1
|
Jin LL, Lu HJ, Shao JK, Wang Y, Lu SP, Huang BF, Hu GN, Jin HC, Wang CQ. Relevance and mechanism of STAT3/miR-221-3p/Fascin-1 axis in EGFR TKI resistance of triple-negative breast cancer. Mol Cell Biochem 2024; 479:3037-3047. [PMID: 38145448 DOI: 10.1007/s11010-023-04907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023]
Abstract
The epidermal growth factor receptor 1 (EGFR) plays a crucial role in the progression of various malignant tumors and is considered a potential target for treating triple-negative breast cancer (TNBC). However, the effectiveness of representative tyrosine kinase inhibitors (TKIs) used in EGFR-targeted therapy is limited in TNBC patients. In our study, we observed that the TNBC cell lines MDA-MB-231 and MDA-MB-468 exhibited resistance to Gefitinib. Treatment with Gefitinib caused an upregulation of Fascin-1 (FSCN1) protein expression and a downregulation of miR-221-3p in these cell lines. However, sensitivity to Gefitinib was significantly improved in both cell lines with either inhibition of FSCN1 expression or overexpression of miR-221-3p. Our luciferase reporter assay confirmed that FSCN1 is a target of miR-221-3p. Moreover, Gefitinib treatment resulted in an upregulation of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in MDA-MB-231 cells. Using Stattic, a small-molecule inhibitor of STAT3, we observed a significant enhancement in the inhibitory effect of Gefitinib on the growth, migration, and invasion of MDA-MB-231 cells. Additionally, Stattic treatment upregulated miR-221-3p expression and downregulated FSCN1 mRNA and protein expression. A strong positive correlation was noted between the expression of STAT3 and FSCN1 in breast cancer tissues. Furthermore, patients with high expression levels of both STAT3 and FSCN1 had a worse prognosis. Our findings suggest that elevated FSCN1 expression is linked to primary resistance to EGFR TKIs in TNBC. Moreover, we propose that STAT3 regulates the expression of miR-221-3p/FSCN1 and therefore modulates resistance to EGFR TKI therapy in TNBC. Combining EGFR TKI therapy with inhibition of FSCN1 or STAT3 may offer a promising new therapeutic option for TNBC.
Collapse
Affiliation(s)
- Lu-Lu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Hua-Jun Lu
- Department of Oncological Radiotherapy, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jun-Kang Shao
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Shi-Ping Lu
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Gui-Nv Hu
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Hong-Chuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China.
| |
Collapse
|
2
|
Tiong TY, Chan ML, Wang CH, Yadav VK, Pikatan NW, Fong IH, Yeh CT, Kuo KT, Huang WC. Exosomal miR-21 determines lung-to-brain metastasis specificity through the DGKB/ERK axis within the tumor microenvironment. Life Sci 2023; 329:121945. [PMID: 37454756 DOI: 10.1016/j.lfs.2023.121945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Brain metastasis affects 20-40 % of lung cancer patients, severely diminishing their quality of life. This research focuses on miR-21, overexpressed in these patients and inversely associated with DGKB in the ERK/STAT3 pathway, suggesting a dysregulated pathway with therapeutic potential. AIMS The objective was to investigate miR-21's role in lung cancer patients with brain metastases and whether targeting this pathway could improve treatment outcomes. We also examined the miR-21 content in tumor spheres-derived extracellular vesicles (EVs) and their influence on ERK/STAT3 signaling and metastasis. MATERIALS AND METHODS Tumor spheres were created from metastatic lung cancer cells. We studied miR-21 levels in these spheres, their impact on macrophage polarization, and the transition of nonmetastatic lung cancer cells. Furthermore, we analyzed miR-21 content in EVs derived from these spheres and their effect on ERK/STAT3 signaling and metastasis potential. KEY FINDINGS We found tumor spheres had high miR-21 levels, promoting macrophage polarization and, epithelial-mesenchymal transition. These spheres-derived EVs, enriched with miR-21, accelerated ERK/STAT3 signaling and metastasis. Silencing miR-21 and inhibiting ERK signaling with ulixertinib notably mitigated these effects. Moreover, ulixertinib reduced brain metastasis incidence and increased survival in a mouse model and led to reduced tumor sphere generation and miR-21 levels in EVs. SIGNIFICANCE Our study highlights the exacerbation of lung-to-brain metastasis via miR-21-rich EV secretion. This underlines the therapeutic promise of targeting the miR-21/ERK/STAT3 pathway with ulixertinib for managing brain metastasis from lung cancer.
Collapse
Affiliation(s)
- Tung-Yu Tiong
- Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Division of Thoracic Surgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Mei-Lin Chan
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Chun-Hua Wang
- Department of Dermatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Narpati Wesa Pikatan
- Graduate Program, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Iat-Hang Fong
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Kuang-Tai Kuo
- Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Division of Thoracic Surgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Wen-Chien Huang
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|
3
|
Cheng D, Ge K, Yao X, Wang B, Chen R, Zhao W, Fang C, Ji M. Tumor-associated macrophages mediate resistance of EGFR-TKIs in non-small cell lung cancer: mechanisms and prospects. Front Immunol 2023; 14:1209947. [PMID: 37649478 PMCID: PMC10463184 DOI: 10.3389/fimmu.2023.1209947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the first-line standard treatment for advanced non-small cell lung cancer (NSCLC) with EGFR mutation. However, resistance to EGFR-TKIs is inevitable. Currently, most studies on the mechanism of EGFR-TKIs resistance mainly focus on the spontaneous resistance phenotype of NSCLC cells. Studies have shown that the tumor microenvironment (TME) also mediates EGFR-TKIs resistance in NSCLC. Tumor-associated macrophages (TAMs), one of the central immune cells in the TME of NSCLC, play an essential role in mediating EGFR-TKIs resistance. This study aims to comprehensively review the current mechanisms underlying TAM-mediated resistance to EGFR-TKIs and discuss the potential efficacy of combining EGFR-TKIs with targeted TAMs therapy. Combining EGFR-TKIs with TAMs targeting may improve the prognosis of NSCLC with EGFR mutation to some extent.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cheng Fang
- Departments of Oncology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mei Ji
- Departments of Oncology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
4
|
Overcoming Acquired Drug Resistance to Cancer Therapies through Targeted STAT3 Inhibition. Int J Mol Sci 2023; 24:ijms24054722. [PMID: 36902166 PMCID: PMC10002572 DOI: 10.3390/ijms24054722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and, when combined, can result in potent inhibition of cancer growth. Combination therapies can result in long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents-standard toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal antibodies-that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer therapies.
Collapse
|
5
|
Zhao Z, Wang Y, Gong Y, Wang X, Zhang L, Zhao H, Li J, Zhu J, Huang X, Zhao C, Yang L, Wang L. Celastrol elicits antitumor effects by inhibiting the STAT3 pathway through ROS accumulation in non-small cell lung cancer. J Transl Med 2022; 20:525. [PMID: 36371217 PMCID: PMC9652895 DOI: 10.1186/s12967-022-03741-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/30/2022] [Indexed: 11/14/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common lung cancer with high mortality across the world, but it is challenging to develop an effective therapy for NSCLC. Celastrol is a natural bioactive compound, which has been found to possess potential antitumor activity. However, the underlying molecular mechanisms of celastrol activity in NSCLC remain elusive. Methods Cellular function assays were performed to study the suppressive role of celastrol in human NSCLC cells (H460, PC-9, and H520) and human bronchial epithelial cells BEAS-2B. Cell apoptosis levels were analyzed by flow cytometry, Hoechst 33342, caspase-3 activity analysis, and western blot analysis. Intracellular reactive oxygen species (ROS) were analyzed by flow cytometry and fluorescence microscope. Expression levels of endoplasmic reticulum (ER) stress-related proteins and phosphorylated signal transducer and activator of transcription 3 (P-STAT3) were identified via western blot analysis. A heterograft model in nude mice was employed to evaluate the effect of celastrol in vivo. Results Celastrol suppressed the growth, proliferation, and metastasis of NSCLC cells. Celastrol significantly increased the level of intracellular ROS; thus, triggering the activation of the ER stress pathway and inhibition of the P-STAT3 pathway, and eventually leading to cell apoptosis, and the effects were reversed by the pre-treatment with N-Acetyl-l-cysteine (NAC). Celastrol also suppressed tumor growth in vivo. Conclusion The outcomes revealed that celastrol plays a potent suppressive role in NSCLC in vitro and in vivo. Celastrol induces apoptosis via causing mitochondrial ROS accumulation to suppress the STAT3 pathway. Celastrol may have potential application prospects in the therapy of NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03741-9.
Collapse
|
6
|
Ding Y, Zhen Z, Nisar MA, Ali F, Din RU, Khan M, Mughal TA, Alam G, Liu L, Saleem MZ. Sesquiterpene Lactones Attenuate Paclitaxel Resistance Via Inhibiting MALAT1/STAT3/ FUT4 Axis and P-Glycoprotein Transporters in Lung Cancer Cells. Front Pharmacol 2022; 13:795613. [PMID: 35281907 PMCID: PMC8909900 DOI: 10.3389/fphar.2022.795613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Paclitaxel resistance is a challenging factor in chemotherapy resulting in poor prognosis and cancer recurrence. Signal transducer and activator of transcription factor 3 (STAT3), a key transcription factor, performs a critical role in cancer development, cell survival and chemoresistance, while its inactivation overwhelms drug resistance in numerous cancer types including lung cancer. Additionally, the fucosyltransferase 4 (FUT4) is a crucial enzyme in post-translational modification of cell-surface proteins involved in various pathological conditions such as tumor multidrug resistance (MDR). The P-glycoprotein (P-GP) is the well-known ABC transporter member that imparts drug resistance in different cancer types, most notably paclitaxel resistance in lung cancer cells. LncRNA-MALAT1 exerts a functional role in the cancer development as well as the drug resistance and is linked with STAT3 activation and activity of FUT4. Moreover, STAT3-mediated induction of P-GP is well-documented. Natural compounds of Sesquiterpene Lactone (SL) family are well-known for their anticancer properties with particular emphasis over STAT3 inhibitory capabilities. In this study, we explored the positive correlation of MALAT1 with STAT3 and FUT4 activity in paclitaxel resistant A549 (A549/T) lung cancer cells. Additionally, we investigated the anticancer activity of two well-known members of SLs, alantolactone (ALT) and Brevilin A (Brv-A), in A549/T lung cancer cells. ALT and Brv-A induced apoptosis in A549/T cells. Furthermore, these two natural SLs suppressed MALAT1 expression, STAT3 activation, and FUT4 and P-GP expression which are the hallmarks for paclitaxel resistance in A549 lung cancer cells. The inhibition of MALAT1 enhanced the competence of these SLs members significantly, which accounted for the growth inhibition as well as anti-migratory and anti-invasive effects of ALT and Brv-A. These findings suggest SLs to be the promising agents for overcoming paclitaxel resistance in A549 lung cancer cells.
