1
|
Zhao Z, Xing N, Sun G. Identification of 7-HOCA as a Potential Biomarker in Glioblastoma: Evidence from Genome-Wide Association Study and Clinical Validation. Int J Gen Med 2024; 17:6185-6197. [PMID: 39691836 PMCID: PMC11651077 DOI: 10.2147/ijgm.s493488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Purpose Glioblastoma (GBM) is associated with metabolic disturbances, yet the relationships between metabolites with GBM have not been comprehensively explored. This study aims to fill this gap by integrating Mendelian randomization (MR) analysis with clinical validation. Patients and Methods Summary data from genome-wide association study (GWAS) of cerebrospinal fluid (CSF) metabolites, plasma metabolites, and GBM were obtained separately. A total of 338 CSF metabolites and 1400 plasma metabolites were utilized as exposures. Concurrently, GBM was designated as the outcome. A two-sample bidirectional MR study was conducted to investigate the potential association. The inverse variance weighted (IVW) analyses were conducted as causal estimates, accompanied by a series of sensitivity analyses to evaluate the robustness of the results. Additionally, metabolite levels in clinical plasma and CSF samples were quantified using liquid chromatography-mass spectrometry to validate the findings. Results MR analysis identified eight CSF metabolites and six plasma metabolites that were closely associated with GBM. Among these, elevated levels of 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-HOCA) in both CSF and plasma were found to promote GBM. In terms of clinical validation, compared to the control group, 7-HOCA levels were significantly higher in both the CSF and plasma of GBM group. Conclusion This study provides a comprehensive analysis of the metabolic factors contributing to GBM. The identification of specific metabolites, particularly 7-HOCA, that have vital roles in GBM pathogenesis suggests new biomarkers and therapeutic targets, offering potential pathways for improved diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Na Xing
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
2
|
Moriano J, Leonardi O, Vitriolo A, Testa G, Boeckx C. A multi-layered integrative analysis reveals a cholesterol metabolic program in outer radial glia with implications for human brain evolution. Development 2024; 151:dev202390. [PMID: 39114968 PMCID: PMC11385646 DOI: 10.1242/dev.202390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/18/2024] [Indexed: 08/28/2024]
Abstract
The definition of molecular and cellular mechanisms contributing to brain ontogenetic trajectories is essential to investigate the evolution of our species. Yet their functional dissection at an appropriate level of granularity remains challenging. Capitalizing on recent efforts that have extensively profiled neural stem cells from the developing human cortex, we develop an integrative computational framework to perform trajectory inference and gene regulatory network reconstruction, (pseudo)time-informed non-negative matrix factorization for learning the dynamics of gene expression programs, and paleogenomic analysis for a higher-resolution mapping of derived regulatory variants in our species in comparison with our closest relatives. We provide evidence for cell type-specific regulation of gene expression programs during indirect neurogenesis. In particular, our analysis uncovers a key role for a cholesterol program in outer radial glia, regulated by zinc-finger transcription factor KLF6. A cartography of the regulatory landscape impacted by Homo sapiens-derived variants reveals signals of selection clustering around regulatory regions associated with GLI3, a well-known regulator of radial glial cell cycle, and impacting KLF6 regulation. Our study contributes to the evidence of significant changes in metabolic pathways in recent human brain evolution.
