysis identified Nfκb1 as a candidate susceptibility gene, while RNA sequencing analysis of non-tumour gastric tissues from CC036 mice showed significantly higher expression of inflammatory response genes. In human gastric cancers, the majority of human orthologues of the 166 mouse genes were preferentially altered by amplification or deletion and were significantly associated with OS. Higher expression of the CC036 inflammatory response gene signature is associated with poor OS. Finally, ISG15 protein is elevated in gastric adenocarcinomas and correlated with shortened patient OS. CONCLUSIONS CC strains exhibit tremendous variation in tumour susceptibility, and we present CC036 as a spontaneous laboratory mouse model for studying human gastric tumourigenesis.
Collapse
Affiliation(s)
- Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yunshan Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA,Clinical Laboratory, Second Hospital of Shandong University, Jinan, China
| | - Sasha A Langley
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yan-Xia Zhou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA,College of Marine Science, Shandong University, Weihai, China
| | - Kuang-Yu Jen
- Department of Pathology, University of California Davis Medical Center, Sacramento, California, USA
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Colin Brislawn
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carolina M Rojas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Kimberly L Wahl
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
26
|
BAG3 deletion suppresses stem cell-like features of pancreatic ductal adenocarcinoma via translational suppression of ISG15. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:819-827. [DOI: 10.1016/j.bbamcr.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/21/2022]
|
27
|
Wei DM, Jiang MT, Lin P, Yang H, Dang YW, Yu Q, Liao DY, Luo DZ, Chen G. Potential ceRNA networks involved in autophagy suppression of pancreatic cancer caused by chloroquine diphosphate: A study based on differentially‑expressed circRNAs, lncRNAs, miRNAs and mRNAs. Int J Oncol 2019; 54:600-626. [PMID: 30570107 PMCID: PMC6317664 DOI: 10.3892/ijo.2018.4660] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy has been reported to be involved in the occurrence and development of pancreatic cancer. However, the mechanism of autophagy‑associated non‑coding RNAs (ncRNAs) in pancreatic cancer remains largely unknown. In the present study, microarrays were used to detect differential expression of mRNAs, microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs) post autophagy suppression by chloroquine diphosphate in PANC‑1 cells. Collectively, 3,966 mRNAs, 3,184 lncRNAs and 9,420 circRNAs were differentially expressed. Additionally, only two miRNAs (hsa‑miR‑663a‑5p and hsa‑miR‑154‑3p) were underexpressed in the PANC‑1 cells in the autophagy‑suppression group. Furthermore, miR‑663a‑5p with 9 circRNAs, 8 lncRNAs and 46 genes could form a prospective ceRNA network associated with autophagy in pancreatic cancer cells. In addition, another ceRNA network containing miR‑154‑3p, 5 circRNAs, 2 lncRNAs and 11 genes was also constructed. The potential multiple ceRNA, miRNA and mRNA associations may serve pivotal roles in the autophagy of pancreatic cancer cells, which lays the theoretical foundation for subsequent investigations on pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | | | | | | | | | | |
Collapse
|
28
|
Zamanian-Azodi M, Rezaei-Tavirani M. Investigation of health benefits of cocoa in human colorectal cancer cell line, HT-29 through interactome analysis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:67-73. [PMID: 30949322 PMCID: PMC6441487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AIM This bioinformatics study aims to identify the potential key genes influenced by cocoa extraction treatment on colon cancer cell line HT-29 after 24h. BACKGROUND Cocoa consumption has been claimed to have beneficial effects on human body including protection against diseases such as different types of cancers. However, the mechanisms behind this is still remained to be studied. METHODS The microarray dataset (GSE94154) from GEO, was the source for differentially expressed genes (DEGs) extraction through GEO2R analysis. The comparison was between 3 controls of colorectal cell line HT-29 and 3 ones incubated with 500 µg cocoa extraction after 24 h. Afterwards, the top significant DEGs were assigned for protein-protein interaction network construction and analysis by Cytoscape v 3.7.0. and the related applications. RESULTS The findings indicate that there are 222 up-regulated and 28 down-regulated genes among 250 top-ranked DEGs in cocoa incubated group. What is more, centrality analysis of the DEGs network identified 10 hub-bottlenecks that ISG15, MX 1, and STAT1 were among the significant differential expression genes with the contribution in type 1 interferon signaling pathway, positive regulation of erythrocyte differentiation, and negative regulation of viral genome replication. CONCLUSION In conclusion, the underlying mechanisms of cocoa treatment could be clarified by its up-regulatory and modulatory effect on prominent genes of tumor suppressor family. In other words, valuable clues for future clinical studies of cocoa health benefits are highlighted as anticancer agent in this study once validation studies are carried out.