Collapse
Affiliation(s)
- Yaming Ding
- The Second Hospital of Jilin University, Changchun, China
| | - Zhang Zhen
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | - Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Riaz Ud Din
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Muhammad Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Tafail Akbar Mughal
- Medical Toxicology Laboratory, Department of Zoology, Women University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Gulzar Alam
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Linlin Liu
- The Second Hospital of Jilin University, Changchun, China
| | - Muhammad Zubair Saleem
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Moiseyenko FV, Kuligina ES, Zhabina AS, Belukhin SA, Laidus TA, Martianov AS, Zagorodnev KA, Sokolova TN, Chuinyshena SA, Kholmatov MM, Artemieva EV, Stepanova EO, Shuginova TN, Volkov NM, Yanus GA, Imyanitov EN. Changes in the concentration of EGFR-mutated plasma DNA in the first hours of targeted therapy allow the prediction of tumor response in patients with EGFR-driven lung cancer. Int J Clin Oncol 2022; 27:850-862. [PMID: 35171360 PMCID: PMC8853017 DOI: 10.1007/s10147-022-02128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/23/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed to analyze changes in the plasma concentration of EGFR-mutated circulating tumor DNA (ctDNA) occurring immediately after the start of therapy with EGFR tyrosine kinase inhibitors (TKIs). METHODS Serial plasma samples were collected from 30 patients with EGFR-driven non-small cell lung cancer before intake of the first tablet and at 0.5, 1, 2, 3, 6, 12, 24, 36 and 48 h after the start of the therapy. The content of EGFR alleles (exon 19 deletions or L858R) in ctDNA was measured by ddPCR. RESULTS ctDNA was detected at base-line in 25/30 (83%) subjects. Twelve (50%) out of 24 informative patients showed > 25% reduction of the ctDNA content at 48 h time point; all these patients demonstrated disease control after 4 and 8-12 weeks of therapy. The remaining 12 individuals showed either stable content of EGFR-mutated ctDNA (n = 5) or the elevation of ctDNA concentration (n = 7). 10 of 12 patients with elevated or stable ctDNA level achieved an objective response at 4 weeks, but only 5 of 10 evaluable patients still demonstrated disease control at 8-12 weeks (p = 0.032, when compared to the group with ctDNA decrease). The decline of the amount of circulating EGFR mutant copies at 48 h also correlated with longer progression-free survival (14.7 months vs. 8.5 months, p = 0.013). CONCLUSION Comparison of concentration of EGFR-mutated ctDNA at base-line and at 48 h after the start of therapy is predictive for the duration of TKI efficacy.
Collapse
Affiliation(s)
- Fedor V. Moiseyenko
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
| | - Ekaterina S. Kuligina
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Albina S. Zhabina
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Sergey A. Belukhin
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Tatiana A. Laidus
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Aleksandr S. Martianov
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Kirill A. Zagorodnev
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Tatyana N. Sokolova
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
| | - Svetlana A. Chuinyshena
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Maxim M. Kholmatov
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
| | - Elizaveta V. Artemieva
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Ekaterina O. Stepanova
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Tatiana N. Shuginova
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Nikita M. Volkov
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Grigoriy A. Yanus
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Evgeny N. Imyanitov
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
- I.I. Mechnikov North-Western Medical University, 41 Kirochnaya street, Saint Petersburg, 191015 Russia
| |
Collapse
|
8
|
Liang N, Li S, Liang Y, Ma Y, Tang S, Ye S, Xiao F. Clusterin inhibits Cr(VI)-induced apoptosis via enhancing mitochondrial biogenesis through AKT-associated STAT3 activation in L02 hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112447. [PMID: 34175824 DOI: 10.1016/j.ecoenv.2021.112447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Improper treatment of a large amount of industrial waste makes hexavalent chromium [Cr(VI)] seriously pollute the atmosphere, soil and water, and enter the food chain, seriously affecting the health of workers and local residents. We previously proved that Clusterin (CLU) can inhibit the apoptosis of L02 hepatocytes induced by Cr(VI) through mitochondrial pathway, but the associated molecular mechanism has not been further studied. Mitochondrial biogenesis is an important step in mitochondrial damage repair, but the mechanism of mitochondrial biogenesis in Cr(VI)-induced liver toxicity is still unclear. We demonstrated in the present study that Cr(VI) triggered mitochondrial biogenesis dysfunction-associated apoptosis, and CLU delayed Cr(VI)-induced apoptosis by enhancing mitochondrial biogenesis. Signal transducer and activator of transcription 3 (STAT3) was down-regulated in Cr(VI)-induced apoptosis, and CLU may regulate STAT3 via protein kinase B (PKB/AKT) in Cr(VI)-exposed hepatocytes. We used the STAT3 inhibitor C188-9 and the AKT inhibitor Uprosertib to eliminate the anti-apoptotic effect of CLU, and found that CLU inhibited Cr(VI)-induced apoptosis by up-regulating AKT/STAT3 signal. Based on the fact that both AKT and STAT3 are closely related to mitochondrial biogenesis and mitochondrial pathway-associated apoptosis, this study is the first time to link CLU, STAT3, AKT and mitochondrial biogenesis function after Cr(VI) exposure, to further enrich the experimental basis of Cr(VI)-induced hepatotoxicity, clarify the molecular mechanism of CLU helping cells to escape apoptosis, and also suggest that new ways can be sought to prevent and treat Cr(VI)-induced hepatotoxicity by regulating mitochondrial biosynthesis.
Collapse
Affiliation(s)
- Ningjuan Liang
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Siwen Li
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Yuehui Liang
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Yu Ma
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Sixuan Tang
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Shuzi Ye
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
9
|
Zhao D, Chen J, Wang Y, Zhang L, Zhang J, Zhang W, Fan J, Li J, Zhan Q. Feed-forward activation of STAT3 signaling limits the efficacy of c-Met inhibitors in esophageal squamous cell carcinoma (ESCC) treatment. Mol Carcinog 2021; 60:481-496. [PMID: 34018249 DOI: 10.1002/mc.23306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/12/2023]
Abstract
c-Hepatocyte growth factor receptor (Met) inhibitors have demonstrated clinical benefits in some types of solid tumors. However, the efficacy of c-Met inhibitors in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we discovered that c-Met inhibitors induced "Signal Transducer and Activator of Transcription (STAT3)-addiction" in ESCC cells, and the feedback activation of STAT3 in ESCC cells limits the tumor response to c-Met inhibition. Mechanistically, c-Met inhibition increased the autocrine of several cytokines, including CCL2, interleukin 8, or leukemia inhibitory factor, and facilitated the interactions between the receptors of these cytokines and Janus Kinase1/2 (JAK1/2) to resultantly activate JAKs/STAT3 signaling. Pharmacological inhibition of c-Met together with cytokines/JAKs/STAT3 axis enhanced cancer cells regression in vitro. Importantly, combined c-Met and STAT3 inhibitors synergistically suppressed tumor growth and promoted the apoptosis of tumor cells without producing systematic toxicity. These findings suggest that inhibition of the STAT3 feedback loop may augment the response to c-Met inhibitors via the STAT3-mediated oncogene addiction in ESCC cells.
Collapse
Affiliation(s)
- Di Zhao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lingyuan Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weimin Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiawen Fan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinting Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qimin Zhan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- Shenzhen Bay Laboratory, Institute of Cancer Research, Shenzhen, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Song X, Tang W, Peng H, Qi X, Li J. FGFR leads to sustained activation of STAT3 to mediate resistance to EGFR-TKIs treatment. Invest New Drugs 2021; 39:1201-1212. [PMID: 33829354 DOI: 10.1007/s10637-021-01061-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/01/2021] [Indexed: 01/27/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have led to great advances in the treatment of non-small cell lung cancer (NSCLC), but the emergence of drug resistance severely limits their clinical use. Thus, elucidation of the mechanism underlying resistance to EGFR-TKIs is of great importance. In our study, sustained activation of STAT3 was confirmed to be involved in resistance to EGFR-TKIs, and this resistance occurred regardless of exposure time, EGFR-TKIs type, and even cancer cell type. Mechanistically, the sustained activation of STAT3 was not related to gp130/JAK signalling pathway or HER2/EGFR heterodimer formation, while related to the expression and activation levels of STAT3. Furthermore, FGFR was shown to bind more strongly to STAT3 after gefitinib treatment, and the inhibition of FGFR reduced the phosphorylation of STAT3, thereby counteracting the effects of EGFR-TKIs and resulting in the synergistic inhibition of cancer cell proliferation. Taken together, the FGFR/STAT3 axis mediates the sustained activation of STAT3 upon EGFR-TKI treatment. This finding elucidates a new mechanism underlying drug resistance to EGFR-TKIs that the FGFR/STAT3 axis mediates the sustained activation of STAT3, providing theoretical support for considering the combination of TKIs and FGFR inhibitors in clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoping Song
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266100, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China.,Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Wei Tang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Hui Peng
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Xin Qi
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Jing Li
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266100, People's Republic of China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China. .,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China. .,School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Shinan District, 2tivation of STAT3 me6003, Qingdao, Shandong, 266003, People's Republic of China.
| |
Collapse
|
11
|
Kara A, Özgür A, Tekin Ş, Tutar Y. Computational Analysis of Drug Resistance Network in Lung Adenocarcinoma. Anticancer Agents Med Chem 2021; 22:566-578. [PMID: 33602077 DOI: 10.2174/1871520621666210218175439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is a significant health problem and accounts for one-third of the deaths worldwide. A great majority of these deaths are caused by non-small cell lung cancer (NSCLC). Chemotherapy is the leading treatment method for NSCLC, but resistance to chemotherapeutics is an important limiting factor that reduces the treatment success of patients with NSCLC. OBJECTIVE In this study, the relationship between differentially expressed genes affecting the survival of the patients, according to the bioinformatics analyses, and the mechanism of drug resistance is investigated for non-small cell lung adenocarcinoma patients. METHODS Five hundred thirteen patient samples were compared with fifty-nine control samples. The employed dataset was downloaded from The Cancer Genome Atlas (TCGA) database. The information on how the drug activity altered against the expressional diversification of the genes was extracted from the NCI-60 database. Four hundred thirty-three drugs with known mechanism of action (MoA) were analyzed. Diversifications of the activity of these drugs related to genes were considered based on nine lung cancer cell lines virtually. The analyses were performed using R programming language, GDCRNATools, rcellminer, and Cytoscape. RESULTS This work analyzed the common signaling pathways and expressional alterations of the proteins in these pathways associated with survival and drug resistance in lung adenocarcinoma. Deduced computational data demonstrated that proteins of EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways were associated with molecular mechanism of resistance to anticancer drugs in NSCLC cells. CONCLUSION To understand the relationships between resistance to anticancer drugs and EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways is an important approach to design effective therapeutics for individuals with NSCLC adenocarcinoma.
