1
|
Ghosh S, Choudhury D, Ghosh D, Mondal M, Singha D, Malakar P. Characterization of polyploidy in cancer: Current status and future perspectives. Int J Biol Macromol 2024; 268:131706. [PMID: 38643921 DOI: 10.1016/j.ijbiomac.2024.131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Various cancers frequently exhibit polyploidy, observed in a condition where a cell possesses more than two sets of chromosomes, which is considered a hallmark of the disease. The state of polyploidy often leads to aneuploidy, where cells possess an abnormal number or structure of chromosomes. Recent studies suggest that oncogenes contribute to aneuploidy. This finding significantly underscores its impact on cancer. Cancer cells exposed to certain chemotherapeutic drugs tend to exhibit an increased incidence of polyploidy. This occurrence is strongly associated with several challenges in cancer treatment, including metastasis, resistance to chemotherapy and the recurrence of malignant tumors. Indeed, it poses a significant hurdle to achieve complete tumor eradication and effective cancer therapy. Recently, there has been a growing interest in the field of polyploidy related to cancer for developing effective anti-cancer therapies. Polyploid cancer cells confer both advantages and disadvantages to tumor pathogenicity. This review delineates the diverse characteristics of polyploid cells, elucidates the pivotal role of polyploidy in cancer, and explores the advantages and disadvantages it imparts to cancer cells, along with the current approaches tried in lab settings to target polyploid cells. Additionally, it considers experimental strategies aimed at addressing the outstanding questions within the realm of polyploidy in relation to cancer.
Collapse
Affiliation(s)
- Srijonee Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Debopriya Choudhury
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Dhruba Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Didhiti Singha
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India.
| |
Collapse
|
2
|
Anatskaya OV, Vinogradov AE. Polyploidy Promotes Hypertranscription, Apoptosis Resistance, and Ciliogenesis in Cancer Cells and Mesenchymal Stem Cells of Various Origins: Comparative Transcriptome In Silico Study. Int J Mol Sci 2024; 25:4185. [PMID: 38673782 PMCID: PMC11050069 DOI: 10.3390/ijms25084185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSC) attract an increasing amount of attention due to their unique therapeutic properties. Yet, MSC can undergo undesirable genetic and epigenetic changes during their propagation in vitro. In this study, we investigated whether polyploidy can compromise MSC oncological safety and therapeutic properties. For this purpose, we compared the impact of polyploidy on the transcriptome of cancer cells and MSC of various origins (bone marrow, placenta, and heart). First, we identified genes that are consistently ploidy-induced or ploidy-repressed through all comparisons. Then, we selected the master regulators using the protein interaction enrichment analysis (PIEA). The obtained ploidy-related gene signatures were verified using the data gained from polyploid and diploid populations of early cardiomyocytes (CARD) originating from iPSC. The multistep bioinformatic analysis applied to the cancer cells, MSC, and CARD indicated that polyploidy plays a pivotal role in driving the cell into hypertranscription. It was evident from the upregulation of gene modules implicated in housekeeping functions, stemness, unicellularity, DNA repair, and chromatin opening by means of histone acetylation operating via DNA damage associated with the NUA4/TIP60 complex. These features were complemented by the activation of the pathways implicated in centrosome maintenance and ciliogenesis and by the impairment of the pathways related to apoptosis, the circadian clock, and immunity. Overall, our findings suggest that, although polyploidy does not induce oncologic transformation of MSC, it might compromise their therapeutic properties because of global epigenetic changes and alterations in fundamental biological processes. The obtained results can contribute to the development and implementation of approaches enhancing the therapeutic properties of MSC by removing polyploid cells from the cell population.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Institute of Cytology Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | | |
Collapse
|
3
|
Jemaà M, Daams R, Charfi S, Mertens F, Huber SM, Massoumi R. Tetraploidization Increases the Motility and Invasiveness of Cancer Cells. Int J Mol Sci 2023; 24:13926. [PMID: 37762227 PMCID: PMC10531202 DOI: 10.3390/ijms241813926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Polyploidy and metastasis are associated with a low probability of disease-free survival in cancer patients. Polyploid cells are known to facilitate tumorigenesis. However, few data associate polyploidization with metastasis. Here, by generating and using diploid (2n) and tetraploid (4n) clones from malignant fibrous histiocytoma (MFH) and colon carcinoma (RKO), we demonstrate the migration and invasion advantage of tetraploid cells in vitro using several assays, including the wound healing, the OrisTM two-dimensional cell migration, single-cell migration tracking by video microscopy, the Boyden chamber, and the xCELLigence RTCA real-time cell migration. Motility advantage was observed despite tetraploid cell proliferation weakness. We could also demonstrate preferential metastatic potential in vivo for the tetraploid clone using the tail vein injection in mice and tracking metastatic tumors in the lung. Using the Mitelman Database of Chromosome Aberrations in Cancer, we found an accumulation of polyploid karyotypes in metastatic tumors compared to primary ones. This work reveals the clinical relevance of the polyploid subpopulation and the strategic need to highlight polyploidy in preclinical studies as a therapeutic target for metastasis.
Collapse
Affiliation(s)
- Mohamed Jemaà
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381 Lund, Sweden;
- Human Genetics Laboratory (LR99ES10), Faculty of Medicine of Tunis (FMT), Tunis El Manar University, Tunis 1006, Tunisia
- Department of Biology, Faculty of Science of Tunis, Tunis El Manar University, Tunis 2092, Tunisia
| | - Renee Daams
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381 Lund, Sweden;
| | - Slim Charfi
- Department of Pathology, Habib Bourguiba Hospital, Sfax University, Sfax 3029, Tunisia;
| | - Fredrik Mertens
- Department of Laboratory Medicine, Division of Clinical Genetics Lund University, 22381 Lund, Sweden;
| | - Stephan M. Huber
- Department of Radiation Oncology, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany;
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381 Lund, Sweden;
| |
Collapse
|
4
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Anatskaya OV, Runov AL, Ponomartsev SV, Vonsky MS, Elmuratov AU, Vinogradov AE. Long-Term Transcriptomic Changes and Cardiomyocyte Hyperpolyploidy after Lactose Intolerance in Neonatal Rats. Int J Mol Sci 2023; 24:7063. [PMID: 37108224 PMCID: PMC10138443 DOI: 10.3390/ijms24087063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Many cardiovascular diseases originate from growth retardation, inflammation, and malnutrition during early postnatal development. The nature of this phenomenon is not completely understood. Here we aimed to verify the hypothesis that systemic inflammation triggered by neonatal lactose intolerance (NLI) may exert long-term pathologic effects on cardiac developmental programs and cardiomyocyte transcriptome regulation. Using the rat model of NLI triggered by lactase overloading with lactose and the methods of cytophotometry, image analysis, and mRNA-seq, we evaluated cardiomyocyte ploidy, signs of DNA damage, and NLI-associated long-term transcriptomic changes of genes and gene modules that differed qualitatively (i.e., were switched on or switched off) in the experiment vs. the control. Our data indicated that NLI triggers the long-term animal growth retardation, cardiomyocyte hyperpolyploidy, and extensive transcriptomic rearrangements. Many of these rearrangements are known as manifestations of heart pathologies, including DNA and telomere instability, inflammation, fibrosis, and reactivation of fetal gene program. Moreover, bioinformatic analysis identified possible causes of these pathologic traits, including the impaired signaling via thyroid hormone, calcium, and glutathione. We also found transcriptomic manifestations of increased cardiomyocyte polyploidy, such as the induction of gene modules related to open chromatin, e.g., "negative regulation of chromosome organization", "transcription" and "ribosome biogenesis". These findings suggest that ploidy-related epigenetic alterations acquired in the neonatal period permanently rewire gene regulatory networks and alter cardiomyocyte transcriptome. Here we provided first evidence indicating that NLI can be an important trigger of developmental programming of adult cardiovascular disease. The obtained results can help to develop preventive strategies for reducing the NLI-associated adverse effects of inflammation on the developing cardiovascular system.
