1
|
Phull AR, Arain SQ, Majid A, Fatima H, Ahmed M, Kim SJ. Oxidative stress-mediated epigenetic remodeling, metastatic progression and cell signaling in cancer. ONCOLOGIE 2024; 26:493-507. [DOI: 10.1515/oncologie-2024-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Abstract
Cancer is a serious public health issue and cases are rising at a high rate around the world. Altered production of reactive oxygen species (ROS) causes oxidative stress (OS) which plays a vital role in cancer development by disrupting signaling pathways and genomic integrity in the cellular microenvironment. In this study, we reviewed the regulation of noncoding RNAs, histone modifications, and DNA methylation which OS is involved in. These mechanisms promote cancer growth, metastasis, and resistance to chemotherapeutic agents. There is significant potential to improve patient outcomes through the development of customized medications and interventions that precisely address the role of OS in the onset and progression of cancer. Redox-modulating drugs, antioxidant-based therapies, and measures to restore regular cellular activity and OS-modulated signaling pathways are some examples of these strategies. One other hypothesis rationalizes the cancer-suppressing effect of OS, which acts as a two-edged condition that warns against the use of antioxidants for cancer treatment and management. The present study was executed to review the impact of OS on epigenetic machinery, the evolution of metastatic cancer, and how OS mediates cellular signaling. Along with, insights into the potential of targeting OS-mediated mechanisms for cancer therapy.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Biochemistry , 66858 Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Sadia Qamar Arain
- Department of Biochemistry , 66858 Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Abdul Majid
- Department of Biochemistry , 66858 Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Humaira Fatima
- Department of Pharmacy , Quaid-i-Azam University , Islamabad , Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences , Shifa Tameer-e-Millat University , Islamabad , Pakistan
| | - Song-Ja Kim
- Department of Biological Sciences, College of Natural Sciences , Kongju National University , Gongju , South Korea
| |
Collapse
|
2
|
Mojica EA, Fu Y, Kültz D. Salinity-responsive histone PTMs identified in the gills and gonads of Mozambique tilapia (Oreochromis mossambicus). BMC Genomics 2024; 25:586. [PMID: 38862901 PMCID: PMC11167857 DOI: 10.1186/s12864-024-10471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Histone post-translational modifications (PTMs) are epigenetic marks that can be induced by environmental stress and elicit heritable patterns of gene expression. To investigate this process in an ecological context, we characterized the influence of salinity stress on histone PTMs within the gills, kidney, and testes of Mozambique tilapia (Oreochromis mossambicus). A total of 221 histone PTMs were quantified in each tissue sample and compared between freshwater-adapted fish exposed to salinity treatments that varied in intensity and duration. RESULTS Four salinity-responsive histone PTMs were identified in this study. When freshwater-adapted fish were exposed to seawater for two hours, the relative abundance of H1K16ub significantly increased in the gills. Long-term salinity stress elicited changes in both the gills and testes. When freshwater-adapted fish were exposed to a pulse of severe salinity stress, where salinity gradually increased from freshwater to a maximum of 82.5 g/kg, the relative abundance of H1S1ac significantly decreased in the gills. Under the same conditions, the relative abundance of both H3K14ac and H3K18ub decreased significantly in the testes of Mozambique tilapia. CONCLUSIONS This study demonstrates that salinity stress can alter histone PTMs in the gills and gonads of Mozambique tilapia, which, respectively, signify a potential for histone PTMs to be involved in salinity acclimation and adaptation in euryhaline fishes. These results thereby add to a growing body of evidence that epigenetic mechanisms may be involved in such processes.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Yuhan Fu
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Phoyen S, Sanpavat A, Ma-on C, Stein U, Hirankarn N, Tangkijvanich P, Jindatip D, Whongsiri P, Boonla C. H4K20me3 upregulated by reactive oxygen species is associated with tumor progression and poor prognosis in patients with hepatocellular carcinoma. Heliyon 2023; 9:e22589. [PMID: 38144275 PMCID: PMC10746411 DOI: 10.1016/j.heliyon.2023.e22589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Epigenetic alteration by oxidative stress is vitally involved in carcinogenesis and cancer progression. Previously, we demonstrated that oxidative stress was increased in hepatocellular carcinoma (HCC) patients and associated with tumor aggressiveness. Herein, we immunohistochemically investigated whether histone methylation, specifically H4K20me3, was upregulated in human hepatic tissues obtained from HCC patients (n = 100). Also, we experimentally explored if the H4K20me3 was upregulated by reactive oxygen species (ROS) and contributed to tumor progression in HCC cell lines. We found that H4K20me3 level was increased in HCC tissues compared with the adjacent noncancerous liver tissues. H3K9me3 and H3K4me3 levels were also increased in HCC tissues. Cox regression analysis revealed that the elevated H4K20me3 level was associated with tumor recurrence and short survival in HCC patients. Experimentally, H2O2 provoked oxidative stress and induced H4K20me3 formation in HepG2 and Huh7 cells. Transcript expression of histone methyltransferase Suv420h2 (for H4K20me3), Suv39h1 (for H3K9me3), and Smyd3 (for H3K4me3) were upregulated in H2O2-treated HCC cells. H2O2 also induced epithelial-mesenchymal transition (EMT) in HCC cells, indicated by decreased E-cadherin but increased α-SMA and MMP-9 mRNA expression. Migration, invasion, and colony formation in HCC cells were markedly increased following the H2O2 exposure. Inhibition of H4K20me3 formation by A196 (a selective inhibitor of Suv420h2) attenuated EMT and reduced tumor migration in H2O2-treated HCC cells. In conclusion, we demonstrated for the first time that H4K20me3 level was increased in human HCC tissues, and it was independently associated with poor prognosis in HCC patients. ROS upregulated H4K20me3 formation, induced mRNA expression of EMT markers, and promoted tumor progression in human HCC cells. Inhibition of H4K20me3 formation reduced EMT and tumor aggressive phenotypes in ROS-treated HCC cells. Possibly, ROS-induced EMT and tumor progression in HCC cells was epigenetically mediated through an increased formation of repressive chromatin H4K20me3.
Collapse
Affiliation(s)
- Suchittra Phoyen
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chakriwong Ma-on
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ulrike Stein
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Depicha Jindatip
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharawalai Whongsiri
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanchai Boonla
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Galiniak S, Biesiadecki M, Mołoń M, Olech P, Balawender K. Serum Oxidative and Nitrosative Stress Markers in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2023; 15:3995. [PMID: 37568812 PMCID: PMC10417121 DOI: 10.3390/cancers15153995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Oxidative stress is believed to be a factor in the development and progression of renal cell carcinoma (RCC). The identification of the oxidative and nitrosative modification of proteins and the definition of their roles in clear cell RCC (ccRCC) may be helpful in the elaboration of targeted therapeutic approaches to mitigate protein damage. This study aimed to investigate the status of oxidative/nitrosative stress and to explore its role in the development and progression. The studied group consisted of 48 newly diagnosed ccRCC and 30 healthy controls. Serum levels of oxidative stress markers-advanced oxidation protein products (AOPP), thiol groups, Amadori reaction products, 3-nitrotyrosine, nitrate/nitrite, malondialdehyde (MDA), 4-hydroxy-2-nonenal and total antioxidant capacity (TAC)-were determined. Additionally, associations between tumour stage assessed according to TNM classification, histological grade, and the effect of the presence of angioinvasion on the level of stress markers were evaluated. The levels of Amadori products, 3-nitrotyrosine, and nitrate/nitrite were elevated, while the levels of thiol groups and TAC decreased in the ccRCC group. The levels of AOPP, Amadori, and 3-nitrotyrosine increased, and thiol groups and TAC levels decreased with the increasing pathological stage of the tumour. In the case of advanced histological assessment of the tumour, we found decreasing levels of thiol groups and increasing levels of MDA. In patients with angioinvasion, nitrate/nitrite and MDA levels were significantly elevated compared to those in patients without angioinvasion. Oxidative stress increased with the progression of the disease assessed according to the TNM and histological grade. These results demonstrate systemic oxidative stress in ccRCC, suggesting the therapeutic application of antioxidants.
Collapse
Affiliation(s)
- Sabina Galiniak
- Institute of Medical Sciences, Medical College, Rzeszow University, Warzywna 1a, 35-310 Rzeszow, Poland;
| | - Marek Biesiadecki
- Institute of Medical Sciences, Medical College, Rzeszow University, Warzywna 1a, 35-310 Rzeszow, Poland;
| | - Mateusz Mołoń
- Institute of Biology, College of Natural Sciences, Rzeszow University, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Patrycja Olech
- Institute of Biology, College of Natural Sciences, Rzeszow University, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Krzysztof Balawender
- Institute of Medical Sciences, Medical College, Rzeszow University, Warzywna 1a, 35-310 Rzeszow, Poland;
| |
Collapse
|
5
|
Son SY, Choi JH, Kim EB, Yin J, Seonu SY, Jin SY, Oh JY, Lee MW. Chemopreventive Activity of Ellagitannins from Acer pseudosieboldianum (Pax) Komarov Leaves on Prostate Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:1047. [PMID: 36903908 PMCID: PMC10005130 DOI: 10.3390/plants12051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Several studies have shown that compounds from Acer pseudosieboldianum (Pax) Komarov leaves (APL) display potent anti-oxidative, anti-inflammatory, and anti-proliferative activities. Prostate cancer (PCa) is the most common cancer among older men, and DNA methylation is associated with PCa progression. This study aimed to investigate the chemopreventive activities of the compounds which were isolated from APL on prostate cancer cells and elucidate the mechanisms of these compounds in relation to DNA methylation. One novel ellagitannin [komaniin (14)] and thirteen other known compounds, including glucose derivatives [ethyl-β-D-glucopyranose (3) and (4R)-p-menth-1-ene-7,8-diol 7-O-β-D-glucopyranoside (4)], one phenylpropanoid [junipetrioloside A (5)], three phenolic acid derivatives [ellagic acid-4-β-D-xylopyranoside (1), 4-O-galloyl-quinic acid (2), and gallic acid (8)], two flavonoids [quercetin (11) and kaempferol (12)], and five hydrolysable tannins [geraniin (6), punicafolin (7), granatin B (9), 1,2,3,4,6-penta-galloyl-β-D-glucopyranoside (10), and mallotusinic acid (13)] were isolated from APL. The hydrolyzable tannins (6, 7, 9, 10, 13, and 14) showed potent anti-PCa proliferative and apoptosis-promoting activities. Among the compounds, the ellagitannins in the dehydrohexahydroxydiphenoyl (DHHDP) group (6, 9, 13, and 14), the novel compound 14 showed the most potent inhibitory activity on DNA methyltransferase (DNMT1, 3a and 3b) and glutathione S-transferase P1 methyl removing and re-expression activities. Thus, our results suggested that the ellagitannins (6, 9, 13, and 14) isolated from APL could be a promising treatment option for PCa.