Collapse
Affiliation(s)
- Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, . Turkey
| | - Aykut Özgür
- Tokat Gaziosmanpaşa University, Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat, . Turkey
| | - Şaban Tekin
- University of Health Sciences, Turkey, Hamidiye Faculty of Medicine, Department of Basic Medical Sciences, Division of Biology, İstanbul, . Turkey
| | - Yusuf Tutar
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Molecular Oncology, Istanbul, . Turkey
| |
Collapse
|
12
|
Triterpenoid Saponin AG8 from Ardisia gigantifolia stapf. Induces Triple Negative Breast Cancer Cells Apoptosis through Oxidative Stress Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7963212. [PMID: 33123316 PMCID: PMC7584968 DOI: 10.1155/2020/7963212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/11/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022]
Abstract
Triple-negative breast cancers (TNBCs) are associated with poor patient survival because of the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expressions. Our previous studies have shown that the triterpenoid saponin AG8 from Ardisia gigantifolia stapf. inhibits the proliferation of MDA-MB-231 cells. In this study, the effects of AG8 were further analyzed in different TNBC cell types: MDA-MB-231, BT-549, and MDA-MB-157 cells. AG8 inhibited the viability of MDA-MB-231, BT-549, and MDA-MB-157 cells in a dose-dependent manner and showed stronger cytotoxicity to African American (AA) and mesenchymal (M) subtypes than Caucasian (CA) and mesenchymal stem-like (MSL) subtypes, respectively. AG8 impaired the uptake of MitoTracker Red CMXRos by the mitochondria of TNBC cells in a dose-dependent manner, and this was recovered by N-acetyl-l-cysteine (NAC). AG8 affected GSH, SOD, and MDA levels of TNBC cells, but different TNBC subtypes had different sensitivities to AG8 and NAC. In addition, we found that AG8 increased the Bax/Bcl-2 ratio and the levels of cytoplasmic cytochrome c and significantly decreased phosphorylation of ERK and AKT in BT549 and MDA-MB-157 cells. AG8 elicited its anticancer effects through ROS generation, ERK and AKT activation, and by triggering mitochondrial apoptotic pathways in TNBC cells. AG8 had selective cytotoxic effects against the AA and M TNBC subtypes and markedly induced MDA-MB-157 (AA subtype) cell apoptosis through pathways that were not associated with ROS, which was different from the other two subtypes. The underlying mechanisms should be further investigated.
Collapse
|
13
|
Ahmad B, Gamallat Y, Su P, Husain A, Rehman AU, Zaky MY, Bakheet AMH, Tahir N, Xin Y, Liang W. Alantolactone induces apoptosis in THP-1 cells through STAT3, survivin inhibition, and intrinsic apoptosis pathway. Chem Biol Drug Des 2020; 97:266-272. [PMID: 32780548 DOI: 10.1111/cbdd.13778] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer is the second foremost cause of mortality in the world, and THP-1 cells play an important role in cancer progression. Alantolactone (ALT), a sesquiterpene lactone compound derived from Inula helenium, has a number of biological activities including antibacterial, antifungal, and anticancer. The current study was conducted to investigate the effects of ALT on THP-1 cells and its underlying molecular mechanisms. THP-1 cells were cultured and treated with ALT (20, 40 µM) for 12 hr, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell morphology, live/dead, and apoptosis assays were performed. The gene expressions at the protein level were checked through Western blot. Results show that ALT decreased cell viability and increased cell death and apoptosis. We found that ALT inhibited STAT3 and survivin expression. Furthermore, ALT induced mitochondrial-dependent apoptosis through a decrease in B-cell lymphoma-2 (Bcl-2) and Bcl-xL and increase in Bax expression, resulting in the release of cytochrome c (Cyt-c) from mitochondria. Cyt-c release from mitochondria further increased cleaved (cl) caspase-3 and cl-PARP expression and led the cells to apoptosis. Therefore, ALT might be a good therapy for the progression due to THP-1 cells.
Collapse
Affiliation(s)
- Bashir Ahmad
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yaser Gamallat
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Guangzhou Institute of Pediatrics, Guangzhou Women and Childrens Medical Center, Guangzhou, China
| | - Pengyu Su
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Akbar Husain
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ata Ur Rehman
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mohamed Y Zaky
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | - Naeem Tahir
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yi Xin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wang Liang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical, Dalian City, China
| |
Collapse
|
14
|
Nishimura T, Végvári Á, Nakamura H, Kato H, Saji H. Mutant Proteomics of Lung Adenocarcinomas Harboring Different EGFR Mutations. Front Oncol 2020; 10:1494. [PMID: 32983988 PMCID: PMC7477350 DOI: 10.3389/fonc.2020.01494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Epidermal growth factor receptor EGFR major driver mutations may affect downstream molecular networks and pathways, which would influence treatment outcomes of non-small cell lung cancer (NSCLC). This study aimed to unveil profiles of mutant proteins expressed in lung adenocarcinomas of 36 patients harboring representative driver EGFR mutations (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Surprisingly, the orthogonal partial least squares discriminant analysis performed for identified mutant proteins demonstrated the profound differences in distance among the different EGFR mutation groups, suggesting that cancer cells harboring L858R or Ex19del emerge from cellular origins different from L858R/Ex19del-negative cells. Weighted gene coexpression network analysis, together with over-representative analysis, identified 18 coexpressed modules and their eigen proteins. Pathways enriched differentially for both the L858R and Ex19del mutations included carboxylic acid metabolic process, cell cycle, developmental biology, cellular responses to stress, mitotic prophase, cell proliferation, growth, epithelial to mesenchymal transition (EMT), and immune system. The IPA causal network analysis identified the highly activated networks of PARPBP, HOXA1, and APH1 under the L858R mutation, whereas those of ASGR1, APEX1, BUB1, and MAPK10 were highly activated under the Ex19del mutation. Interestingly, the downregulated causal network of osimertinib intervention showed the highest significance in overlap p-value among most causal networks predicted under the L858R mutation. We also identified the causal network of MAPK interacting serine/threonine kinase 1/2 (MNK1/2) highly activated differentially under the L858R mutation. Tumor-suppressor AMOT, a component of the Hippo pathways, was highly inhibited commonly under both L858R and Ex19del mutations. Our results could identify disease-related protein molecular networks from the landscape of single amino acid variants. Our findings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Haruhiko Nakamura
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Harubumi Kato
- Division of Thoracic and Thyroid Surgery, Tokyo Medical University, Tokyo, Japan
- Research Institute of Health and Welfare Sciences, Graduate School, International University of Health and Welfare, Tokyo, Japan
| | - Hisashi Saji
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
15
|
Shu L, Hou G, Zhao H, Huang W, Song G, Ma H. Resveratrol improves high-fat diet-induced insulin resistance in mice by downregulating the lncRNA NONMMUT008655.2. Am J Transl Res 2020; 12:1-18. [PMID: 32051733 PMCID: PMC7013227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
As essential players in the field of diabetes treatment, resveratrol (RSV) has received much attention in recent years. However, it is unclear whether it can improve insulin resistance by regulating the long-chain non-coding RNA (lncRNA). The objective of this study was to investigate whether RSV improves high-fat diet-induced insulin resistance in mice by regulating thelncRNANONMMUT008655.2 in vivo and in vitro. To this end, animal and cell insulin resistance models were developed. Specifically, C57BL/6J mice were fed a high-fat diet (HFD) and administered RSV for eight weeks. Additionally, mouse Hepa cells were treated with palmitic acid, transfected with siRNA NONMMUT008655.2, and treated with RSV. Treated mice and cells were then compared to normal controls that were not exposed to RSV. In the animal model, RSV was found to decrease the levels of fasting blood glucose, triglycerides, and low-density lipoprotein cholesterol, as well as the insulin index and area under the curve; while increasing the insulin sensitivity index. Besides, RSV decreased the expression levels of SOCS3, G6PC, and FOXO1 yet increased that of p-Akt and p-FOXO1 in mice. The same results were observed following knockdown of NONMMUT008655.2 in cells. Overall, our results suggest that RSV may improve hepatic insulin resistance and control blood glucose levels by downregulating lncRNA NONMMUT008655.2.
Collapse
Affiliation(s)
- Linyi Shu
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| | - Guangsen Hou
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| | - Hang Zhao
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| | - Wenli Huang
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| |
Collapse
|
16
|
Wang XH, Wu HY, Gao J, Wang XH, Gao TH, Zhang SF. IGF1R facilitates epithelial-mesenchymal transition and cancer stem cell properties in neuroblastoma via the STAT3/AKT axis. Cancer Manag Res 2019; 11:5459-5472. [PMID: 31354352 PMCID: PMC6580139 DOI: 10.2147/cmar.s196862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Neuroblastoma (NB) displays the most heterogeneity in clinical manifestation. The insulin-like growth factor 1 receptor (IGF1R) has long been recognized for its role in tumourigenesis and growth. The IGF/IGF1R pathway is important in maintaining cell survival. It is reported that IGF1R participates in the occurrence of NB, but the mechanism is still unclear. Methods Human NB cell lines IMR-32 and SH-SY5Y were recruited in this study. IGF1R was knocked down by transfection with short hairpin RNA. Signal transducer and activator of transcription 3 (STAT3) expression was inhibited by Cryptotanshinone treatment. Cell proliferation, migration, and invasion were determined by MTT assay, wound healing assay, and cell invasion assay, respectively. The cancer stem cell properties were characterized by tumour sphere formation assay and colony formation assay. The mRNA and protein expression levels of related proteins were detected by RT-PCR and Western blot, respectively. Results The knockdown of IGF1R inhibits NB cell tumourigenesis and the epithelial-mesenchymal transition (EMT) of NB cells. Additionally, IGF1R was found to stimulate cancer stem cell-like properties in NPC cells. The knockdown of IGF1R significantly reduced the phosphorylation of AKT, and STAT3, indicating that the activation of the AKT and STAT3 pathways was inhibited by IGF1R knockdown. Furthermore, IGF1R was demonstrated to stimulate cancer stem cell-like properties in NB cells via the regulation of the STAT3/AKT axis. Conclusion IGF1R promotes cancer stem cell properties to facilitate EMT in neuroblastoma via the STAT3/AKT axis.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Hai-Ying Wu
- Department of Obstetrics, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Jian Gao
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Xu-Hui Wang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Tian-Hui Gao
- Department of Medical Oncology, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Shu-Feng Zhang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| |
Collapse
|
17
|
Cui Z, Liu Z, Zeng J, Zhang S, Chen L, Zhang G, Xu W, Song L, Guo X. TRIM59 promotes gefitinib resistance in EGFR mutant lung adenocarcinoma cells. Life Sci 2019; 224:23-32. [PMID: 30902544 DOI: 10.1016/j.lfs.2019.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 02/01/2023]
Abstract
AIMS The relationship between TRIM59 and drug resistance is elusive despite of its multiple uncovered roles in human cancers. Here we aimed to characterize the expression status of TRIM59 in gefitinib-resistant EGFR mutant lung adenocarcinoma cells and elucidate its mechanism underlying the drug resistance. MAIN METHODS Gefitinib-resistant cell lines were established by progressive dosage. Relative expression of TRIM59 was determined by both real-time PCR and Western blot. Target gene knockdown was achieved by specific shRNAs. Cell viability was measured by MTT assay. Cell apoptosis was analyzed by flow cytometry with Annexin V/7-AAD double staining. Cell proliferation was determined by clonogenic formation assay. Migration and invasion capacities were detected using transwell chamber assay. Direct interaction between TRIM59 and STAT3 was analyzed by co-immunoprecipitation assay. KEY FINDINGS We first observed overexpression of TRIM59 in gefitinib-resistant EGFR mutant lung adenocarcinoma cells. ShRNA-mediated knockdown of TRIM59 significantly inhibited cell viability and stimulated apoptosis. Meanwhile, TRIM59-deficiency suppressed cell migration and invasion. We further identified the interaction between TRIM59 and STAT3. TRIM59-deficiency remarkably impaired the activation of STAT3 signaling. STAT3-specific shRNAs significantly re-sensitized TRIM59-proficient EGFR mutant lung adenocarcinoma cells to gefitinib. SIGNIFICANCE Our data characterized aberrant TRIM59 overexpression in gefitinib-resistance EGFR mutant lung adenocarcinoma cells, and indicated the potential involvement of TRIM59-STAT3 signaling in the occurrence of gefitinib-resistance.
