1
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Saadh MJ, Ahmed HH, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Jawad MJ, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. Small molecule and big function: MicroRNA-mediated apoptosis in rheumatoid arthritis. Pathol Res Pract 2024; 261:155508. [PMID: 39116571 DOI: 10.1016/j.prp.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune condition and chronic inflammatory disease, mostly affecting synovial joints. The complex pathogenesis of RA is supportive of high morbidity, disability, and mortality rates. Pathological changes a common characteristic in RA synovial tissue is attributed to the inadequacy of apoptotic pathways. In that regard, apoptotic pathways have been the center of attention in RA therapeutic approaches. As the regulators in the complex network of apoptosis, microRNAs (miRNAs) are found to be vital modulators in both intrinsic and extrinsic pathways through altering their regulatory genes. Indeed, miRNA, a member of the family of non-coding RNAs, are found to be an important player in not even apoptosis, but proliferation, gene expression, signaling pathways, and angiogenesis. Aberrant expression of miRNAs is implicated in attenuation and/or intensification of various apoptosis routes, resulting in culmination of human diseases including RA. Considering the need for more studies focused on the underlying mechanisms of RA in order to elevate the unsatisfactory clinical treatments, this study is aimed to delineate the importance of apoptosis in the pathophysiology of this disease. As well, this review is focused on the critical role of miRNAs in inducing or inhibiting apoptosis of RA-synovial fibroblasts and fibroblast-like synoviocytes and how this mechanism can be exerted for therapeutic purposes for RA.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand- 831001, India.
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
3
|
Fu W, Shentu C, Chen D, Qiu J, Zong C, Yu H, Zhang Y, Chen Y, Liu X, Xu T. Network pharmacology combined with affinity ultrafiltration to elucidate the potential compounds of Shaoyao Gancao Fuzi Decoction for the treatment of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118268. [PMID: 38677569 DOI: 10.1016/j.jep.2024.118268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shaoyao Gancao Fuzi Decoction (SGFD), has been employed for thousands of years in the treatment of rheumatoid arthritis (RA) with remarkable clinical efficacy. However, the material basis underlying the effectiveness of SGFD still remains unclear. AIM OF THE REVIEW This study aims to elucidate the material basis of SGFD through the application of network pharmacology and biological affinity ultrafiltration. RESULTS UPLC-Q-TOF-MS/MS was employed to characterize the components in SGFD, the identified 145 chemical components were mainly categorized into alkaloids, flavonoids, triterpenoids, and monoterpenoids according to the structures. Network pharmacology method was utilized to identify potential targets and signaling pathways of SGFD in the RA treatment, and the anti-inflammatory and anti-RA effects of SGFD were validated through in vivo and in vitro experiments. Moreover, as the significant node in the pharmacology network, TNF-α, a classical therapeutic target in RA, was subsequent employed to screen the interacting compounds in SGFD via affinity ultrafiltration screening method, 6 active molecules (i.e.,glycyrrhizic acid, paeoniflorin, formononetin, isoliquiritigenin, benzoyl mesaconitine, and glycyrrhetinic acid) were exhibited significant interactions. Finally, the significant anti-inflammatory and anti-TNF-α effects of these compounds were validated at the cellular level. CONCLUSIONS In conclusion, this study comprehensively elucidates the pharmacodynamic material basis of SGFD, offering a practical reference model for the systematic investigation of traditional Chinese medicine formulas.
Collapse
Affiliation(s)
- Weiliang Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Chengyu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Dan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Junjie Qiu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China
| | - Chuhong Zong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Hengyuan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yiwei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China.
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China.
| |
Collapse
|
4
|
Zhao L, Liu M, Zheng K, Xiao Q, Yuan L, Wu C, Bao J. Fufang Duzheng tablet attenuates adjuvant rheumatoid arthritis by inhibiting arthritis inflammation and gut microbiota disturbance in rats. Heliyon 2024; 10:e32705. [PMID: 39183834 PMCID: PMC11341321 DOI: 10.1016/j.heliyon.2024.e32705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024] Open
Abstract
Objective To explore the treatment effect and potential mechanism on gut microbiota, nutrition, and metabolism of Fufang Duzheng Tablet (DZGP) on rheumatoid arthritis (RA). Methods Collagen-induced arthritis rats' models were established and divided into three groups: model control group (FK), DZGP group (FZ, 0.45 g/kg/d), and methotrexate group (FM, 1.35 mg/kg), which were treated by gavage for 28 days. The physiopathologic changes of joints and body weight in each group were recorded; the morphology of synovial and ankle tissues was observed by hematoxylin-eosin staining, and the level of serum TNF-α and IL-1β was tested by ELISA. UPLC/MS-MS and network pharmacological analysis were used to identify the serum components, and 16S rDNA sequencing analysis was applied to the intestinal contents of rats. Results DZGP treatment significantly alleviated arthritis symptoms, pathological manifestations, toe thickness, and TNF-α and IL-1β levels in RA rats. We identified 105 metabolites and 18 components in the serum of DZGP-group rats. The main therapeutic targets of DZGP for anti-RA were TP53, epidermal growth factor receptor, and AKT1. Molecular docking showed that there was good binding efficiency between core components and main targets. 16S rDNA sequencing showed that DZGP treatment regulated the structure of the gut microbiota. Conclusion DZGP showed a good anti-inflammatory effect on RA and played an important role in improving the structure of the gut microbiota in RA rats.
Collapse
Affiliation(s)
- Liming Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 445000, Enshi, China
| | - Meilin Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kai Zheng
- Forest Seedlings and Wildlife Protection Management Station of Enshi Tujia and Miao Autonomous Prefecture, 445000, Enshi, China
| | - Qiang Xiao
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 445000, Enshi, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, 445000, Enshi, China
| | - Chuanfang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
5
|
Syed NH, Mussa A, Elmi AH, Jamal Al-Khreisat M, Ahmad Mohd Zain MR, Nurul AA. Role of MicroRNAs in Inflammatory Joint Diseases: A Review. Immunol Invest 2024; 53:185-209. [PMID: 38095847 DOI: 10.1080/08820139.2023.2293095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/03/2023] [Indexed: 03/23/2024]
Abstract
Inflammatory arthritis commonly initiates in the soft tissues lining the joint. This lining swells, as do the cells in it and inside the joint fluid, producing chemicals that induce inflammation signs such as heat, redness, and swelling. MicroRNA (miRNA), a subset of non-coding small RNA molecules, post-transcriptionally controls gene expression by targeting their messenger RNA. MiRNAs modulate approximately 1/3 of the human genome with their multiple targets. Recently, they have been extensively studied as key modulators of the innate and adaptive immune systems in diseases such as allergic disorders, types of cancer, and cardiovascular diseases. However, research on the different inflammatory joint diseases, such as rheumatoid arthritis, gout, Lyme disease, ankylosing spondylitis, and psoriatic arthritis, remains in its infancy. This review presents a deeper understanding of miRNA biogenesis and the functions of miRNAs in modulating the immune and inflammatory responses in the above-mentioned inflammatory joint diseases. According to the literature, it has been demonstrated that the development of inflammatory joint disorders is closely related to different miRNAs and their specific regulatory mechanisms. Furthermore, they may present as possible prognostic and diagnostic biomarkers for all diseases and may help in developing a therapeutic response. However, further studies are needed to determine whether manipulating miRNAs can influence the development and progression of inflammatory joint disorders.
Collapse
Affiliation(s)
- Nazmul Huda Syed
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Ali Mussa
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman, Sudan
| | - Abdirahman Hussein Elmi
- Department of Microbiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
6
|
Zhang X, He X, Zhang M, Wu T, Liu X, Zhang Y, Xie Z, Liu S, Xia T, Wang Y, Wei F, Wang H, Xie C. Efficient delivery of the lncRNA LEF1-AS1 through the antibody LAIR-1 (CD305)-modified Zn-Adenine targets articular inflammation to enhance the treatment of rheumatoid arthritis. Arthritis Res Ther 2023; 25:238. [PMID: 38062469 PMCID: PMC10702009 DOI: 10.1186/s13075-023-03226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUNDS Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovial hyperplasia. Maintaining a balance between the proliferation and apoptosis of rheumatoid arthritis synovial fibroblasts (RASFs) is crucial for preventing the erosion of bone and cartilage and, ultimately, mitigating the progression of RA. We found that the lncRNA LEF1-AS1 was expressed at low levels in the RASFs and inhibited their abnormal proliferation by targeting PIK3R2 protein and regulating the PI3K/AKT signal pathway through its interaction with miR-30-5p. In this study, we fabricated a nano-drug delivery system for LEF1-AS1 using Zn-Adenine nanoparticles (NPs) as a novel therapeutic strategy against RA. METHODS The expression levels of LEF1-AS1, miR-30-5p, PIK3R2, p-PI3K, and p-AKT were detected in the primary RASFs and a human fibroblast-like synovial cell line (HFLS). Zn-Adenine nanoparticles (NPs) were functionalized with anti-CD305 antibody to construct (Zn-Adenine)@Ab. These NPs were then loaded with LEF1-AS1 to form (Zn-Adenine)@Ab@lncRNA LEF1-AS1. Finally, the (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs were locally injected into a rat model with collagen-induced arthritis (CIA). The arthritic injuries in each group were evaluated by HE staining and other methods. RESULTS LEF1-AS1 was expressed at low levels in the primary RASFs. High expression levels of LEF1-AS1 were detected in the HFLS cells, which corresponded to a significant downregulation of miR-30-5p. In addition, the expression level of PIK3R2 was significantly increased, and that of p-PI3K and p-AKT were significantly downregulated in these cells. The (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs significantly inhibited the proliferation of RASFs and decreased the production of inflammatory cytokines (IL-1β, IL-6, TNF-α). Intra-articular injection (IAI) of (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs significantly alleviated cartilage destruction and joint injury in the CIA-modeled rats. CONCLUSIONS LEF1-AS1 interacts with miR-30-5p to inhibit the abnormal proliferation of RASFs by regulating the PI3K/AKT signal pathway. The (Zn-Adenine)@Ab NPs achieved targeted delivery of the loaded LEF1-AS1 into the RASFs, which improved the cellular internalization rate and therapeutic effects. Thus, LEF1-AS1 is a potential target for the treatment of RA.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Xiaoyu He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China
| | - Ming Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Tianyu Wu
- Department of Preventive Medicine, Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Xiaojie Liu
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Yan Zhang
- Clinical Medicine Department of Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Zhuobei Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China
| | - Saisai Liu
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Tian Xia
- Clinical Medicine Department of Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Yuanyuan Wang
- Department of Tissue and Embryology, Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China.
| | - Changhao Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China.