Collapse
Affiliation(s)
- Mona Zamanian-Azodi
- Student Research Committee, Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
HGF/c-MET: A Promising Therapeutic Target in the Digestive System Cancers. Int J Mol Sci 2018; 19:ijms19113295. [PMID: 30360560 PMCID: PMC6274736 DOI: 10.3390/ijms19113295] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
The HGF/c-MET pathway is active in the development of digestive system cancers, indicating that inhibition of HGF/c-MET signaling may have therapeutic potential. Various HGF/c-MET signaling inhibitors, mainly c-MET inhibitors, have been tested in clinical trials. The observed efficacy and adverse events of some c-MET inhibitors were not very suitable for treating digestive system cancers. The development of new HGF/c-MET inhibitors in preclinical studies may bring promising treatments and synergistic combination (traditional anticancer drugs and c-MET inhibitors) strategies provided anacceptable safety and tolerability. Insights into miRNA biology and miRNA therapeutics have made miRNAs attractive tools to inhibit HGF/c-MET signaling. Recent reports show that several microRNAs participate in inhibiting HGF/c-MET signaling networks through antagonizing c-MET or HGF in digestive system cancers, and the miRNAs-HGF/c-MET axis plays crucial and novel roles for cancer treatment. In the current review, we will discuss recent findings about inhibitors of HGF/c-MET signaling in treating digestive system cancers, and how miRNAs regulate digestive system cancers via mediating HGF/c-MET pathway.
Collapse
|
30
|
Liu Z, Ma M, Yan L, Chen S, Li S, Yang D, Wang X, Xiao H, Deng H, Zhu H, Zuo C, Xia M. miR-370 regulates ISG15 expression and influences IFN-α sensitivity in hepatocellular carcinoma cells. Cancer Biomark 2018; 22:453-466. [PMID: 29758929 PMCID: PMC6027951 DOI: 10.3233/cbm-171075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND: Interferon-α (IFN-α) is an adjuvant to chemotherapy and radiotherapy for hepatocellular carcinoma (HCC), but some HCC patients do not respond to treatment with IFN-α. METHODS: We performed loss-of-function and gain-of-function experiments to examine the role of ISG15 in the IFN-α sensitivity of LH86, HLCZ01, SMMC7721, and Huh7 cell lines and tumor samples. RESULTS: The overexpression of ISG15 reduced apoptosis in Huh7 and LH86 cells in the presence of IFN-α, whereas the shRNA-mediated knock down of ISG15 expression increased apoptosis in both Huh7 and LH86 cells. We identified a putative miR-370 target site in the 3’-UTR in the ISG15 mRNA, and the level of miR-370 expression in HCC cell lines reflected the level of IFN-α-induced apoptosis exhibited by each. Both HCC cell lines and tumor samples had significantly lower levels of miR-370 than the control cells and tissues (P< 0.05). The overexpression of miR-370 in IFN-α-treated LH86 and Huh7 cells increased apoptosis and reduced the volume of LH86- and Huh7-derived xenograft tumors in mice treated with IFN-α compared with the control tumors. CONCLUSIONS: Our findings suggest that miR-370 functions as an HCC tumor suppressor and regulator of IFN-α sensitivity and that miR-370 might be a useful prognostic marker for HCC patients.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Min Ma
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Lei Yan
- Department of Gynaecological Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Shilin Chen
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Sha Li
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Darong Yang
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Xiaohong Wang
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Hua Xiao
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Hongyu Deng
- Department of Laboratory Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Haizhen Zhu
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Man Xia
- Department of Gynaecological Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
31
|
Wang Y, Ding Q, Lu YC, Cao SY, Liu QX, Zhang L. Interferon-stimulated gene 15 enters posttranslational modifications of p53. J Cell Physiol 2018; 234:5507-5518. [PMID: 30317575 DOI: 10.1002/jcp.27347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