Collapse
Affiliation(s)
- Zhilei Cui
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Zhen Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, China
| | - Junxiang Zeng
- Department of Laboratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Shulin Zhang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Lei Chen
- Department of Pathology, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Guorui Zhang
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Weiguo Xu
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Lin Song
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.
| | - Xuejun Guo
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
18
|
Picco ME, Castro MV, Quezada MJ, Barbero G, Villanueva MB, Fernández NB, Kim H, Lopez-Bergami P. STAT3 enhances the constitutive activity of AGC kinases in melanoma by transactivating PDK1. Cell Biosci 2019; 9:3. [PMID: 30622697 PMCID: PMC6317239 DOI: 10.1186/s13578-018-0265-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/21/2018] [Indexed: 01/26/2023] Open
Abstract
Background The PI3K/Akt and the STAT3 pathways are functionally associated in many tumor types. Both in vitro and in vivo studies have revealed that either biochemical or genetic manipulation of the STAT3 pathway activity induce changes in the same direction in Akt activity. However, the implicated mechanism has been poorly characterized. Our goal was to characterize the precise mechanism linking STAT3 with the activity of Akt and other AGC kinases in cancer using melanoma cells as a model. Results We show that active STAT3 is constitutively bound to the PDK1 promoter and positively regulate PDK1 transcription through two STAT3 responsive elements. Transduction of WM9 and UACC903 melanoma cells with STAT3-small hairpin RNA decreased both PDK1 mRNA and protein levels. STAT3 knockdown also induced a decrease of the phosphorylation of AGC kinases Akt, PKC, and SGK. The inhibitory effect of STAT3 silencing on Akt phosphorylation was restored by HA-PDK1. Along this line, HA-PDK1 expression significantly blocked the cell death induced by dacarbazine plus STAT3 knockdown. This effect might be mediated by Bcl2 proteins since HA-PDK1 rescued Bcl2, Bcl-XL, and Mcl1 levels that were down-regulated upon STAT3 silencing. Conclusions We show that PDK1 is a transcriptional target of STAT3, linking STAT3 pathway with AGC kinases activity in melanoma. These data provide further rationale for the ongoing effort to therapeutically target STAT3 and PDK1 in melanoma and, possibly, other malignancies. Electronic supplementary material The online version of this article (10.1186/s13578-018-0265-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Elisa Picco
- 1Instituto de Medicina y Biología Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Castro
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - María Josefina Quezada
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - Gastón Barbero
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - María Belén Villanueva
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - Natalia Brenda Fernández
- 1Instituto de Medicina y Biología Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hyungsoo Kim
- 3Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Pablo Lopez-Bergami
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| |
Collapse
|
19
|
Chen D, Zhang F, Wang J, He H, Duan S, Zhu R, Chen C, Yin L, Chen Y. Biodegradable Nanoparticles Mediated Co-delivery of Erlotinib (ELTN) and Fedratinib (FDTN) Toward the Treatment of ELTN-Resistant Non-small Cell Lung Cancer (NSCLC) via Suppression of the JAK2/STAT3 Signaling Pathway. Front Pharmacol 2018; 9:1214. [PMID: 30483119 PMCID: PMC6242943 DOI: 10.3389/fphar.2018.01214] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Erlotinib (ELTN)-based targeted therapy as first-line treatment for epidermal growth factor receptor (EGFR)-mutant lung cancers suffers from insufficient selectivity, side effects, and drug resistance, which poses critical challenges in the clinical setting. Acquired resistance of ELTN results in extremely poor prognoses of non-small cell lung cancer (NSCLC) patients, wherein activation of the JAK2/STAT3 signaling pathway has been proven to induce acquired ELTN resistance. Methods: In this study, we developed a nanoparticle (NP) delivery system based on Food and Drug Administration (FDA)-approved poly(ethylene glycol) (PEG)-poly(lactic acid) (PLA) for the co-delivery of ELTN and fedratinib (FDTN, a small-molecular, highly selective JAK2 inhibitor). Both ELTN and FDTN could be encapsulated into the PEG-PLA NPs via optimization of the encapsulation method. The effect of NPs on NSCLC cells was evaluated by MTT assay. Western blotting was performed to study the molecular mechanisms of NPs inhibiting the downstream pathways of EGFR in vitro. The histological analysis and protein expression in vivo were assessed by hematoxylin/eosin (H&E) staining and immunohistochemistry, respectively. Results: The drug cargoes exhibited great stability, and could be released more efficiently in the acidic tumorous condition. Mechanistic study showed that FDTN notably down-regulated the expression levels of proteins in the JAK2/STAT3 signaling pathway, including p-EGFR, p-JAK2, p-STAT3 and Survivin, therefore reversing the ELTN resistance. As a result, synergistic anti-cancer effect was achieved by PEG-PLA NPs encapsulating both ELTN and FDTN in ELTN-resistant NSCLC tumors both in vitro and in vivo, and lower systemic side effect was noted for the co-delivery NPs compared to free drugs. Conclusion: This study provides a promising approach to overcome the ELTN resistance in the treatment of NSCLC, and the use of FDA-approved materials with clinically applied/investigated chemical drugs may facilitate the translation of the current delivery system.
Collapse
Affiliation(s)
- Donglai Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuquan Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhui Wang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Hua He
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Shanzhou Duan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rongying Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Yongbing Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Yang Q, Chen W, Xu Y, Lv X, Zhang M, Jiang H. Polyphyllin I modulates MALAT1/STAT3 signaling to induce apoptosis in gefitinib-resistant non-small cell lung cancer. Toxicol Appl Pharmacol 2018; 356:1-7. [DOI: 10.1016/j.taap.2018.07.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
|
21
|
Wang JR, Shen GN, Luo YH, Piao XJ, Shen M, Liu C, Wang Y, Meng LQ, Zhang Y, Wang H, Li JQ, Xu WT, Liu Y, Sun HN, Han YH, Jin MH, Cao LK, Jin CH. The compound 2-(naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone induces apoptosis via reactive oxygen species-regulated mitogen-activated protein kinase, protein kinase B, and signal transducer and activator of transcription 3 signaling in human gastric cancer cells. Drug Dev Res 2018; 79:295-306. [PMID: 30222185 DOI: 10.1002/ddr.21442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Hit, Lead & Candidate Discovery It is reported that 1,4-naphthoquinones and their derivatives have potent antitumor activity in various cancers, although their clinical application is limited by observed side effects. To improve the therapeutic efficacy of naphthoquinones in the treatment of cancer and to reduce side effects, we synthesized a novel naphthoquinone derivative, 2-(naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone (NTDMNQ). In this study, we explored the effects of NTDMNQ on apoptosis in gastric cancer cells with a focus on reactive oxygen species (ROS) production. Our results demonstrated that NTDMNQ exhibited the cytotoxic effects on gastric cancer cells in a dose-dependent manner. NTDMNQ significantly induced mitochondrial-related apoptosis in AGS cells and increased the accumulation of ROS. However, pre-treatment with N-acetyl-L-cysteine (NAC), an ROS scavenger, inhibited the NTDMNQ-induced apoptosis. In addition, NTDMNQ increased the phosphorylation of p38 kinase and c-Jun N-terminal kinase (JNK) and decreased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and Signal Transducer and Activator of Transcription 3 (STAT3); these effects were blocked by mitogen-activated protein kinase (MAPK) inhibitor and NAC. Taken together, the present findings indicate that NTDMNQ-induced gastric cancer cell apoptosis via ROS-mediated regulation of the MAPK, Akt, and STAT3 signaling pathways. Therefore, NTDMNQ may be a potential treatment for gastric cancer as well as other tumor types.
Collapse
Affiliation(s)
- Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hua Luo
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Meng Shen
- College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ling-Qi Meng
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hu-Nan Sun
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hao Han
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mei-Hua Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Long-Kui Cao
- College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
22
|
Shen L, Ke Q, Chai J, Zhang C, Qiu L, Peng F, Deng X, Luo Z. PAG1 promotes the inherent radioresistance of laryngeal cancer cells via activation of STAT3. Exp Cell Res 2018; 370:127-136. [DOI: 10.1016/j.yexcr.2018.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022]
|
23
|
RNF25 promotes gefitinib resistance in EGFR-mutant NSCLC cells by inducing NF-κB-mediated ERK reactivation. Cell Death Dis 2018; 9:587. [PMID: 29789542 PMCID: PMC5964247 DOI: 10.1038/s41419-018-0651-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/24/2018] [Accepted: 05/02/2018] [Indexed: 01/28/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients with EGFR mutations initially respond well to EGFR tyrosine kinase inhibitors (TKIs) but eventually exhibit acquired or innate resistance to the therapies typically due to gene mutations, such as EGFR T790M mutation or a second mutation in the downstream pathways of EGFR. Importantly, a significant portion of NSCLC patients shows TKI resistance without any known mechanisms, calling more comprehensive studies to reveal the underlying mechanisms. Here, we investigated a synthetic lethality with gefitinib using a genome-wide RNAi screen in TKI-resistant EGFR-mutant NSCLC cells, and identified RNF25 as a novel factor related to gefitinib resistance. Depletion of RNF25 expression substantially sensitized NSCLC cells to gefitinib treatment, while forced expression of RNF25 augmented gefitinib resistance in sensitive cells. We demonstrated that RNF25 mediates NF-κB activation in gefitinib-treated cells, which, in turn, induces reactivation of ERK signal to cause the drug resistance. We identified that the ERK reactivation occurs via the function of cytokines, such as IL-6, whose expression is transcriptionally induced in a gefitinib-dependent manner by RNF25-mediated NF-κB signals. These results suggest that RNF25 plays an essential role in gefitinib resistance of NSCLC by mediating cross-talk between NF-κB and ERK pathways, and provide a novel target for the combination therapy to overcome TKI resistance of NSCLC.