Collapse
Affiliation(s)
- Juan Moriano
- Department of General Linguistics, University of Barcelona, 08007 Barcelona, Spain
- University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain
| | | | - Alessandro Vitriolo
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Giuseppe Testa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Cedric Boeckx
- Department of General Linguistics, University of Barcelona, 08007 Barcelona, Spain
- University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain
- University of Barcelona Institute of Neurosciences, 08007 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), 08007 Barcelona, Spain
| |
Collapse
|
3
|
Wang HY, Nguyen TP, Sternisha AC, Carroll CL, Cross B, Morlock L, Williams NS, McBrayer SK, Nijhawan D, De Brabander JK. Discovery and Optimization of N-Arylated Tetracyclic Dicarboximides That Target Primary Glioma Stem-like Cells. J Med Chem 2024; 67:9277-9301. [PMID: 38804887 PMCID: PMC12121834 DOI: 10.1021/acs.jmedchem.4c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We recently discovered a novel N-aryl tetracyclic dicarboximide MM0299 (1) with robust activity against glioma stem-like cells that potently and selectively inhibits lanosterol synthase leading to the accumulation of the toxic shunt metabolite 24(S),25-epoxycholesterol. Herein, we delineate a systematic and comprehensive SAR study that explores the structural space surrounding the N-aryl tetracyclic dicarboximide scaffold. A series of 100 analogs were synthesized and evaluated for activity against the murine glioma stem-like cell line Mut6 and for metabolic stability in mouse liver S9 fractions. This study led to several analogs with single-digit nanomolar activity in Mut6 glioblastoma cells that were metabolically stable in S9 fractions. In vivo pharmacokinetic analysis of selected analogs identified compound 52a (IC50 = 63 nM; S9 T1/2 > 240 min) which was orally available (39% plasma; 58% brain) and displayed excellent brain exposure. Chronic oral dosing of 52a during a 2-week tolerability study indicated no adverse effect on body weight nor signs of hematologic, liver, or kidney toxicity.
Collapse
Affiliation(s)
- Hua-Yu Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Thu P. Nguyen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Alex C. Sternisha
- Children’s Medical Center Research Institute and Department of Pediatrics, UT Southwestern, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Chris L. Carroll
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Bethany Cross
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Lorraine Morlock
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute and Department of Pediatrics, UT Southwestern, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Deepak Nijhawan
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
- Department of Internal Medicine, Division of Hematology/Oncology and Program in Molecular Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Jef K. De Brabander
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| |
Collapse
|
4
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
5
|
Huang F, Li S, Wang X, Wang C, Pan X, Chen X, Zhang W, Hong J. Serum lipids concentration on prognosis of high-grade glioma. Cancer Causes Control 2023:10.1007/s10552-023-01710-1. [PMID: 37258987 DOI: 10.1007/s10552-023-01710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE To investigate the effect of serum lipids concentration on the prognosis of high-grade glioma patients undergoing postoperative radiotherapy. METHODS Retrospective analysis of the patients with high-grade glioma who received postoperative Intensity Modulated Radiotherapy between 13 May 2013 and 12 September 2018 was performed. The patients were grouped according to the average values of serum total cholesterol, LDL, and HDL concentration in peripheral blood (before surgery, 6 months after therapy). Cox proportional hazards model was performed to determine whether the total cholesterol concentration, LDL concentration, and HDL concentration in peripheral blood before therapy and their changes after therapy were factors influencing the prognosis. RESULTS The results of COX regression analysis showed that the independent prognostic factors of high-grade glioma patients were pathological grade, the extent of resection, serum cholesterol concentration pre-surgery, and the change of LDL concentration from pre-surgery to post-therapy. The prognosis of patients with high serum total cholesterol concentration before therapy was worse than those of patients with low total cholesterol concentration. The 5-year survival rate and the median survival time of patients with high serum total cholesterol concentration before therapy were 4.9% and 23.6 months, but the low cholesterol concentration group were 19.6% and 24.5 months, respectively. Besides, the average serum LDL concentration in high-grade glioma patients gradually increased after therapy. The 5-year survival rate of patients and the median survival time with elevated LDL concentration after therapy is 11.8% and 20.4 months, but the reduced LDL concentration group was 16.7% and 28.4 months, respectively. The total cholesterol and LDL concentration increased significantly after therapy in Grade IV patients while Grade III patients did not. CONCLUSIONS The cholesterol concentration before therapy and LDL concentration change from pre-surgery to post-therapy are the factors that affect the prognosis of high-grade glioma patients who have undergone postoperative radiotherapy. In the final analysis, the high serum cholesterol pre-surgery and the increased in serum LDL concentration from pre-surgery to post-therapy were associated with worse survival of patients.