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, 287 Changhuai Road, Bengbu, Anhui, 233004, China.
| |
Collapse
|
7
|
Zhang X, Liu J, Sun Y, Zhou Q, Ding X, Chen X. Chinese herbal compound Huangqin Qingrechubi capsule reduces lipid metabolism disorder and inflammatory response in gouty arthritis via the LncRNA H19/APN/PI3K/AKT cascade. PHARMACEUTICAL BIOLOGY 2023; 61:541-555. [PMID: 36994890 PMCID: PMC10064824 DOI: 10.1080/13880209.2023.2191641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Gouty arthritis (GA) is a characteristically inflammatory disease often associated with lipid metabolism disorder. Huangqin Qingrechubi capsule (HQC) has been used for the treatment of GA. OBJECTIVE To explore the mechanism of HQC in the treatment of GA. MATERIALS AND METHODS A total of 30 GA patients (GA group) and 30 healthy subjects [normal control (NC) group] were recruited. The GA group was treated with HQC (3.6 g/d) for 10 days. Lipid metabolism and inflammation indexes were detected. Five herbal names of HQC, or 'gouty arthritis', 'hyperlipidemia' and 'inflammation' were used as key words to search related databases for network pharmacological analysis. Subsequently, GA-fibroblast-like synoviocytes (FLSs) were stimulated with GA-peripheral blood mononuclear cells (PBMCs) (3:1) and treated with HQC drug-containing serum (20%). RT-qPCR, Western blot, and ELISA were conducted to further explore the mechanism of HQC in improving GA. RESULTS In clinical observation, HQC decreased the expression of lncRNA H19 and IL-1β, and increased the expression of adiponectin (APN) and IL-4 in the GA group (about half). Through network pharmacology, the PI3K/AKT signaling pathway was identified. Cell experiments showed that HQC treatment reduced the viability of GA-FLSs (49.61%), up-regulated the expression of IL-4 (155.18%), IL-10 (165.13%), and APN (31.24%), and down-regulated the expression of lncRNA H19 (33.70%), IL-1β (64.70%), TNF-α (78.32%), p-PI3K (48.80%), and p-AKT (53.48%). DISCUSSION AND CONCLUSIONS HQC improved lipid metabolism disorder and inflammatory response of GA by regulating the lncRNA H19/APN/PI3K/AKT. Maintaining the stability of lipid metabolism may be an effective way to alleviate GA.
Collapse
Affiliation(s)
- Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Qin Zhou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Nong Y, Zhang C, Guo Y, Qin Y, Zhong X, Feng L, Pan Z, Deng L, Guo H, Su Z. Quality control for a traditional Chinese medicine, Millettia speciosa Champ, using ultra-high-performance liquid chromatography fingerprint, serum pharmacochemistry and network pharmacology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5166-5180. [PMID: 37753596 DOI: 10.1039/d3ay01051a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Millettia speciosa (M. speciosa) Champ (MSC) is a healthy food type with medicinal and edible homology, which is now considered a clinically significant anti-rheumatoid arthritis medicine. However, there is currently no standardized or generally accepted research strategy by which we can assess M. speciosa. Thus, it is essential to develop novel theories, strategies and evaluation methods for the scientific quality control of M. speciosa. Herein, our use ultra-high-performance liquid chromatography (UPLC)-MS/MS analysis identified 12 common bioactive components absorbed into MSC serum. Next, network pharmacology analysis exhibited that 5 MSC components may be those active components in treating rheumatoid arthritis and may be considered potential quality markers. These 5 components were then quantified using a fast UPLC approach, based on the quality marker of measurability, showing that lenticin can be regarded as the MSC quality marker. The cumulative study findings, based on systematic assessment of chemical composition both in vivo and in vitro, and the potential efficacy of M. speciosa, provide a novel approach for M. speciosa quality control.
Collapse
Affiliation(s)
- Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Chi Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yue Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, Guangxi, 530022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Ziping Pan
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Hongwei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
9
|
Vijaykrishnaraj M, Patil P, Ghate SD, Bhandary AK, Haridas VM, Shetty P. Efficacy of HDAC inhibitors and epigenetic modulation in the amelioration of synovial inflammation, cellular invasion, and bone erosion in rheumatoid arthritis pathogenesis. Int Immunopharmacol 2023; 122:110644. [PMID: 37454631 DOI: 10.1016/j.intimp.2023.110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Rheumatoid arthritis (RA), an auto-immune disorder affected 1 % of the population around the globe. The pathophysiology of RA is highly concerted process including synovial hyperplasia, pannus formation, bone erosion, synovial cell infiltration in joints, and cartilage destruction. However, recent reports suggest that epigenetics play a pivotal role in the formation and organization of immune response in RA. Particularly, altered DNA methylation and impaired microRNA (miRNA) were detected in several immune cells of RA patients, such as T regulatory cells, fibroblast-like synoviocytes, and blood mononuclear cells. All these processes can be reversed by regulating the ubiquitous or tissue-based expression of histone deacetylases (HDACs) to counteract and terminate them. Hence, HDAC inhibitors (HDACi) could serve as highly potent anti-inflammatory regulators in the uniform amelioration of inflammation. Therefore, this review encompasses the information mainly focussing on the epigenetic modulation in RA pathogenesis and the efficacy of HDACi as an alternative therapeutic option for RA treatment. Overall, these studies have reported the targeting of HDAC1, 2 & 6 molecules would attenuate synoviocyte inflammation, cellular invasion, and bone erosion. Further, the inhibitors such as trichostatin A, suberoyl bis-hydroxamic acid, suberoyl anilide hydroxamic acid, and other compounds are found to attenuate synovial inflammatory immune response, clinical arthritis score, paw swelling, bone erosion, and cartilage destruction. Insight to view this, more clinical studies are required to determine the efficacy of HDACi in RA treatment and to unravel the underlying molecular mechanisms.
Collapse
Affiliation(s)
- M Vijaykrishnaraj
- Central Research Laboratory, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, India
| | - Prakash Patil
- Central Research Laboratory, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, India
| | - Sudeep D Ghate
- Center for Bioinformatics, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, India
| | - Adithi K Bhandary
- Department of General Medicine, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, India
| | - Vikram M Haridas
- Arthritis Super Speciality Centre, Hubli 580020, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, India.
| |
Collapse
|
10
|
Zhang H, Shang H, Wang Z, Li K. Associations of miRNA-146a and miRNA-223 with Rheumatoid Arthritis and Their Predictive Values. Int J Gen Med 2023; 16:3211-3218. [PMID: 37546237 PMCID: PMC10402887 DOI: 10.2147/ijgm.s416317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose To analyze the independent associations of miRNA-146a and miRNA-223 with rheumatoid arthritis (RA) and evaluate their predictive values for RA. Patients and Methods A total of 68 RA patients were selected as cases, and meanwhile 68 patients with a traumatic knee condition were selected as controls by matching to the cases according to sex and age at the ratio of 1:1. The independent associations of miRNA-146a and miRNA-223 with RA were identified by binary logistic regression analysis. Receiver operating characteristic (ROC) curve was used to evaluate their predictive values for RA. Results MiRNA-146a and miRNA-223 expression levels in both synovial tissues and serums were statistically higher in cases than in controls, and their expression levels in serums were not statistically different from those in synovial tissues in both cases and controls. The expression levels of miRNA-146a and miRNA-223 in synovial tissues were independently associated with RA, as well as the expression levels of miRNA-146a and miRNA-223 in serums. The area under curve (AUC) of combination of miRNA-146a and miRNA-223 in synovial tissues for the prediction of RA was 0.910 [95% confidence interval (CI): 0.863-0.962], and the AUC of combination of miRNA-146a and miRNA-223 in serums was 0.904 (95% CI: 0.851-0.957). Their difference was not statistically significant (P=0.873), but the AUC of combination prediction was statistically higher than those of individual predictions (synovial tissues: 0.910 vs 0.773, P=0.005, 0.910 vs 0.788, P=0.009; serums: 0.904 vs 0.766, P=0.005, 0.904 vs 0.784, P=0.011). Conclusion MiRNA-146a and miRNA-223 in both synovial tissues and serums could be applied in predicting RA, and their combination could elevate the predictive value significantly.
Collapse
Affiliation(s)
- Haoshaqiang Zhang
- Department of Orthopedics Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
| | - Hua Shang
- Department of Orthopedics Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
- Department of Human Resources, People's Hospital of Xinjiang Uygur Autonomous Region, UrumqiPeople's Republic of China
| | - Zhigang Wang
- Department of Orthopedics Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
| | - Kun Li
- Department of Orthopedics Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
| |
Collapse
|
11
|
Kondo N, Kanai T, Okada M. Rheumatoid Arthritis and Reactive Oxygen Species: A Review. Curr Issues Mol Biol 2023; 45:3000-3015. [PMID: 37185721 PMCID: PMC10137217 DOI: 10.3390/cimb45040197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease that causes progressive joint damage and can lead to lifelong disability. Numerous studies support the hypothesis that reactive oxygen species (ROS) are associated with RA pathogenesis. Recent advances have clarified the anti-inflammatory effect of antioxidants and their roles in RA alleviation. In addition, several important signaling pathway components, such as nuclear factor kappa B, activator-protein-1, nuclear factor (erythroid-derived 2)-like 2/kelch-like associated protein, signal transducer and activator of transcription 3, and mitogen-activated protein kinases, including c-Jun N-terminal kinase, have been identified to be associated with RA. In this paper, we outline the ROS generation process and relevant oxidative markers, thereby providing evidence of the association between oxidative stress and RA pathogenesis. Furthermore, we describe various therapeutic targets in several prominent signaling pathways for improving RA disease activity and its hyper oxidative state. Finally, we reviewed natural foods, phytochemicals, chemical compounds with antioxidant properties and the association of microbiota with RA pathogenesis.
Collapse
Affiliation(s)
- Naoki Kondo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tomotake Kanai
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
12
|
Wu Y, Wang H, Huo Y, Yan B, Honda H, Liu W, Yang J. Differentiated embryonic chondrocyte expressed gene-1 is a central signaling component in the development of collagen-induced rheumatoid arthritis. J Biol Chem 2023; 299:102982. [PMID: 36739947 PMCID: PMC10011830 DOI: 10.1016/j.jbc.2023.102982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases and affects almost 1% of the population. Differentiated embryo-chondrocyte expressed gene-1 (DEC1) has been associated with both osteogenesis and osteoclastogenesis. RA condition is marked by inflammatory hyperplasia, and DEC1 is known to support inflammatory reactions and implicated in antiapoptosis and cell invasion. Here, our goal was to test the hypothesis that DEC1 enhances RA development induced by collagen-induced arthritis (CIA), a well-recognized protocol for developing RA animal models. DEC1+/+ and DEC1-/- mice were subjected to CIA protocol, and the development of RA condition was monitored. We found that CIA robustly induced RA phenotypes (e.g., synovial hyperplasia) and greatly increased the expression of proinflammatory cytokines such as TNF-α. However, these changes were detected in DEC1+/+ but not DEC1-/- mice. Interestingly, these very cytokines strongly induced DEC1, and such a dual role of DEC1, as an inducer for and being induced by proinflammatory cytokines, constitutes a DEC1-amplifying circuit for inflammation. Knockdown of DEC1 in human MH7A cells strongly decreased cell migration and invasion as well as the expression of genes related to RA phenotypes. The combination of DEC1-directed migration and invasion in vitro with synovial hyperplasia in vivo mechanistically establishes cellular bases on how DEC1 is involved in the development of RA phenotypes. In addition to inflammatory signaling, DEC1 functionally interacted with PI3KCA(p110α)/Akt/GSK3β, Wnt/β-catenin, and NFATc1. Such engagement in multiple signaling pathways suggests that DEC1 plays coordinated and integral roles in developing RA, one of the most common autoimmune diseases.