Collapse
|
24
|
Song JM, Anandharaj A, Upadhyaya P, Kirtane AR, Kim JH, Hong KH, Panyam J, Kassie F. Honokiol suppresses lung tumorigenesis by targeting EGFR and its downstream effectors. Oncotarget 2018; 7:57752-57769. [PMID: 27458163 PMCID: PMC5295387 DOI: 10.18632/oncotarget.10759] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/10/2016] [Indexed: 01/09/2023] Open
Abstract
Since epidermal growth factor receptor (EGFR) is commonly deregulated in pre-malignant lung epithelium, targeting EGFR may arrest the development of lung cancer. Here, we showed that honokiol (2.5–7.5 μM), a bioactive compound of Magnolia officinalis, differentially suppressed proliferation (up to 93%) and induced apoptosis (up to 61%) of EGFR overexpressing tumorigenic bronchial cells and these effects were paralleled by downregulation of phospho-EGFR, phospho-Akt, phospho-STAT3 and cell cycle-related proteins as early as 6–12 h post-treatment. Autocrine secretion of EGF sensitized 1170 cells to the effects of honokiol. Molecular docking studies indicated that honokiol binds to the tyrosine kinase domain of EGFR although it was less efficient than erlotinib. However, the anti-proliferative and pro-apoptotic activities of honokiol were stronger than those of erlotinib. Upon combinatory treatment, honokiol sensitized bronchial cells and erlotinib resistant H1650 and H1975 cells to erlotinib. Furthermore, in a mouse lung tumor bioassay, intranasal instillation of liposomal honokiol (5 mg/kg) for 14 weeks reduced the size and multiplicity (49%) of lung tumors and the level of total- and phospho-EGFR, phospho-Akt and phospho-STAT3. Overall, our results indicate that honokiol is a promising candidate to suppress the development and even progression of lung tumors driven by EGFR deregulation.
Collapse
Affiliation(s)
- Jung Min Song
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ameya R Kirtane
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jong-Hyuk Kim
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kwon Ho Hong
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jayanth Panyam
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
25
|
Proscillaridin A Promotes Oxidative Stress and ER Stress, Inhibits STAT3 Activation, and Induces Apoptosis in A549 Lung Adenocarcinoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3853409. [PMID: 29576846 PMCID: PMC5821950 DOI: 10.1155/2018/3853409] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/21/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022]
Abstract
Cardiac glycosides are natural compounds used for the treatment of cardiovascular disorders. Although originally prescribed for cardiovascular diseases, more recently, they have been rediscovered for their potential use in the treatment of cancer. Proscillaridin A (PSD-A), a cardiac glycoside component of Urginea maritima, has been reported to exhibit anticancer activity. However, the cellular targets and anticancer mechanism of PSD-A in various cancers including lung cancer remain largely unexplored. In the present study, we found that PSD-A inhibits growth and induces apoptosis in A549 lung adenocarcinoma cells. The anticancer activity of PSD-A was found to be associated with the activation of JNK, induction of ER stress, mitochondrial dysfunction, and inhibition of STAT3 activation. PSD-A induces oxidative stress as evidenced from ROS generation, GSH depletion, and decreased activity of TrxR1. PSD-A-mediated ER stress was verified by increased phosphorylation of eIF2α and expression of its downstream effector proteins ATF4, CHOP, and caspases-4. PSD-A triggered apoptosis by inducing JNK (1/2) activation, increasing bax/bcl-2 ratio, dissipating mitochondrial membrane potential, and inducing cleavage of caspases and PARP. Further study revealed that PSD-A inhibits both constitutive and inducible STAT3 activations and decreases STAT3 DNA-binding activity. Moreover, PSD-A-mediated inhibition of STAT3 activation was found to be associated with increased SHP-1 expression, decreased phosphorylation of Src, and binding of PSD-A with STAT3 SH2 domain. Finally, STAT3 knockdown by shRNA inhibited growth and enhanced apoptotic efficacy of PSD-A. Taken together, the data suggest that PSD-A could be developed into a potential therapeutic agent against lung adenocarcinoma.
Collapse
|
26
|
Potential influence of interleukin-6 on the therapeutic effect of gefitinib in patients with advanced non-small cell lung cancer harbouring EGFR mutations. Biochem Biophys Res Commun 2018; 495:360-367. [DOI: 10.1016/j.bbrc.2017.10.175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 01/03/2023]
|
27
|
Development of Erasin: a chromone-based STAT3 inhibitor which induces apoptosis in Erlotinib-resistant lung cancer cells. Sci Rep 2017; 7:17390. [PMID: 29234062 PMCID: PMC5727211 DOI: 10.1038/s41598-017-17600-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
Inhibition of protein-protein interactions by small molecules offers tremendous opportunities for basic research and drug development. One of the fundamental challenges of this research field is the broad lack of available lead structures from nature. Here, we demonstrate that modifications of a chromone-based inhibitor of the Src homology 2 (SH2) domain of the transcription factor STAT5 confer inhibitory activity against STAT3. The binding mode of the most potent STAT3 inhibitor Erasin was analyzed by the investigation of structure-activity relationships, which was facilitated by chemical synthesis and biochemical activity analysis, in combination with molecular docking studies. Erasin inhibits tyrosine phosphorylation of STAT3 with selectivity over STAT5 and STAT1 in cell-based assays, and increases the apoptotic rate of cultured NSCLC cells in a STAT3-dependent manner. This ability of Erasin also extends to HCC-827 cells with acquired resistance against Erlotinib, a clinically used inhibitor of the EGF receptor. Our work validates chromone-based acylhydrazones as privileged structures for antagonizing STAT SH2 domains, and demonstrates that apoptosis can be induced in NSCLC cells with acquired Erlotinib resistance by direct inhibition of STAT3.
Collapse
|
28
|
Solberg NT, Waaler J, Lund K, Mygland L, Olsen PA, Krauss S. TANKYRASE Inhibition Enhances the Antiproliferative Effect of PI3K and EGFR Inhibition, Mutually Affecting β-CATENIN and AKT Signaling in Colorectal Cancer. Mol Cancer Res 2017; 16:543-553. [DOI: 10.1158/1541-7786.mcr-17-0362] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/30/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022]
|
29
|
Cheong HT, Xu F, Choy CT, Hui CWC, Mok TSK, Wong CH. Upregulation of Bcl2 in NSCLC with acquired resistance to EGFR-TKI. Oncol Lett 2017; 15:901-907. [PMID: 29422965 PMCID: PMC5772989 DOI: 10.3892/ol.2017.7377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/13/2017] [Indexed: 12/25/2022] Open
Abstract
Lung cancer has the highest incidence and mortality rate worldwide among all malignancy-associated mortalities, of which non-small cell lung cancer accounts for 80% of all cases. Resistance against epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) develops following 8–12 months of disease progression, and is a critical issue. HCC827 cell lines with resistance to EGFR-TKIs were successfully screened. The half maximal inhibitory concentration values were 1,000-fold higher than the values for the parental HCC827 cell line, thereby demonstrating cross-resistance against the same family of TKIs. The expression of B-cell lymphoma 2 (Bcl2) was markedly increased in the resistant clones, as well as in the patient biopsies. The phosphatase and tensin homolog phosphoinositide 3-kinase signaling axis is a potential mechanism for acquiring resistance, and therefore targeting Bcl2 may be a useful strategy for further investigations.
Collapse
Affiliation(s)
- Hio Teng Cheong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Fei Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Chi Tung Choy
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Connie Wun Chun Hui
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Tony Shu Kam Mok
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Chi Hang Wong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
30
|
Santamarine Inhibits NF- κB Activation and Induces Mitochondrial Apoptosis in A549 Lung Adenocarcinoma Cells via Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4734127. [PMID: 29119107 PMCID: PMC5651150 DOI: 10.1155/2017/4734127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/24/2017] [Indexed: 12/27/2022]
Abstract
Santamarine (STM), a sesquiterpene lactone component of Magnolia grandiflora and Ambrosia confertiflora, has been shown to possess antimicrobial, antifungal, antibacterial, anti-inflammatory, and anticancer activities. However, no study has yet been conducted to investigate the molecular mechanism of STM-mediated anticancer activity. In the present study, we found that STM inhibits growth and induces apoptosis in A549 lung adenocarcinoma cells through induction of oxidative stress. STM induces oxidative stress by promoting reactive oxygen species (ROS) generation, depleting intracellular glutathione (GSH), and inhibiting thioredoxin reductase (TrxR) activity in a dose-dependent manner. Further mechanistic study demonstrated that STM induces apoptosis by modulation of Bax/Bcl-2 expressions, disruption of mitochondrial membrane potential, activation of caspase-3, and cleavage of PARP in a dose-dependent manner. Moreover, STM inhibited the constitutive and inducible translocation of NF-κBp65 into the nucleus. IKK-16 (I-κB kinase inhibitor) augmented the STM-induced apoptosis, indicating that STM induces apoptosis in A549 cells at least in part through NF-κB inhibition. Finally, STM-induced apoptosis and expressions of apoptosis regulators were effectively inhibited by thiol antioxidant N-acetyl-L-cysteine (NAC), indicating that STM exerts its anticancer effects mainly through oxidative stress. To the best of our knowledge, this is the first report providing evidence of anticancer activity and molecular mechanism of STM.
Collapse
|
31
|
Zulkifli AA, Tan FH, Putoczki TL, Stylli SS, Luwor RB. STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics. Mol Cell Endocrinol 2017; 451:15-23. [PMID: 28088467 DOI: 10.1016/j.mce.2017.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/20/2023]
Abstract
Several EGFR inhibitors are currently undergoing clinical assessment or are approved for the clinical management of patients with varying tumour types. However, treatment often results in a lack of response in many patients. The majority of patients that initially respond eventually present with tumours that display acquired resistance to the original therapy. A large number of receptor tyrosine and intracellular kinases have been implicated in driving signaling that mediates this tumour resistance to anti-EGFR targeted therapy, and in a few cases these discoveries have led to overall changes in prospective tumour screening and clinical practice (K-RAS in mCRC and EGFR T790M in NSCLC). In this mini-review, we specifically focus on the role of the STAT3 signaling axis in providing both intrinsic and acquired resistance to inhibitors of the EGFR. We also focus on STAT3 pathway targeting in an attempt to overcome resistance to anti-EGFR therapeutics.