Collapse
Affiliation(s)
| | - Andrey L. Runov
- The D.I. Mendeleev All-Russian Institute for Metrology (VNIIM), Moskovsky ave 19, Saint Petersburg 190005, Russia
- Almazov Medical Research Centre, Akkuratova Street 2, Saint Petersburg 197341, Russia
| | | | - Maxim S. Vonsky
- The D.I. Mendeleev All-Russian Institute for Metrology (VNIIM), Moskovsky ave 19, Saint Petersburg 190005, Russia
- Almazov Medical Research Centre, Akkuratova Street 2, Saint Petersburg 197341, Russia
| | - Artem U. Elmuratov
- Medical Genetics Centre Genotek, Nastavnichesky Alley 17-1-15, Moscow 105120, Russia
| | | |
Collapse
|
6
|
CCR3 blockage elicits polyploidization associated with the signatures of epithelial-mesenchymal transition in carcinoma cell lines. Cancer Gene Ther 2023; 30:137-148. [PMID: 36123391 DOI: 10.1038/s41417-022-00532-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 01/19/2023]
Abstract
Malignant features such as the acquisition of metastatic ability, stemness of cells, and therapeutic resistance of cancer cells are associated with epithelial-mesenchymal transition (EMT) accompanied by changes in motility and morphology. Recent reports implicated that the formation of polyploid giant cancer cells (PGCCs) in human malignancy correlated with the EMT processes. Chemokines are often involved in the regulation of cancer cell migration into tissues, and various types of human cancers exhibit enhanced expression of chemokine receptors, which could augment intrinsic potentials such as invasive activity, proliferating ability, and survival capacity in cancer cells. Nevertheless, the contribution of CCR3 in malignant cancer cells is controversial because it is a well-known primal receptor for the migration of eosinophils, one of the cells of the innate immune system. Here, we explored the blockage of chemokine receptor CCR3 in carcinoma cell lines and found that inhibition of CCR3 induced the formation of polyploid giant cells and stabilization of β-catenin via the PI3K/Akt/GSK-3β signaling pathway, which are processes associated with EMT. As a result of CCR3 inhibition, converted cells acquired enhanced mobile and proliferation abilities. In summary, these data indicate that modulation of the CCR3/PI3K/Akt/GSK-3β signaling pathway regulates polyploidization associated with the EMT processes.
Collapse
|
7
|
Vainshelbaum NM, Giuliani A, Salmina K, Pjanova D, Erenpreisa J. The Transcriptome and Proteome Networks of Malignant Tumours Reveal Atavistic Attractors of Polyploidy-Related Asexual Reproduction. Int J Mol Sci 2022; 23:ijms232314930. [PMID: 36499258 PMCID: PMC9736112 DOI: 10.3390/ijms232314930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The expression of gametogenesis-related (GG) genes and proteins, as well as whole genome duplications (WGD), are the hallmarks of cancer related to poor prognosis. Currently, it is not clear if these hallmarks are random processes associated only with genome instability or are programmatically linked. Our goal was to elucidate this via a thorough bioinformatics analysis of 1474 GG genes in the context of WGD. We examined their association in protein-protein interaction and coexpression networks, and their phylostratigraphic profiles from publicly available patient tumour data. The results show that GG genes are upregulated in most WGD-enriched somatic cancers at the transcriptome level and reveal robust GG gene expression at the protein level, as well as the ability to associate into correlation networks and enrich the reproductive modules. GG gene phylostratigraphy displayed in WGD+ cancers an attractor of early eukaryotic origin for DNA recombination and meiosis, and one relative to oocyte maturation and embryogenesis from early multicellular organisms. The upregulation of cancer-testis genes emerging with mammalian placentation was also associated with WGD. In general, the results suggest the role of polyploidy for soma-germ transition accessing latent cancer attractors in the human genome network, which appear as pre-formed along the whole Evolution of Life.
Collapse
Affiliation(s)
- Ninel M. Vainshelbaum
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Faculty of Biology, The University of Latvia, LV-1586 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| | - Alessandro Giuliani
- Environmen and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Kristine Salmina
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| |
Collapse
|
8
|
Du M, Zhang S, Liu X, Xu C, Zhang X. Nondiploid cancer cells: Stress, tolerance and therapeutic inspirations. Biochim Biophys Acta Rev Cancer 2022; 1877:188794. [PMID: 36075287 DOI: 10.1016/j.bbcan.2022.188794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022]
Abstract
Aberrant ploidy status is a prominent characteristic in malignant neoplasms. Approximately 90% of solid tumors and 75% of haematopoietic malignancies contain aneuploidy cells, and 30%-60% of tumors undergo whole-genome doubling, indicating that nondiploidy might be a prevalent genomic aberration in cancer. Although the role of aneuploid and polyploid cells in cancer remains to be elucidated, recent studies have suggested that nondiploid cells might be a dangerous minority that severely challenges cancer management. Ploidy shifts cause multiple fitness coasts for cancer cells, mainly including genomic, proteotoxic, metabolic and immune stresses. However, nondiploid comprises a well-adopted subpopulation, with many tolerance mechanisms evident in cells along with ploidy shifts. Aneuploid and polyploid cells elegantly maintain an autonomous balance between the stress and tolerance during adaptive evolution in cancer. Breaking the balance might provide some inspiration for ploidy-selective cancer therapy and alleviation of ploidy-related chemoresistance. To understand of the complex role and therapeutic potential of nondiploid cells better, we reviewed the survival stresses and adaptive tolerances within nondiploid cancer cells and summarized therapeutic ploidy-selective alterations for potential use in developing future cancer therapy.
Collapse
Affiliation(s)
- Ming Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Shuo Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Xiaoxia Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| |
Collapse
|
9
|
Polyploidy and Myc Proto-Oncogenes Promote Stress Adaptation via Epigenetic Plasticity and Gene Regulatory Network Rewiring. Int J Mol Sci 2022; 23:ijms23179691. [PMID: 36077092 PMCID: PMC9456078 DOI: 10.3390/ijms23179691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploid cells demonstrate biological plasticity and stress adaptation in evolution; development; and pathologies, including cardiovascular diseases, neurodegeneration, and cancer. The nature of ploidy-related advantages is still not completely understood. Here, we summarize the literature on molecular mechanisms underlying ploidy-related adaptive features. Polyploidy can regulate gene expression via chromatin opening, reawakening ancient evolutionary programs of embryonality. Chromatin opening switches on genes with bivalent chromatin domains that promote adaptation via rapid induction in response to signals of stress or morphogenesis. Therefore, stress-associated polyploidy can activate Myc proto-oncogenes, which further promote chromatin opening. Moreover, Myc proto-oncogenes can trigger polyploidization de novo and accelerate genome accumulation in already polyploid cells. As a result of these cooperative effects, polyploidy can increase the ability of cells to search for adaptive states of cellular programs through gene regulatory network rewiring. This ability is manifested in epigenetic plasticity associated with traits of stemness, unicellularity, flexible energy metabolism, and a complex system of DNA damage protection, combining primitive error-prone unicellular repair pathways, advanced error-free multicellular repair pathways, and DNA damage-buffering ability. These three features can be considered important components of the increased adaptability of polyploid cells. The evidence presented here contribute to the understanding of the nature of stress resistance associated with ploidy and may be useful in the development of new methods for the prevention and treatment of cardiovascular and oncological diseases.