Collapse
Affiliation(s)
- Yichen Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Haobin Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Ying Huo
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Bingfang Yan
- Department of Pharmacology, James L. Winkle College of Pharmacy University of Cincinnati, Cincinnati, Ohio, USA
| | - Hiroaki Honda
- Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Peng Y, Li Y, Yang Y, Gao Y, Ren H, Hu J, Cui X, Lu W, Tao H, Chen Z. The genus Porana (Convolvulaceae) - A phytochemical and pharmacological review. Front Pharmacol 2022; 13:998965. [PMID: 36330088 PMCID: PMC9622789 DOI: 10.3389/fphar.2022.998965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
There are about 20 species of Porana Burm. f. worldwide in tropical and subtropical Asia, Africa and neighboring islands, Oceania, and the Americas. In China, India, and other places, this genus enjoys a wealth of experience in folk applications. Nevertheless, the chemical composition of only five species has been reported, and 59 compounds have been isolated and identified, including steroids, coumarins, flavonoids, quinic acid derivatives, and amides. Pharmacological studies revealed that extracts from this genus and their bioactive components exhibit anti-inflammatory, analgesic, antioxidant, anti-gout, anti-cancer, and anti-diabetic effects. Although this genus is abundant, the development of its pharmacological applications remains limited. This review will systematically summarize the traditional and current uses, chemical compositions, and pharmacological activities of various Porana species. Network analysis was introduced to compare and confirm its output with current research progress to explore the potential targets and pathways of chemical components in this genus. We hope to increase understanding of this genus’s medicinal value and suggest directions for rational medicinal development.
Collapse
Affiliation(s)
- Yu Peng
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Li
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Yuanyuan Yang
- Xi’an Institute for Food and Drug Control, Xi’an, Shaanxi, China
| | - Yuanqing Gao
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Ren
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Jing Hu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Xiaomin Cui
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Wenjing Lu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- *Correspondence: Hongxun Tao, ; Zhiyong Chen,
| | - Zhiyong Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
- *Correspondence: Hongxun Tao, ; Zhiyong Chen,
| |
Collapse
|
14
|
Mandal AK, Sahoo A, Dwivedi K, Singh R, Kumar V. Potential therapeutic application of biophenols - plants secondary metabolites in rheumatoid arthritis. Crit Rev Food Sci Nutr 2022; 63:8900-8918. [PMID: 35593234 DOI: 10.1080/10408398.2022.2062700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease showed that persistent inflammation in the joints, induces the cartilage destruction, bone erosion, and leukocyte infiltration in the synovium. RA mostly affects the joints of hands, feet, wrists, ankles, and knees. Each year, approximately 20-40 new cases are reported per lac population and the disease affects women more than men. The etiology of RA is still unknown, but many pathways have been identified as potential targets in its pathophysiology, including the PI3K/AKT signaling pathway, NF-κB signaling, Adenosine signaling, Wnt, SYK/BTK, and mTOR signaling pathways. Biophenol, plant secondary metabolite, is considered one of the most abundantly phytoconstituents to have potential anti-inflammatory effects associated with multiple pathways. These indicate that biophenols can be used for its protective effect on the development and symptoms of RA. The current review explores and discusses the role of different biophenols in the treatment of RA disease.
Collapse
Affiliation(s)
| | - Ankit Sahoo
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy, Prayagraj, Uttar Pradesh, India
| | - Richa Singh
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
15
|
Hu J, Zhao L, Li N, Yang Y, Qu T, Ren H, Cui X, Tao H, Chen Z, Peng Y. Investigation of the active ingredients and pharmacological mechanisms of Porana sinensis Hemsl. Against rheumatoid arthritis using network pharmacology and experimental validation. PLoS One 2022; 17:e0264786. [PMID: 35235611 PMCID: PMC8890728 DOI: 10.1371/journal.pone.0264786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Porana sinensis Hemsl. has been widely used as a substitute for Erycibes Caulis to treat rheumatoid arthritis (RA) in traditional Chinese medicine (TCM). However, little is known about the active ingredients and pharmacological mechanisms that mediate the action of P. sinensis against RA. Methods The compounds contained in P. sinensis were analyzed by Q Exactive Focus mass spectrometer. The active constituents and pharmacological mechanism of P. sinensis against RA were clarified using a network pharmacology-based investigation. LPS-induced RAW 264.7 cells was used to verify anti-inflammatory effects of the active compounds screened by network pharmacology. Collagen-induced arthritis model was used to further investigate the mechanism of P. sinensis against RA. Results The potential components and targets of P. sinensis against RA were analyzed using network pharmacology, and five compounds, twenty-five targets, and eight pathways were identified. Experimental validation suggested that P. sinensis extract and five compounds (esculetin, umbelliferone, trans-N-feruloyltyramine, caffeic acid and scopolin) could inhibit the release of inflammatory mediators (NO, TNF-α, IL-1β and IL-6) in LPS-induced RAW 264.7 cell. P. sinensis extract attenuated the severity, pathological changes, and release of cytokines (IL-6 and HIF-1α) during RA progression by regulating the PI3K/AKT and HIF-1 pathways. Conclusion The study provides a basis for the application of P. sinensis against RA. Our findings may provide suggestions for developing P. sinensis into a substitute for Erycibes Caulis.
Collapse
Affiliation(s)
- Jing Hu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Lintao Zhao
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Ning Li
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
- * E-mail: (NL); (ZC); (YP)
| | - Yuanyuan Yang
- Department of Traditional Chinese Medicine, Xi’an Institute for Food and Drug Control, Xi’an, China
| | - Tong Qu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Hui Ren
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Xiaomin Cui
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhiyong Chen
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
- * E-mail: (NL); (ZC); (YP)
| | - Yu Peng
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
- * E-mail: (NL); (ZC); (YP)
| |
Collapse
|
16
|
Kmiołek T, Paradowska-Gorycka A. miRNAs as Biomarkers and Possible Therapeutic Strategies in Rheumatoid Arthritis. Cells 2022; 11:cells11030452. [PMID: 35159262 PMCID: PMC8834522 DOI: 10.3390/cells11030452] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Within the past years, more and more attention has been devoted to the epigenetic dysregulation that provides an additional window for understanding the possible mechanisms involved in the pathogenesis of autoimmune rheumatic diseases. Rheumatoid arthritis (RA) is a heterogeneous disease where a specific immunologic and genetic/epigenetic background is responsible for disease manifestations and course. In this field, microRNAs (miRNA; miR) are being identified as key regulators of immune cell development and function. The identification of disease-associated miRNAs will introduce us to the post-genomic era, providing the real probability of manipulating the genetic impact of autoimmune diseases. Thereby, different miRNAs may be good candidates for biomarkers in disease diagnosis, prognosis, treatment and other clinical applications. Here, we outline not only the role of miRNAs in immune and inflammatory responses in RA, but also present miRNAs as diagnostic/prognostic biomarkers. Research into miRNAs is still in its infancy; however, investigation into these novel biomarkers could progress the use of personalized medicine in RA treatment. Finally, we discussed the possibility of miRNA-based therapy in RA patients, which holds promise, given major advances in the therapy of patients with inflammatory arthritis.
Collapse
|
17
|
Murzina E, Dosenko V, Drevytska T, Litus O, Bardova K, Vozianova S. Relationship between mir-126 expression in children with psoriasis, disease progression and therapeutic response. J Med Life 2022; 14:667-675. [PMID: 35027969 PMCID: PMC8742889 DOI: 10.25122/jml-2021-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the expression level of miR-126 in children with psoriasis in the epidermis affected by psoriasis and intact buccal epithelium, establish the impact on the characteristics of the course of psoriasis and the results of therapy in children with psoriasis of initial expression levels of miR-126. miR-126 expression levels in psoriatic keratinocytes and buccal epithelium were determined in 54 children with psoriasis on the severity of psoriasis, treatment efficacy. miR-126 levels in the buccal epithelium in children with psoriasis were reduced compared to healthy children (AUC=0.776±0.048, p<0.001). There were no discrepancies between miR-126 expression levels in psoriatic keratinocytes and buccal epithelium (p=0.097). There are statistically significant discrepancies between miR-126 expression levels in the psoriatic epidermis depending on the clinical form of psoriasis (AUC=0.637±0.056; p=0.014) and severity according to BSA (AUC=0.634±0.063; p=0.034). Depending on the miR-126 level in the buccal epithelium, the response to treatment (PASI<75) in children with high miR-126 is worse than in children with expected miR-126 levels (OR 2.79; 95%; CI: 1.19 - 6.51). Treatment failures were observed in children with high levels of miR-126 in the buccal epithelium compared to miR-126 in the psoriatic epidermis: children aged 12/13 to 17 years (OR 2.44; 95% CI: 1.02 - 5.85), children with PGA=4 (OR 3.16; 95% CI: 1.34 - 7.43). The location and level of miR-126 expression affects the course of psoriasis and the outcome of treatment. High levels of miR-126 in psoriatic keratinocytes lead to manifestations of plaque psoriasis with a course of moderate to severe forms. Initial miR-126 levels in the buccal epithelium in children with psoriasis are a prognostic criterion for response to therapy and can be used as a marker for prescribing systemic treatment.
Collapse
Affiliation(s)
- Elvina Murzina
- Department of Dermatovenereology, Allergology, Clinical and Laboratory Immunology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Victor Dosenko
- Department of General and Molecular Pathophysiology of Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
| | - Tetiana Drevytska
- Department of General and Molecular Pathophysiology of Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
| | - Oleksandr Litus
- Department of Dermatovenereology, Allergology, Clinical and Laboratory Immunology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Kateryna Bardova
- Department of Dermatovenereology, Allergology, Clinical and Laboratory Immunology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Svitlana Vozianova
- Department of Dermatovenereology, Allergology, Clinical and Laboratory Immunology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| |
Collapse
|
18
|
Liu S, Ma H, Zhang H, Deng C, Xin P. Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis. Clin Immunol 2021; 230:108793. [PMID: 34242749 DOI: 10.1016/j.clim.2021.108793] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by systemic synovitis leading to joint destruction in which imbalances in pro-inflammatory and anti-inflammatory cytokines promote the induction of autoimmunity. Some pro-inflammatory cytokines can trigger the signaling pathways which responsible for immune-mediated inflammation in RA, and the activated signaling pathways produce pro-inflammatory cytokines, resulting in aggravation of RA. Hence, understanding of the signaling pathways and their inhibitors might be advantageous in the development of therapeutic targets and new drugs for RA. In the current review, we summarize the signaling pathways involved in the pathogenesis of RA as well as the potential role of specific inhibitors in its management. We hope this paper may serve a reference for future studies on signaling pathways implicated in the pathogenesis of RA and benefit the treatment of RA.
Collapse
Affiliation(s)
- Shuang Liu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hongxing Ma
- Clinical Laboratory Department, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, China
| | - Huaxi Zhang
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Chengjie Deng
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Ping Xin
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China.
| |
Collapse
|
19
|
Zhang SQ, Wang LL, Li YT, Wang G, Li L, Sun SZ, Yao LJ, Shen L. MicroRNA-126 Attenuates the Effect of Chemokine CXCL8 on Proliferation, Migration, Apoptosis, and MAPK-Dependent Signaling Activity of Vascular Endothelial Cells Cultured in a Medium with High Glucose Concentration. Bull Exp Biol Med 2021; 171:202-207. [PMID: 34173106 DOI: 10.1007/s10517-021-05195-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 02/05/2023]
Abstract
We studied the mechanisms by which microRNA-126 regulates proliferation and migration of human umbilical vein endothelial cells (HUVEC) cultured in a medium with high glucose concentration and treated with chemokine CXCL8. Cell proliferation, apoptosis, and migration were analyzed by the CCK-8 assay, Annexin V-PI staining, and Transwell assay, respectively. The ratios of p-ERK/ERK, p-P38/P38, p-JNK/JNK were determined by ELISA. HUVEC cells cultured in the presence of high glucose concentration (30 mmol/ml) and treated with CXCL8 (50 ng/ml) demonstrated more intensive proliferation, migration, and p-ERK/ERK, p-P38/P38, and p-JNK/JNK ratios and significantly lower apoptosis rate than control cells (high glucose, no treatment) and cells treated with CXCL8 and transfected with microRNA-126-mimic. Thus, microRNA-126 regulates proliferation and migration of HUVEC cells cultured in the presence of high glucose concentrations and treated with CXCL8 through inhibition of MAPK signaling pathway.