Collapse
|
6
|
Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 6:100155. [PMID: 36582744 PMCID: PMC9793217 DOI: 10.1016/j.fochms.2022.100155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/18/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.
Collapse
Key Words
- 8-oxodG, 8-oxo-2́deosyguanosine
- ABCG, ATP Binding Cassette Subfamily G Member
- ADAM10, α-secretase
- ADRB3, adrenoceptor Beta 3
- APP, amyloid-β precursor protein
- ARF, auxin response factor
- ARH-I, aplysia ras homology member I
- ARHGAP24, Rho GTPase Activating Protein 24
- ATF6, activating transcription factor 6
- ATP2A3, ATPase Sarcoplasmic/Endoplasmic Reticulum Ca2+ Transporting 3
- BCL2L14, apoptosis facilitator Bcl-2-like protein 14
- Bioactive compounds
- CDH1, cadherin-1
- CDKN, cyclin dependent kinase inhibitor
- CPT, carnitine palmitoyltransferase
- CREBH, cyclic AMP-responsive element-binding protein H
- DANT2, DXZ4 associated non-noding transcript 2, distal
- DAPK1, death-associated protein kinase 1
- DNA methylation
- DNMT, DNA methyltransferase
- DOT1L, disruptor of telomeric silencing 1-like
- EWASs, epigenome-wide association studies
- EZH2, Enhancer of zeste homolog 2
- FAS, Fas cell Surface Death Receptor
- GDNF, glial cell line-derived neurotrophic factor
- GFAP, glial fibrillary acid protein
- GSTP1, Glutathione S-transferases P1
- Gut microbiota modulation
- HAT, histone acetylases
- HDAC, histone deacetylases
- HSD11B2, 11 beta-hydroxysteroid dehydrogenase type 2
- Histone modifications
- IGFBP3, insulin-like growth factor-binding protein 3
- IGT, impaired glucose tolerance
- KCNK3, potassium two pore domain channel subfamily K Member 3
- MBD4, methyl-CpG binding domain 4
- MGMT, O-6-methylguanine-DNA methyltransferase
- NAFLD, Non-alcoholic fatty liver disease
- OCT1, Organic cation transporter 1
- OGG1, 8-Oxoguanine DNA Glycosylase
- Oxidative stress
- PAI-1, plasminogen activator inhibitor 1
- PHOSPHO1, Phosphoethanolamine/Phosphocholine Phosphatase 1
- PLIN1, perilipin 1
- POE3A, RNA polymerase III
- PPAR, peroxisome proliferator-activated receptor
- PPARGC1A, PPARG coactivator 1 alpha
- PRKCA, Protein kinase C alpha
- PTEN, phosphatase and tensin homologue
- Personalized nutrition
- RASSF1A, Ras association domain family member 1
- SAH, S -adenosyl-l-homocysteine
- SAM, S-adenosyl-methionine
- SD, sleep deprivation
- SOCS3, suppressor of cytokine signaling 3
- SREBP-1C, sterol-regulatory element binding protein-1C
- TBX2, t-box transcription factor 2
- TCF7L2, transcription factor 7 like 2
- TET, ten-eleven translocation proteins
- TNNT2, cardiac muscle troponin T
- TPA, 12-O-tetradecanoylphorbol-13-acetate
- lncRNA, long non-coding RNA
- ncRNA, non-coding RNA
- oAβ-induced-LTP, oligomeric amyloid-beta induced long term potentiation
Collapse
|
7
|
Yogita Mehra, Pragasam Viswanathan. Early Evidence of Global DNA Methylation and Hydroxymethylation Changes in Rat Kidneys Consequent to Hyperoxaluria-Induced Renal Calcium Oxalate Stones. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Radix Actinidia chinensis Suppresses Renal Cell Carcinoma Progression: Network Pharmacology Prediction and In Vivo Experimental Validation. Anal Cell Pathol 2022; 2022:3584445. [PMID: 35942173 PMCID: PMC9356879 DOI: 10.1155/2022/3584445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a frequent disease with limited curative methods. This study is aimed at investigating the role and mechanism of Radix Actinidia chinensis (RAC) on RCC. Methods The ingredients, target, and crucial pathways of RAC in RCC therapy were analyzed by network pharmacology. Then, an RCC animal model was established by subcutaneously injecting A498 cell suspension to BALB/c nude mice. After 1 week, the mice in the RAC-L/M/H groups were administered with RAC at 5, 10, and 20 mg/kg/d, respectively. The histopathology of the tumor was evaluated. The contents of tumor inflammatory cytokines and serum oxidative stress factors were detected by ELISA. The apoptosis of tumor tissues was assessed by TUNEL staining. The expressions of apoptosis-, proliferate-, autophagy-, and MAPK-related proteins were measured. Results There were 13 active ingredients, and 20 RCC-relevant targets were selected from RAC; KEGG pathway indicated that these targets were enriched in the PI3K/AKT/mTOR and MAPK pathway. In in vivo experiments, RAC not only obviously damaged tumor cells and decreased the release of inflammatory cytokines and oxidative stress factors but also enhanced the apoptosis of the tumor cell in RCC mice. Besides, the expressions of apoptosis-, proliferate-, autophagy-, PI3K/AKT/mTOR path-, and MAPK path-related proteins were all affected by RAC. Conclusion RAC attenuated RCC by regulating inflammation response, oxidative stress, apoptosis, proliferation, and autophagy, and its effects were partly linked to the PI3K/AKT/mTOR and MAPK pathway, which indicated that RAC may be a candidate drug for RCC.
Collapse
|
9
|
Izquierdo-Torres E, Hernández-Oliveras A, Lozano-Arriaga D, Zarain-Herzberg Á. Obesity, the other pandemic: linking diet and carcinogenesis by epigenetic mechanisms. J Nutr Biochem 2022; 108:109092. [PMID: 35718098 DOI: 10.1016/j.jnutbio.2022.109092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Both obesity and cancer are complex medical conditions that are considered public health problems. The influence of obesity on the predisposition to develop various types of cancer has been observed in a wide variety of studies. Due to their importance as public health problems, and the close relationship between both conditions, it is important to be able to understand and associate them mechanistically. In this review article, we intend to go a little further, by finding relationships between lifestyle, which can lead a person to develop obesity, and how it influences at the cellular and molecular level, affecting gene expression to favor signaling pathways or transcriptional programs involved in cancer. We describe how products of metabolism and intermediate metabolism can affect chromatin structure, participating in the regulation (or dysregulation) of gene expression, and we show an analysis of genes that are responsive to diets high in sugar and fat, and how their epigenetic landscape is altered.
Collapse
Affiliation(s)
- Eduardo Izquierdo-Torres
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Andrés Hernández-Oliveras
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Dalia Lozano-Arriaga
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ángel Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
10
|
Zhu W, Feng D, Shi X, Wei Q, Yang L. The Potential Role of Mitochondrial Acetaldehyde Dehydrogenase 2 in Urological Cancers From the Perspective of Ferroptosis and Cellular Senescence. Front Cell Dev Biol 2022; 10:850145. [PMID: 35517510 PMCID: PMC9065557 DOI: 10.3389/fcell.2022.850145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) and superlative lipid peroxidation promote tumorigenesis, and mitochondrial aldehyde dehydrogenase 2 (ALDH2) is associated with the detoxification of ROS-mediated lipid peroxidation-generated reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE), malondialdehyde, and acrolein due to tobacco smoking. ALDH2 has been demonstrated to be highly associated with the prognosis and chemoradiotherapy sensitivity of many types of cancer, including leukemia, lung cancer, head and neck cancer, esophageal cancer, hepatocellular cancer, pancreatic cancer, and ovarian cancer. In this study, we explored the possible relationship between ALDH2 and urological cancers from the aspects of ferroptosis, epigenetic alterations, proteostasis, mitochondrial dysfunction, and cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Qiang Wei
- *Correspondence: Qiang Wei, ; Lu Yang,
| | - Lu Yang
- *Correspondence: Qiang Wei, ; Lu Yang,
| |
Collapse
|
11
|
Bobak CA, Abhimanyu, Natarajan H, Gandhi T, Grimm SL, Nishiguchi T, Koster K, Longlax SC, Dlamini Q, Kahari J, Mtetwa G, Cirillo JD, O’Malley J, Hill JE, Coarfa C, DiNardo AR. Increased DNA methylation, cellular senescence and premature epigenetic aging in guinea pigs and humans with tuberculosis. Aging (Albany NY) 2022; 14:2174-2193. [PMID: 35256539 PMCID: PMC8954968 DOI: 10.18632/aging.203936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Tuberculosis (TB) is the archetypical chronic infection, with patients having months of symptoms before diagnosis. In the two years after successful therapy, survivors of TB have a three-fold increased risk of death. METHODS Guinea pigs were infected with Mycobacterium tuberculosis (Mtb) for 45 days, followed by RRBS DNA methylation analysis. In humans, network analysis of differentially expressed genes across three TB cohorts were visualized at the pathway-level. Serum levels of inflammation were measured by ELISA. Horvath (DNA methylation) and RNA-seq biological clocks were used to investigate shifts in chronological age among humans with TB. RESULTS Guinea pigs with TB demonstrated DNA hypermethylation and showed system-level similarity to humans with TB (p-value = 0.002). The transcriptome in TB in multiple cohorts was enriched for DNA methylation and cellular senescence. Senescence associated proteins CXCL9, CXCL10, and TNF were elevated in TB patients compared to healthy controls. Humans with TB demonstrate 12.7 years (95% CI: 7.5, 21.9) and 14.38 years (95% CI: 10.23-18.53) of cellular aging as measured by epigenetic and gene expression based cellular clocks, respectively. CONCLUSIONS In both guinea pigs and humans, TB perturbs epigenetic processes, promoting premature cellular aging and inflammation, a plausible means to explain the long-term detrimental health outcomes after TB.