Collapse
|
10
|
Nehme Z, Pasquereau S, Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. EBioMedicine 2022; 80:104056. [PMID: 35596973 PMCID: PMC9121245 DOI: 10.1016/j.ebiom.2022.104056] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) infection has been actively implicated in complex neoplastic processes. Beyond oncomodulation, the molecular mechanisms that might underlie HCMV-induced oncogenesis are being extensively studied. Polycomb repressive complex 2 (PRC2) proteins, in particular enhancer of zeste homolog 2 (EZH2) are associated with cancer progression. Nevertheless, little is known about EZH2 activation in the context of HCMV infection and breast oncogenesis. Methods Herein, we identified EZH2 as a downstream target for HCMV-induced Myc upregulation upon acute and chronic infection with high-risk strains using a human mammary epithelial model. Findings We detected polyploidy and CMV-transformed HMECs (CTH) cells harboring HCMV and dynamically undergoing the giant cells cycle. Acquisition of embryonic stemness markers positively correlated with EZH2 and Myc expression. EZH2 inhibitors curtail sustained CTH cells’ malignant phenotype. Besides harboring polyploid giant cancer cells (PGCCs), tumorigenic breast biopsies were characterized by an enhanced EZH2 and Myc expression, with a strong positive correlation between EZH2 and Myc expression, and between PGCC count and EZH2/Myc expression in the presence of HCMV. Further, we isolated two HCMV strains from EZH2HighMycHigh basal-like tumors which replicate in MRC5 cells and transform HMECs toward CTH cells after acute infection. Interpretation Our data establish a potential link between HCMV-induced Myc activation, the subsequent EZH2 upregulation, and polyploidy induction. These data support the proposed tumorigenesis properties of EZH2/Myc, and allow the isolation of two oncogenic HCMV strains from EZH2HighMycHigh basal breast tumors while identifying EZH2 as a potential therapeutic target in the management of breast cancer, particularly upon HCMV infection. Funding This work was supported by grants from the University of Franche-Comté (UFC) (CR3300), the Région Franche-Comté (2021-Y-08292 and 2021-Y-08290) and the Ligue contre le Cancer (CR3304) to Georges Herbein. Zeina Nehme is a recipient of a doctoral scholarship from the municipality of Habbouch. Sandy Haidar Ahmad is recipient of a doctoral scholarship from Lebanese municipality. Ranim El Baba is a recipient of a doctoral scholarship from Hariri foundation for sustainable human development.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Sébastien Pasquereau
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Sandy Haidar Ahmad
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Ranim El Baba
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Georges Herbein
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France; Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
11
|
Targeting tumor cell senescence and polyploidy as potential therapeutic strategies. Semin Cancer Biol 2022; 81:37-47. [PMID: 33358748 PMCID: PMC8214633 DOI: 10.1016/j.semcancer.2020.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023]
Abstract
Senescence is a unique state of growth arrest that develops in response to a plethora of cellular stresses, including replicative exhaustion, oxidative injury, and genotoxic insults. Senescence has been implicated in the pathogenesis of multiple aging-related pathologies, including cancer. In cancer, senescence plays a dual role, initially acting as a barrier against tumor progression by enforcing a durable growth arrest in premalignant cells, but potentially promoting malignant transformation in neighboring cells through the secretion of pro-tumorigenic drivers. Moreover, senescence is induced in tumor cells upon exposure to a wide variety of conventional and targeted anticancer drugs (termed Therapy-Induced Senescence-TIS), representing a critical contributing factor to therapeutic outcomes. As with replicative or oxidative senescence, TIS manifests as a complex phenotype of macromolecular damage, energetic dysregulation, and altered gene expression. Senescent cells are also frequently polyploid. In vitro studies have suggested that polyploidy may confer upon senescent tumor cells the ability to escape from growth arrest, thereby providing an additional avenue whereby tumor cells escape the lethality of anticancer treatment. Polyploidy in tumor cells is also associated with persistent energy production, chromatin remodeling, self-renewal, stemness and drug resistance - features that are also associated with escape from senescence and conversion to a more malignant phenotype. However, senescent cells are highly heterogenous and can present with variable phenotypes, where polyploidy is one component of a complex reversion process. Lastly, emerging efforts to pharmacologically target polyploid tumor cells might pave the way towards the identification of novel targets for the elimination of senescent tumor cells by the incorporation of senolytic agents into cancer therapeutic strategies.
Collapse
|
12
|
Polyploidy as a Fundamental Phenomenon in Evolution, Development, Adaptation and Diseases. Int J Mol Sci 2022; 23:ijms23073542. [PMID: 35408902 PMCID: PMC8998937 DOI: 10.3390/ijms23073542] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
DNA replication during cell proliferation is 'vertical' copying, which reproduces an initial amount of genetic information. Polyploidy, which results from whole-genome duplication, is a fundamental complement to vertical copying. Both organismal and cell polyploidy can emerge via premature cell cycle exit or via cell-cell fusion, the latter giving rise to polyploid hybrid organisms and epigenetic hybrids of somatic cells. Polyploidy-related increase in biological plasticity, adaptation, and stress resistance manifests in evolution, development, regeneration, aging, oncogenesis, and cardiovascular diseases. Despite the prevalence in nature and importance for medicine, agri- and aquaculture, biological processes and epigenetic mechanisms underlying these fundamental features largely remain unknown. The evolutionarily conserved features of polyploidy include activation of transcription, response to stress, DNA damage and hypoxia, and induction of programs of morphogenesis, unicellularity, and longevity, suggesting that these common features confer adaptive plasticity, viability, and stress resistance to polyploid cells and organisms. By increasing cell viability, polyploidization can provide survival under stressful conditions where diploid cells cannot survive. However, in somatic cells it occurs at the expense of specific function, thus promoting developmental programming of adult cardiovascular diseases and increasing the risk of cancer. Notably, genes arising via evolutionary polyploidization are heavily involved in cancer and other diseases. Ploidy-related changes of gene expression presumably originate from chromatin modifications and the derepression of bivalent genes. The provided evidence elucidates the role of polyploidy in evolution, development, aging, and carcinogenesis, and may contribute to the development of new strategies for promoting regeneration and preventing cardiovascular diseases and cancer.
Collapse
|
13
|
Vainshelbaum NM, Salmina K, Gerashchenko BI, Lazovska M, Zayakin P, Cragg MS, Pjanova D, Erenpreisa J. Role of the Circadian Clock "Death-Loop" in the DNA Damage Response Underpinning Cancer Treatment Resistance. Cells 2022; 11:880. [PMID: 35269502 PMCID: PMC8909334 DOI: 10.3390/cells11050880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Here, we review the role of the circadian clock (CC) in the resistance of cancer cells to genotoxic treatments in relation to whole-genome duplication (WGD) and telomere-length regulation. The CC drives the normal cell cycle, tissue differentiation, and reciprocally regulates telomere elongation. However, it is deregulated in embryonic stem cells (ESCs), the early embryo, and cancer. Here, we review the DNA damage response of cancer cells and a similar impact on the cell cycle to that found in ESCs—overcoming G1/S, adapting DNA damage checkpoints, tolerating DNA damage, coupling telomere erosion to accelerated cell senescence, and favouring transition by mitotic slippage into the ploidy cycle (reversible polyploidy). Polyploidy decelerates the CC. We report an intriguing positive correlation between cancer WGD and the deregulation of the CC assessed by bioinformatics on 11 primary cancer datasets (rho = 0.83; p < 0.01). As previously shown, the cancer cells undergoing mitotic slippage cast off telomere fragments with TERT, restore the telomeres by ALT-recombination, and return their depolyploidised offspring to telomerase-dependent regulation. By reversing this polyploidy and the CC “death loop”, the mitotic cycle and Hayflick limit count are thus again renewed. Our review and proposed mechanism support a life-cycle concept of cancer and highlight the perspective of cancer treatment by differentiation.