Collapse
Affiliation(s)
- S Q Zhang
- Yue Bei People's Hospital, Shantou University Medical College, Guangdong, China
- Department of Anatomy, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - L L Wang
- Department of Stem Cell Tissue Engineering and Tissue Injury Repair, Institute of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Y T Li
- Department of Anatomy, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - G Wang
- Department of Anatomy, Qiqihar Medical College, Qiqihar, Heilongjiang, China
- Department of Stem Cell Tissue Engineering and Tissue Injury Repair, Institute of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - L Li
- Department of Anatomy, Qiqihar Medical College, Qiqihar, Heilongjiang, China
- Department of Stem Cell Tissue Engineering and Tissue Injury Repair, Institute of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - S Z Sun
- Department of Anatomy, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - L J Yao
- Department of Anatomy, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - L Shen
- Department of Stem Cell Tissue Engineering and Tissue Injury Repair, Institute of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China.
| |
Collapse
|
20
|
Zha W, Guo B, Chen S, Lu J, Shan Y. Role of the long non-coding RNA HOTAIR/miR-126 axis in an in vitro psoriasis model. Exp Ther Med 2021; 21:450. [PMID: 33747185 PMCID: PMC7967857 DOI: 10.3892/etm.2021.9878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a T-cell-mediated inflammatory skin disease that is characterized by excessive keratinocyte proliferation and persistent skin inflammation. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are dysregulated in a number of inflammatory conditions. In the present study, an in vitro psoriasis cell model was established. Human HaCaT keratinocytes were activated using the inflammatory factor IL-22. Briefly, HaCaT cells were starved in serum-free DMEM for 24 h and then stimulated with 100 ng/ml IL-22 in serum-free DMEM for 24 h. Previous research indicated that HOX transcript antisense RNA (HOTAIR) may participate in the development of psoriasis. First, reverse transcription-quantitative PCR (RT-qPCR) analysis was performed to detect HOTAIR expression. The results indicated that HOTAIR expression was reduced in IL-22-stimulated HaCaT cells. Subsequently, a dual-luciferase reporter assay was performed to verify the binding site between HOTAIR and microRNA (miR)-126. The RT-qPCR results indicated that miR-126 expression was increased in IL-22-stimulated HaCaT cells. Moreover, the effects of HOTAIR and miR-126 on IL-22-stimulated HaCaT cell proliferation and apoptosis were assessed. HaCaT cells were transfected with control-plasmid, HOTAIR-plasmid, HOTAIR-plasmid + mimic control or HOTAIR-plasmid + miR-126 mimic for 24 h. At 24 h post-transfection, the cells were stimulated with 100 ng/ml IL-22 for 24 h and experiments were conducted. IL-22 induced cell proliferation and suppressed apoptosis. However, HOTAIR-plasmid inhibited cell viability and induced apoptosis in IL-22-stimulated HaCaT cells. In addition, the western blotting results indicated that HOTAIR-plasmid increased cleaved caspase-3 expression and the cleaved caspase-3/caspase-3 ratio, whereas the HOTAIR-plasmid-mediated effects were reversed by miR-126 mimic. Collectively, the results of the present study demonstrated that the lncRNA-HOTAIR/miR-126 axis may be implicated in the regulation of psoriasis progression and may serve as a potential therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Weifeng Zha
- Department of Dermatology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Bo Guo
- Department of Dermatology, Tongxiang Dermatosis Prevention Institute, Tongxiang, Zhejiang 314500, P.R. China
| | - Shuyue Chen
- Department of Dermatology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Junwei Lu
- Department of Acupuncture, Integrated Chinese and Western Medicine Hospital of Xihu, Hangzhou, Zhejiang 310030, P.R. China
| | - Yunyun Shan
- Department of Dermatology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
21
|
Zhang L, Zhang K, Fang W, Li H, Li Y, Jiang W, Hu D, Coelho C, Liu X, Cai L, Liao W, Pan W. CircRNA-1806 Decreases T Cell Apoptosis and Prolongs Survival of Mice After Cryptococcal Infection by Sponging miRNA-126. Front Microbiol 2020; 11:596440. [PMID: 33281794 PMCID: PMC7691421 DOI: 10.3389/fmicb.2020.596440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/21/2020] [Indexed: 01/10/2023] Open
Abstract
CircRNAs are a recently well-known regulator that mediates a variety of biological processes. Cryptococcus neoformans is an environmental fungal pathogen that can cause fatal cryptococcal meningitis in immunocompromised individuals. However, the involvement of circRNA in cryptococcal infection remains unclear. In this study, high-throughput microarray was performed to identify the circRNA expression profile in cryptococcal meningitis patients. Circ_0001806 was significantly decreased in cryptococcal meningitis individuals. Then the effects of circ_0001806 and its interaction with miRNAs were explored in vivo and in vitro. The knock-down of circ_0001806 led to higher fungal infection and shorter survival in an experimental murine cryptococcosis model. Transcriptome analysis showed that decreased circ_0001806 regulated pathways related to the host antimicrobe response in T cells. Furthermore, in vitro experiments showed that circ_0001806 positively modulates ADM level, decreasing cell apoptosis and G1S arrest in T cells. Finally, we found circ_0001806 exerted its effects by sponging miRNA-126 in T cells. Taken together, our results reveal the role of circRNA-1806/miRNA-126 in the regulation of cell cycle and apoptosis in cryptococcal infection and can provide a new insights of the pathogenesis of cryptococcal infection.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Dermatology and Venereology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Keming Zhang
- Department of Dermatology and Venereology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenjie Fang
- Department of Dermatology and Venereology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hang Li
- Department of Dermatology and Venereology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yingfang Li
- Department of Dermatology and Venereology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weiwei Jiang
- Department of Dermatology and Venereology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dongying Hu
- Department of Dermatology and Venereology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Carolina Coelho
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Xiaogang Liu
- Department of Dermatology and Venereology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liangqi Cai
- Department of Dermatology, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Wanqing Liao
- Department of Dermatology and Venereology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology and Venereology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Chen Q, Chen S, Zhao J, Zhou Y, Xu L. MicroRNA-126: A new and promising player in lung cancer. Oncol Lett 2020; 21:35. [PMID: 33262827 PMCID: PMC7693477 DOI: 10.3892/ol.2020.12296] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors associated with cancer death; however, the mechanisms involved in lung tumor development have not been completely elucidated, which impedes the advancement of clinical diagnosis and therapy. MicroRNA-126 (miR-126) is an important member of the microRNA family and is encoded by intron 7 of epidermal growth factor-like domain-containing gene 7. Increasing evidence has demonstrated that miR-126, as a distinct endothelial-enriched miRNA and new tumor suppressor gene, serves a promising role in the occurrence, development and metastasis of various types of cancer, including liver cancer, colorectal cancer, melanoma and lung cancer. In the present review, the current knowledge of the role of miR-126 in lung cancer growth, metastasis, diagnosis and prognosis as well as therapy was summarized, which may provide new insights on the biological roles of miRNAsin lung cancer and facilitate the ultimate development of miRNA-based therapies in clinical patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Qijun Chen
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shuanghua Chen
- Department of General Medicine, The Third Hospital Affiliated to Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Juanjuan Zhao
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lin Xu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
23
|
Kong R, Gao J, Ji L, Zhao D. MicroRNA-126 promotes proliferation, migration, invasion and endothelial differentiation while inhibits apoptosis and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell Cycle 2020; 19:2119-2138. [PMID: 32787491 DOI: 10.1080/15384101.2020.1788258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used for the treatment of inflammatory and immune diseases, and microRNA-126 (miR-126) is a critical regulator in inflammation as well as immunity. However, the mediating role of miR-126 in BMSCs is still not clear. Thus, this study aimed to preliminarily investigate the effect of miR-126 on proliferation, apoptosis, migration, invasion, differentiation, and its potential regulating pathways in BMSCs. Human BMSCs were obtained and infected with miR-126 overexpression lentivirus, control overexpression lentivirus, miR-126 knock-down lentivirus and control knock-down lentivirus, then cell functions, the PI3 K/AKT pathway and MEK1/ERK1 pathway were evaluated. Subsequently, PI3 K overexpression plasmid and MEK1 overexpression plasmid were transfected into BMSCs with miR-126 knockdown, then the cell functions were assessed as well. BMSCs with miR-126 overexpression displayed elevated proliferation, migration and invasion while decreased apoptosis; however, BMSCs with miR-126 knockdown presented with decreased proliferation, migration, invasion but increased apoptosis. As for differentiation, BMSCs with miR-126 overexpression showed higher levels of CD31, eNOS and VE-cadherin but lower expressions of ALP, OPN and RUNX2, while BMSCs with miR-126 knockdown disclosed the opposite results. Additionally, BMSCs with miR-126 overexpression showed elevated PI3 K, pAKT, MEK1 and pERK1 expressions, while BMSCs with miR-126 knockdown displayed opposite results. Furthermore, PI3 K overexpression and MEK1 overexpression both reversed the effects of miR-126 on cell functions in BMSCs. In conclusion, miR-126 is a genetic regulator in BMSCs via modulating multiple cell functions through the PI3 K/AKT and MEK1/ERK1 signaling pathways.
Collapse
Affiliation(s)
- Ruina Kong
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Lianmei Ji
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University , Shanghai, China
| |
Collapse
|
24
|
Zhang S, Meng T, Tang C, Li S, Cai X, Wang D, Chen M. MicroRNA-340-5p suppressed rheumatoid arthritis synovial fibroblast proliferation and induces apoptotic cell number by targeting signal transducers and activators of transcription 3. Autoimmunity 2020; 53:314-322. [PMID: 32706318 DOI: 10.1080/08916934.2020.1793134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rheumatoid arthritis is a chronic systemic autoimmune disease. In this study, the role of microRNA-340-5p in rheumatoid arthritis was investigated. qRT-PCR was used to detect the expression of microRNA-340-5p in serums, synovial tissues, and fibroblast-like synoviocytes from patients and healthy participants. Cell proliferation rate, cell cycle and apoptotic cell numbers were measured by CCK-8 and flow cytometry assays. The expression of pro-inflammation factors was determined by ELISA. Our data showed that the expression of microRNA-340-5p was greatly suppressed in rheumatoid arthritis serums, synovial tissues and rheumatoid arthritis-fibroblast-like synoviocytes compared to that in healthy controls. Over-expression of microRNA-340-5p greatly suppressed cell proliferation, promoted cell apoptosis, and suppressed the expression of inflammation factors in rheumatoid arthritis fibroblast-like synoviocytes. Additionally, STAT3 was a target of microRNA-340-5. Overexpression of STAT3 could reverse the outcome of microRNA-340-5p on cell proliferation and apoptosis in rheumatoid arthritis fibroblast-like synoviocytes. The findings in our study demonstrated that microRNA-340-5p may serve as a potential target for therapeutic direction for patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Shibin Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Tingting Meng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Chunzhi Tang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou City, P. R. China
| | - Shengdong Li
- Department of Rhumatology, The Second Hospital of Yinzhou, Ninbo City, P. R. China
| | - Xudong Cai
- Department of Nephrology, Ningbo Traditional Chinese Medicine Hospital, Ningbo Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Ninbo City, P. R. China
| | - Dawei Wang
- Shunde District Hospital of Chinese Medicine of Foshan City, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan City, P. R. China
| | - Min Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.,The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
25
|
Liu B, Ren B. MiR‐1193 represses the proliferation and induces the apoptosis of interleukin‐1β‐treated fibroblast‐like synoviocytes via targeting JAK3. Int J Rheum Dis 2020; 23:1066-1075. [PMID: 32597556 DOI: 10.1111/1756-185x.13901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Liu
- Department of Orthopedics Shandong Provincial Western Hospital Jinan China
| | - Bingqiang Ren
- Department of Orthopedics Shandong Provincial Western Hospital Jinan China
| |
Collapse
|
26
|
Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond) 2020; 134:1001-1025. [PMID: 32337535 PMCID: PMC7239341 DOI: 10.1042/cs20200023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.