Collapse
Affiliation(s)
- Carly A. Bobak
- Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Abhimanyu
- The Global Tuberculosis Program, Baylor College of Medicine, Houston, TX 77030, USA
- William Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Tanmay Gandhi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomoki Nishiguchi
- The Global Tuberculosis Program, Baylor College of Medicine, Houston, TX 77030, USA
- William Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kent Koster
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, TX 77807, USA
| | - Santiago Carrero Longlax
- The Global Tuberculosis Program, Baylor College of Medicine, Houston, TX 77030, USA
- William Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiniso Dlamini
- Baylor-Swaziland Children’s Foundation, Mbabane, Swaziland
| | | | - Godwin Mtetwa
- Baylor-Swaziland Children’s Foundation, Mbabane, Swaziland
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, TX 77807, USA
| | - James O’Malley
- Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- The Dartmouth Institute, Dartmouth College, Hanover, NH 03755, USA
| | - Jane E. Hill
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew R. DiNardo
- The Global Tuberculosis Program, Baylor College of Medicine, Houston, TX 77030, USA
- William Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Abstract
Oxidative stress is caused by homeostasis disrupted by excessively increased reactive oxygen species (ROS) due to intrinsic or extrinsic causes. Among diseases caused by the abnormal induction of ROS, cancer is a representative disease that shows gender specificity in the development and malignancy. Females have the advantage of longer life expectancy than males because of the genetic advantages derived from X chromosomes, the antioxidant protective function by estrogen, and the decrease in exposure to extrinsic risk factors such as alcohol and smoking. This study first examines the ordinary biological responses to oxidative stress and the effects of ROS on the cancer progression and describes the differences in cancer incidence and mortality by gender and the differences in oxidative stress affected by sex hormones. This paper summarized how several important transcription factors regulate ROS-induced stress and in vivo responses, and how their expression is changed by sex hormones. Estrogen is associated with disease resistance and greater mitochondrial function, and reduces mitochondrial damage and ROS production in females than in males. In addition, estrogen affects the activation of nuclear factor-erythroid 2 p45-related factor (NRF) 2 and the regulation of other antioxidant-related transcription factors through NRF2, leading to benefits in females. Because ROS have a variety of molecular targets in cells, the effective cancer treatment requires understanding the potential of ROS and focusing on the characteristics of the research target such as patient's gender. Therefore, this review intends to emphasize the necessity of discussing gender specificity as a new therapeutic approach for efficient regulation of ROS considering individual specificity.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
13
|
Mondal A, Bhattacharya A, Singh V, Pandita S, Bacolla A, Pandita RK, Tainer JA, Ramos KS, Pandita TK, Das C. Stress Responses as Master Keys to Epigenomic Changes in Transcriptome and Metabolome for Cancer Etiology and Therapeutics. Mol Cell Biol 2022; 42:e0048321. [PMID: 34748401 PMCID: PMC8773053 DOI: 10.1128/mcb.00483-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From initiation through progression, cancer cells are subjected to a magnitude of endogenous and exogenous stresses, which aid in their neoplastic transformation. Exposure to these classes of stress induces imbalance in cellular homeostasis and, in response, cancer cells employ informative adaptive mechanisms to rebalance biochemical processes that facilitate survival and maintain their existence. Different kinds of stress stimuli trigger epigenetic alterations in cancer cells, which leads to changes in their transcriptome and metabolome, ultimately resulting in suppression of growth inhibition or induction of apoptosis. Whether cancer cells show a protective response to stress or succumb to cell death depends on the type of stress and duration of exposure. A thorough understanding of epigenetic and molecular architecture of cancer cell stress response pathways can unveil a plethora of information required to develop novel anticancer therapeutics. The present view highlights current knowledge about alterations in epigenome and transcriptome of cancer cells as a consequence of exposure to different physicochemical stressful stimuli such as reactive oxygen species (ROS), hypoxia, radiation, hyperthermia, genotoxic agents, and nutrient deprivation. Currently, an anticancer treatment scenario involving the imposition of stress to target cancer cells is gaining traction to augment or even replace conventional therapeutic regimens. Therefore, a comprehensive understanding of stress response pathways is crucial for devising and implementing novel therapeutic strategies.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Shruti Pandita
- Division of Hematology and Medical Oncology, St. Louis University, St. Louis, Missouri, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Raj K. Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Tej K. Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| |
Collapse
|
14
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Wu Y, Qie R, Cheng M, Zeng Y, Huang S, Guo C, Zhou Q, Li Q, Tian G, Han M, Zhang Y, Wu X, Li Y, Zhao Y, Yang X, Feng Y, Liu D, Qin P, Hu D, Hu F, Xu L, Zhang M. Air pollution and DNA methylation in adults: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117152. [PMID: 33895575 DOI: 10.1016/j.envpol.2021.117152] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 05/24/2023]
Abstract
This systematic review and meta-analysis aimed to investigate the association between air pollution and DNA methylation in adults from published observational studies. PubMed, Web of Science and Embase databases were systematically searched for available studies on the association between air pollution and DNA methylation published up to March 9, 2021. Three DNA methylation approaches were considered: global methylation, candidate-gene, and epigenome-wide association studies (EWAS). Meta-analysis was used to summarize the combined estimates for the association between air pollutants and global DNA methylation levels. Heterogeneity was assessed with the Cochran Q test and quantified with the I2 statistic. In total, 38 articles were included in this study: 16 using global methylation, 18 using candidate genes, and 11 using EWAS, with 7 studies using more than one approach. Meta-analysis revealed an imprecise but inverse association between exposure to PM2.5 and global DNA methylation (for each 10-μg/m3 PM2.5, combined estimate: 0.39; 95% confidence interval: 0.97 - 0.19). The candidate-gene results were consistent for the ERCC3 and SOX2 genes, suggesting hypermethylation in ERCC3 associated with benzene and that in SOX2 associated with PM2.5 exposure. EWAS identified 201 CpG sites and 148 differentially methylated regions that showed differential methylation associated with air pollution. Among the 307 genes investigated in 11 EWAS, a locus in nucleoredoxin gene was found to be positively associated with PM2.5 in two studies. Current meta-analysis indicates that PM2.5 is imprecisely and inversely associated with DNA methylation. The candidate-gene results consistently suggest hypermethylation in ERCC3 associated with benzene exposure and that in SOX2 associated with PM2.5 exposure. The Kyoto Encyclopedia of Genes and Genomes (KEGG) network analyses revealed that these genes were associated with African trypanosomiasis, Malaria, Antifolate resistance, Graft-versus-host disease, and so on. More evidence is needed to clarify the association between air pollution and DNA methylation.
Collapse
Affiliation(s)
- Yuying Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Ranran Qie
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Min Cheng
- Department of Cardiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yunhong Zeng
- Center for Health Management, The Affiliated Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Shengbing Huang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chunmei Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qionggui Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Quanman Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Gang Tian
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Minghui Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yanyan Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Xiaoyan Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yang Li
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xingjin Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yifei Feng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dechen Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Pei Qin
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Dongsheng Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Lidan Xu
- Department of Nutrition, The Second Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Gan F, Hou L, Lin Z, Ge L, Liu D, Li H, Chen X, Huang K. Effects of Selenium-enriched probiotics on ochratoxin A-induced kidney injury and DNMTs expressions in piglets. Res Vet Sci 2021; 139:94-101. [PMID: 34273745 DOI: 10.1016/j.rvsc.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022]
Abstract
Effects of Selenium-enriched probiotics (SP) on ochratoxin A-induced kidney injury, growth performance, antioxidant injury, selenoprotein and DNA methylation transferases (DNMTs) expression of piglets were investigated in the article. A total of 48 piglets were randomly divided into 4 groups and fed with basal diet (Con, 0.15 mg Se/kg and OTA at 0.00 mg/kg), basal diets added with OTA (OTA, 0.40 mg OTA/kg), SP and OTA (SP1, 0.15 mg Se/kg and 0.40 mg OTA/kg), SP and OTA (SP2, 0.30 mg Se/kg and 0.40 mg OTA/kg) respectively for 42 days. From each group, six piglets were randomly selected for blood collection on Days 0 and 42 and three piglets were selected for tissue collection on Day 42.The results showed that OTA at 0.40 mg /kg significantly decreased growth performance of pigs, induced the histopathological lesions of kidney and increased urea and creatine levels of serum, decreased GPx and SOD activities, and increased MDA levels. OTA decreased GPx1, GPx4 and SelS expressions, and increased TR1, DNMT 1, DNMT3a and SOCS3 expressions. Both SP1 and SP2 improved OTA-induced poor growth performance, kidney injury, poor antioxidant statues, GPx1, SelS, TR1, SOCS3, DNMT1 and DNMT3a expressions in kidney of pigs. The effects of SP2 on the above parameters changes were better than that of SP1. SP increased GPx and SOD activities and decreased MDA levels changes induced by OTA treatment. These results suggest that SP may serve as a better feed additive for piglets under mycotoxin contamination environments.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Haolei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
17
|
García-Giménez JL, Garcés C, Romá-Mateo C, Pallardó FV. Oxidative stress-mediated alterations in histone post-translational modifications. Free Radic Biol Med 2021; 170:6-18. [PMID: 33689846 DOI: 10.1016/j.freeradbiomed.2021.02.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation of gene expression provides a finely tuned response capacity for cells when undergoing environmental changes. However, in the context of human physiology or disease, any cellular imbalance that modulates homeostasis has the potential to trigger molecular changes that result either in physiological adaptation to a new situation or pathological conditions. These effects are partly due to alterations in the functionality of epigenetic regulators, which cause long-term and often heritable changes in cell lineages. As such, free radicals resulting from unbalanced/extended oxidative stress have been proved to act as modulators of epigenetic agents, resulting in alterations of the epigenetic landscape. In the present review we will focus on the particular effect that oxidative stress and free radicals produce in histone post-translational modifications that contribute to altering the histone code and, consequently, gene expression. The pathological consequences of the changes in this epigenetic layer of regulation of gene expression are thoroughly evidenced by data gathered in many physiological adaptive processes and in human diseases that range from age-related neurodegenerative pathologies to cancer, and that include respiratory syndromes, infertility, and systemic inflammatory conditions like sepsis.