Collapse
Affiliation(s)
- Ahmad A Zulkifli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Fiona H Tan
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Tracy L Putoczki
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
32
|
Alantolactone induces apoptosis, promotes STAT3 glutathionylation and enhances chemosensitivity of A549 lung adenocarcinoma cells to doxorubicin via oxidative stress. Sci Rep 2017; 7:6242. [PMID: 28740138 PMCID: PMC5524969 DOI: 10.1038/s41598-017-06535-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023] Open
Abstract
Alantolactone (ALT), a sesquiterpene lactone component of Inula helenium, has been reported to exert anticancer activity in various cancers. However, the cellular targets and underlying mechanism of anticancer activity of ALT in various cancers including lung cancer has not been fully defined. In the present study, we found that ALT effectively inhibits proliferation and triggers oxidative stress mediated-apoptosis in A549 lung adenocarcinoma cells by inducing ER stress and mitochondrial dysfunction. This ALT-mediated apoptosis was inhibited by NAC while diamide potentiated it. Moreover, ALT effectively suppressed both constitutive and inducible STAT3 activation, inhibited its translocation into nucleus and decreased its DNA binding activity. Further mechanistic study revealed that ALT abrogated STAT3 activation by promoting STAT3 glutathionylation. ROS scavenger NAC reverted ALT-mediated STAT3 glutathionylation and inhibition of STAT3 phosphorylation. Finally, ALT enhanced chemosensitivity of A549 cells to doxorubicin and reversed doxorubicin resistance in A549/DR cells by inhibiting STAT3 activation and P-glycoprotein expression and increasing intracellular accumulation of doxorubicin. Suppression of STAT3 activation by targeting ROS metabolism with ALT thus discloses a previously unrecognized mechanism underlying the biological activity of ALT. Taken together; ALT induces oxidative stress-dependent apoptosis, inhibits STAT3 activation and augments doxorubicin toxicity in A549 lung cancer cells. These findings provide an in-depth insight into the molecular mechanism of ALT in the treatment of lung cancer.
Collapse
|
33
|
Xu Y, Jin J, Xu J, Shao YW, Fan Y. JAK2 variations and functions in lung adenocarcinoma. Tumour Biol 2017. [PMID: 28639892 DOI: 10.1177/1010428317711140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yanjun Xu
- Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Juan Jin
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiawei Xu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang W Shao
- Geneseeq Technology Inc., Toronto, ON, Canada
| | - Yun Fan
- Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
34
|
Li KL, Li L, Zhang P, Kang J, Wang YB, Chen HY, He Y. A Multicenter Double-blind Phase II Study of Metformin With Gefitinib as First-line Therapy of Locally Advanced Non–Small-cell Lung Cancer. Clin Lung Cancer 2017; 18:340-343. [DOI: 10.1016/j.cllc.2016.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/13/2016] [Indexed: 01/15/2023]
|
35
|
Perakis S, Auer M, Belic J, Heitzer E. Advances in Circulating Tumor DNA Analysis. Adv Clin Chem 2017; 80:73-153. [PMID: 28431643 DOI: 10.1016/bs.acc.2016.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The analysis of cell-free circulating tumor DNA (ctDNA) is a very promising tool and might revolutionize cancer care with respect to early detection, identification of minimal residual disease, assessment of treatment response, and monitoring tumor evolution. ctDNA analysis, often referred to as "liquid biopsy" offers what tissue biopsies cannot-a continuous monitoring of tumor-specific changes during the entire course of the disease. Owing to technological improvements, efforts for the establishment of preanalytical and analytical benchmark, and the inclusion of ctDNA analyses in clinical trial, an actual clinical implementation has come within easy reach. In this chapter, recent advances of the analysis of ctDNA are summarized starting from the discovery of cell-free DNA, to methodological approaches and the clinical applicability.
Collapse
Affiliation(s)
- Samantha Perakis
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Martina Auer
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Jelena Belic
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, Graz, Austria.
| |
Collapse
|
36
|
miR-124 modulates gefitinib resistance through SNAI2 and STAT3 in non-small cell lung cancer. ACTA ACUST UNITED AC 2016; 36:839-845. [DOI: 10.1007/s11596-016-1672-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/07/2016] [Indexed: 12/26/2022]
|
37
|
Dokala A, Thakur SS. Extracellular region of epidermal growth factor receptor: a potential target for anti-EGFR drug discovery. Oncogene 2016; 36:2337-2344. [PMID: 27775071 DOI: 10.1038/onc.2016.393] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor with tyrosine kinase activity involved in regulation of cellular multiplication, survival, differentiation and metastasis. Our knowledge about function and complex management of these receptors has driving the development of specific and targeted treatment modalities for human cancers in the last 20 years. EGFR is the first receptor target against which monoclonal antibodies (mAb) have been evolved for cancer treatment. Here we review the biology of ErbB receptors, including their architecture, signaling, regulation and therapeutic strategies and the mechanisms of resistances offered by the receptors against small-molecule tyrosine kinases and resistance overcome implications of mAbs. The efficacy of EGFR-specific mAb in cancer depends on site specific extracellular region of EGFR, which has crucial role in process of dimerization and activation. This review highlights evolution of various resistance mechanisms due to consequences of current small-molecule anti-EGFR therapies.
Collapse
Affiliation(s)
- A Dokala
- Proteomics and Cell Signaling, CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - S S Thakur
- Proteomics and Cell Signaling, CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| |
Collapse
|
38
|
Zhang FQ, Yang WT, Duan SZ, Xia YC, Zhu RY, Chen YB. JAK2 inhibitor TG101348 overcomes erlotinib-resistance in non-small cell lung carcinoma cells with mutated EGF receptor. Oncotarget 2016; 6:14329-43. [PMID: 25869210 PMCID: PMC4546470 DOI: 10.18632/oncotarget.3685] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/03/2015] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations are responsive to EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, NSCLC patients with secondary somatic EGFR mutations are resistant to EGFR-TKI treatment. In this study, we investigated the effect of TG101348 (a JAK2 inhibitor) on the tumor growth of erlotinib-resistant NSCLC cells. Cell proliferation, apoptosis, gene expression and tumor growth were evaluated by diphenyltetrazolium bromide (MTT) assay, flow cytometry, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, Western Blot and a xenograft mouse model, respectively. Results showed that erlotinib had a stronger impact on the induction of apoptosis in erlotinib-sensitive PC-9 cells but had a weaker effect on erlotinib-resistant H1975 and H1650 cells than TG101348. TG101348 significantly enhanced the cytotoxicity of erlotinib to erlotinib-resistant NSCLC cells, stimulated erlotinib-induced apoptosis and downregulated the expressions of EGFR, p-EGFR, p-STAT3, Bcl-xL and survivin in erlotinib-resistant NSCLC cells. Moreover, the combined treatment of TG101348 and erlotinib induced apoptosis, inhibited the activation of p-EGFR and p-STAT3, and inhibited tumor growth of erlotinib-resistant NSCLC cells in vivo. Our results indicate that TG101348 is a potential adjuvant for NSCLC patients during erlotinib treatment.
Collapse
Affiliation(s)
- Fu-quan Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wen-tao Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shan-zhou Duan
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying-chen Xia
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rong-ying Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yong-bing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
39
|
IOANNOU NIKOLAOS, SEDDON ALANM, DALGLEISH ANGUS, MACKINTOSH DAVID, SOLCA FLAVIO, MODJTAHEDI HELMOUT. Acquired resistance of pancreatic cancer cells to treatment with gemcitabine and HER-inhibitors is accompanied by increased sensitivity to STAT3 inhibition. Int J Oncol 2016; 48:908-18. [PMID: 26781210 PMCID: PMC4750538 DOI: 10.3892/ijo.2016.3320] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022] Open
Abstract
Drug-resistance is a major contributing factor for the poor prognosis in patients with pancreatic cancer. We have shown previously that the irreversible ErbB family blocker afatinib, is more effective than the reversible EGFR tyrosine kinase inhibitor erlotinib in inhibiting the growth of human pancreatic cancer cells. The aim of this study was to develop human pancreatic cancer cell (BxPc3) variants with acquired resistance to treatment with gemcitabine, afatinib, or erlotinib, and to investigate the molecular changes that accompany the acquisition of a drug-resistant phenotype. We also investigated the therapeutic potential of various agents in the treatment of such drug-resistant variants. Three variant forms of BxPc3 cells with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) were developed following treatment with increasing doses of such drugs. The expression level, mutational and phosphorylation status of various growth factor receptors and downstream cell signaling molecules were determined by FACS, human phopsho-RTK array, and western blot analysis while the sulforhodamine B assay was used for determining the effect of various agents on the growth of such tumours. We found that all three BxPc3 variants with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) also become less sensitive to treatment with the two other agents. Acquisition of resistance to these agents was accompanied by upregulation of p-c-MET, p-STAT3, CD44, increased autocrine production of EGFR ligand amphiregulin and differential activation status of EGFR tyrosine residues as well as downregulation of total and p-SRC. Of all therapeutic interventions examined, including the addition of an anti-EGFR antibody ICR62, an anti-CD44 monoclonal antibody, and of STAT3 or c-MET inhibitors, only treatment with the STAT3 inhibitor Stattic produced a higher growth inhibitory effect in all three drug-resistant variants. In addition, treatment with a combination of afatinib with either c-MET inhibitor Crizotinib or Stattic resulted in an additive or synergistic growth inhibition in all three variants. Our results suggest that activation of STAT3 may play an important role in the acquisition of resistance to gemcitabine and HER inhibitors in pancreatic cancer and warrant further studies on the therapeutic potential of STAT3 inhibitors in such a setting.
Collapse
Affiliation(s)
- NIKOLAOS IOANNOU
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| | - ALAN M. SEDDON
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| | - ANGUS DALGLEISH
- Department of Cellular and Molecular Medicine, St George's University of London, London, UK
| | - DAVID MACKINTOSH
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| | - FLAVIO SOLCA
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - HELMOUT MODJTAHEDI
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| |
Collapse
|
40
|
Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C, Bowlby R, Shen H, Hayat S, Fieldhouse R, Lester SC, Tse GMK, Factor RE, Collins LC, Allison KH, Chen YY, Jensen K, Johnson NB, Oesterreich S, Mills GB, Cherniack AD, Robertson G, Benz C, Sander C, Laird PW, Hoadley KA, King TA, Perou CM. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell 2016; 163:506-19. [PMID: 26451490 DOI: 10.1016/j.cell.2015.09.033] [Citation(s) in RCA: 1355] [Impact Index Per Article: 150.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/04/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
Invasive lobular carcinoma (ILC) is the second most prevalent histologic subtype of invasive breast cancer. Here, we comprehensively profiled 817 breast tumors, including 127 ILC, 490 ductal (IDC), and 88 mixed IDC/ILC. Besides E-cadherin loss, the best known ILC genetic hallmark, we identified mutations targeting PTEN, TBX3, and FOXA1 as ILC enriched features. PTEN loss associated with increased AKT phosphorylation, which was highest in ILC among all breast cancer subtypes. Spatially clustered FOXA1 mutations correlated with increased FOXA1 expression and activity. Conversely, GATA3 mutations and high expression characterized luminal A IDC, suggesting differential modulation of ER activity in ILC and IDC. Proliferation and immune-related signatures determined three ILC transcriptional subtypes associated with survival differences. Mixed IDC/ILC cases were molecularly classified as ILC-like and IDC-like revealing no true hybrid features. This multidimensional molecular atlas sheds new light on the genetic bases of ILC and provides potential clinical options.