Collapse
Affiliation(s)
- Sonya Frazier
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Martin W. McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Helen Mulvana
- Biomedical Engineering, University of Strathclyde, Glasgow, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
27
|
Lopez-Pedrera C, Barbarroja N, Patiño-Trives AM, Luque-Tévar M, Torres-Granados C, Aguirre-Zamorano MA, Collantes-Estevez E, Pérez-Sánchez C. Role of microRNAs in the Development of Cardiovascular Disease in Systemic Autoimmune Disorders. Int J Mol Sci 2020; 21:E2012. [PMID: 32188016 PMCID: PMC7139533 DOI: 10.3390/ijms21062012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid Arthritis (RA), Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are the systemic autoimmune diseases (SADs) most associated with an increased risk of developing cardiovascular (CV) events. Cardiovascular disease (CVD) in SADs results from a complex interaction between traditional CV-risk factors, immune deregulation and disease activity. Oxidative stress, dyslipidemia, endothelial dysfunction, inflammatory/prothrombotic mediators (cytokines/chemokines, adipokines, proteases, adhesion-receptors, NETosis-derived-products, and intracellular-signaling molecules) have been implicated in these vascular pathologies. Genetic and genomic analyses further allowed the identification of signatures explaining the pro-atherothrombotic profiles in RA, SLE and APS. However, gene modulation has left significant gaps in our understanding of CV co-morbidities in SADs. MicroRNAs (miRNAs) are emerging as key post-transcriptional regulators of a suite of signaling pathways and pathophysiological effects. Abnormalities in high number of miRNA and their associated functions have been described in several SADs, suggesting their involvement in the development of atherosclerosis and thrombosis in the setting of RA, SLE and APS. This review focusses on recent insights into the potential role of miRNAs both, as clinical biomarkers of atherosclerosis and thrombosis in SADs, and as therapeutic targets in the regulation of the most influential processes that govern those disorders, highlighting the potential diagnostic and therapeutic properties of miRNAs in the management of CVD.
Collapse
|
28
|
Ichikawa R, Kawasaki R, Iwata A, Otani S, Nishio E, Nomura H, Fujii T. MicroRNA‑126‑3p suppresses HeLa cell proliferation, migration and invasion, and increases apoptosis via the PI3K/PDK1/AKT pathway. Oncol Rep 2020; 43:1300-1308. [PMID: 32323808 PMCID: PMC7057934 DOI: 10.3892/or.2020.7512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
We previously reported that relative to normal cervical mucus, microRNA 126-3p (miR-126-3p) is present in significantly greater amounts in the cervical mucus of patients with overt cervical cancer or precursor lesions. Here, we investigated the effects of enforced miR-126-3p expression in the cervical cancer cell line, HeLa, on proliferation, migration, invasion, apoptosis and protein expression. We transfected HeLa cells with miR-126-3p miRNA and found that proliferation, migration and invasion by cell counting, wound healing, cell migration and invasion assay were significantly reduced in these cells relative to those transfected with a negative control mimic. The levels of phosphoinositide 3 kinase (PI3K), phosphorylated 3-phosphoinositide-dependent protein kinase-1 (p-PDK1) and p-AKT proteins were lower in the miR-126-3p-transfected cells. Phosphorylated 70S6K (p-p70S6K), phosphorylated glycogen synthase kinase 3β (p-GSK3β), phosphorylated S6K (p-S6K), cyclin D1, phosphorylated p21-activated kinase 1 (p-PAK1), Rho associated coiled-coil containing protein kinase 1 (ROCK1), myotonic dystrophy-related CDC42-binding kinases α (MRCKα) and phospholipase C γ1 (p-PLCγ1) were also downregulated. This suggests that downstream effectors of the PI3K/PDK1/AKT pathway are targets for inhibition by miR-126-3p. In contrast, apoptotic-related proteins including the BCL-2-associated agonist of cell death (Bad), B-cell lymphoma-extra-large (Bcl-xL) and BCL-2-associated X (Bax), were all upregulated by miR-126-3p, resulting in increased caspase 3/7 activity and apoptosis. Thus, enforced expression of miR-126-3p inhibited cell migration and invasion and also induced apoptosis by regulating the PI3K/PDK1/AKT pathway in HeLa cells. Hence, high levels of miR-126-3p may inhibit cervical carcinogenesis, and targeting the PI3K/PDK1/AKT pathway via miR-126-3p could represent a new approach for treating patients with cervical cancer.
Collapse
Affiliation(s)
- Ryoko Ichikawa
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Rie Kawasaki
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Aya Iwata
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Sayaka Otani
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Eiji Nishio
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Takuma Fujii
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| |
Collapse
|
29
|
The Serum Cell-Free microRNA Expression Profile in MCTD, SLE, SSc, and RA Patients. J Clin Med 2020; 9:jcm9010161. [PMID: 31936082 PMCID: PMC7020053 DOI: 10.3390/jcm9010161] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Mixed connective tissue disease (MCTD) is a rare disorder characterized by symptoms that overlap two or more Autoimmune Connective Tissue Diseases (ACTDs). The aim of this study was to determine whether miRNAs participating in the TLRs signaling pathway could serve as biomarkers differentiating MCTD or other ACTD entities from a healthy control group and between groups of patients. Although the selected miRNA expression level was not significantly different between MCTD and control, we observed that miR-126 distinguishes MCTD patients from all other ACTD groups. The expression level of miRNAs was significantly higher in the serum of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) patients compared to controls. The miR-145 and -181a levels distinguished RA from other ACDT patients. miR-155 was specific for SLE patients. MiR-132, miR-143, and miR-29a distinguished RA and SLE patients from the systemic sclerosis (SSc) group. Additionally, some clinical parameters were significantly related to the miRNA expression profile in the SLE group. SLE and RA are characterized by a specific serum expression profile of the microRNAs associated with the Toll-like receptors (TLRs) signaling pathway. The analysis showed that their level distinguishes these groups from the control and from other ACTD patients. The present study did not reveal a good biomarker for MCTD patients.
Collapse
|
30
|
Barth DA, Slaby O, Klec C, Juracek J, Drula R, Calin GA, Pichler M. Current Concepts of Non-Coding RNAs in the Pathogenesis of Non-Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2019; 11:E1580. [PMID: 31627266 PMCID: PMC6826455 DOI: 10.3390/cancers11101580] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is a relatively rare malignancy of the urinary tract system. RCC is a heterogenous disease in terms of underlying histology and its associated underlying pathobiology, prognosis and treatment schedule. The most prevalent histological RCC subtype is clear-cell renal cell carcinoma (ccRCC), accounting for about 70-80% of all RCCs. Though the pathobiology and treatment schedule for ccRCC are well-established, non-ccRCC subtypes account for 20%-30% of RCC altogether, and their underlying molecular biology and treatment options are poorly defined. The class of non-coding RNAs-molecules that are generally not translated into proteins-are new cancer drivers and suppressors in all types of cancer. Of these, small non-coding microRNAs (miRNAs) contribute to carcinogenesis by regulating posttranscriptional gene silencing. Additionally, a growing body of evidence supports the role of long non-coding RNAs (lncRNAs) in cancer development and progression. Most studies on non-coding RNAs in RCC focus on clear-cell histology, and there is a relatively limited number of studies on non-ccRCC subtypes. The aim of this review is to give an overview of the current knowledge regarding the role of non-coding RNAs (including short and long non-coding RNAs) in non-ccRCC and to highlight possible implications as diagnostic, prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Dominik A Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Christiane Klec
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Jaroslav Juracek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Rares Drula
- Research Centre for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Gao J, Kong R, Zhou X, Ji L, Zhang J, Zhao D. MiRNA-126 expression inhibits IL-23R mediated TNF-α or IFN-γ production in fibroblast-like synoviocytes in a mice model of collagen-induced rheumatoid arthritis. Apoptosis 2019; 23:607-615. [PMID: 30167920 PMCID: PMC6208910 DOI: 10.1007/s10495-018-1474-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both miR-126 and IL-23R affect rheumatoid arthritis (RA) procession. This study aimed to investigate the association of miR-126 and IL-23R and the possible modulation of miR-126 to RA pathogenesis. Serum, synovial tissue and synovial fluid were collected from patients with RA, and expression of miR-126, IL-23R, TNF-α and IFN-γ were detected. Fibroblast-like synoviocytes (FLS) was established using a collagen-induced arthritis mice model. The expression of miR-126 was manual intervened using pro-miR-126 and anti-miR-126 encoding lentivirus plasmids, or miR-126 agonists and corresponding negative controls. MiR-126 expression was inhibited in RA patients when compared with controls (P < 0.05). TNF-α and IFN-γ production and IL-23R expression were significantly upregulated in RA patients when compared to controls (P < 0.05). In pro-miR-126 treated FLS cells, the administration of pro-miR-126 plasmids upregulated miR-126, but inhibited IL-23R, TNF-α and IFN-γ expression or production. Moreover, the miR-126 agonist reversed the effects of the anti-miR-126 plasmid on FLS. These results revealed that miR-126 negative regulated the expression of IL-23R, TNF-α and IFN-γ. These results suggest the key impact of miR-126 on RA procession. Moreover, pro-miR-126 might be explored to be a potential therapy for RA.