Collapse
Affiliation(s)
- José-Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Concepción Garcés
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain
| | - Carlos Romá-Mateo
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| |
Collapse
|
18
|
Habashy WS, Milfort MC, Rekaya R, Aggrey SE. Molecular and Cellular Responses of DNA Methylation and Thioredoxin System to Heat Stress in Meat-Type Chickens. Animals (Basel) 2021; 11:ani11071957. [PMID: 34208977 PMCID: PMC8300342 DOI: 10.3390/ani11071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Heat stress (HS) causes molecular dysfunction that adversely affects chicken performance and increases mortality. The responses of chickens to HS are extremely complex. Thus, the aim of this study was to evaluate the influence of acute and chronic exposure to HS on the expression of thioredoxin-peroxiredoxin system genes and DNA methylation in chickens. Chickens at 14 d of age were divided into two groups and reared under either constant normal temperature (25 °C) or high temperature (35 °C) in individual cages for 12 days. Five birds per group at one and 12 days post-HS were euthanized and livers were sampled for gene expression. The liver and Pectoralis major muscle were sampled for cellular analysis. mRNA expression of thioredoxin and peroxiredoxins (Prdx) 1, 3, and 4 in the liver were down-regulated at 12 days post-HS compared to controls. The liver activity of thioredoxin reductase (TXNRD) and levels of peroxiredoxin1 (Prdx1) at 12 days post-HS were significantly decreased. The results reveal that there was a significant decrease in DNA methylation at 12 days post HS in liver tissues. In conclusion, pathway of thioredoxin system under HS may provide clues to nutritional strategies to mitigate the effect of HS in meat-type chicken.
Collapse
Affiliation(s)
- Walid S. Habashy
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
- Department of Animal and Poultry Production, Damanhour University, Damanhour 22511, Egypt
- Correspondence: or (W.S.H.); (S.E.A.)
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
- Correspondence: or (W.S.H.); (S.E.A.)
| |
Collapse
|
19
|
Zheng Y, Haratipour P, Kashemirov BA, McKenna CE. Synthesis of 8-oxo-dGTP and its β,γ-CH 2-, β, γ-CHF-, and β, γ-CF 2- analogues. Tetrahedron Lett 2021; 67:152890. [PMID: 33716328 PMCID: PMC7951955 DOI: 10.1016/j.tetlet.2021.152890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three novel 8-oxo-dGTP bisphosphonate analogues of 3 in which the bridging β,γ-oxygen is replaced by a methylene, fluoromethylene or difluoromethylene group (4-6, respectively) have been synthesized from 8-oxo-dGMP 2 by reaction of its morpholine 5'-phosphoramidate 14 or preferably, its N-methylimidazole 5'-phosphoramidate 15 with n-tributylammonium salts of the appropriate bisphosphonic acids, 11-13. The latter method also provides a convenient new route to 3. Analogues 4-6 may be useful as mechanistic probes for the role of 3 in abnormal DNA replication and repair.
Collapse
Affiliation(s)
- Yiying Zheng
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Pouya Haratipour
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
20
|
Shomali T, Ashrafi M. Statins, cancer, and oxidative stress. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Wang S, Zhou D, Xu Z, Song J, Qian X, Lv X, Luan J. Anti-tumor Drug Targets Analysis: Current Insight and Future Prospect. Curr Drug Targets 2020; 20:1180-1202. [PMID: 30947670 DOI: 10.2174/1389450120666190402145325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
The incidence and mortality of malignant tumors are on the rise, which has become the second leading cause of death in the world. At present, anti-tumor drugs are one of the most common methods for treating cancer. In recent years, with the in-depth study of tumor biology and related disciplines, it has been gradually discovered that the essence of cell carcinogenesis is the infinite proliferation of cells caused by the disorder of cell signal transduction pathways, followed by a major shift in the concept of anti-tumor drugs research and development. The focus of research and development is shifting from traditional cytotoxic drugs to a new generation of anti-tumor drugs targeted at abnormal signaling system targets in tumor cells. In this review, we summarize the targets of anti-tumor drugs and analyse the molecular mechanisms of their effects, which lay a foundation for subsequent treatment, research and development.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Dexi Zhou
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jing Song
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xueyi Qian
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
22
|
Karaman E, Ariman I, Ozden S. Responses of oxidative stress and inflammatory cytokines after zearalenone exposure in human kidney cells. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Zearalenone is a mycotoxin widely found worldwide that is produced by several fungal species. Due to its similarity to estradiol, it has been shown to have toxic effects on the reproductive system. Although various animal studies have been conducted to investigate the toxic effects of zearalenone, the mechanisms of toxicity have not been fully elucidated. The aim of the study was to investigate the dose-dependent toxic effects of zearalenone exposure in human kidney cells. The half-maximal inhibitory concentration values of zearalenone in HK-2 cells were found to be 133.42 and 101.74 µM in MTT- and NRU-tests, respectively. Zearalenone exposure at concentrations of 1, 10 and 50 µM decreased cell proliferation by 2.1, 11.07 and 24.34%, respectively. Reactive oxygen species levels increased significantly in a dose-dependent manner. A significant increase was observed in the expressions of MGMT, α-GST, Hsp70 and HO-1 genes, which are associated with oxidative damage, while a significant decrease in L-Fabp gene expression was observed. Moreover, zearalenone increased gene expression of inflammatory cytokines, such as IL-6, IL-8, TNFα and MAPK8. Significant increases were observed at the level of global DNA methylation and expression of DNMT1 in all exposure groups. These results indicate that changes in DNA methylation and oxidative damage may play an important role in the toxicity of zearalenone.
Collapse
Affiliation(s)
- E.F. Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, 34010-Topkapi, Istanbul, Turkey
| | - I. Ariman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - S. Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| |
Collapse
|
23
|
García-Guede Á, Vera O, Ibáñez-de-Caceres I. When Oxidative Stress Meets Epigenetics: Implications in Cancer Development. Antioxidants (Basel) 2020; 9:antiox9060468. [PMID: 32492865 PMCID: PMC7346131 DOI: 10.3390/antiox9060468] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide and it can affect any part of the organism. It arises as a consequence of the genetic and epigenetic changes that lead to the uncontrolled growth of the cells. The epigenetic machinery can regulate gene expression without altering the DNA sequence, and it comprises methylation of the DNA, histones modifications, and non-coding RNAs. Alterations of these gene-expression regulatory elements can be produced by an imbalance of the intracellular environment, such as the one derived by oxidative stress, to promote cancer development, progression, and resistance to chemotherapeutic treatments. Here we review the current literature on the effect of oxidative stress in the epigenetic machinery, especially over the largely unknown ncRNAs and its consequences toward cancer development and progression.
Collapse
Affiliation(s)
- Álvaro García-Guede
- Epigenetics Laboratory, INGEMM, Hospital La PAZ. 28046 Madrid, Spain; (Á.G.-G.); (I.I.-d.-C.)
- Experimental Therapies and Novel Biomarkers in Cancer, Instituto de Investigación Sanitaria del Hospital La Paz. IdiPAZ, 28046 Madrid, Spain
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence:
| | - Inmaculada Ibáñez-de-Caceres
- Epigenetics Laboratory, INGEMM, Hospital La PAZ. 28046 Madrid, Spain; (Á.G.-G.); (I.I.-d.-C.)