Collapse
Affiliation(s)
- Giovanni Ciriello
- Department of Medical Genetics, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael L Gatza
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Andrew H Beck
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Matthew D Wilkerson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Suhn K Rhie
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Alessandro Pastore
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hailei Zhang
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael McLellan
- The Genome Institute, Washington University School of Medicine, MO, 63108, USA
| | - Christina Yau
- Buck Institute For Research on Aging, Novato, CA, 94945, USA
| | - Cyriac Kandoth
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z4S6, Canada
| | - Hui Shen
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Sikander Hayat
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Robert Fieldhouse
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Susan C Lester
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Rachel E Factor
- Department of Pathology, School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Laura C Collins
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Kimberly H Allison
- Department of Pathology, School of Medicine, Stanford University Medical Center, Stanford University, Stanford, CA, USA
| | - Yunn-Yi Chen
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| | - Kristin Jensen
- Department of Pathology, School of Medicine, Stanford University Medical Center, Stanford University, Stanford, CA, USA; VA Palo Alto Healthcare System, Palo Alto, 94304, CA, USA
| | - Nicole B Johnson
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15232, USA
| | - Gordon B Mills
- MD Anderson Cancer Center, The University of Texas, Houston, TX, 77230, USA
| | - Andrew D Cherniack
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z4S6, Canada
| | | | - Chris Sander
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tari A King
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
41
|
Ryall KA, Shin J, Yoo M, Hinz TK, Kim J, Kang J, Heasley LE, Tan AC. Identifying kinase dependency in cancer cells by integrating high-throughput drug screening and kinase inhibition data. Bioinformatics 2015. [PMID: 26206305 DOI: 10.1093/bioinformatics/btv427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION Targeted kinase inhibitors have dramatically improved cancer treatment, but kinase dependency for an individual patient or cancer cell can be challenging to predict. Kinase dependency does not always correspond with gene expression and mutation status. High-throughput drug screens are powerful tools for determining kinase dependency, but drug polypharmacology can make results difficult to interpret. RESULTS We developed Kinase Addiction Ranker (KAR), an algorithm that integrates high-throughput drug screening data, comprehensive kinase inhibition data and gene expression profiles to identify kinase dependency in cancer cells. We applied KAR to predict kinase dependency of 21 lung cancer cell lines and 151 leukemia patient samples using published datasets. We experimentally validated KAR predictions of FGFR and MTOR dependence in lung cancer cell line H1581, showing synergistic reduction in proliferation after combining ponatinib and AZD8055. AVAILABILITY AND IMPLEMENTATION KAR can be downloaded as a Python function or a MATLAB script along with example inputs and outputs at: http://tanlab.ucdenver.edu/KAR/. CONTACT aikchoon.tan@ucdenver.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Karen A Ryall
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine
| | - Jimin Shin
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine
| | - Minjae Yoo
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine
| | - Trista K Hinz
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jihye Kim
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, Seoul, Korea and
| | - Lynn E Heasley
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine
| | - Aik Choon Tan
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, Department of Computer Science and Engineering, Korea University, Seoul, Korea and Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
42
|
QIAO HAISHI, ZHAO DAN, SHI HENGFEI, REN KE, LI JIANXIN, LI ERGUANG. Novel quinazoline derivatives exhibit antitumor activity by inhibiting JAK2/STAT3. Oncol Rep 2015; 34:1875-82. [DOI: 10.3892/or.2015.4140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/29/2015] [Indexed: 11/05/2022] Open
|
43
|
Combining AKT inhibition with chloroquine and gefitinib prevents compensatory autophagy and induces cell death in EGFR mutated NSCLC cells. Oncotarget 2015; 5:4765-78. [PMID: 24946858 PMCID: PMC4148097 DOI: 10.18632/oncotarget.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although non-small cell lung cancer (NSCLC) patients with EGFR mutation positive (EGFR M+) tumors initially respond well to EGFR tyrosine kinase inhibitor (TKI) monotherapy, the responses are usually incomplete. In this study we show that AKT inhibition, most importantly AKT2 inhibition, synergises with EGFR TKI inhibition to increase cell killing in EGFR M+ NSCLC cells. However, our data also suggest that the synergistic pro-apoptotic effects may be stunted due to a prosurvival autophagy response induced by AKT inhibition. Consequently, inhibiting autophagy with chloroquine significantly enhanced tumor cell death induced by gefitinib and AKT inhibitors in EGFR M+ cells in vitro, and produced greater tumor shrinkage in EGFR M+ xenografts in vivo. Together, our findings suggest that adding chloroquine to EGFR and AKT inhibition has the potential to improve tumor responses in EGFR M+ NSCLC, and that selective targeting of AKT2 may provide a new treatment option in NSCLC.
Collapse
|
44
|
Quinolone-indolone conjugate induces apoptosis by inhibiting the EGFR-STAT3-HK2 pathway in human cancer cells. Mol Med Rep 2015; 12:2749-56. [PMID: 25937091 DOI: 10.3892/mmr.2015.3716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 03/26/2015] [Indexed: 11/05/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is involved in the proliferation of human tumors and is an effective target for the treatment of cancer. In the present study, a novel quinolone-indolone conjugate, QIC1 [9-Fluoro-3,7-dihydro-3-methyl-10-(4-methyl -1-piperazinyl) -6-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl) -7-oxo-2H-(1,4) oxazino(2,3,4-ij)quinoline], which targeted EGFR, was synthesized in order to investigate the anticancer activity and the potential mechanisms underlying the effect of this compound in human cancer cells. Using MTT assays it was observed that QIC1 inhibited the growth of HepG2 human hepatoma cells, MCF7 human breast cancer cells, HeLa human cervical cancer cells and A549 human lung adenocarcinoma cells. QIC1 arrested cell cycle progression at the G2/M phase in HepG2 cells. QIC1 inhibited the synthesis of DNA in A549 cells. In addition, it resulted in cell apoptosis, in association with increased expression of Bax and reduced expression of Bcl-2. Further analyses demonstrated that QIC1 attenuated the activity of EGFR, and the downstream signal transducer and activator of transcription 3 (STAT3)-mediated hexokinase II (HK2) signaling pathways. Furthermore, QIC1 exhibited antiproliferative effects in MCF7/DOX human doxorubicin-resistant breast cancer cells and also enhanced the anticancer activity of doxorubicin in these cells. In conclusion, the inhibition of proliferation and the induction of apoptosis was associated with reduced expression of phospho-EGFR-phospho-STAT3-HK2. The present results suggest a potential role for QIC1 in the treatment of human cancer.
Collapse
|
45
|
Milagre CS, Gopinathan G, Everitt G, Thompson RG, Kulbe H, Zhong H, Hollingsworth RE, Grose R, Bowtell DDL, Hochhauser D, Balkwill FR. Adaptive Upregulation of EGFR Limits Attenuation of Tumor Growth by Neutralizing IL6 Antibodies, with Implications for Combined Therapy in Ovarian Cancer. Cancer Res 2015; 75:1255-64. [PMID: 25670170 PMCID: PMC4384986 DOI: 10.1158/0008-5472.can-14-1801] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/16/2015] [Indexed: 01/05/2023]
Abstract
Excess production of the proinflammatory IL6 has both local and systemic tumor-promoting activity in many cancers, including ovarian cancer. However, treatment of advanced ovarian cancer patients with a neutralizing IL6 antibody yielded little efficacy in a previous phase II clinical trial. Here, we report results that may explain this outcome, based on the finding that neutralizing antibodies to IL6 and STAT3 inhibition are sufficient to upregulate the EGFR pathway in high-grade serous and other ovarian cancer cells. Cell treatment with the EGFR inhibitor gefitinib abolished upregulation of the EGFR pathway. Combining neutralizing IL6 antibodies and gefitinib inhibited malignant cell growth in 2D and 3D culture. We found that ErbB-1 was localized predominantly in the nucleus of ovarian cancer cells examined, contrasting with plasma membrane localization in lung cancer cells. Treatment with anti-IL6, gefitinib, or their combination all led to partial restoration of ErbB-1 on the plasma membrane. In vivo experiments confirmed the effects of IL6 inhibition on the EGFR pathway and the enhanced activity of a combination of anti-IL6 antibodies and gefitinib on malignant cell growth. Taken together, our results offer a preclinical rationale to combine anti-IL6 and gefitinib to treat patients with advanced stage ovarian cancer.
Collapse
Affiliation(s)
- Carla S Milagre
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Ganga Gopinathan
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Gemma Everitt
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Richard G Thompson
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Hagen Kulbe
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Haihong Zhong
- MedImmune, One MedImmune Way, Gaithersburg, Maryland
| | | | - Richard Grose
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - David D L Bowtell
- Cancer Genomics and Genetics Program, Peter MacCallum Cancer Centre, Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom.
| |
Collapse
|
46
|
Tang J, Guo F, Du Y, Liu X, Qin Q, Liu X, Yin T, Jiang L, Wang Y. Continuous exposure of non-small cell lung cancer cells with wild-type EGFR to an inhibitor of EGFR tyrosine kinase induces chemoresistance by activating STAT3. Int J Oncol 2015; 46:2083-95. [PMID: 25695284 DOI: 10.3892/ijo.2015.2898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/10/2014] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR‑TKIs) have shown promising effects against the growth of non-small cell lung cancer (NSCLC) cells harboring EGFR mutations (EGFR‑mts). However, many patients with NSCLC that are accepted for EGFR‑TKI treatment followed by chemotherapy possess an unknown EGFR status including wild-type EGFR (EGFR‑wt). Little is known about the potential effects of EGFR‑TKI treatment prior to chemotherapy. We investigated the effects and underlying molecular events of 4 weeks of continuous exposure to EGFR‑TKIs in the EGFR‑wt NSCLC line H1299. This treatment dramatically increased the IC50 of several relevant chemotherapeutic agents: cisplatin (DDP) (29.25±6.1 µM for gefitinib, 43.25±14.87 µM for erlotinib, and 6.92±1.15 µM for parental), paclitaxel (11.16±3.36 µM for gefitinib, 9.16±1.41 µM for erlotinib, and 2.09±0.44 µM for parental), gemcitabine (47.18±6.2 µM for gefitinib, 40.36±11.1 µM for erlotinib, and 16.00±3.38 µM for parental) and pemetrexed (11.78±4.07 µM for gefitinib, 15.97±7.23 µM for erlotinib, and 4.72±1.9 µM for parental). This chemoresistance was critically dependent on the activation of the mediator signal transducer and activator of transcription 3 (STAT3). In cells exposed to EGFR‑TKIs for 4 weeks, activation of STAT3 was found to be unrelated to EGFR and to be independent of IL‑6 and ‑22. Treatment with the STAT3 inhibitor NSC 74859 was able to reverse the TKI exposure-induced chemoresistance in EGFR‑wt NSCLC cells. Similar phenomena were observed in H1975 cells harboring EGFR L858R and T790M mutations. Based on the observed molecular events following long exposure of an EGFR‑wt NSCLC cell line to an EGFR‑TKI, this study indicates that such drugs should be not recommended for EGFR‑wt patients who can undergo chemotherapy. This study also suggests that STAT3 inhibitors may aid in the treatment NSCLC patients who exhibit EGFR‑TKI resistance due to an acquired T790M mutation.