Collapse
Affiliation(s)
- Ninel Miriam Vainshelbaum
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
- Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Kristine Salmina
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
| | - Bogdan I. Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine;
| | - Marija Lazovska
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
| | - Pawel Zayakin
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
| | - Mark Steven Cragg
- Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - Dace Pjanova
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
| | - Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (N.M.V.); Latvia; (K.S.); (M.L.); (P.Z.); (D.P.)
| |
Collapse
|
14
|
Anatskaya OV, Vinogradov AE. Whole-Genome Duplications in Evolution, Ontogeny, and Pathology: Complexity and Emergency Reserves. Mol Biol 2021. [DOI: 10.1134/s0026893321050022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Clay DE, Fox DT. DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes (Basel) 2021; 12:1882. [PMID: 34946831 PMCID: PMC8701014 DOI: 10.3390/genes12121882] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Genome damage is a threat to all organisms. To respond to such damage, DNA damage responses (DDRs) lead to cell cycle arrest, DNA repair, and cell death. Many DDR components are highly conserved, whereas others have adapted to specific organismal needs. Immense progress in this field has been driven by model genetic organism research. This review has two main purposes. First, we provide a survey of model organism-based efforts to study DDRs. Second, we highlight how model organism study has contributed to understanding how specific DDRs are influenced by cell cycle stage. We also look forward, with a discussion of how future study can be expanded beyond typical model genetic organisms to further illuminate how the genome is protected.
Collapse
Affiliation(s)
- Delisa E. Clay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Donald T. Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
16
|
IL-6 promotes drug resistance through formation of polyploid giant cancer cells and stromal fibroblast reprogramming. Oncogenesis 2021; 10:65. [PMID: 34588424 PMCID: PMC8481288 DOI: 10.1038/s41389-021-00349-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
To understand the role of polyploid giant cancer cells (PGCCs) in drug resistance and disease relapse, we examined the mRNA expression profile of PGCCs following treatment with paclitaxel in ovarian cancer cells. An acute activation of IL-6 dominated senescence-associated secretory phenotype lasted 2–3 weeks and declined during the termination phase of polyploidy. IL-6 activates embryonic stemness during the initiation of PGCCs and can reprogram normal fibroblasts into cancer-associated fibroblasts (CAFs) via increased collagen synthesis, activation of VEGF expression, and enrichment of CAFs and the GPR77 + /CD10 + fibroblast subpopulation. Blocking the IL-6 feedback loop with tocilizumab or apigenin prevented PGCC formation, attenuated embryonic stemness and the CAF phenotype, and inhibited tumor growth in a patient-derived xenograft high-grade serous ovarian carcinoma model. Thus, IL-6 derived by PGCCs is capable of reprogramming both cancer and stromal cells and contributes to the evolution and remodeling of cancer. Targeting IL-6 in PGCCs may represent a novel approach to combating drug resistance.
Collapse
|
17
|
Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. Proc Natl Acad Sci U S A 2021; 118:2020838118. [PMID: 33504594 PMCID: PMC7896294 DOI: 10.1073/pnas.2020838118] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We present a unifying theory to explain cancer recurrence, therapeutic resistance, and lethality. The basis of this theory is the formation of simultaneously polyploid and aneuploid cancer cells, polyaneuploid cancer cells (PACCs), that avoid the toxic effects of systemic therapy by entering a state of cell cycle arrest. The theory is independent of which of the classically associated oncogenic mutations have already occurred. PACCs have been generally disregarded as senescent or dying cells. Our theory states that therapeutic resistance is driven by PACC formation that is enabled by accessing a polyploid program that allows an aneuploid cancer cell to double its genomic content, followed by entry into a nondividing cell state to protect DNA integrity and ensure cell survival. Upon removal of stress, e.g., chemotherapy, PACCs undergo depolyploidization and generate resistant progeny that make up the bulk of cancer cells within a tumor.
Collapse
|
18
|
Bobkov D, Yudintceva N, Lomert E, Shatrova A, Kever L, Semenova S. Lipid raft integrity is required for human leukemia Jurkat T-cell migratory activity. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158917. [PMID: 33662545 DOI: 10.1016/j.bbalip.2021.158917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022]
Abstract
Lipid rafts are membrane microdomains featuring high cholesterol, sphingolipid, and protein content. These microdomains recruit various receptors, ion channels, and signaling molecules for coordination of various cellular functions, including synaptic transmission, immune response, cytoskeletal organization, adhesion, and migration. Many of these processes also depend on Ca2+ intake. We have previously shown in Jurkat cells that activity of transient receptor potential vanilloid, type 6 (TRPV6) calcium channel, and TRPV6-mediated Ca2+ influx, depend on lipid raft integrity. In this study, using the transwell cell migration assay and time-lapse video microscopy with Jurkat cells, we found that lipid raft destruction was associated with: inhibited cell adhesion and migration; and decreased mean speed, maximum speed, and trajectory length. Using String Server, we constructed a Protein Interaction Network (PIN). The network indicated that TRPV6 proteins interact with the highest probability (0.9) with Src family kinase members (SFKs) involved in processes related to cell migration. Analysis of detergent-resistant membrane fractions and immunoelectron microscopy data confirmed an association in lipid rafts between TRPV6 and Lck kinase, an SFKs member. Destruction of lipid rafts led to uncoupling of TRPV6 clusters with Lck and their departure from the plasma membrane into the cytosol of the cells. Src family kinases are generally associated with their roles in tumor invasion and progression, epithelial-mesenchymal transitions, angiogenesis, and metastatic development. We suggest that a functional interaction between TRPV6 calcium channels and SFKs members in lipid rafts is one of necessary elements of migration and oncogenic signaling in leukemia cells.
Collapse
Affiliation(s)
- Danila Bobkov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Prospekt, St. Petersburg 194064, Russia
| | - Natalia Yudintceva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Prospekt, St. Petersburg 194064, Russia
| | - Ekaterina Lomert
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Prospekt, St. Petersburg 194064, Russia
| | - Alla Shatrova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Prospekt, St. Petersburg 194064, Russia
| | - Lyudmila Kever
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Prospekt, St. Petersburg 194064, Russia
| | - Svetlana Semenova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Prospekt, St. Petersburg 194064, Russia.
| |
Collapse
|
19
|
Richards JS, Candelaria NR, Lanz RB. Polyploid giant cancer cells and ovarian cancer: new insights into mitotic regulators and polyploidy†. Biol Reprod 2021; 105:305-316. [PMID: 34037700 DOI: 10.1093/biolre/ioab102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022] Open
Abstract
Current first-line treatment of patients with high-grade serous ovarian cancer (HGSOC) involves the use of cytotoxic drugs that frequently lead to recurrent tumors exhibiting increased resistance to the drugs and poor patient survival. Strong evidence is accumulating to show that HGSOC tumors and cell lines contain a subset of cells called polyploidy giant cancer cells (PGCCs) that act as stem-like, self-renewing cells. These PGCCs appear to play a key role in tumor progression by generating drug-resistant progeny produced, in part, as a consequence of utilizing a modified form of mitosis known as endoreplication. Thus, developing drugs to target PGCCs and endoreplication may be an important approach for reducing the appearance of drug-resistant progeny. In the review, we discuss newly identified regulatory factors that impact mitosis and which may be altered or repurposed during endoreplication in PGCCs. We also review recent papers showing that a single PGCC can give rise to tumors in vivo and spheroids in culture. To illustrate some of the specific features of PGCCs and factors that may impact their function and endoreplication compared to mitosis, we have included immunofluorescent images co-localizing p53 and specific mitotic regulatory, phosphoproteins in xenografts derived from commonly used HGSOC cell lines.