- Experimental Therapies and Novel Biomarkers in Cancer, Instituto de Investigación Sanitaria del Hospital La Paz. IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
24
|
Pogribna M, Koonce NA, Mathew A, Word B, Patri AK, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on DNA methylation in multiple human cell lines. Nanotoxicology 2020; 14:534-553. [PMID: 32031460 DOI: 10.1080/17435390.2020.1723730] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Nanoscale titanium dioxide (TiO2) is manufactured in wide scale, with a range of applications in consumer products. Significant toxicity of TiO2 nanoparticles has, however, been recognized, suggesting considerable risk to human health. To evaluate fully their toxicity, assessment of the epigenetic action of these nanoparticles is critical. However, only few studies are available examining capability of nanoparticles to alter epigenetic integrity. In the present study, the effect of TiO2 nanoparticles exposure on DNA methylation, a major epigenetic mechanism, was investigated in in vitro cellular model systems. A panel of cells relevant to portals of human exposure (Caco-2 (colorectal), HepG2 (liver), NL20 (lung), and A-431 (skin)) was exposed to TiO2 nanoparticles to assess effects on global methylation, gene-specific methylation, and expression levels of DNA methyltransferases, MBD2, and UHRF1. Global methylation was determined by enzyme-linked immunosorbent assay-based immunochemical analysis. Degree of promoter methylation across a defined panel of genes was evaluated using EpiTect Methyl II Signature PCR System Array technology. Expression of DNMT1, DNMT3a, DNMT3b, MBD2, and URHF1 was quantified by qRT-PCR. Decrease in global DNA methylation in cell lines Caco-2, HepG2, and A-431 exposed to TiO2 nanoparticles was shown. Across four cell lines, eight genes (CDKN1A, DNAJC15, GADD45A, GDF15, INSIG1, SCARA3, TP53, and BNIP3) were identified in which promotors were methylated after exposure. Altered expression of these genes is associated with disease etiology. The results also revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a, DNMT3b, MBD2, and UHRF1) in TiO2 exposed cells, which was cell type dependent. Findings from this study clearly demonstrate the impact of TiO2 nanoparticles exposure on DNA methylation in multiple cell types, supporting potential involvement of this epigenetic mechanism in the toxicity of TiO2 nanoparticles. Hence for complete assessment of potential risk from nanoparticle exposure, epigenetic studies are critical.
Collapse
Affiliation(s)
- Marta Pogribna
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Nathan A Koonce
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Ammu Mathew
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Anil K Patri
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - George Hammons
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
25
|
Shared Molecular Features Linking Endometriosis and Obstetric Complications. Reprod Sci 2020; 27:1089-1096. [PMID: 32046439 DOI: 10.1007/s43032-019-00119-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Recent epidemiological research has shown the increased risk of adverse pregnancy outcomes in women with endometriosis compared with the general population. The aim of this review is to explore common pathophysiologic mechanisms between endometriosis and obstetric complications. A computerized literature search was performed to identify relevant studies. The search covered the period between January 2008 and October 2018. One of the potential mechanisms driving the initiation and progression of endometriosis is the accumulation of a variety of epigenetic changes in endometrial cells. Epigenetic control of gene expression which is considered to be responsible for the development of endometriosis is commonly seen in patients with preeclampsia, small for gestational age (SGA), or preterm birth. DLX5 and GATA3, paternally imprinted genes, and CDKN1C, a maternally imprinted gene, were aberrantly expressed in placenta tissues of the preeclampsia; CDKN1C, the growth inhibitor gene, was upregulated in human SGA placentas; and hypomethylation of PTGER2 would be associated with preterm birth. Preeclampsia, SGA, or preterm birth may share common epigenetic alterations with endometriosis, which raises the possibility that the occurrence of two conditions might be nonrandom. To date, however, there is a lack of evidence that links endometriosis and other obstetric complications, such as postpartum hemorrhage or placental abruption, at the epigenetic level. In conclusion, epigenetic changes may be a common hallmark of two conditions: endometriosis and obstetrical complications, such as preeclampsia, SGA, or preterm birth.
Collapse
|
26
|
Nesiu A, Cimpean AM, Ceausu RA, Adile A, Ioiart I, Porta C, Mazzanti M, Camerota TC, Raica M. Intracellular Chloride Ion Channel Protein-1 Expression in Clear Cell Renal Cell Carcinoma. Cancer Genomics Proteomics 2019; 16:299-307. [PMID: 31243111 DOI: 10.21873/cgp.20135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIM Chloride intracellular channel 1 (CLIC1) represents a promising target for personalized therapy. Our aim was to assess CLIC1 expression in clear cell renal cell carcinoma (cc RCC) and identify its possible prognostic role. MATERIALS AND METHODS Fifty cases of cc RCC were evaluated and selected for immunohistochemistry. CLIC1 expression was correlated with tumor grade, invasion and heterogeneity. RESULTS A total of 87.5% of the cases were CLIC1 positive, with either a homogeneous (31.42%) or a heterogeneous (68.57%) pattern. Low, mild and strong CLIC1 expressing tumors were defined based on nuclear (N), cytoplasmic (C), membrane (M) or combinations of them (NC, NM, CM, NCM) in terms of CLIC1 distribution. A significant correlation was found between tumor grade and percent of positive tumor cells (p=0.017). For G3 tumors, CLIC1 cytoplasmic expression was strongly correlated with high expression status (p=0.025) and tumor heterogeneity (p=0.004). CLIC1 expression was also correlated with metastasis (p=0.046). CONCLUSION We defined four cc RCC groups depending on G, CLIC1 expression and pattern: i) G3/NM/low CLIC1+, ii) G2/CM/mild CLIC1+ iii) G1 or G2/NM or CM /high CLIC1+, and iv) G2/M /high CLIC1.
Collapse
Affiliation(s)
- Alexandru Nesiu
- Department of Urology, Vasile Goldis University, Arad, Romania
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania .,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ahmed Adile
- Department of Urology, Vasile Goldis University, Arad, Romania
| | - Ioan Ioiart
- Department of Urology, Vasile Goldis University, Arad, Romania
| | - Camillo Porta
- Department of Internal Medicine, University of Pavia & Division of Translational Oncology, IRCCS ICS Maugeri of Pavia, Pavia, Italy
| | - Michele Mazzanti
- Department of Biosciences, Laboratory of Cellular and Molecular Physiology, University of Milano, Milan, Italy
| | | | - Marius Raica
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
27
|
Gan F, Zhou Y, Hu Z, Hou L, Chen X, Xu S, Huang K. GPx1-mediated DNMT1 expression is involved in the blocking effects of selenium on OTA-induced cytotoxicity and DNA damage. Int J Biol Macromol 2019; 146:18-24. [PMID: 31790739 DOI: 10.1016/j.ijbiomac.2019.11.221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Ochratoxin A (OTA) is a potent nephrotoxin. Selenium (Se) is an essential micronutrient for humans and animals, and plays a key role in antioxidant defense. To date, little is known about the effect of Se on OTA-induced DNA damage. In this study, the protective effects of Se (from selenomethionine) against OTA-induced cytotoxicity and DNA damage were investigated by using PK15 cells as a model. The results showed that OTA at 4.0 μg/mL induced cytotoxicity and DNA damage. Se at 0.5, 1, 2 and 4 μM significantly blocked OTA-induced cytotoxicity and DNA damage. Furthermore, Se blocked the increases of DNMT1, DNMT3a and HDAC1 mRNA and protein expression, reversed the decreases of glutathione peroxidase 1 (GPx1) mRNA and protein expression, and promoted the increases of SOCS3 mRNA and protein expression induced by OTA. Overexpression of GPx1 by pcDNA3.1-GPx1 inhibited the OTA-induced DNMT1 expression, promoted OTA-induced SOCS3 expression, and prevented the OTA-induced cytotoxicity and DNA damage. In contrast, knock-down of GPx1 by using a GPx1-specific siRNA had the opposite effects. The results suggest that GPx1-mediated DNMT1 expression is involved in the blocking effects of selenium on OTA-induced cytotoxicity and DNA damage.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhihua Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
28
|
Kang MH, You SY, Hong K, Kim JH. DMSO impairs the transcriptional program for maternal-to-embryonic transition by altering histone acetylation. Biomaterials 2019; 230:119604. [PMID: 31761489 DOI: 10.1016/j.biomaterials.2019.119604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/30/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Abstract
Dimethyl sulfoxide (DMSO) is widely used in basic and clinical research, yet its toxicity and biocompatibility properties remain elusive. Here, we report that exposure of mouse zygotes to 2% DMSO perturbed the transcriptional program, critical for maternal-to-embryonic transition and provoked developmental arrest at the 2- or 4-cell stage. Mechanistically, DMSO decreased total protein acetylation in the 2-cell embryos but increased histone H3 and H4 acetylations, as well as p53, H3K9, and H3K27 acetylations. The epigenetic changes led to an altered expression pattern of 16.26% of total valid genes in DMSO-exposed embryos. Among the affected genes, expression of maternal and minor zygotic gene activation (ZGA) genes was enhanced, whereas the ubiquitin-proteasome system, major ZGA transcripts, embryonic gene activation, the cell cycle, and ribosomal biogenesis genes were suppressed. Therefore, we conclude that DMSO causes developmental arrest by disrupting maternal-to-embryonic transition; hence, caution should be exerted when using it as a solvent.