The tumor suppressor protein p53 is a central governor of various cellular signals. It is well accepted that ubiquitination as well as ubiquitin-like (UBL) modifications of p53 protein is critical in the control of its activity. Interferon-stimulated gene 15 (ISG15) is a well-known UBL protein with pleiotropic functions, serving both as a free intracellular molecule and as a modifier by conjugating to target proteins. Initially, attentions have historically focused on the antiviral effects of ISG15 pathway. Remarkably, a significant role in the processes of autophagy, DNA repair, and protein translation provided considerable insight into the new functions of ISG15 pathway. Despite the deterministic revelation of the relation between ISG15 and p53, the functional consequence of p53 ISGylation appears somewhat confused. More important, more recent studies have hinted p53 ubiquitination or other UBL modifications that might interconnect with its ISGylation. Here, we aim to summarize the current knowledge of p53 ISGylation and the differences in other significant modifications, which would be beneficial for the development of p53-based cancer therapy.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qi Ding
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yu-Chen Lu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Shi-Yang Cao
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qing-Xue Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Manjari P, Hyder I, Kapoor S, Senthilnathan M, Dang AK. Exploring the concentration‐dependent actions of interferon‐τ on bovine neutrophils to understand the process of implantation. J Cell Biochem 2018; 119:10087-10094. [DOI: 10.1002/jcb.27345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022]
Affiliation(s)
- P. Manjari
- Veterinary Science Krishi Vigyan Kendra Pandirimamidi India
| | - Iqbal Hyder
- Department of Veterinary Physiology NTR CVSc Gannavaram India
| | - Suresh Kapoor
- Division of Animal Physiology ICAR‐NDRI Karnal India
| | | | - A. K. Dang
- Division of Animal Physiology ICAR‐NDRI Karnal India
| |
Collapse
|
33
|
Yang Y, Zhang Y, Qu X, Xia J, Li D, Li X, Wang Y, He Z, Li S, Zhou Y, Xie L, Yang Z. Identification of differentially expressed genes in the development of osteosarcoma using RNA-seq. Oncotarget 2018; 7:87194-87205. [PMID: 27888627 PMCID: PMC5349981 DOI: 10.18632/oncotarget.13554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022] Open
Abstract
Objective Osteosarcoma (OS) is a malignant bone tumor with high morbidity in young adults and adolescents. This study aimed to discover potential early diagnosis biomarkers in OS. Results In total, 111 differentially expressed genes (DEGs) were identified in primary OS compared with normal controls and 235 DEGs were identified in metastatic OS compared with primary OS. AURKB and PPP2R2B were the significantly up-regulated and down-regulated hub proteins, respectively, in the PPI protein-protein network (PPI) network of primary OS. ISG15 and BTRC were the significantly up-regulated and down-regulated hub proteins, respectively, in the network of metastatic OS. The DEGs in metastatic OS compared with primary OS were significantly enriched in the arachidonic acid metabolism, malaria, and chemokine signaling pathways. Finally, we employed quantitative real-time polymerase chain reaction (qRT-PCR) to validate the expression levels of candidate DEGs and the results indicated that our bioinformatics approach was acceptable. Materials and Methods The mRNA expression profiling of 20 subjects was obtained through high-throughput RNA-sequencing. DEGs were identified between primary OS and normal Control, and between primary OS and metastatic OS, respectively. Functional annotation and PPI networks were used to obtain insights into the functions of DEGs. qRT-PCR was performed to detect the expression levels of dysregulated genes in OS. Conclusions Our work might provide groundwork for the further exploration of tumorigenesis and metastasis mechanisms of OS.