Collapse
Affiliation(s)
- JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nicholes R Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Koshkin SA, Anatskaya OV, Vinogradov AE, Uversky VN, Dayhoff GW, Bystriakova MA, Pospelov VA, Tolkunova EN. Isolation and Characterization of Human Colon Adenocarcinoma Stem-Like Cells Based on the Endogenous Expression of the Stem Markers. Int J Mol Sci 2021; 22:4682. [PMID: 33925224 PMCID: PMC8124683 DOI: 10.3390/ijms22094682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells' (CSCs) self-maintenance is regulated via the pluripotency pathways promoting the most aggressive tumor phenotype. This study aimed to use the activity of these pathways for the CSCs' subpopulation enrichment and separating cells characterized by the OCT4 and SOX2 expression. METHODS To select and analyze CSCs, we used the SORE6x lentiviral reporter plasmid for viral transduction of colon adenocarcinoma cells. Additionally, we assessed cell chemoresistance, clonogenic, invasive and migratory activity and the data of mRNA-seq and intrinsic disorder predisposition protein analysis (IDPPA). RESULTS We obtained the line of CSC-like cells selected on the basis of the expression of the OCT4 and SOX2 stem cell factors. The enriched CSC-like subpopulation had increased chemoresistance as well as clonogenic and migration activities. The bioinformatic analysis of mRNA seq data identified the up-regulation of pluripotency, development, drug resistance and phototransduction pathways, and the downregulation of pathways related to proliferation, cell cycle, aging, and differentiation. IDPPA indicated that CSC-like cells are predisposed to increased intrinsic protein disorder. CONCLUSION The use of the SORE6x reporter construct for CSCs enrichment allows us to obtain CSC-like population that can be used as a model to search for the new prognostic factors and potential therapeutic targets for colon cancer treatment.
Collapse
Affiliation(s)
- Sergei A. Koshkin
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA 19107, USA
| | - Olga V. Anatskaya
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Alexander E. Vinogradov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Margarita A. Bystriakova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Valery A. Pospelov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Elena N. Tolkunova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| |
Collapse
|
21
|
Targeting Oncoimmune Drivers of Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13030554. [PMID: 33535613 PMCID: PMC7867187 DOI: 10.3390/cancers13030554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Residual metastasis is a major cause of cancer-associated death. Recent advances in understanding the molecular basis of the epithelial-mesenchymal transition (EMT) and the related cancer stem cells (CSCs) have revealed the landscapes of cancer metastasis and are promising contributions to clinical treatments. However, this rarely leads to practical advances in the management of cancer in clinical settings, and thus cancer metastasis is still a threat to patients. The reason for this may be the heterogeneity and complexity caused by the evolutional transformation of tumor cells through interactions with the host environment, which is composed of numerous components, including stromal cells, vascular cells, and immune cells. The reciprocal evolution further raises the possibility of successful tumor escape, resulting in a fatal prognosis for patients. To disrupt the vicious spiral of tumor-immunity aggravation, it is important to understand the entire metastatic process and the practical implementations. Here, we provide an overview of the molecular and cellular links between tumors' biological properties and host immunity, mainly focusing on EMT and CSCs, and we also highlight therapeutic agents targeting the oncoimmune determinants driving cancer metastasis toward better practical use in the treatment of cancer patients.
Collapse
|
22
|
Erenpreisa J, Salmina K, Anatskaya O, Cragg MS. Paradoxes of cancer: Survival at the brink. Semin Cancer Biol 2020; 81:119-131. [PMID: 33340646 DOI: 10.1016/j.semcancer.2020.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022]
Abstract
The fundamental understanding of how Cancer initiates, persists and then progresses is evolving. High-resolution technologies, including single-cell mutation and gene expression measurements, are now attainable, providing an ever-increasing insight into the molecular details. However, this higher resolution has shown that somatic mutation theory itself cannot explain the extraordinary resistance of cancer to extinction. There is a need for a more Systems-based framework of understanding cancer complexity, which in particular explains the regulation of gene expression during cell-fate decisions. Cancer displays a series of paradoxes. Here we attempt to approach them from the view-point of adaptive exploration of gene regulatory networks at the edge of order and chaos, where cell-fate is changed by oscillations between alternative regulators of cellular senescence and reprogramming operating through self-organisation. On this background, the role of polyploidy in accessing the phylogenetically pre-programmed "oncofetal attractor" state, related to unicellularity, and the de-selection of unsuitable variants at the brink of cell survival is highlighted. The concepts of the embryological and atavistic theory of cancer, cancer cell "life-cycle", and cancer aneuploidy paradox are dissected under this lense. Finally, we challenge researchers to consider that cancer "defects" are mostly the adaptation tools of survival programs that have arisen during evolution and are intrinsic of cancer. Recognition of these features should help in the development of more successful anti-cancer treatments.
Collapse
Affiliation(s)
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia
| | | | - Mark S Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
23
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
24
|
Anatskaya OV, Vinogradov AE, Vainshelbaum NM, Giuliani A, Erenpreisa J. Phylostratic Shift of Whole-Genome Duplications in Normal Mammalian Tissues towards Unicellularity Is Driven by Developmental Bivalent Genes and Reveals a Link to Cancer. Int J Mol Sci 2020; 21:ijms21228759. [PMID: 33228223 PMCID: PMC7699474 DOI: 10.3390/ijms21228759] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Tumours were recently revealed to undergo a phylostratic and phenotypic shift to unicellularity. As well, aggressive tumours are characterized by an increased proportion of polyploid cells. In order to investigate a possible shared causation of these two features, we performed a comparative phylostratigraphic analysis of ploidy-related genes, obtained from transcriptomic data for polyploid and diploid human and mouse tissues using pairwise cross-species transcriptome comparison and principal component analysis. Our results indicate that polyploidy shifts the evolutionary age balance of the expressed genes from the late metazoan phylostrata towards the upregulation of unicellular and early metazoan phylostrata. The up-regulation of unicellular metabolic and drug-resistance pathways and the downregulation of pathways related to circadian clock were identified. This evolutionary shift was associated with the enrichment of ploidy with bivalent genes (p < 10−16). The protein interactome of activated bivalent genes revealed the increase of the connectivity of unicellulars and (early) multicellulars, while circadian regulators were depressed. The mutual polyploidy-c-MYC-bivalent genes-associated protein network was organized by gene-hubs engaged in both embryonic development and metastatic cancer including driver (proto)-oncogenes of viral origin. Our data suggest that, in cancer, the atavistic shift goes hand-in-hand with polyploidy and is driven by epigenetic mechanisms impinging on development-related bivalent genes.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Department of Bioinformatics and Functional Genomics, Institute of Cytology, Russian Academy of sciences, 194064 St. Petersburg, Russia
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| | - Alexander E. Vinogradov
- Department of Bioinformatics and Functional Genomics, Institute of Cytology, Russian Academy of sciences, 194064 St. Petersburg, Russia
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| | - Ninel M. Vainshelbaum
- Department of Oncology, Latvian Biomedical Research and Study Centre, Cancer Research Division, LV-1067 Riga, Latvia;
- Faculty of Biology, University of Latvia, LV-1586 Riga, Latvia
| | | | - Jekaterina Erenpreisa
- Department of Oncology, Latvian Biomedical Research and Study Centre, Cancer Research Division, LV-1067 Riga, Latvia;
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| |
Collapse
|
25
|
Vinogradov AE, Anatskaya OV. Systemic evolutionary changes in mammalian gene expression. Biosystems 2020; 198:104256. [PMID: 32976926 DOI: 10.1016/j.biosystems.2020.104256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Changes in gene expression play an important role in evolution and can be relevant to evolutionary medicine. In this work, a strong relationship was found between the statistical significance of evolutionary changes in the expression of orthologous genes in the five or six homologous mammalian tissues and the across-tissues unidirectionality of changes (i.e., they occur in the same direction in different tissues -- all upward or all downward). In the area of highly significant changes, the fraction of unidirectionally changed genes (UCG) was above 0.9 (random expectation is 0.03). This observation indicates that the most pronounced evolutionary changes in mammalian gene expression are systemic (i.e., they operate at the whole-organism level). The UCG are strongly enriched in the housekeeping genes. More specifically, in the human-chimpanzee comparison, the UCG are enriched in the pathways belonging to gene expression (translation is prominent), cell cycle control, ubiquitin-dependent protein degradation (mostly related to cell cycle control), apoptosis, and Parkinson's disease. In the human-macaque comparison, the two other neurodegenerative diseases (Alzheimer's and Huntington's) are added to the enriched pathways. The consolidation of gene expression changes at the level of pathways indicates that they are not neutral but functional. The systemic expression changes probably maintain the across-tissues balance of basic physiological processes in the course of evolution (e.g., during the movement along the fast-slow life axis). These results can be useful for understanding the variation in longevity and susceptibility to cancer and widespread neurodegenerative diseases. This approach can also guide the choice of prospective genes for studies aiming to decipher cis-regulatory code (the gene list is provided).