Collapse
Affiliation(s)
- Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, South Korea
| | - Seong-Yeob You
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, South Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, South Korea.
| |
Collapse
|
29
|
Teerawattanapong N, Udomsinprasert W, Ngarmukos S, Tanavalee A, Honsawek S. Blood leukocyte LINE-1 hypomethylation and oxidative stress in knee osteoarthritis. Heliyon 2019; 5:e01774. [PMID: 31193532 PMCID: PMC6536726 DOI: 10.1016/j.heliyon.2019.e01774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Accepted: 05/16/2019] [Indexed: 02/01/2023] Open
Abstract
Aim Joints inflammation is one of the most pathologic processes leading to the development of osteoarthritis (OA), possibly leading to genomic instability. LINE-1 is transposable elements, and alterations in LINE-1 methylation induced by 8-hydroxy-2′-deoxyguanosine (8-OHdG) can cause genomic instability contributing to OA development. Herein, the present study examined associations between LINE-1 methylation, 8-OHdG, and knee OA severity. Methods LINE-1 methylation levels were measured in 104 knee OA patients and 96 healthy controls by quantitative combined bisulfite restriction analysis. 8–OHdG was investigated by ELISA. The knee OA severity was appraised by questionnaires (VAS, WOMAC, KOOS, and lequesne index) and radiological severity based on the grading of Kellgren and Lawrence (KL) standard criteria. Key findings Blood leukocyte LINE-1 methylation levels were significantly lower in knee OA patients than in healthy controls. Interestingly, individuals with LINE-1 hypomethylation were significantly associated with an elevated risk of knee OA. Linear regression analysis revealed that LINE-1 methylation was independently associated with KL grading of knee OA. Furthermore, plasma 8–OHdG levels in OA cases were not significantly different from those in healthy volunteers, whereas synovial fluid 8–OHdG values were considerably higher than in paired plasma specimens of the OA subjects. Significance This study demonstrated that LINE-1 hypomethylation in blood leukocytes was associated with increased risk and radiographic severity of knee OA, and increased synovial fluid 8–OHdG levels were observed in knee OA patients. Collectively, LINE-1 hypomethylation and elevated 8–OHdG could emerge as biomarkers indicating the severity of knee OA and may take a possible part in the pathological process of knee OA.
Collapse
Affiliation(s)
- Nipaporn Teerawattanapong
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | | | - Srihatach Ngarmukos
- Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Aree Tanavalee
- Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
30
|
H3K18Ac as a Marker of Cancer Progression and Potential Target of Anti-Cancer Therapy. Cells 2019; 8:cells8050485. [PMID: 31121824 PMCID: PMC6562857 DOI: 10.3390/cells8050485] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Acetylation and deacetylation are posttranslational modifications (PTMs) which affect the regulation of chromatin structure and its remodeling. Acetylation of histone 3 at lysine placed on position 18 (H3K18Ac) plays an important role in driving progression of many types of cancer, including breast, colon, lung, hepatocellular, pancreatic, prostate, and thyroid cancer. The aim of this review is to analyze and discuss the newest findings regarding the role of H3K18Ac and acetylation of other histones in carcinogenesis. We summarize the level of H3K18Ac in different cancer cell lines and analyze its association with patients’ outcomes, including overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS). Finally, we describe future perspectives of cancer therapeutic strategies based on H3K18 modifications.
Collapse
|
31
|
Chang YW, Singh KP. Nicotine-induced oxidative stress contributes to EMT and stemness during neoplastic transformation through epigenetic modifications in human kidney epithelial cells. Toxicol Appl Pharmacol 2019; 374:65-76. [PMID: 31047982 DOI: 10.1016/j.taap.2019.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/09/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023]
Abstract
Nicotine is a component of cigarette smoke and mounting evidence suggests toxicity and carcinogenicity of tobacco smoke in kidney. Carcinogenicity of nicotine itself in kidney and the underlying molecular mechanisms are not well-understood. Hence, the objective of this study was to determine the carcinogenic effects of chronic nicotine exposure in Hk-2 human kidney epithelial cells. The effects of nicotine exposure on the expression of genes for cellular reprogramming, redox status, and growth signaling pathways were also evaluated to understand the molecular mechanisms. Results revealed that chronic exposure to nicotine induced growth and neoplastic transformation in HK-2 cells. Increased levels of intracellular reactive oxygen species (ROS), acquired stem cell-like sphere formation, and epithelial-mesenchymal-transition (EMT) changes were observed in nicotine exposed cells. Treatment with antioxidant N-acetyl cysteine (NAC) resulted in abrogation of EMT and stemness in HK-2 cells, indicating the role of nicotine-induced ROS in these morphological changes. The result also suggests that ROS controls the stemness through regulation of AKT pathway during early stages of carcinogenesis. Additionally, the expression of epigenetic regulatory genes was altered in nicotine-exposed cells and the changes were reversed by NAC. The epigenetic therapeutics 5-aza-2'-deoxycytidine and Trichostatin A also abrogated the stemness. This suggests the nicotine-induced oxidative stress caused epigenetic alterations contributing to stemness during neoplastic transformation. To our knowledge, this is the first report showing the ROS-mediated epigenetic modifications as the underlying mechanism for carcinogenicity of nicotine in human kidney epithelial cells. This study further suggests the potential of epigenetic therapeutics for pharmacological intervention in nicotine-induced kidney cancer.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
32
|
Porter EG, Dhiman A, Chowdhury B, Carter BC, Lin H, Stewart JC, Kazemian M, Wendt MK, Dykhuizen EC. PBRM1 Regulates Stress Response in Epithelial Cells. iScience 2019; 15:196-210. [PMID: 31077944 PMCID: PMC6514269 DOI: 10.1016/j.isci.2019.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/10/2019] [Accepted: 04/19/2019] [Indexed: 12/16/2022] Open
Abstract
Polybromo1 (PBRM1) is a chromatin remodeler subunit highly mutated in cancer, particularly clear cell renal carcinoma. PBRM1 is a member of the SWI/SNF subcomplex, PBAF (PBRM1-Brg1/Brm-associated factors), and is characterized by six tandem bromodomains. Here we establish a role for PBRM1 in epithelial cell maintenance through the expression of genes involved in cell adhesion, metabolism, stress response, and apoptosis. In support of a general role for PBRM1 in stress response and apoptosis, we observe that loss of PBRM1 results in an increase in reactive oxygen species generation and a decrease in cellular viability under stress conditions. We find that loss of PBRM1 promotes cell growth under favorable conditions but is required for cell survival under conditions of cellular stress. PBRM1 facilitates the expression of stress response genes in epithelial cells Deletion of PBRM1 promotes growth under low-stress conditions PBRM1 restrains ROS generation and induces apoptosis under high-stress conditions Under H2O2 stress, PBRM1 cooperates with cJun and NRF2 to induce gene expression
Collapse
Affiliation(s)
- Elizabeth G Porter
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Basudev Chowdhury
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Benjamin C Carter
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Hang Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Jane C Stewart
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
33
|
Gan F, Zhou X, Zhou Y, Hou L, Chen X, Pan C, Huang K. Nephrotoxicity instead of immunotoxicity of OTA is induced through DNMT1-dependent activation of JAK2/STAT3 signaling pathway by targeting SOCS3. Arch Toxicol 2019; 93:1067-1082. [PMID: 30923867 DOI: 10.1007/s00204-019-02434-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Ochratoxin A (OTA) is reported to induce nephrotoxicity and immunotoxicity in animals and humans. However, the underlying mechanism and the effects of OTA on DNA damage have not been reported until now. The present study aims to investigate OTA-induced cytotoxicity and DNA damage and the underlying mechanism in PK15 cells and PAMs. The results showed that OTA at 2.0-8.0 µg/mL for 24 h induced cytotoxicity and DNA damage in PK15 cells and PAMs as demonstrated by decreasing cell viabilities and mRNA levels of DNA repair genes (OGG1, NEIL1 and NEIL3), increasing LDH release, Annexin V staining cells, apoptotic nuclei and the accumulation of γ-H2AX foci. OTA at 2.0-8.0 µg/mL increased DNMT1 and SOCS3 mRNA expressions about 2-4 fold in PK15 cells or 1.3-2 fold in PAMs. OTA at 2.0-8.0 µg/mL increased DNMT1, SOCS3, JAK2 and STAT3 protein expressions in PK15 cells or PAMs. DNMT inhibitor (5-Aza-2-dc), promoted SOCS3 expression, inhibited JAK2 and STAT3 expression, alleviated cytotoxicity, apoptosis and DNA damage induced by OTA at 4.0 µg/mL in PK15 cells. While, in PAMs, 5-Aza-2-dc had no effects on SOCS3 expression induced by OTA at 4.0 µg/mL, but inhibited JAK2 and STAT3 expression, and alleviated cytotoxicity, apoptosis and DNA damage induced by OTA. JAK inhibitor (AG490) or STAT3-siRNA alleviated OTA-induced cytotoxicity and DNA damage in PK15 cells or PAMs. Taken together, nephrotoxicity instead of immunotoxicity of OTA is induced by targeting SOCS3 through DNMT1-mediated JAK2/STAT3 signaling pathway. These results provide a scientific and new explanation of the underlying mechanism of OTA-induced nephrotoxicity and immunotoxicity.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xuan Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
34
|
Effect of Oxidative Stress on the Estrogen-NOS-NO-K Ca Channel Pathway in Uteroplacental Dysfunction: Its Implication in Pregnancy Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9194269. [PMID: 30881600 PMCID: PMC6387699 DOI: 10.1155/2019/9194269] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/19/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022]
Abstract
During pregnancy, the adaptive changes in uterine circulation and the formation of the placenta are essential for the growth of the fetus and the well-being of the mother. The steroid hormone estrogen plays a pivotal role in this adaptive process. An insufficient blood supply to the placenta due to uteroplacental dysfunction has been associated with pregnancy complications including preeclampsia and intrauterine fetal growth restriction (IUGR). Oxidative stress is caused by an imbalance between free radical formation and antioxidant defense. Pregnancy itself presents a mild oxidative stress, which is exaggerated in pregnancy complications. Increasing evidence indicates that oxidative stress plays an important role in the maladaptation of uteroplacental circulation partly by impairing estrogen signaling pathways. This review is aimed at providing both an overview of our current understanding of regulation of the estrogen-NOS-NO-KCa pathway by reactive oxygen species (ROS) in uteroplacental tissues and a link between oxidative stress and uteroplacental dysfunction in pregnancy complications. A better understanding of the mechanisms will facilitate the development of novel and effective therapeutic interventions.