Collapse
Affiliation(s)
- Fei Huang
- Central Lab, First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Shan Li
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Caihong Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Xiaoxian Pan
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Xiuying Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Weijian Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
6
|
Katayama T, Chigi Y, Okamura D. The ensured proliferative capacity of myoblast in serum-reduced conditions with Methyl-β-cyclodextrin. Front Cell Dev Biol 2023; 11:1193634. [PMID: 37250904 PMCID: PMC10213241 DOI: 10.3389/fcell.2023.1193634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
To produce muscle fibers for cultured meat on a large scale, it is important to expand myoblasts in a serum-reduced or serum-free medium to avoid cost, ethical, and environmental issues. Myoblasts such as C2C12 cells differentiate quickly into myotubes and lose their ability to proliferate when the serum-rich medium is replaced with a serum-reduced medium. This study demonstrates that Methyl-β-cyclodextrin (MβCD), a starch-derived agent that depletes cholesterol, can inhibit further differentiation of myoblasts at the MyoD-positive stage by reducing plasma membrane cholesterol on C2C12 cells and primary cultured chick muscle cells. Furthermore, MβCD efficiently blocks cholesterol-dependent apoptotic cell death of myoblasts, which is one of the mechanisms by which it inhibits the differentiation of C2C12 myoblast cells, as dead cells of myoblast are necessary for the fusion of adjacent myoblasts during the differentiation process into myotubes. Importantly, MβCD maintains the proliferative capacity of myoblasts only under differentiation conditions with a serum-reduced medium, suggesting that its mitogenic effect is due to its inhibitory effect on myoblast differentiation into myotube. In conclusion, this study provides significant insights into ensuring the proliferative capacity of myoblasts in a future serum-free condition for cultured meat production.
Collapse
Affiliation(s)
- Tomoka Katayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuta Chigi
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| |
Collapse
|
7
|
Yokogami K, Kikuchi T, Watanabe T, Nakatake Y, Yamashita S, Mizuguchi A, Takeshima H. Methionine regulates self-renewal, pluripotency, and cell death of GIC through cholesterol-rRNA axis. BMC Cancer 2022; 22:1351. [PMID: 36564758 PMCID: PMC9789638 DOI: 10.1186/s12885-022-10280-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glioma-initiating cells (GICs) are the source of glioma cells that can self-renew, have pluripotency, and are treatment-resistant, so are the starting point for relapse and eventual death despite multimodality therapy. L-[methyl-11C] methionine PET has observed high accumulation at the time of recurrence, it is important to understand the mechanism of tumor cell activation caused by the reorganization of methionine metabolism. METHODS: We cultured cells in methionine-deprived culture medium for comprehensive analysis. Based on the obtained results, the possible target molecules were chemically inhibited and the respective markers were analyzed. RESULTS Methionine depletion markedly decreased proliferation and increased cell death of GICs. Decreased S-adenosyl-methionine, which is synthesized intracellularly by catalyzed by methionine adenosyltransferase using methionine, triggered the following: (i) global DNA demethylation, (ii) hyper-methylation of signaling pathways regulating pluripotency of stem cells, (iii) decreased expression of the core-genes and pluripotent markers of stem cells including FOXM1, SOX2, SOX4, PROM1, and OLIG2, (iv) decreased cholesterol synthesis and increased excretion mainly through decreased SREBF2, and (v) down-regulation of the large subunit of ribosomal protein configured 28S and ACA43, small nucleolar RNA guiding the pseudouridylation of 28S rRNA, which is essential for translation. In addition, inhibition of cholesterol synthesis with statin resulted in a phenotype similar to that of methionine depletion and decreases in stem cell markers and small nucleolar RNA ACA43. Moreover, suppression of FOXM1 decreased stem cell markers such as SOX4 and PROM1. The gene expression profile for cholesterol production was obtained from the Ivy Glioblastoma Atlas Project database and compared between tumor cells with relatively low methionine levels in areas of pseudopalisading arrangement around necrosis and tumor cells in the infiltrating region, showing that cells in the infiltrating region have higher capacity to produce cholesterol. CONCLUSIONS Methionine metabolism is closely related with self-renewal, pluripotency, and cell death in GICs through modification of cholesterol biosynthesis, especially in the SREBF2-FOXM1 and ACA43 axis with modification of rRNA.