Collapse
Affiliation(s)
| | - Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
26
|
Gerashchenko BI, Salmina K, Krigerts J, Erenpreisa J, Babsky AM. INDUCED POLYPLOIDY AND SORTING OF DAMAGED DNA BY MICRONUCLEATION IN RADIORESISTANT RAT LIVER EPITHELIAL STEM-LIKE CELLS EXPOSED TO X-RAYS. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 24:220-234. [PMID: 31841469 DOI: 10.33145/2304-8336-2019-24-220-234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Rat liver stem-like epithelial cells (WB-F344) that under certain conditions may differentiate into hepa- tocyte and biliary lineages were subjected to acute X-irradiation with the aim to examine cell cycle peculiarities dur- ing the course of survival. MATERIALS AND METHODS Suspensions of WB-F344 cells that grew as a monolayer and reached sub-confluence were irradiated with 1, 5, and 10 Gy of X-rays (2 Gy/min). As an intact control, sham-irradiated cells were used. After irra- diation, cells were plated into 25-cm2 tissue culture flasks to culture them for over several days without reaching contact inhibition. On days 1, 2, 3, and 5 post-irradiation, cells were harvested and examined for nuclear morpholo- gy and DNA ploidy by stoichiometric toluidine blue reaction and image cytometry. On days 7 and 9 post-irradiation, only heavily irradiated (10 Gy) cells were examined. Also, 10 Gy-irradiated cells were chosen for immunofluorescence staining to monitor persistence of DNA lesions (γ-H2AX), cell proliferation (Ki-67), and self-renewal factors charac- teristic for stem cells (OCT4 and NANOG). RESULTS Radioresistance of WB-F344 cells was evidenced by the findings that they do not undergo rapid and mas- sive cell death that in fact was weakly manifested as apoptotic even in heavily irradiated cells. Instead, there was cell cycle progression delay accompanied by polyploidization (via Ki-67-positive mitotic slippage or via impaired cytokinesis) and micronucleation in a dose-dependent manner, although micronucleation to some extent went ahead of polyploidization. Polyploid cells amenable for recovering from DNA damage can mitotically depolyploidize. Many micronuclei contained γ-H2AX clusters, suggesting isolation of severely damaged DNA fragments. Both factors, OCT4 and NANOG, were expressed in the intact control, but became enhanced after irradiation. CONCLUSIONS Although the fact of micronucleation is indicative of genotoxic effect, WB-F344 cells can probably escape cell death via sorting of damaged DNA by micronuclei. Induction of polyploidy in these cells can be adaptive to promote cell survival and tissue regeneration with possible involvement of self-renewal mechanism.
Collapse
Affiliation(s)
- B I Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 45 Vasylkivska St., Kyiv, 03022, Ukraine
| | - K Salmina
- Latvian Biomedical Research and Study Centre, 1 Ratsupites St., Riga, LV-1067, Latvia
| | - J Krigerts
- Latvian Biomedical Research and Study Centre, 1 Ratsupites St., Riga, LV-1067, Latvia
| | - J Erenpreisa
- Latvian Biomedical Research and Study Centre, 1 Ratsupites St., Riga, LV-1067, Latvia
| | - A M Babsky
- Ivan Franko National University of Lviv, Faculty of Biology, 4 Mykhaila Hrushevskoho St., Lviv, 79005, Ukraine
| |
Collapse
|
27
|
Erenpreisa J, Giuliani A. Resolution of Complex Issues in Genome Regulation and Cancer Requires Non-Linear and Network-Based Thermodynamics. Int J Mol Sci 2019; 21:E240. [PMID: 31905791 PMCID: PMC6981914 DOI: 10.3390/ijms21010240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
The apparent lack of success in curing cancer that was evidenced in the last four decades of molecular medicine indicates the need for a global re-thinking both its nature and the biological approaches that we are taking in its solution. The reductionist, one gene/one protein method that has served us well until now, and that still dominates in biomedicine, requires complementation with a more systemic/holistic approach, to address the huge problem of cross-talk between more than 20,000 protein-coding genes, about 100,000 protein types, and the multiple layers of biological organization. In this perspective, the relationship between the chromatin network organization and gene expression regulation plays a fundamental role. The elucidation of such a relationship requires a non-linear thermodynamics approach to these biological systems. This change of perspective is a necessary step for developing successful 'tumour-reversion' therapeutic strategies.
Collapse
Affiliation(s)
- Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
| | - Alessandro Giuliani
- Environmental and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| |
Collapse
|
28
|
Nurmaganbetov ZS, Arystan LI, Muldaeva GM, Haydargalieva LS, Adekenov SM. Experimental study of antiparkinsonian action of the harmine hydrochloride original compound. Pharmacol Rep 2019; 71:1050-1058. [PMID: 31605892 DOI: 10.1016/j.pharep.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND The effects of chemical products on the nervous system have been studied by various scientists. In this work, the antiparkinsonian action of a water-soluble form of harmine hydrochloride was studied. The present studies aim to research antiparkinsonian action of the harmine hydrochloride original compound. METHODS To achieve the objective of the study, the authors used haloperidol-induced catalepsy and a method of Parkinson's syndrome (PS) induced by the MPTP (the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxin. The experiments were performed on rats and mice which were divided into groups of 10 animals. RESULTS It was established that harmine hydrochloride (HH), at a certain dose, eliminated haloperidol-induced catalepsy in rats and reduced oligokinesia and rigidity in the parkinsonism test in mice. Seven days after the experiment, the authors found the presence of rigidity in animals which had received the neurotoxin. It manifested itself in a shortened stride length compared to this parameter in intact controls. CONCLUSIONS During the study the efficacy of harmine hydrochloride was equivalent to the effects of levodopa at a certain dose, which suggested that harmine hydrochloride compensated dopamine deficiency in the brain.