Collapse
Affiliation(s)
- Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Ruina Kong
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Xiaoli Zhou
- Department of Pathology, Changzhou Second People's Hospital, Changzhou, China
| | - Lianmei Ji
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Ju Zhang
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
32
|
Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun Rev 2019; 18:102391. [PMID: 31520804 DOI: 10.1016/j.autrev.2019.102391] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, many epigenetic mechanisms that contribute in the pathogenesis of autoimmune disorders have been revealed. MicroRNAs (miRNAs) are small, non-coding, RNA molecules that bind to messenger RNAs and disrupt the transcription of target genes. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease in which a plethora of epigenetic changes take place. Current research on RA epigenetics has focused mainly on miRNAs. Genetic variance of some miRNA genes, especially miR-499, might predispose an individual to RA development. Additionally, altered expression of many miRNAs has been discovered in several cells, tissues and body fluids in patients with RA. MiRNAs expression also differs depending on disease's stage and activity. Serum miR-22 and miR-103a might predict RA development in susceptible individuals (pre-RA), while serum miR-16, miR-24, miR-125a and miR-223 levels are altered in early RA (disease duration <12 months) patients compared to established RA or healthy individuals. Moreover, serum miR-223 levels have been associated with RA activity and disease relapse. What is more, serum levels of several miRNAs, including miR-125b and miR-223, could be used to predict response to RA treatment. Finally, miRNA analogs or antagonists have been used as therapeutic regimens in experimental arthritis models and have demonstrated promising results. In conclusion, the research on the miRNA alterations in RA sheds light to several aspects of RA pathogenesis, introduces new biomarkers for RA diagnosis and treatment response prediction and offers the opportunity to discover new, targeted drugs for patients with RA.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Rheumatology Department, 417 Army Share Fund Hospital (NMTS), Athens, Greece; Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece.
| | - George E Fragoulis
- Rheumatology Unit, First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Vassiliki Koulouri
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - George I Lambrou
- Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece; Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
33
|
Zhou X, He Y, Jiang Y, He B, Deng X, Zhang Z, Yuan X, Li J. MiR-126-3p inhibits apoptosis and promotes proliferation by targeting phosphatidylinositol 3-kinase regulatory subunit 2 in porcine ovarian granulosa cells. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:879-887. [PMID: 31480138 PMCID: PMC7206374 DOI: 10.5713/ajas.19.0290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022]
Abstract
Objective Numerous studies have indicated that the apoptosis and proliferation of granulosa cells (GCs) are closely related to the normal growth and development of follicles and ovaries. Previous evidence has suggested that miR-126-3p might get involved in the apoptosis and proliferation of GCs, and phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2) gene has been predicted as one target of miR-126-3p. However, the molecular regulation of miR-126-3p on PIK3R2 and the effects of PIK3R2 on porcine GCs apoptosis and proliferation remain virtually unexplored. Methods In this study, using porcine GCs as a cellular model, luciferase report assay, mutation and deletion were applied to verify the targeting relationship between miR-126-3p and PIK3R2. Annexin-V/PI staining and 5-ethynyl-2′-deoxyuridine assay were applied to explore the effect of PIK3R2 on GCs apoptosis and proliferation, respectively. Real-time quantitative polymerase chain reaction and Western Blot were applied to explore the regulation of miR-126-3p on PIK3R2 expression. Results We found that miR-126-3p targeted at PIK3R2 and inhibited its mRNA and protein expression. Knockdown of PIK3R2 significantly inhibited the apoptosis and promoted the proliferation of porcine GCs, and significantly down-regulated the mRNA expression of several key genes of PI3K pathway such as insulin-like growth factor 1 receptor (IGF1R), insulin receptor (INSR), pyruvate dehydrogenase kinase 1 (PDK1), and serine/threonine kinase 1 (AKT1). Conclusion MiR-126-3p might target and inhibit the mRNA and protein expressions of PIK3R2, thereby inhibiting GC apoptosis and promoting GC proliferation by down-regulating several key genes of the PI3K pathway, IGF1R, INSR, PDK1, and AKT1. These findings would provide great insight into further exploring the molecular regulation of miR-126-3p and PIK3R2 on the functions of GCs during the folliculogenesis in female mammals.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yingting He
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yao Jiang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bo He
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xi Deng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
34
|
Down-regulation of microRNA-142-3p inhibits the aggressive phenotypes of rheumatoid arthritis fibroblast-like synoviocytes through inhibiting nuclear factor-κB signaling. Biosci Rep 2019; 39:BSR20190700. [PMID: 31239367 PMCID: PMC6614573 DOI: 10.1042/bsr20190700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to investigate the regulatory roles of miR-142-3p on the aggressive phenotypes of rheumatoid arthritis (RA) human fibroblast-like synoviocytes (RA-HFLSs), and reveal the potential mechanisms relating with nuclear factor-κB (NF-κB) signaling. miR-142-3p expression was detected in RA synovial tissues and RA-HFLSs by quantitative real-time PCR (qRT-PCR) and Northern blot analysis. RA-HFLSs were transfected with miR-142-3p inhibitor and/or treated with 10 µg/l tumor necrosis factor α (TNF-α). The viability, colony formation, apoptosis, migration, invasion, and the levels of interleukin (IL)-6, and matrix metalloproteinase 3 (MMP-3) were detected. The mRNA expressions of B-cell lymphoma-2 (Bcl-2), Bax, Bad, IL-6, and MMP-3 were detected by qRT-PCR. Moreover, the expression of Bcl-2, IL-1 receptor-associated kinase 1 (IRAK1), Toll-like receptor 4 (TLR4), NF-κB p65, and phosphorylated NF-κB p65 (p-NF-κB p65) were detected by Western blot. The interaction between IRAK1 and miR-142-3p was identified by dual luciferase reporter gene assay. MiR-142-3p was up-regulated in RA synovial tissues and RA-HFLSs. TNF-α activated the aggressive phenotypes of RA-HFLSs, including enhanced proliferation, migration, invasion, and inflammation, and inhibited apoptosis. miR-142-3p inhibitor significantly decreased the cell viability, the number of cell clones, the migration rate, the number of invasive cells, the contents and expression of IL-6 and MMP-3, and increased the apoptosis rate and the expressions of Bax and Bad, and decreased Bcl-2 expression of TNF-α-treated RA-HFLSs. MiR-142-3p inhibitor significantly reversed TNF-α-induced up-regulation of IRAK1, TLR4, and p-NF-κB p65 in TNF-α-treated RA-HFLSs. Besides, IRAK1 was a target of miR-142-3p. The down-regulation of miR-142-3p inhibited the aggressive phenotypes of RA-HFLSs through inhibiting NF-κB signaling.
Collapse
|
35
|
Lei S, Chen G, Deng L, He J. Upregulation of miR-27b Facilitates Apoptosis of TNF-α-Stimulated Fibroblast-Like Synoviocytes. Yonsei Med J 2019; 60:585-591. [PMID: 31124343 PMCID: PMC6536399 DOI: 10.3349/ymj.2019.60.6.585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The aim of this study was to explore the function of microRNA-27b (miR-27b) in fibroblast-like synoviocytes (FLSs) stimulated by tumor necrosis factor α (TNF-α). MATERIALS AND METHODS mRNA expression of miR-27b in FLS cells (MH7A) treated with or without TNF-α was determined by q-PCR. MiR-27b mimics was transfected into MH7A cells to upregulate miR-27b expression. MTT assay and flow cytometry analysis were performed to investigate the effect of miR-27b on MH7A cell viability and apoptosis. The targets of miR-27b were predicted by TargetScan. The direct regulation of miR-27b on IL-1β expression was verified by luciferase assay. The protein expression levels of apoptosis-related proteins, IL-1β, and NF-κB signaling-related proteins were detected by Western blot. RESULTS We discovered that miR-27b expression was decreased in MH7A cells stimulated by TNF-α. Upregulation of miR-27b by miR-27b mimics significantly inhibited the proliferation and promoted the apoptosis of TNF-α-stimulated MH7A cells. Consistently, upregulation of miR-27 decreased the level of Bcl-2 and increased Bax and caspase-3 expression in MH7A cells stimulated by TNF-α. Luciferase assay revealed that IL-1β was indeed a target of miR-27b. By quantitative real-time PCR and Western blot, we found that the expression of IL-1β is negatively regulated by miR-27b. Moreover, the NF-κB signaling pathway was significantly inhibited by miR-27b. CONCLUSION Taken together, our results illustrated that enhanced miR-27b expression results in the suppression of proliferation and the promotion of apoptosis in FLSs stimulated by TNF-α, partially by regulating IL-1β expression and NF-κB signaling.
Collapse
Affiliation(s)
- Shangwen Lei
- Department of Rheumatism and Immunology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Guanghua Chen
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liang Deng
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Jianying He
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
36
|
Duan Y, Zou J, Mao J, Guo D, Wu M, Xu N, Zhou J, Zhang Y, Guo W, Jin W. Plasma miR-126 expression correlates with risk and severity of psoriasis and its high level at baseline predicts worse response to Tripterygium wilfordii Hook F in combination with acitretin. Biomed Pharmacother 2019; 115:108761. [PMID: 31100542 DOI: 10.1016/j.biopha.2019.108761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Treatment of psoriasis is always difficult, which requires intensive scientific research. OBJECTIVE Tripterygium wilfordii Hook F (TwHF) with acitretin(TwHF + acitretin) is normally used in treating psoriasis. This study aimed to investigate the correlation of plasma miR-126 expression with risk and severity of psoriasis, and its predictive value of response to TwHF + acitretin treatment in psoriasis. METHODS MiRNA-126(MiR-126) expression in plasma was analyzed in psoriasis patients at month 0 (M0), M1, M3 and M6 and in health controls (HCs) at enrollment by qPCR. Psoriasis-affected body surface area (BSA) and Psoriasis Area and Severity Index (PASI) score were used to assess severity and treatment response. RESULTS Plasma miR-126 levels were decreased in psoriasis patients compared with HCs (P < 0.001), with area under the curve (AUC) of 0.771. MiR-126 expression was negatively correlated with PASI score (P = 0.001), and negatively associated with psoriasis-affected BSA (P = 0.825). At M6, 65.3% and 36.1% patients achieved PASI 50 and 75, respectively. MiR-126 increased at M1, M3 and M6 after TwHF + acitretin treatment when comparing with M0 (all P < 0.001). Meanwhile, miR-126 expression baseline in PASI 50 group declined when comparing with non-PASI 50 group (P < 0.001). Additionally, data revealed that the cause of high miR-126 baseline level was due to unsuccessfully achieving PASI 50 at M6 after TwHF + acitretin treatment (P < 0.001). However, miR-126 baseline expression was not a predictive factor for PASI 75 achievement (P > 0.05). CONCLUSION Plasma miR-126 expression is negatively correlated with psoriasis risk and severity, and its high baseline level can be used as a biomarker to predict worse clinical response to TwHF + acitretin treatment in psoriasis.
Collapse
Affiliation(s)
- Yanjuan Duan
- Department of Dermatology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Jialing Zou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingyi Mao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongjie Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minfeng Wu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Xu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhou
- Department of Dermatology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Yanbin Zhang
- Department of Dermatology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Wanjun Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Waishu Jin
- Department of Dermatology, The Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
37
|
MiRNA-506 inhibits rheumatoid arthritis fibroblast-like synoviocytes proliferation and induces apoptosis by targetting TLR4. Biosci Rep 2019; 39:BSR20182500. [PMID: 30975731 PMCID: PMC6505192 DOI: 10.1042/bsr20182500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) play a crucial role in rheumatoid arthritis (RA) pathogenesis. While miRNA (miR)-506 has been implicated in the progression of multiple diseases, its role in RA remains to be explored. The present study evaluated the function of miR-506 in the regulation of RA-FLSs. FLSs were prepared from RA and healthy synovial tissues. The expression of miR-506 was measured by quantitative real time PCR (qRT-PCR). The effects of miR-506 on RA-FLSs proliferation and apoptosis were detected by cell counting Kit-8 and flow cytometry assays, respectively. The determination of TNF-α, IL-6, and IL-1β concentrations in RA-FLSs supernatant were done by ELISA. The levels of miR-506 were detected to be significantly lower in the synovial tissues and FLSs of RA than in the synovial tissues and FLSs of healthy controls. The miR-506 up-regulation in RA-FLSs significantly inhibited the proliferation and promoted cell cycle arrest at the G0/G1 phase. The overexpression of miR-506 induced apoptosis, along with an increase in activities of caspase-3 and -8. A target gene Toll-like receptor 4 (TLR4) under the direct regulation of miR-506 was identified through the luciferase assay, qRT-PCR and western blot analysis. Forced overexpression of TLR4 in the rescue experiments showed that TLR4 effectively reversed the effect on proliferation and apoptosis in miR-506-overexpressing RA-FLSs. Thus, miR-506 may be a potential target for RA prevention and therapy of RA.