Collapse
Affiliation(s)
- Kiyotaka Yokogami
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Taisei Kikuchi
- grid.410849.00000 0001 0657 3887Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Watanabe
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasutaka Nakatake
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shinji Yamashita
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Asako Mizuguchi
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideo Takeshima
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
8
|
SREBP2/Rab11s/GLUT1/6 network regulates proliferation and migration of glioblastoma. Pathol Res Pract 2022; 240:154176. [PMID: 36327817 DOI: 10.1016/j.prp.2022.154176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Cholesterol serves a vital role in the occurrence and development of glioblastoma multiforme (GBM). Furthermore, cholesterol synthesis is regulated by sterol regulatory element-binding protein 2 (SREBP2), and certain glucose transporters (GLUTs) and Ras-related protein Rab11 (Rab11) small GTPase family members (Rab11s) may contribute to the process. The Cancer Genome Atlas was used to analyze the relationship between prognosis and GLUT gene expressions. To investigate the regulatory effect of Rab11s and SREBP2 on GLUTs during tumor progression, single cell RNA sequencing (scRNA-seq), western blotting and reverse transcription-quantitative PCR were performed on glioma tissues and the T98G GBM cell line. Cell viability and migration were assessed by performing MTT and wound healing assays, respectively. Moreover, the dual-luciferase reporter gene assay was conducted to predict the sterol regulatory elements in the promoter regions of the target genes. The results demonstrated that high SREBP2, GLUT1 and GLUT6 expression was associated with poor survival of patients with GBM. ScRNA-seq distinguished glioblastoma cells by EGFR and indicated the related lipid metabolism signaling pathways. Moreover, the results indicated that GLUT1 and GLUT6 were regulated by SREBP2 and Rab11s. Rab11s and SREBP2 also contributed to T98G cell viability and migration. Additionally, the results indicated that Rab11s, GLUT1 and GLUT6 were transcriptionally regulated by SREBP2. Therefore, the present study suggested that the SREBP2/Rab11/GLUT network promoted T98G cell growth, thus, identifying potential therapeutic targets for GBM.
Collapse
|
9
|
Kishk A, Pacheco MP, Heurtaux T, Sinkkonen L, Pang J, Fritah S, Niclou SP, Sauter T. Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases. Cells 2022; 11:2486. [PMID: 36010563 PMCID: PMC9406599 DOI: 10.3390/cells11162486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data. Experimental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the interaction between different cell types. This review highlights the evolution of genome-scale models for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each approach and propose improvements, such as building bi-cellular models, tailoring the biomass formulations for glioma and refinement of the cerebrospinal fluid composition.
Collapse
Affiliation(s)
- Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, L-3555 Dudelange, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jun Pang
- Department of Computer Science, University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg
| | - Sabrina Fritah
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Simone P. Niclou
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
10
|
Perelroizen R, Philosof B, Budick-Harmelin N, Chernobylsky T, Ron A, Katzir R, Shimon D, Tessler A, Adir O, Gaoni-Yogev A, Meyer T, Krivitsky A, Shidlovsky N, Madi A, Ruppin E, Mayo L. Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity. Brain 2022; 145:3288-3307. [PMID: 35899587 DOI: 10.1093/brain/awac222] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant brain tumours are the cause of a disproportionate level of morbidity and mortality among cancer patients, an unfortunate statistic that has remained constant for decades. Despite considerable advances in the molecular characterization of these tumours, targeting the cancer cells has yet to produce significant advances in treatment. An alternative strategy is to target cells in the glioblastoma microenvironment, such as tumour-associated astrocytes. Astrocytes control multiple processes in health and disease, ranging from maintaining the brain's metabolic homeostasis, to modulating neuroinflammation. However, their role in glioblastoma pathogenicity is not well understood. Here we report that depletion of reactive astrocytes regresses glioblastoma and prolongs mouse survival. Analysis of the tumour-associated astrocyte translatome revealed astrocytes initiate transcriptional programmes that shape the immune and metabolic compartments in the glioma microenvironment. Specifically, their expression of CCL2 and CSF1 governs the recruitment of tumour-associated macrophages and promotes a pro-tumourigenic macrophage phenotype. Concomitantly, we demonstrate that astrocyte-derived cholesterol is key to glioma cell survival, and that targeting astrocytic cholesterol efflux, via ABCA1, halts tumour progression. In summary, astrocytes control glioblastoma pathogenicity by reprogramming the immunological properties of the tumour microenvironment and supporting the non-oncogenic metabolic dependency of glioblastoma on cholesterol. These findings suggest that targeting astrocyte immunometabolic signalling may be useful in treating this uniformly lethal brain tumour.