Collapse
Affiliation(s)
| | - Leila I Arystan
- Department of General Practice No 2, Karaganda State Medical University, Karaganda, Kazakhstan.
| | - Gulmira M Muldaeva
- Department of General Practice No 2, Karaganda State Medical University, Karaganda, Kazakhstan.
| | - Leila S Haydargalieva
- Department of General Practice No 2, Karaganda State Medical University, Karaganda, Kazakhstan.
| | - Sergazy M Adekenov
- JSC "International Research and Production Holding "Phytochemistry", Karaganda, Kazakhstan.
| |
Collapse
|
29
|
Meta-Analysis of Cancer Triploidy: Rearrangements of Genome Complements in Male Human Tumors Are Characterized by XXY Karyotypes. Genes (Basel) 2019; 10:genes10080613. [PMID: 31412657 PMCID: PMC6723511 DOI: 10.3390/genes10080613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
Triploidy in cancer is associated with poor prognosis, but its origins remain unclear. Here, we attempted to differentiate between random chromosomal and whole-genome origins of cancer triploidy. In silico meta-analysis was performed on 15 male malignant and five benign tumor cohorts (2928 karyotypes) extracted from the Mitelman Database, comparing their ploidy and combinations of sex chromosomes. A distinct near-triploid fraction was observed in all malignant tumor types, and was especially high in seminoma. For all tumor types, X-chromosome doubling, predominantly observed as XXY, correlated strongly with the near-triploid state (r ≈ 0.9, p < 0.001), negatively correlated with near-diploidy, and did not correlate with near-tetraploidy. A smaller near-triploid component with a doubled X-chromosome was also present in three of the five benign tumor types, especially notable in colon adenoma. Principal component analysis revealed a non-random correlation structure shaping the X-chromosome disomy distribution across all tumor types. We suggest that doubling of the maternal genome followed by pedogamic fusion with a paternal genome (a possible mimic of the fertilization aberration, 69, XXY digyny) associated with meiotic reprogramming may be responsible for the observed rearrangements of genome complements leading to cancer triploidy. The relatively frequent loss of the Y-chromosome results as a secondary factor from chromosome instability.
Collapse
|
30
|
Salmina K, Huna A, Kalejs M, Pjanova D, Scherthan H, Cragg MS, Erenpreisa J. The Cancer Aneuploidy Paradox: In the Light of Evolution. Genes (Basel) 2019; 10:E83. [PMID: 30691027 PMCID: PMC6409809 DOI: 10.3390/genes10020083] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Aneuploidy should compromise cellular proliferation but paradoxically favours tumour progression and poor prognosis. Here, we consider this paradox in terms of our most recent observations of chemo/radio-resistant cells undergoing reversible polyploidy. The latter perform the segregation of two parental groups of end-to-end linked dyads by pseudo-mitosis creating tetraploid cells through a dysfunctional spindle. This is followed by autokaryogamy and a homologous pairing preceding a bi-looped endo-prophase. The associated RAD51 and DMC1/γ-H2AX double-strand break repair foci are tandemly situated on the AURKB/REC8/kinetochore doublets along replicated chromosome loops, indicative of recombination events. MOS-associated REC8-positive peri-nucleolar centromere cluster organises a monopolar spindle. The process is completed by reduction divisions (bi-polar or by radial cytotomy including pedogamic exchanges) and by the release of secondary cells and/or the formation of an embryoid. Together this process preserves genomic integrity and chromosome pairing, while tolerating aneuploidy by by-passing the mitotic spindle checkpoint. Concurrently, it reduces the chromosome number and facilitates recombination that decreases the mutation load of aneuploidy and lethality in the chemo-resistant tumour cells. This cancer life-cycle has parallels both within the cycling polyploidy of the asexual life cycles of ancient unicellular protists and cleavage embryos of early multicellulars, supporting the atavistic theory of cancer.
Collapse
Affiliation(s)
- Kristine Salmina
- Latvian Biomedical Research and Study Centre, LV1067 Riga, Latvia.
| | - Anda Huna
- Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| | | | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, LV1067 Riga, Latvia.
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology affil. to the Univ. of Ulm, 80937 Munich, Germany.
| | - Mark S Cragg
- Centre for Cancer Immunology, University of Southampton, Southampton SO16 6YD, UK.
| | | |
Collapse
|
31
|
Abstract
Life starts with a zygote, which is formed by the fusion of a haploid sperm and egg. The formation of a blastomere by cleavage division (nuclear division without an increase in cell size) is the first step in embryogenesis, after the formation of the zygote. Blastomeres are responsible for reprogramming the parental genome as a new embryonic genome for generation of the pluripotent stem cells which then differentiate by Waddington's epigenetic landscape to create a new life. Multiple authors over the past 150 years have proposed that tumors arises from development gone awry at a point within Waddington's landscape. Recent discoveries showing that differentiated somatic cells can be reprogrammed into induced pluripotent stem cells, and that somatic cell nuclear transfer can be used to successfully clone animals, have fundamentally reshaped our understanding of tumor development and origin. Differentiated somatic cells are plastic and can be induced to dedifferentiate into pluripotent stem cells. Here, I review the evidence that suggests somatic cells may have a previously overlooked endogenous embryonic program that can be activated to dedifferentiate somatic cells into stem cells of various potencies for tumor initiation. Polyploid giant cancer cells (PGCCs) have long been observed in cancer and were thought originally to be nondividing. Contrary to this belief, recent findings show that stress-induced PGCCs divide by endoreplication, which may recapitulate the pattern of cleavage-like division in blastomeres and lead to dedifferentiation of somatic cells by a programmed process known as "the giant cell cycle", which comprise four distinct but overlapping phases: initiation, self-renewal, termination and stability. Depending on the intensity and type of stress, different levels of dedifferentiation result in the formation of tumors of different grades of malignancy. Based on these results, I propose a unified dualistic model to demonstrate the origin of human tumors. The tenet of this model includes four points, as follows. 1. Tumors originate from a stem cell at a specific developmental hierarchy, which can be achieved by dualistic origin: dedifferentiation of the zygote formed by two haploid gametes (sexual reproduction) via the blastomere during normal development, or transformation from damaged or aged mature somatic cells via a blastomere-like embryonic program (asexual reproduction). 2. Initiation of the tumor begins with a stem cell that has uncoupled the differentiation from the proliferation program which results in stem cell maturation arrest. 3. The developmental hierarchy at which stem cells arrest determines the degree of malignancy: the more primitive the level at which stem cells arrest, the greater the likelihood of the tumor being malignant. 4. Environmental factors and intrinsic genetic or epigenetic alterations represent the risk factors or stressors that facilitate stem cell arrest and somatic cell dedifferentiation. However, they, per se, are not the driving force of tumorigenesis. Thus, the birth of a tumor can be viewed as a triad that originates from a stem cell via dedifferentiation through a blastomere or blastomere-like program, which then differentiates along Waddington's landscape, and arrests at a developmental hierarchy. Blocking the PGCC-mediated dedifferentiation process and inducing their differentiation may represent a novel alternative approach to eliminate the tumor occurrence and therapeutic resistance.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4095, United States.