Collapse
|
35
|
Gào X, Zhang Y, Burwinkel B, Xuan Y, Holleczek B, Brenner H, Schöttker B. The associations of DNA methylation alterations in oxidative stress-related genes with cancer incidence and mortality outcomes: a population-based cohort study. Clin Epigenetics 2019; 11:14. [PMID: 30678711 PMCID: PMC6346508 DOI: 10.1186/s13148-018-0604-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background Reactive oxygen species may be involved in epigenetic gene activation or silencing. We aimed to identify CpG sites, at which DNA methylation is related to urinary 8-isoprostane levels (biomarker of lipid peroxidation) and cancer or mortality outcomes. This investigation was based on a German, population-based cohort with linkage to cancer and mortality registry data (2000–2016). Results Blood DNA methylation in promoter regions of 519 genes, known to be involved in pathways from oxidative stress (OS) to cancer, was obtained at the cohort's baseline examination. Inverse associations of DNA methylation at cg25365794 (ALOXE3) and cg08862778 (MTOR) with 8-isoprostane levels were observed in a derivation set (n = 1000) and validated in two independent subsets of the cohort (n = 548 and n = 741). Multivariate regression models were used to evaluate the associations of DNA methylation at the two CpG sites with lung, colorectal, prostate, breast, and overall cancer incidence as well as CVD, cancer, and all-cause mortality. DNA methylation at cg25365794 (ALOXE3) was inversely associated with lung and prostate cancer incidence. DNA methylation at cg08862778 (MTOR) was associated with a 43% lower breast cancer incidence in the top vs. bottom tertile. Conclusion The finding for ALOXE3 may not be causal. As ALOXE3 is mainly expressed in skin tissue, the observed association might reflect the fact that both DNA methylation at the ALOXE3 gene and urinary 8-isoprostane concentrations depend on the level of OS in tissues. Contrarily, the finding for the MTOR gene and breast cancer is biologically plausible because the MTOR protein plays an important role in PI3K/Akt signaling, which is a pathway related to cancer development and cell senescence. Electronic supplementary material The online version of this article (10.1186/s13148-018-0604-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xīn Gào
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Division Molecular Biology of Breast Cancer, University Women's Clinic, Heidelberg University, Voßstraße 9, 69115, Heidelberg, Germany
| | - Yang Xuan
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany
| | - Bernd Holleczek
- Saarland Cancer Registry, Krebsregister Saarland, Präsident-Baltz-Straße 5, 66119, Saarbrücken, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany. .,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany.
| |
Collapse
|
36
|
Vrtačnik P, Zupan J, Mlakar V, Kranjc T, Marc J, Kern B, Ostanek B. Epigenetic enzymes influenced by oxidative stress and hypoxia mimetic in osteoblasts are differentially expressed in patients with osteoporosis and osteoarthritis. Sci Rep 2018; 8:16215. [PMID: 30385847 PMCID: PMC6212423 DOI: 10.1038/s41598-018-34255-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
Epigenetic mechanisms including posttranslational histone modifications and DNA methylation are emerging as important determinants of bone homeostasis. With our case-control study we aimed to identify which chromatin-modifying enzymes could be involved in the pathology of postmenopausal osteoporosis and osteoarthritis while co-regulated by estrogens, oxidative stress and hypoxia. Gene expression of HAT1, KAT5, HDAC6, MBD1 and DNMT3A affected by oxidative stress and hypoxia in an in vitro qPCR screening step performed on an osteoblast cell line was analysed in trabecular bone tissue samples from 96 patients. Their expression was significantly reduced in patients with postmenopausal osteoporosis and osteoarthritis as compared to autopsy controls and significantly correlated with bone mineral density and several bone histomorphometry-derived parameters of bone quality and quantity as well as indicators of oxidative stress, RANK/RANKL/OPG system and angiogenesis. Furthermore, oxidative stress increased DNA methylation levels at the RANKL and OPG promoters while decreasing histone acetylation levels at these two genes. Our study is the first to show that higher expression of HAT1, HDAC6 and MBD1 is associated with superior quantity as well as quality of the bone tissue having a more favourable trabecular structure.
Collapse
Affiliation(s)
- Peter Vrtačnik
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Vid Mlakar
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Tilen Kranjc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Barbara Kern
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
37
|
Bhat AV, Hora S, Pal A, Jha S, Taneja R. Stressing the (Epi)Genome: Dealing with Reactive Oxygen Species in Cancer. Antioxid Redox Signal 2018; 29:1273-1292. [PMID: 28816066 DOI: 10.1089/ars.2017.7158] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Growing evidence indicates cross-talk between reactive oxygen species (ROS) and several key epigenetic processes such as DNA methylation, histone modifications, and miRNAs in normal physiology and human pathologies including cancer. This review focuses on how ROS-induced oxidative stress, metabolic intermediates, and epigenetic processes influence each other in various cancers. Recent Advances: ROS alter chromatin structure and metabolism that impact the epigenetic landscape in cancer cells. Several site-specific DNA methylation changes have been identified in different cancers and are discussed in the review. We also discuss the interplay of epigenetic enzymes and miRNAs in influencing malignant transformation in an ROS-dependent manner. CRITICAL ISSUES Loss of ROS-mediated signaling mostly by epigenetic regulation may promote tumorigenesis. In contrast, augmented oxidative stress because of high ROS levels may precipitate epigenetic alterations to effect various phases of carcinogenesis. We address both aspects in the review. FUTURE DIRECTIONS Several drugs targeting ROS are under various stages of clinical development. Recent analysis of human cancers has revealed pervasive deregulation of the epigenetic machinery. Thus, a better understanding of the cross-talk between ROS and epigenetic alterations in cancer could lead to the identification of new drug targets and more effective treatment modalities.
Collapse
Affiliation(s)
- Akshay V Bhat
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Shainan Hora
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Sudhakar Jha
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
38
|
Whongsiri P, Pimratana C, Wijitsettakul U, Jindatip D, Sanpavat A, Schulz WA, Hoffmann MJ, Goering W, Boonla C. LINE-1 ORF1 Protein Is Up-regulated by Reactive Oxygen Species and Associated with Bladder Urothelial Carcinoma Progression. Cancer Genomics Proteomics 2018; 15:143-151. [PMID: 29496693 DOI: 10.21873/cgp.20072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIM Reactivation of long interspersed nuclear element-1 (LINE-1) and oxidative stress are suggested to have oncogenic potential to drive tumorigenesis and cancer progression. We previously demonstrated that reactive oxygen species (ROS) caused hypomethylation of LINE-1 elements in bladder cancer cells. In this study, we investigated the expression of LINE-1-encoded protein (ORF1p) and oxidative stress marker 4-hydroxynonenal (4-HNE) in human bladder cancer tissues, as well as induction of ORF1p expression by ROS in bladder cancer cell lines. MATERIALS AND METHODS Thirty-six cancerous and 15 non-cancerous adjacent tissues were immunohistochemically stained for ORF1p and 4-HNE. ORF1p expression and cell migration were determined in bladder cancer cells exposed to H2O2 Results: ORF1p and 4-HNE expression was higher in cancerous than non-cancerous tissues. Elevated ORF1p expression was associated with increased 4-HNE expression and with advanced tumors. H2O2 provoked oxidative stress and up-regulated ORF1p expression in VM-CUB-1 compared to the untreated control, and to a lesser degree in TCCSUP. H2O2 exposure enhanced cell migration in UM-UC-3, TCCSUP and VM-CUB-1. CONCLUSION Elevated ORF1p expression is associated with tumor progression. ROS experimentally induce ORF1p expression and promote migration in bladder cancer cells.
Collapse
Affiliation(s)
- Patcharawalai Whongsiri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Depicha Jindatip
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Goering
- Department of Pathology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Chanchai Boonla
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
39
|
Abstract
Renal cell carcinoma (RCC) is the most common kidney cancer and includes several molecular and histological subtypes with different clinical characteristics. While survival rates are high if RCC is diagnosed when still confined to the kidney and treated definitively, there are no specific diagnostic screening tests available and symptoms are rare in early stages of the disease. Management of advanced RCC has changed significantly with the advent of targeted therapies, yet survival is usually increased by months due to acquired resistance to these therapies. DNA methylation, the covalent addition of a methyl group to a cytosine, is essential for normal development and transcriptional regulation, but becomes altered commonly in cancer. These alterations result in broad transcriptional changes, including in tumor suppressor genes. Because DNA methylation is one of the earliest molecular changes in cancer and is both widespread and stable, its role in cancer biology, including RCC, has been extensively studied. In this review, we examine the role of DNA methylation in RCC disease etiology and progression, the preclinical use of DNA methylation alterations as diagnostic, prognostic and predictive biomarkers, and the potential for DNA methylation-directed therapies.