Collapse
|
38
|
Zou Y, Hu W. Investigation of gene expression profiles in a rat adjuvant arthritis model suggests an effective role of triptolide via PI3K-AKT signaling. Exp Ther Med 2019; 17:3999-4006. [PMID: 30988781 PMCID: PMC6447910 DOI: 10.3892/etm.2019.7425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common systemic autoimmune disease mainly involving the formation of a synovial pannus, for which no effective treatment is available. In order to study the molecular biological mechanisms underlying the inhibition of RA synovial pannus by triptolide, differentially expressed genes in synovial tissues from an adjuvant arthritis (AA) rat model with and without triptolide treatment were detected in an mRNA microarray profile produced by Agilent Technologies and verified by reverse transcription-quantitative polymerase chain reaction analysis (RT-qPCR). An AA model was established by subcutaneously injecting 0.1 ml Freund's complete adjuvant daily for 18 days and scored by arthritis index assessment. Subsequently, triptolide (0.4 mg/kg) or an equivalent amount of saline was administered daily for 14 days. At the end of the experiment, synovial tissues were obtained from the ankle joints of the rats' hind legs. Total RNA was extracted and purified, and microarray hybridization was used to obtain the gene expression profile for RA with and without triptolide treatment. A total of 48 genes were identified to be differentially expressed between the treatment and model groups, including 32 upregulated and 16 downregulated genes. The possible signaling pathways associated with the effect of triptolide were investigated by Gene Ontology and pathway analysis, revealing that the phosphoinositide-3 kinase (PI3K)/AKT signaling pathway has a key role in the proliferation and apoptosis of synovial cells in RA joints. Reverse transcription-quantitative polymerase chain reaction analysis was applied to confirm the aberrant expression of key mRNAs and revealed that vascular endothelial growth factor (VEGF) A and C1q and tumor necrosis factor related protein 3 (C1QTNF3) were downregulated in the treatment group compared with the model group (P<0.05). In conclusion, triptolide may exert its effects against RA via the PI3K/AKT pathway and has an inhibitory effect on the expression of VEGFA and C1QTNF3, thus are potentially associated with the occurrence and development of RA.
Collapse
Affiliation(s)
- Yang Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Weifeng Hu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| |
Collapse
|
39
|
Li X, Lv Q, Tu L, Zhao M, Zhang P, Li Q, Wei Q, Cao S, Gu J. Aberrant expression of microRNAs in peripheral blood mononuclear cells as candidate biomarkers in patients with axial spondyloarthritis. Int J Rheum Dis 2019; 22:1188-1195. [PMID: 30990253 DOI: 10.1111/1756-185x.13563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/05/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Axial spondyloarthritis (axSpA) is a chronic inflammatory arthritis involving the axial skeleton. Recent evidence suggests that microRNAs (miRNAs) play a critical role in ankylosing spondylitis (AS). In this study, we aimed to investigate whether miR-17-5p, miR-27a, miR-29a and miR-126-3p can be verified as potential biomarkers of axSpA. METHODS Peripheral blood mononuclear cell (PBMC) miRNA expression was evaluated by quantitative real-time polymerase chain reaction among 43 patients with AS, 26 patients with non-radiographic axSpA (nr-axSpA) and 39 healthy controls. Detailed clinical histories were recorded and the correlation of miRNAs and clinical features were analyzed. RESULTS When compared to controls, both patients with AS and nr-axSpA had significantly higher expression levels of miR-17-5p, miR-27a, miR-29a and miR-126-3p. MiR-27a was negatively correlated with Ankylosing Spondylitis Disease Activity Score as well as C-reactive protein in patients with nr-axSpA (r = -0.51, P < 0.01 and r = -0.42, P = 0.034 respectively). No other clinical features were found to correlate with the four miRNAs in patients with AS. Mir-29a showed highest area under the curve with 0.952 and these four miRNAs may be potential biomarkers in patients with axSpA. CONCLUSIONS We reported elevated miR-17-5p, miR-27a, miR-29a and miR-126-3p expression in PBMCs of patients with axSpA, and the expression of these four miRNAs might be used as useful diagnostic markers in axSpA.
Collapse
Affiliation(s)
- Xiaomin Li
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Lv
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liudan Tu
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minjing Zhao
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Qiuxia Li
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuangyan Cao
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Micro-RNAs in inflammatory arthritis: From physiopathology to diagnosis, prognosis and therapeutic opportunities. Biochem Pharmacol 2019; 165:134-144. [PMID: 30825433 DOI: 10.1016/j.bcp.2019.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
Micro-RNAs are an area of research exponentially expanding over the past years. These small sequences of 20-22 nucleotides have a strong role as post-transcriptional regulators of gene expression. Inflammatory arthritis pathophysiology involves various key players from innate to adaptive immunity, as well as various signalling pathways of inflammation. In this review, we discuss how micro-RNAs are involved in rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis and juvenile inflammatory arthritis, from pre-clinical phases to established diseases. We describe mi-RNAs key roles in fibroblast like synoviocytes migration, proliferation, apoptosis and cytokine production, in macrophages polarization, as well as in B cells and T cell proliferation and differentiation, with a special emphasis on Treg/Th17 imbalance. We finally discuss the application of these findings in pre-clinical models and highlight opportunities and limits of a therapeutic approach using mi-RNAs agonists or antagonists.
Collapse
|
41
|
Qu Y, Zhang Y, Wu J, Jie L, Deng J, Zhao D, Yu Q. Retracted
: Downregulated microRNA‐135a ameliorates rheumatoid arthritis by inactivation of the phosphatidylinositol 3‐kinase/AKT signaling pathway via phosphatidylinositol 3‐kinase regulatory subunit 2. J Cell Physiol 2019; 234:17663-17676. [DOI: 10.1002/jcp.28390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yuan Qu
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| | - Yu‐Ping Zhang
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| | - Li‐Gang Jie
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| | - Jia‐Xin Deng
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| | - Dong‐Bao Zhao
- Department of Rheumatology and Immunology Changhai Hospital, Second Military Medical University Shanghai China
| | - Qing‐Hong Yu
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| |
Collapse
|
42
|
Feng S, Wang L, Liu W, Zhong Y, Xu S. MiR-126 correlates with increased disease severity and promotes keratinocytes proliferation and inflammation while suppresses cells' apoptosis in psoriasis. J Clin Lab Anal 2018; 32:e22588. [PMID: 29943471 PMCID: PMC6816918 DOI: 10.1002/jcla.22588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate the miR-126 expression in lesional skin and its correlation with clinical features in psoriasis patients and to explore the effect of upregulated miR-126 on cells' proliferation, apoptosis, and inflammation in human keratinocytes. METHODS A total of 102 psoriasis patients were consecutively enrolled in this study. MiR-126 expressions in lesional skin and paired nonlesional skin were detected by quantitative polymerase chain reaction (qPCR). Human keratinocytes (HaCaT cells) were transfected with miR-126 mimic plasmids and blank mimic plasmid. Cell Counting Kit-8 and annexin V/propidium iodide assays were performed to assess the cells' proliferation and apoptosis, and protein levels of apoptotic markers (cleaved caspase-3 [C-caspase-3] and B-cell lymphoma-2 [Bcl-2]) were detected by Western blot assay. Inflammatory cytokines mRNA and protein levels were detected by qPCR and Western blot assays, respectively. RESULTS MiR-126 expression was upregulated in lesional skin tissue compared with paired nonlesional skin tissue, and its expression positively associated with Psoriasis Area and Severity Index score in psoriasis patients. MiR-126 expression was increased in miR-126 mimic group compared with negative control (NC) mimic group after plasmids transfection into HaCaT cells, and cells' proliferation was enhanced while cells' apoptosis rate was reduced in miR-126 mimic group than NC mimic group. Protein expressions of C-caspase and Bcl-2 also indicated miR-126 mimic decreased the cells' apoptosis. In addition, miR-126 mimic increased TNF-α, IFN-γ, IL-17A, and IL-22 expressions while decreased IL-10 expression. CONCLUSION In conclusion, miR-126 correlates with elevated risk and increased disease severity in psoriasis patients, and upregulation of miR-126 promotes cells' proliferation and inflammation while inhibits cells' apoptosis in keratinocytes.
Collapse
Affiliation(s)
- Shike Feng
- Department of DermatologyThe First People's Hospital of ZigongZigongChina
| | - Lin Wang
- Department of DermatologyThe People's Hospital of PengzhouChengduChina
| | - Wang Liu
- Department of DermatologyThe First People's Hospital of ZigongZigongChina
| | - Yan Zhong
- Department of DermatologyThe First People's Hospital of ZigongZigongChina
| | - Shijun Xu
- Department of DermatologyFuling Centre Hospital of ChongqingChongqingChina
| |
Collapse
|
43
|
Zhong F, Xu J, Yang X, Zhang Q, Gao Z, Deng Y, Zhang L, Yu C. miR-145 eliminates lipopolysaccharides-induced inflammatory injury in human fibroblast-like synoviocyte MH7A cells. J Cell Biochem 2018; 119:10059-10066. [PMID: 30191608 DOI: 10.1002/jcb.27341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
Abstract
Recently, it has been accepted that miR-based therapy may be beneficial for rheumatoid arthritis (RA). This study aimed to evaluate the potential involvement of miR-145 in RA in vitro. The expression of miR-145 in the human fibroblast-like synoviocyte line MH7A was overexpressed by miR-mimic transfection, after which cells were subjected to lipopolysaccharides (LPS). Cell viability, apoptosis, and the release of pro-inflammatory cytokines were measured. The result showed that the apoptosis and the release of IL-1β, IL-6, IL-8, and TNF-α were significantly induced by LPS. Meanwhile, LPS treatment led to downregulation of miR-145. miR-145 overexpression in LPS-untreated MH7A cells had no impacts on cell apoptosis and inflammation. But, restoring miR-145 expression in LPS-stimulated cells by supplementation of a miR-145 mimic protected MH7A cells against LPS-induced apoptosis and inflammation. Furthermore, miR-145 overexpression in LPS-untreated MH7A cells slightly blocked the PI3K/ATK and mTOR pathways, whereas miR-145 overexpression in LPS-stimulated cells notably repressed the LPS-induced activation of PI3K/ATK and MAPK/mTOR pathways. Our study suggested that miR-145 protected MH7A cells against LPS-induced apoptosis and inflammation by inhibiting the PI3K/AKT and MAPK/mTOR pathways.
Collapse
Affiliation(s)
- Feng Zhong
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Jian Xu
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Xirui Yang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Qi Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Zhaomeng Gao
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Yao Deng
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Lei Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Chunyan Yu
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
44
|
Casciaro M, Di Salvo E, Brizzi T, Rodolico C, Gangemi S. Involvement of miR-126 in autoimmune disorders. Clin Mol Allergy 2018; 16:11. [PMID: 29743819 PMCID: PMC5930861 DOI: 10.1186/s12948-018-0089-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Micro-RNA represent a great family of small non-condign ribonucleic acid molecules; in particular microRNA-126 is an important member of this family and is expressed in many human cells such as cardiomyocytes, endothelial and lung cells. Some studies have shown the implication of miR-126 in cancer, but recently significant progresses have also been made in determining the role of miR-126 regulating immune-related diseases; probably, in a near future, they could potentially serve as diagnostic biomarkers or therapeutic targets. OBJECTIVE The purpose of this review is to investigate the role of miR-126 in autoimmune diseases, so as to offer innovative therapies. RESULTS According literature, it was concluded that miRNAs, especially miR-126, are involved in many pathologies and that their expression levels increase in autoimmune diseases because they interfere with the transcription of the proteins involved. Since microRNAs can be detected from several biological sources, they may be attractive as potential biomarkers for the diagnosis, prognosis, disease activity and severity of various diseases. In fact, once confirmed the involvement of miR-126 in autoimmune diseases, it was speculated that it could be used as a promising biomarker. These discovers implicate that miR-126 have a central role in many pathways leading to the development and sustain of autoimmune diseases. Its key role make this microRNA a potential therapeutic target in autoimmunity. CONCLUSION Although miR-126 relevant role in several immune-related diseases, further studies are needed to clear its molecular mechanisms; the final step of these novel researches could be the blockage or the prevention of the diseases onset by creating of new targeted therapy.