Collapse
Affiliation(s)
- Jie Tang
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospita, Chengdu, Sichuan 610041, P.R. China
| | - Fuchun Guo
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospita, Chengdu, Sichuan 610041, P.R. China
| | - Yang Du
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospita, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoling Liu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospita, Chengdu, Sichuan 610041, P.R. China
| | - Qing Qin
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospita, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoke Liu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospita, Chengdu, Sichuan 610041, P.R. China
| | - Tao Yin
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Jiang
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospita, Chengdu, Sichuan 610041, P.R. China
| | - Yongsheng Wang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospita, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
47
|
Abstract
The Janus tyrosine kinases JAK1-3 and tyrosine kinase-2 (TYK2) are frequently hyperactivated in tumors. In lung cancers JAK1 and JAK2 induce oncogenic signaling through STAT3. A putative role of TYK2 in these tumors has not been reported. Here, we show a previously not recognized TYK2-STAT3 signaling node in lung cancer cells. We reveal that the E3 ubiquitin ligase seven-in-absentia-2 (SIAH2) accelerates the proteasomal degradation of TYK2. This mechanism consequently suppresses the activation of STAT3. In agreement with these data the analysis of primary non-small-cell lung cancer (NSCLC) samples from three patient cohorts revealed that compared to lung adenocarcinoma (ADC), lung squamous cell carcinoma (SCC) show significantly higher levels of SIAH2 and reduced STAT3 phosphorylation levels. Thus, SIAH2 is a novel molecular marker for SCC. We further demonstrate that an activation of the oncologically relevant transcription factor p53 in lung cancer cells induces SIAH2, depletes TYK2, and abrogates the tyrosine phosphorylation of STAT1 and STAT3. This mechanism appears to be different from the inhibition of phosphorylated JAKs through the suppressor of cytokine signaling (SOCS) proteins. Our study may help to identify molecular mechanisms affecting lung carcinogenesis and potential therapeutic targets.
Collapse
|
48
|
Current and Future Approaches in the Management of Non-Small-Cell Lung Cancer Patients With Resistance to EGFR TKIs. Clin Lung Cancer 2015; 16:252-61. [PMID: 25700775 DOI: 10.1016/j.cllc.2014.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/23/2022]
Abstract
Metastatic non-small-cell lung cancer carries a dismal prognosis. However, the recognition of the predictive value of activating epidermal growth factor receptor (EGFR) mutations and the availability of tyrosine kinase inhibitors has markedly improved the prognosis of these patients, because treatment with these inhibitors induces rapid and robust responses. Unfortunately, the responses are not durable and resistance inevitably occurs after a median of 9 to 14 months. Although the management of resistant patients who harbor EGFR mutations is rapidly evolving, there are no conclusive guidelines regarding this issue. However, palliative cytotoxic chemotherapy is considered the standard of care for these patients. The elucidation of the mechanisms of acquired resistance has led to efforts to personalize the treatment approach. Promising results from early clinical trials using the third-generation inhibitors that specifically target the most common mechanism of resistance, the gatekeeper T790M mutation, provide the basis to look to the future with cautious optimism. Moreover, it has been shown that in some cases of oligoprogressive disease, aggressively treating all metastatic sites while continuing the targeted treatment could improve outcomes. Herein, we review the treatment strategies being evaluated that will shape the future management of these patients.
Collapse
|
49
|
Pan Y, Li X, Duan J, Yuan L, Fan S, Fan J, Xiaokaiti Y, Yang H, Wang Y, Li X. Enoxaparin sensitizes human non-small-cell lung carcinomas to gefitinib by inhibiting DOCK1 expression, vimentin phosphorylation, and Akt activation. Mol Pharmacol 2014; 87:378-90. [PMID: 25488183 DOI: 10.1124/mol.114.094425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gefitinib is widely used for the treatment of lung cancer in patients with sensitizing epidermal growth factor receptor mutations, but patients tend to develop resistance after an average of 10 months. Low molecular weight heparins, such as enoxaparin, potently inhibit experimental metastasis. This study aimed to determine the potential of combined enoxaparin and gefitinib (enoxaparin + gefitinib) treatment to inhibit tumor resistance to gefitinib both in vitro and in vivo. A549 and H1975 cell migration was analyzed in wound closure and Transwell assays. Akt and extracellular signal-related kinase 1/2 signaling pathways were identified, and a proteomics analysis was conducted using SDS-PAGE/liquid chromatography-tandem mass spectrometry analysis. Molecular interaction networks were visualized using the Cytoscape bioinformatics platform. Protein expression of dedicator of cytokinesis 1 (DOCK1) and cytoskeleton intermediate filament vimentin were identified using an enzyme-linked immunosorbent assay, Western blot, and small interfering RNA transfection of A549 cells. In xenograft A549-luc-C8 tumors in nude mice, enoxaparin + gefitinib inhibited tumor growth and reduced lung colony formation compared with gefitinib alone. Furthermore, the combination had stronger inhibitory effects on cell migration than either agent used individually. Additional enoxaparin administration resulted in better effective inhibition of Akt activity compared with gefitinib alone. Proteomics and network analysis implicated DOCK1 as the key node molecule. Western blot verified the effective inhibition of the expression of DOCK1 and vimentin phosphorylation by enoxaparin + gefitinib compared with gefitinib alone. DOCK1 knockdown confirmed its role in cell migration, Akt expression, and vimentin phosphorylation. Our data indicate that enoxaparin sensitizes gefitinib antitumor and antimigration activity in lung cancer by suppressing DOCK1 expression, Akt activity, and vimentin phosphorylation.
Collapse
Affiliation(s)
- Yan Pan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Health Science Center and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, People's Republic of China (Y.P., X.L., J.D., S.F., J.F., Y.X., H.Y., Y.W., X.L.); and Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, People's Republic of China (L.Y.)
| | - Xin Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Health Science Center and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, People's Republic of China (Y.P., X.L., J.D., S.F., J.F., Y.X., H.Y., Y.W., X.L.); and Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, People's Republic of China (L.Y.)
| | - Jianhui Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Health Science Center and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, People's Republic of China (Y.P., X.L., J.D., S.F., J.F., Y.X., H.Y., Y.W., X.L.); and Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, People's Republic of China (L.Y.)
| | - Lan Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Health Science Center and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, People's Republic of China (Y.P., X.L., J.D., S.F., J.F., Y.X., H.Y., Y.W., X.L.); and Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, People's Republic of China (L.Y.)
| | - Shengjun Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Health Science Center and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, People's Republic of China (Y.P., X.L., J.D., S.F., J.F., Y.X., H.Y., Y.W., X.L.); and Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, People's Republic of China (L.Y.)
| | - Jingpu Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Health Science Center and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, People's Republic of China (Y.P., X.L., J.D., S.F., J.F., Y.X., H.Y., Y.W., X.L.); and Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, People's Republic of China (L.Y.)
| | - Yilixiati Xiaokaiti
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Health Science Center and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, People's Republic of China (Y.P., X.L., J.D., S.F., J.F., Y.X., H.Y., Y.W., X.L.); and Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, People's Republic of China (L.Y.)
| | - Haopeng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Health Science Center and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, People's Republic of China (Y.P., X.L., J.D., S.F., J.F., Y.X., H.Y., Y.W., X.L.); and Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, People's Republic of China (L.Y.)
| | - Yefan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Health Science Center and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, People's Republic of China (Y.P., X.L., J.D., S.F., J.F., Y.X., H.Y., Y.W., X.L.); and Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, People's Republic of China (L.Y.)
| | - Xuejun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Health Science Center and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, People's Republic of China (Y.P., X.L., J.D., S.F., J.F., Y.X., H.Y., Y.W., X.L.); and Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, People's Republic of China (L.Y.)
| |
Collapse
|
50
|
Ok CY, Chen J, Xu-Monette ZY, Tzankov A, Manyam GC, Li L, Visco C, Montes-Moreno S, Dybkær K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Zhao X, Ponzoni M, Ferreri AJM, Bertoni F, Farnen JP, Møller MB, Piris MA, Winter JN, Medeiros LJ, Young KH. Clinical implications of phosphorylated STAT3 expression in De Novo diffuse large B-cell lymphoma. Clin Cancer Res 2014; 20:5113-23. [PMID: 25124685 DOI: 10.1158/1078-0432.ccr-14-0683] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Activated signal transducer and activator of transcription 3 (STAT3) regulates tumor growth, invasion, cell proliferation, angiogenesis, immune response, and survival. Data regarding expression of phosphorylated (activated) STAT3 in diffuse large B-cell lymphoma (DLBCL) and the impact of phosphorylated STAT3 (pSTAT3) on prognosis are limited. EXPERIMENTAL DESIGN We evaluated expression of pSTAT3 in de novo DLBCL using immunohistochemistry, gene expression profiling (GEP), and gene set enrichment analysis (GSEA). Results were analyzed in correlation with cell-of-origin (COO), critical lymphoma biomarkers, and genetic translocations. RESULTS pSTAT3 expression was observed in 16% of DLBCL and was associated with advanced stage, multiple extranodal sites of involvement, activated B-cell-like (ABC) subtype, MYC expression, and MYC/BCL2 expression. Expression of pSTAT3 predicted inferior overall survival (OS) and progression-free survival (PFS) in patients with de novo DLBCL. When DLBCL cases were stratified according to COO or MYC expression, pSTAT3 expression did not predict inferior outcome, respectively. Multivariate analysis showed that the prognostic predictability of pSTAT3 expression was due to its association with the ABC subtype, MYC expression, and adverse clinical features. GEP demonstrated upregulation of genes, which can potentiate function of STAT3. GSEA showed the JAK-STAT pathway to be enriched in pSTAT3(+) DLBCL. CONCLUSIONS The results of this study provide a rationale for the ongoing successful clinical trials targeting the JAK-STAT pathway in DLBCL.
Collapse
Affiliation(s)
- Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiayu Chen
- Medical School of Taizhou University, Taizhou, Zhejiang, China
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ganiraju C Manyam
- Department of Biostatistics and Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ling Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, New York
| | - Youli Zu
- Houston Methodist Hospital, Houston, Texas
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, New York
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - J Han van Krieken
- Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Xiaoying Zhao
- Zhejiang University School of Medicine, Second University Hospital, Hangzhou, China
| | | | | | - Francesco Bertoni
- IOR Institute of Oncology Research and IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - John P Farnen
- Gundersen Lutheran Health System, La Crosse, Wisconsin
| | | | - Miguel A Piris
- Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|