| |
Collapse
|
32
|
Shilina MA, Grinchuk TM, Anatskaya OV, Vinogradov AE, Alekseenko LL, Elmuratov AU, Nikolsky NN. Cytogenetic and Transcriptomic Analysis of Human Endometrial MSC Retaining Proliferative Activity after Sublethal Heat Shock. Cells 2018; 7:cells7110184. [PMID: 30366433 PMCID: PMC6262560 DOI: 10.3390/cells7110184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Temperature is an important exogenous factor capable of leading to irreversible processes in the vital activity of cells. However, the long-term effects of heat shock (HS) on mesenchymal stromal cells (MSC) remain unstudied. We investigated the karyotype and DNA repair drivers and pathways in the human endometrium MSC (eMSC) survived progeny at passage 6 after sublethal heat stress (sublethal heat stress survived progeny (SHS-SP)). G-banding revealed an outbreak of random karyotype instability caused by chromosome breakages and aneuploidy. Molecular karyotyping confirmed the random nature of this instability. Transcriptome analysis found homologous recombination (HR) deficiency that most likely originated from the low thermostability of the AT-rich HR driving genes. SHS-SP protection from transformation is provided presumably by low oncogene expression maintained by tight co-regulation between thermosensitive HR drivers BRCA, ATM, ATR, and RAD51 (decreasing expression after SHS), and oncogenes mTOR, MDM2, KRAS, and EGFR. The cancer-related transcriptomic features previously identified in hTERT transformed MSC in culture were not found in SHS-SP, suggesting no traits of malignancy in them. The entrance of SHS-SP into replicative senescence after 25 passages confirms their mortality and absence of transformation features. Overall, our data indicate that SHS may trigger non-tumorigenic karyotypic instability due to HR deficiency and decrease of oncogene expression in progeny of SHS-survived MSC. These data can be helpful for the development of new therapeutic approaches in personalized medicine.
Collapse
Affiliation(s)
- Mariia A Shilina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Tatiana M Grinchuk
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Alexander E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Larisa L Alekseenko
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Artem U Elmuratov
- Institute of Biomedical Chemistry (IBMC) of Russian Academy of Sciences, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
- Medical Genetics Centre Genotek, Nastavnichesky Alley 17-1-15, 10510 Moscow, Russia.
| | - Nikolai N Nikolsky
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| |
Collapse
|
33
|
Bioenergetics of life, disease and death phenomena. Theory Biosci 2018; 137:155-168. [PMID: 29992378 PMCID: PMC6208829 DOI: 10.1007/s12064-018-0266-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
In this article, some new aspects of unified cell bioenergetics are presented. From the perspective of unified cell bioenergetics certain subsequent stages of cancer development, from initiation stage, through transformation to metastasis, are analyzed. Here we show that after transformation, cancer cells are permanently exposed to reactive oxygen species, that causes continual random DNA mutations and as a result genome and chromosomal destabilizations. The modern cancer attractor hypothesis has been extended in explaining cancer development. Discussion is conducted in light of current cancerogenesis research, including bioenergetic cancer initiation, the somatic mutation theory and the tissue organization field theory. In the article reasons complicating the discovery of patterns of cancer genome changes and cancer evolution are presented. In addition certain cancer therapeutic aspects are given attention to.
Collapse
|
34
|
Filatova NA, Knyazev NA, Skarlato SO, Anatskaya OV, Vinogradov AE. Natural killer cell activity irreversibly decreases afterCryptosporidiumgastroenteritis in neonatal mice. Parasite Immunol 2018. [DOI: 10.1111/pim.12524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- N. A. Filatova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - N. A. Knyazev
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
- Saint-Petersburg Academic University-Nanotechnology Research and Education Centre RAS; St-Petersburg Russia
| | - S. O. Skarlato
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - O. V. Anatskaya
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - A. E. Vinogradov
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| |
Collapse
|
35
|
Shu Z, Row S, Deng WM. Endoreplication: The Good, the Bad, and the Ugly. Trends Cell Biol 2018; 28:465-474. [PMID: 29567370 DOI: 10.1016/j.tcb.2018.02.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
To battle adverse internal and external conditions and maintain homeostasis, diploid organisms employ various cellular processes, such as proliferation and apoptosis. In some tissues, an alternative mechanism, endoreplication, is employed toward similar goals. Endoreplication is an evolutionarily conserved cell cycle program during which cells replicate their genomes without division, resulting in polyploid cells. Importantly, endoreplication is reported to be indispensable for normal development and organ formation across various organisms, from fungi to humans. In recent years, more attention has been drawn to delineating its connections to wound healing and tumorigenesis. In this Review, we discuss mechanisms of endoreplication and polyploidization, their essential and positive roles in normal development and tissue homeostasis, and the relationship between polyploidy and cancer.
Collapse
Affiliation(s)
- Zhiqiang Shu
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Sarayu Row
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
36
|
Polyploidy and nuclear phenotype characteristics of cardiomyocytes from diabetic adult and normoglycemic aged mice. Acta Histochem 2018; 120:84-94. [PMID: 29241633 DOI: 10.1016/j.acthis.2017.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/22/2022]
Abstract
The frequency of polyploid nuclei in the aging human heart is in sharp contrast with that in the human liver. An inverse pattern exists between the mouse heart and liver cells. Ploidy degrees in mouse hepatocytes under hyperglycemic conditions are elevated to higher levels than those in aged hepatocytes. In this study, image analysis cytometry was used to investigate the effect of diabetes and aging on Feulgen-DNA quantities, ploidy degrees, nuclear shapes and chromatin texture in mouse cardiomyocytes compared to previously reported data for mouse hepatocytes. Adult, non-obese diabetic (NOD) hyperglycemic and normoglycemic females and 56-week-old normoglycemic BALB/c females were used. A small percentage (∼7%) of the cardiomyocyte nuclei in severely hyperglycemic NOD adult mice possessed higher ploidy values than those in the 8-week-old normoglycemic mice. Surprisingly, the Feulgen-DNA values and the frequency of nuclei belonging to the 4C and 8C ploidy classes were even higher (∼6%) in normoglycemic NOD specimens than in age-matched hyperglycemic NOD specimens. Additionally, a pronounced elongated nuclear shape was observed especially in adult normoglycemic NOD mice. In conclusion, NOD mice, irrespective of their glycemic level, exhibit a moderate increase in ploidy degrees within cardiomyocyte nuclei during the adult lifetime. As expected, aging did not affect the Feulgen-DNA values and the ploidy degrees of cardiomyocytes in BALB/c mice. The differences in ploidy degrees and chromatin textures such as absorbance variability and entropy, between adult NOD and aged BALB/c mice are consistent with other reports, indicating dissimilarities in chromatin functions between diabetes and aging.
Collapse
|
37
|
Molecular Genetic Analysis of Human Endometrial Mesenchymal Stem Cells That Survived Sublethal Heat Shock. Stem Cells Int 2017; 2017:2362630. [PMID: 29375621 PMCID: PMC5742502 DOI: 10.1155/2017/2362630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
High temperature is a critical environmental and personal factor. Although heat shock is a well-studied biological phenomenon, hyperthermia response of stem cells is poorly understood. Previously, we demonstrated that sublethal heat shock induced premature senescence in human endometrial mesenchymal stem cells (eMSC). This study aimed to investigate the fate of eMSC-survived sublethal heat shock (SHS) with special emphasis on their genetic stability and possible malignant transformation using methods of classic and molecular karyotyping, next-generation sequencing, and transcriptome functional analysis. G-banding revealed random chromosome breakages and aneuploidy in the SHS-treated eMSC. Molecular karyotyping found no genomic imbalance in these cells. Gene module and protein interaction network analysis of mRNA sequencing data showed that compared to untreated cells, SHS-survived progeny revealed some difference in gene expression. However, no hallmarks of cancer were found. Our data identified downregulation of oncogenic signaling, upregulation of tumor-suppressing and prosenescence signaling, induction of mismatch, and excision DNA repair. The common feature of heated eMSC is the silence of MYC, AKT1/PKB oncogenes, and hTERT telomerase. Overall, our data indicate that despite genetic instability, SHS-survived eMSC do not undergo transformation. After long-term cultivation, these cells like their unheated counterparts enter replicative senescence and die.
Collapse
|