Collapse
Affiliation(s)
- Marco Casciaro
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Messina University Hospital, 98125 Messina, Italy
| | - Eleonora Di Salvo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Teresa Brizzi
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Messina University Hospital, 98125 Messina, Italy
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
45
|
Guo J, Du J, Fei D, Xing J, Liu J, Lu H. miR‑152 inhibits rheumatoid arthritis synovial fibroblast proliferation and induces apoptosis by targeting ADAM10. Int J Mol Med 2018; 42:643-650. [PMID: 29693139 DOI: 10.3892/ijmm.2018.3636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 11/05/2022] Open
Abstract
miR‑152 has been reported to be downregulated in rheumatoid arthritis (RA). However, the functional significance and molecular mechanisms underlying the role of miR‑152 in RA remain largely unknown. The present study aimed to explore the functional role and the underlying mechanisms of miR‑152 in RA. The expression of miR‑152 in serum, synovial tissues, and fibroblast‑like synoviocytes (FLS) from patients with RA and healthy controls was detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Cell proliferation, cell cycle phase distribution and apoptosis of FLS were measured by Cell Counting Kit‑8 and flow cytometry assays. The effects of miR‑152 on the production of pro‑inflammatory cytokines, including tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, IL‑6 and IL‑8, were examined by ELISA. The target gene of miR‑152 was discovered by miRNA‑target prediction bioinformatics analysis, and confirmed by dual‑luciferase reporter assay, RT‑qPCR and western blotting. Spearman's correlation analysis was performed to assess the relationship between miR‑152 expression and a disintegrin and metalloproteinase domain‑containing protein 10 (ADAM10). The results demonstrated that miR‑152 expression levels were significantly decreased in RA serum, synovial tissues and RA‑FLS compared with healthy controls. Overexpression of miR‑152 significantly inhibited cell proliferation, promoted cell apoptosis, and decreased TNF‑α, IL‑1β, IL‑6 and IL‑8 production in RA‑FLS cells. Additionally, ADAM10 was demonstrated to be a target of miR‑152, and expression of the two genes was significantly negatively correlated. Of note, restoration of ADAM10 expression partially reversed the effects of miR‑152 on cell proliferation and apoptosis in RA‑FLS. Thus, miR‑152 may serve as a potential target for therapeutic intervention in RA.
Collapse
Affiliation(s)
- Jialong Guo
- Department of Rheumatology and Immunology, The China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Juan Du
- Department of Rheumatology and Immunology, The China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dan Fei
- Ultrasonographic Department, The China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jie Xing
- Ultrasonographic Department, The China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jinxiang Liu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Honghua Lu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
46
|
Abstract
Extracellular matrix (ECM) proteins secreted by blood-brain barrier (BBB) endothelial cells (ECs) are implicated in cell trafficking. We discovered that the expression of ECM epidermal growth factor-like protein 7 (EGFL7) is increased in the CNS vasculature of patients with multiple sclerosis (MS), and in mice with experimental autoimmune encephalomyelitis (EAE). Perivascular CD4 T lymphocytes colocalize with ECM-bound EGFL7 in MS lesions. Human and mouse activated T cells upregulate EGFL7 ligand αvβ3 integrin and can adhere to EGFL7 through integrin αvβ3. EGFL7-knockout (KO) mice show earlier onset of EAE and increased brain and spinal cord parenchymal infiltration of T lymphocytes. Importantly, EC-restricted EGFL7-KO is associated with a similar EAE worsening. Finally, treatment with recombinant EGFL7 improves EAE, reduces MCAM expression, and tightens the BBB in mouse. Our data demonstrate that EGFL7 can limit CNS immune infiltration and may represent a novel therapeutic avenue in MS. Endothelial cells release extracellular matrix components that regulate inflammation. Here the authors demonstrate that the extracellular matrix component epidermal growth factor-like protein 7 regulates inflammation in experimental autoimmune encephalomyelitis in the mouse.
Collapse
|
47
|
Retinoid interferon-induced mortality19 (GRIM19) inhibits proliferation and invasion in rheumatoid arthritis fibroblast-like synoviocytes. Biomed Pharmacother 2018; 98:719-725. [DOI: 10.1016/j.biopha.2017.12.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 01/10/2023] Open
|
48
|
Liu J, Fei D, Xing J, Du J. MicroRNA-29a inhibits proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes by repressing STAT3. Biomed Pharmacother 2017; 96:173-181. [PMID: 28987940 DOI: 10.1016/j.biopha.2017.09.120] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/16/2017] [Accepted: 09/23/2017] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis-fibroblast-like synoviocytes (RA-FLS) with aberrant expression of microRNA (miRNA) have been reported to be involved in the initiation, progression, and perpetuation of rheumatoid arthritis (RA). In this study, we explored the biological function and underlying mechanism of microRNA-29a (miR-29a) in cultured RA-FLS from RA patients. The expression of miR-29a in serum, synovial tissues, and FLS from RA patients and health donors was detected by real-time quantitative RT-PCR (qRT-PCR). The effects of miR-29a on cell proliferation, apoptosis, and inflammatory cytokine levels in RA-FLS were also determined using Counting Assay Kit-8 (CCK-8), flow cytometry, and enzyme-linked immunosorbent assay (ELISA) respectively. Luciferase reporter assay was carried out to identify the target genes of miR-29a. We observed that expression of miR-29a was markedly downregulated in serum, synovial tissues and FLS of RA patients. miR-29a overexpression in RA-FLS significantly inhibited proliferation, promoted apoptosis, and suppressed expression of inflammatory cytokines. Signal transducer and activator of transcription 3 (STAT3) was identified to be a direct target of miR-29a in RA-FLS. miR-29a overexpression suppressed the expression of STAT3, as well as phosphorylated STAT3(p-STAT3) and its downstream targets protein (Cyclin D1 and Bcl-2). In addition, the levels of miR-29a were inversely correlated with that of STAT3 in synovial tissues. Rescue experiments showed that overexpression of STAT3 effectively reversed the effect of miR-29a on proliferation and apoptosis in RA-FLS. These data indicate that miR-29a inhibits proliferation and induces apoptosis in RA-FLS by targeting STAT3, suggesting that promoting miR-29a expression may yield therapeutic benefits in the treatment of RA.
Collapse
Affiliation(s)
- Jinxiang Liu
- Department of Pediatric Rheumatology and Allergy, the First Affiliated Bethune Hospital, Jilin University, Changchun 130021, PR China
| | - Dan Fei
- Ultrasonographic Department, the China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, PR China
| | - Jie Xing
- Ultrasonographic Department, the China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, PR China
| | - Juan Du
- Department of Rheumatology and Immunology, the China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, PR China.
| |
Collapse
|
49
|
Xi T, Jin F, Zhu Y, Wang J, Tang L, Wang Y, Liebeskind DS, He Z. MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Biochem Biophys Res Commun 2017; 494:144-151. [PMID: 29042193 DOI: 10.1016/j.bbrc.2017.10.064] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023]
Abstract
MiR-126, a microRNA implicated in blood vessel integrity, angiogenesis and vascular inflammation, is markedly decreased in the sera of patients with intracerebral hemorrhage (ICH). The current study aims to evaluate the potential therapeutic effect of miR-126-3p on brain injuries in a rat model of collagenase-induced ICH. Intracerebroventricular administration of a miR-126-3p mimic significantly alleviated behavioral defects 24 h after ICH, as examined by paw placement and corner tests. ICH led to increased blood-brain barrier (BBB) permeability and cerebral edema, both of which were attenuated by miR-126-3p mimic. Treatment with miR-126-3p mimic reduced the numbers of myeloperoxidase (MPO)-positive, OX42-positive, Fluoro Jade B (FJB)-positive and NEUN/TUNEL double-positive cells around the hematoma, implying that miR-126-3p inhibited neutrophil infiltration, microglial activation and neuronal apoptosis following hemorrhage. In addition, miR-126-3p mimic suppressed the upregulation of phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) in the perihematomal area and maintained the activation of Akt. Furthermore, in vitro assays confirmed upregulation of PIK3R2 upon knockdown of miR-126-3p in rat brain microvascular endothelial cells (BMECs), and silencing of miR-126-3p resulted in impaired BMEC barrier permeability and reversed vascular endothelial growth factor (VEGF)- and angiopoietin-1 (Ang-1)-induced activation of Akt and inhibition of BMEC apoptosis. In summary, our results suggest that exogenous miR-126-3p may alleviate BBB disruption, cerebral edema and neuronal injury following ICH by targeting PIK3R2 and the Akt signaling pathway in brain vascular endothelium.
Collapse
Affiliation(s)
- Tianyang Xi
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Feng Jin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ying Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jialu Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ling Tang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yanzhe Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - David S Liebeskind
- Department of Neurology, University of California, Los Angeles, CA 90095-7334, USA
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
50
|
Chang R, Yi S, Tan X, Huang Y, Wang Q, Su G, Zhou C, Cao Q, Yuan G, Kijlstra A, Yang P. MicroRNA-20a-5p suppresses IL-17 production by targeting OSM and CCL1 in patients with Vogt-Koyanagi-Harada disease. Br J Ophthalmol 2017; 102:282-290. [DOI: 10.1136/bjophthalmol-2017-311079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/17/2023]
Abstract
AimTo elucidate the role of microRNA-20a-5p (miR-20a-5p) in the pathogenesis of Vogt-Koyanagi-Harada (VKH) disease.MethodsQuantitative real-time PCR was used to quantify miR-20a-5p expression in CD4+ T cells from patients with active VKH and normal controls. The promoter methylation status of miR-20a-5p was detected by bisulfite sequencing PCR. Targets were evaluated by a luciferase reporter assay. The functional effects of miR-20a-5p on CD4+ T cells from patients with active VKH were assessed by upregulation or downregulation of its expression using liposomes.ResultsThe miR-20a-5p level was significantly decreased in CD4+ T cells from patients with active VKH as compared with normal controls. The two genes, oncostatin M (OSM) and C-C motif chemokine ligand 1 (CCL1), were identified as targets of miR-20a-5p. The upregulation of miR-20a-5p significantly suppressed interleukin 17 (IL-17) production in CD4+ T cells from patients with active VKH, whereas downregulation of miR-20a-5p exhibited an inverse effect. In addition, overexpression of OSM and CCL1 could rescue the effect of the upregulation of miR-20a-5p. Moreover, the level of miR-20a-5p was reduced in response to hypermethylation of the promoter. Further study showed that miR-20a-5p suppressed the activity of the phosphoinositide 3-kinase-AKT pathway.ConclusionsOur findings indicate that downregulation of miR-20a-5p is caused by promoter hypermethylation. MiR-20a-5p could also suppress the production of IL-17 by targeting OSM and CCL1 production in CD4+ T cells in patients with active VKH.
Collapse
|