Collapse
Affiliation(s)
- Yihao Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Xin Qu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Junfeng Xia
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Dongqi Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Xiaojuan Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Yu Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Zewei He
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Su Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Yonghong Zhou
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Lin Xie
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| |
Collapse
|
34
|
Desai S, Juncker M, Kim C. Regulation of mitophagy by the ubiquitin pathway in neurodegenerative diseases. Exp Biol Med (Maywood) 2018; 243:554-562. [PMID: 29316798 DOI: 10.1177/1535370217752351] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitophagy is a cellular process by which dysfunctional mitochondria are degraded via autophagy. Increasing empirical evidence proposes that this mitochondrial quality-control mechanism is defective in neurons of patients with various neurodegenerative diseases such as Ataxia Telangiectasia, Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Accumulation of defective mitochondria and the production of reactive oxygen species due to defective mitophagy have been identified as causes underlying neurodegenerative disease pathogenesis. However, the reason mitophagy is defective in most neurodegenerative diseases is unclear. Like mitophagy, defects in the ubiquitin/26S proteasome pathway have been linked to neurodegeneration, resulting in the characteristic protein aggregates often seen in neurons of affected patients. Although initiation of mitophagy requires a functional ubiquitin pathway, whether defects in the ubiquitin pathway are causally responsible for defective mitophagy is not known. In this mini-review, we introduce mitophagy and ubiquitin pathways and provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway. We will then briefly review empirical evidence supporting mitophagy defects in neurodegenerative diseases. The review will conclude with a discussion of the constitutively elevated expression of ubiquitin-like protein Interferon-Stimulated Gene 15 (ISG15), an antagonist of the ubiquitin pathway, as a potential cause of defective mitophagy in neurodegenerative diseases. Impact statement Neurodegenerative diseases place an enormous burden on patients and caregivers globally. Over six million people in the United States alone suffer from neurodegenerative diseases, all of which are chronic, incurable, and with causes unknown. Identifying a common molecular mechanism underpinning neurodegenerative disease pathology is urgently needed to aid in the design of effective therapies to ease suffering, reduce economic cost, and improve the quality of life for these patients. Although the development of neurodegeneration may vary between neurodegenerative diseases, they have common cellular hallmarks, including defects in the ubiquitin-proteasome system and mitophagy. In this review, we will provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway and discuss the potential of targeting mitophagy and ubiquitin pathways for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shyamal Desai
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Meredith Juncker
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Catherine Kim
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
35
|
Wu C, Zhao Y, Lin Y, Yang X, Yan M, Min Y, Pan Z, Xia S, Shao Q. Bioinformatics analysis of differentially expressed gene profiles associated with systemic lupus erythematosus. Mol Med Rep 2017; 17:3591-3598. [PMID: 29257335 PMCID: PMC5802164 DOI: 10.3892/mmr.2017.8293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022] Open
Abstract
DNA microarray and high-throughput sequencing have been widely used to identify the differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE). However, the big data from gene microarrays are also challenging to work with in terms of analysis and processing. The presents study combined data from the microarray expression profile (GSE65391) and bioinformatics analysis to identify the key genes and cellular pathways in SLE. Gene ontology (GO) and cellular pathway enrichment analyses of DEGs were performed to investigate significantly enriched pathways. A protein-protein interaction network was constructed to determine the key genes in the occurrence and development of SLE. A total of 310 DEGs were identified in SLE, including 193 upregulated genes and 117 downregulated genes. GO analysis revealed that the most significant biological process of DEGs was immune system process. Kyoto Encyclopedia of Genes and Genome pathway analysis showed that these DEGs were enriched in signaling pathways associated with the immune system, including the RIG-I-like receptor signaling pathway, intestinal immune network for IgA production, antigen processing and presentation and the toll-like receptor signaling pathway. The current study screened the top 10 genes with higher degrees as hub genes, which included 2′-5′-oligoadenylate synthetase 1, MX dynamin like GTPase 2, interferon induced protein with tetratricopeptide repeats 1, interferon regulatory factor 7, interferon induced with helicase C domain 1, signal transducer and activator of transcription 1, ISG15 ubiquitin-like modifier, DExD/H-box helicase 58, interferon induced protein with tetratricopeptide repeats 3 and 2′-5′-oligoadenylate synthetase 2. Module analysis revealed that these hub genes were also involved in the RIG-I-like receptor signaling, cytosolic DNA-sensing, toll-like receptor signaling and ribosome biogenesis pathways. In addition, these hub genes, from different probe sets, exhibited significant co-expressed tendency in multi-experiment microarray datasets (P<0.01). In conclusion, these key genes and cellular pathways may improve the current understanding of the underlying mechanism of development of SLE. These key genes may be potential biomarkers of diagnosis, therapy and prognosis for SLE.