Collapse
Affiliation(s)
- Brittany N Lasseigne
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806-2908, USA.
| | - James D Brooks
- Department of Urology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA, 94305-5118, USA
| |
Collapse
|
40
|
Cocco E, Leo M, Canzonetta C, Di Vito S, Mai A, Rotili D, Di Napoli A, Vecchione A, De Nunzio C, Filetici P, Stoppacciaro A. KAT3B-p300 and H3AcK18/H3AcK14 levels are prognostic markers for kidney ccRCC tumor aggressiveness and target of KAT inhibitor CPTH2. Clin Epigenetics 2018; 10:44. [PMID: 29632619 PMCID: PMC5885315 DOI: 10.1186/s13148-018-0473-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/14/2018] [Indexed: 12/26/2022] Open
Abstract
Background Kidney cancer and clear cell renal carcinoma (ccRCC) are the 16th most common cause of death worldwide. ccRCC is often metastasized at diagnosis, and surgery remains the main treatment; therefore, early diagnosis and new therapeutic strategies are highly desirable. KAT inhibitor CPTH2 lowers histone H3 acetylation and induces apoptosis in colon cancer and cultured cerebellar granule neurons. In this study, we have evaluated the effects of CPTH2 on ccRCC 786-O cell line and analyzed drug targets expressed in ccRCC tumor tissues at different grade. Results CPTH2 decreases cell viability, adhesion, and invasiveness in ccRCC cell line 786-O. It shows preferential inhibition for KAT3B-p300 with hypoacetilating effects on histone H3 at specific H3-K18. Immunohistochemical analysis of 70 ccRCC tumor tissues compared with peritumoral normal epithelium showed a statistical significant reduction of p300/H3AcK18 paralleled by an increase of H3AcK14 in G1 grade and an opposed trend during tumor progression to worst grades. In this study, we demonstrate that these marks are CPTH2 targets and significative prognosticators of low-grade ccRCC tumor. Conclusions ccRCC is substantially insensitive to current therapies, and the efficacy of clinical treatment is dependent on the dissemination stage of the tumor. The present study shows that CPTH2 is able to induce apoptosis and decrease the invasiveness of a ccRCC cell line through the inhibition of KAT3B. In a tumor tissue analysis, we identified new prognosticator marks in grade G1 ccRCC tumors. Low KAT3B/H3AcK18 vs. high H3AcK14 were found in G1 while an opposed trend characterized tumor progression to worst grades. Our collected results suggest that CPTH2 reducing KAT3B and H3AcK18 can be considered a promising candidate for counteracting the progression of ccRCC tumors. Electronic supplementary material The online version of this article (10.1186/s13148-018-0473-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Cocco
- 1Surgical Pathology Units, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, La Sapienza University, Rome, Italy
| | - Manuela Leo
- 2Department of Biology and Biotechnology "C. Darwin", La Sapienza University of Rome, Rome, Italy
| | - Claudia Canzonetta
- 3Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Serena Di Vito
- 4Institute of Molecular Biology and Pathology-CNR, La Sapienza University of Rome, P.le, A. Moro 5, Rome, Italy
| | - Antonello Mai
- 5Department of Drug Chemistry and Technology, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, La Sapienza University, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Dante Rotili
- 5Department of Drug Chemistry and Technology, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, La Sapienza University, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Arianna Di Napoli
- 1Surgical Pathology Units, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, La Sapienza University, Rome, Italy
| | - Andrea Vecchione
- 1Surgical Pathology Units, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, La Sapienza University, Rome, Italy
| | - Cosimo De Nunzio
- 6Urology Unit, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, La Sapienza University, Rome, Italy
| | - Patrizia Filetici
- 4Institute of Molecular Biology and Pathology-CNR, La Sapienza University of Rome, P.le, A. Moro 5, Rome, Italy
| | - Antonella Stoppacciaro
- 1Surgical Pathology Units, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, La Sapienza University, Rome, Italy
| |
Collapse
|
41
|
Endometriosis Malignant Transformation: Epigenetics as a Probable Mechanism in Ovarian Tumorigenesis. Int J Genomics 2018; 2018:1465348. [PMID: 29780815 PMCID: PMC5892233 DOI: 10.1155/2018/1465348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Endometriosis, defined as the presence of ectopic endometrial glands and stroma outside the uterine cavity, is a chronic, hormone-dependent gynecologic disease affecting millions of women across the world, with symptoms including chronic pelvic pain, dysmenorrhea, dyspareunia, dysuria, and subfertility. In addition, there is well-established evidence that, although endometriosis is considered benign, it is associated with an increased risk of malignant transformation, with the involvement of various mechanisms of development. More and more evidence reveals an important contribution of epigenetic modification not only in endometriosis but also in mechanisms of endometriosis malignant transformation, including DNA methylation and demethylation, histone modifications, and miRNA aberrant expressions. In this present review, we mainly summarize the research progress about the current knowledge regarding the epigenetic modifications of the relations between endometriosis malignant transformation and ovarian cancer in an effort to identify some risk factors probably associated with ectopic endometrium transformation.
Collapse
|
42
|
Kabel AM, Atef A, Estfanous RS. Ameliorative potential of sitagliptin and/or resveratrol on experimentally-induced clear cell renal cell carcinoma. Biomed Pharmacother 2018; 97:667-674. [PMID: 29101811 DOI: 10.1016/j.biopha.2017.10.149] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/22/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess the effect of sitagliptin with or without resveratrol on carcinogen-induced clear cell renal cell carcinoma. Sixty male Wistar rats were divided into 6 equal groups as follows: control; clear cell renal cell carcinoma group; clear cell renal cell carcinoma+sitagliptin group; clear cell renal cell carcinoma+resveratrol group; clear cell renal cell carcinoma+carboxymethyl cellulose group and clear cell renal cell carcinoma+sitagliptin+resveratrol group. Blood urea, serum creatinine, creatinine clearance, urinary N-acetyl beta-d-glucosaminidase (NAG), gamma glutamyl transpeptidase (GGT) and urinary albumin excretion rate (UAER) were determined. Renal tissue antioxidant enzymes, lactate dehydrogenase (LDH), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase-1 (HO-1), transforming growth factor beta-1 (TGF-β1), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and signal transducers and activators of transcription-3 (STAT3) were determined. Parts of the kidneys were subjected to histopathological and immunohistochemical examination for nuclear factor kappa B (p65). Sitagliptin and/or resveratrol induced significant improvement of the renal functions with significant increase in tissue antioxidant defenses and Nrf2/HO-1 content associated with significant decrease in tissue LDH, TGF-β1, TNF-α, IL-6 and STAT3 and alleviated the histopathological and immunohistochemical changes compared to the untreated clear cell renal cell carcinoma group. These effects were significant in sitagliptin/resveratrol combination group compared to the use of each of these drugs alone. In conclusion, sitagliptin/resveratrol combination might represent a beneficial therapeutic modality for amelioration of experimentally-induced clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia.
| | - Aliaa Atef
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Remon S Estfanous
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
43
|
Modulations of DNMT1 and HDAC1 are involved in the OTA-induced cytotoxicity and apoptosis in vitro. Chem Biol Interact 2017; 278:170-178. [PMID: 29080797 DOI: 10.1016/j.cbi.2017.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/29/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
Abstract
Ochratoxin A (OTA) as a fungal metabolite is reported to induce cytotoxicity and apoptosis through the mechanism of oxidative stress. Oxidative stress could induce the epigenetic enzymes modifications. However, whether epigenetic enzymes modifications are involved in OTA-induced cytotoxicity and apoptosis has not been reported until now. Therefore, the objectives of this study were to verify OTA-induced cytotoxicity and apoptosis and to investigate the potential role of epigenetic enzymes in OTA-induced cytotoxicity and apoptosis in PK15 cells. The results demonstrated that OTA at 4 μg/ml treatment for 12 h and 24 h induced cytotoxicity and apoptosis as demonstrated by decreasing cell viability, increasing LDH release, Annexin V/PI staining, Bcl-2/Bax mRNA ratio and apoptotic nuclei in PK15 cells. OTA treatment up-regulated ROS production and down-regulated GSH levels. In addition, OTA treatment activated the epigenetics related enzymes DNA methyltransferase 1 (DNMT1) and Histone deacetylase 1 (HDAC1). Adding DNMT1 inhibitor (5-Aza-2dc) or HDAC1 inhibitor (LBH589) depressed the up-regulation of DNMT1 or HDAC1 expression, the decreases of GSH levels and increases of ROS production induced by OTA, respectively. Furthermore, inhibition of DNMT1 or HDAC1 by their inhibitor reversed the decreases of cell viability and increases of LDH activity and apoptosis induced by OTA, respectively. In conclusion, the observed effects indicate that the critical modulation of DNMT1 and HDAC1 is related to OTA-induced cytotoxicity and apoptosis.
Collapse
|
44
|
Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality. Oncotarget 2017; 8:88294-88307. [PMID: 29179435 PMCID: PMC5687605 DOI: 10.18632/oncotarget.18331] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/21/2017] [Indexed: 12/30/2022] Open
Abstract
We performed immunofluorescent analysis of DNA hydroxymethylation and methylation in human testicular spermatogenic cells from azoospermic patients and ejaculated spermatozoa from sperm donors and patients from infertile couples. In contrast to methylation which was present throughout spermatogenesis, hydroxymethylation was either high or almost undetectable in both spermatogenic cells and ejaculated spermatozoa. On testicular cytogenetic preparations, 5-hydroxymethylcytosine was undetectable in mitotic and meiotic chromosomes, and was present exclusively in interphase spermatogonia Ad and in a minor spermatid population. The proportions of hydroxymethylated and non-hydroxymethylated diploid and haploid nuclei were similar among samples, suggesting that the observed alterations of 5-hydroxymethylcytosine patterns in differentiating spermatogenic cells are programmed. In ejaculates, a few spermatozoa had high 5-hydroxymethylcytosine level, while in the other ones hydroxymethylation was almost undetectable. The percentage of highly hydroxymethylated (5-hydroxymethylcytosine-positive) spermatozoa varied strongly among individuals. In patients from infertile couples, it was higher than in sperm donors (P<0.0001) and varied in a wider range: 0.12-21.24% versus 0.02-0.46%. The percentage of highly hydroxymethylated spermatozoa correlated strongly negatively with the indicators of good semen quality – normal morphology (r=-0.567, P<0.0001) and normal head morphology (r=-0.609, P<0.0001) – and strongly positively with the indicator of poor semen quality: sperm DNA fragmentation (r=0.46, P=0.001). Thus, the immunocytochemically detected increase of 5hmC in individual spermatozoa is associated with infertility in a couple and with deterioration of sperm parameters. We hypothesize that this increase is not programmed, but represents an induced abnormality and, therefore, it can be potentially used as a novel indicator of semen quality.
Collapse
|