Collapse
Affiliation(s)
- Chengjiang Wu
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yangjing Zhao
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yu Lin
- Center for Computational Science, University of Miami, Coral Gables, FL 33146, USA
| | - Xinxin Yang
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Meina Yan
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yujiao Min
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zihui Pan
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Sheng Xia
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
36
|
UBE2L6/UBCH8 and ISG15 attenuate autophagy in esophageal cancer cells. Oncotarget 2017; 8:23479-23491. [PMID: 28186990 PMCID: PMC5410320 DOI: 10.18632/oncotarget.15182] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022] Open
Abstract
Esophageal cancer remains a poor prognosis cancer due to advanced stage of presentation and drug resistant disease. To understand the molecular mechanisms influencing response to chemotherapy, we examined genes that are differentially expressed between drug sensitive, apoptosis competent esophageal cancer cells (OE21, OE33, FLO-1) and those which are more resistant and do not exhibit apoptosis (KYSE450 and OE19). Members of the ISG15 (ubiquitin-like) protein modification pathway, including UBE2L6 and ISG15, were found to be more highly expressed in the drug sensitive cell lines. In this study, we evaluated the contribution of these proteins to the response of drug sensitive cells. Depletion of UBE2L6 or ISG15 with siRNA did not influence caspase-3 activation or nuclear fragmentation following treatment with 5-fluorouracil (5-FU). We assessed autophagy by analysis of LC3II expression and Cyto-ID staining. Depletion of either ISG15 or UBE2L6 resulted in enhanced endogenous autophagic flux. An increase in autophagic flux was also observed following treatment with cytotoxic drugs (5-FU, rapamycin). In ISG15 depleted cells, this increase in autophagy was associated with improved recovery of drug treated cells. In contrast, UBE2L6 depleted cells, did not show enhanced recovery. UBE2L6 may therefore influence additional targets that limit the pro-survival effect of ISG15 depletion. These data identify UBE2L6 and ISG15 as novel inhibitors of autophagy, with the potential to influence chemosensitivity in esophageal cancer cells.
Collapse
|
37
|
Wang Y, Ding Q, Xu T, Li CY, Zhou DD, Zhang L. HZ-6d targeted HERC5 to regulate p53 ISGylation in human hepatocellular carcinoma. Toxicol Appl Pharmacol 2017; 334:180-191. [PMID: 28919514 DOI: 10.1016/j.taap.2017.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Manipulating the posttranslational modulator of p53 is central in the regulation of its activity and function. ISGylated p53 can be degraded by the 20S proteasome. During this process, HERC5/Ceb1, an IFN-induced HECT-type E3 ligase, mediated p53 ISGylation. In this study, we indicated that HERC5 was over-expressed in both HCC tissue samples and cell lines. Knockdown of HERC5 significantly induced the expression of p53, p21 and Bax/Bcl-2 in HCC cells, resulting in apoptosis augment. Whereas, opposite results were obtained by using HERC5 over-expression. On this basis, we screened a 7, 11-disubstituted quinazoline derivative HZ-6d that could bind to the HERC5 G-rich sequence in vitro. Interestingly, HZ-6d injection effectively delayed the growth of xenografts in nude mice. In vitro, HZ-6d significantly inhibited cell growth, suppressed cell migration, induced apoptosis in HCC cells. Further studies demonstrated the anti-cancer effect of HZ-6d was associated with down-regulation of HERC5 and accumulation of p53. Collectively, we demonstrated that HZ6d is a HERC5 G-quadruplex ligand with anti-tumor properties, an action that may offer an attractive idea for restoration of p53 function in cancers.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Qi Ding
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Tao Xu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Chang-Yao Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Dan-Dan Zhou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
38
|
Wang Z, Zhu WG, Xu X. Ubiquitin-like modifications in the DNA damage response. Mutat Res 2017; 803-805:56-75. [PMID: 28734548 DOI: 10.1016/j.mrfmmm.2017.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Genomic DNA is damaged at an extremely high frequency by both endogenous and environmental factors. An improper response to DNA damage can lead to genome instability, accelerate the aging process and ultimately cause various human diseases, including cancers and neurodegenerative disorders. The mechanisms that underlie the cellular DNA damage response (DDR) are complex and are regulated at many levels, including at the level of post-translational modification (PTM). Since the discovery of ubiquitin in 1975 and ubiquitylation as a form of PTM in the early 1980s, a number of ubiquitin-like modifiers (UBLs) have been identified, including small ubiquitin-like modifiers (SUMOs), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), interferon-stimulated gene 15 (ISG15), human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10), ubiquitin-fold modifier 1 (UFRM1), URM1 ubiquitin-related modifier-1 (URM1), autophagy-related protein 12 (ATG12), autophagy-related protein 8 (ATG8), fan ubiquitin-like protein 1 (FUB1) and histone mono-ubiquitylation 1 (HUB1). All of these modifiers have known roles in the cellular response to various forms of stress, and delineating their underlying molecular mechanisms and functions is fundamental in enhancing our understanding of human disease and longevity. To date, however, the molecular mechanisms and functions of these UBLs in the DDR remain largely unknown. This review summarizes the current status of PTMs by UBLs in the DDR and their implication in cancer diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Zhifeng Wang
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China; Beijing Key Laboratory of DNA Damage Response, Capital Normal University College of Life Sciences, Beijing 100048, China.
| |
Collapse
|