Collapse
Affiliation(s)
- Rita Perelroizen
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Bar Philosof
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noga Budick-Harmelin
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tom Chernobylsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ron
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Katzir
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dor Shimon
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Tessler
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anat Gaoni-Yogev
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tom Meyer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Krivitsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nuphar Shidlovsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lior Mayo
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
El Khayari A, Bouchmaa N, Taib B, Wei Z, Zeng A, El Fatimy R. Metabolic Rewiring in Glioblastoma Cancer: EGFR, IDH and Beyond. Front Oncol 2022; 12:901951. [PMID: 35912242 PMCID: PMC9329787 DOI: 10.3389/fonc.2022.901951] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), a highly invasive and incurable tumor, is the humans’ foremost, commonest, and deadliest brain cancer. As in other cancers, distinct combinations of genetic alterations (GA) in GBM induce a diversity of metabolic phenotypes resulting in enhanced malignancy and altered sensitivity to current therapies. Furthermore, GA as a hallmark of cancer, dysregulated cell metabolism in GBM has been recently linked to the acquired GA. Indeed, Numerous point mutations and copy number variations have been shown to drive glioma cells’ metabolic state, affecting tumor growth and patient outcomes. Among the most common, IDH mutations, EGFR amplification, mutation, PTEN loss, and MGMT promoter mutation have emerged as key patterns associated with upregulated glycolysis and OXPHOS glutamine addiction and altered lipid metabolism in GBM. Therefore, current Advances in cancer genetic and metabolic profiling have yielded mechanistic insights into the metabolism rewiring of GBM and provided potential avenues for improved therapeutic modalities. Accordingly, actionable metabolic dependencies are currently used to design new treatments for patients with glioblastoma. Herein, we capture the current knowledge of genetic alterations in GBM, provide a detailed understanding of the alterations in metabolic pathways, and discuss their relevance in GBM therapy.
Collapse
Affiliation(s)
- Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Bouchra Taib
- Institute of Sport Professions (IMS), Ibn Tofail University, Avenida de l’Université, Kenitra, Morocco
- Research Unit on Metabolism, Physiology and Nutrition, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ailiang Zeng
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
- *Correspondence: Rachid El Fatimy,
| |
Collapse
|
12
|
Maimó-Barceló A, Martín-Saiz L, Fernández JA, Pérez-Romero K, Garfias-Arjona S, Lara-Almúnia M, Piérola-Lopetegui J, Bestard-Escalas J, Barceló-Coblijn G. Polyunsaturated Fatty Acid-Enriched Lipid Fingerprint of Glioblastoma Proliferative Regions Is Differentially Regulated According to Glioblastoma Molecular Subtype. Int J Mol Sci 2022; 23:ijms23062949. [PMID: 35328369 PMCID: PMC8949316 DOI: 10.3390/ijms23062949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) represents one of the deadliest tumors owing to a lack of effective treatments. The adverse outcomes are worsened by high rates of treatment discontinuation, caused by the severe side effects of temozolomide (TMZ), the reference treatment. Therefore, understanding TMZ’s effects on GBM and healthy brain tissue could reveal new approaches to address chemotherapy side effects. In this context, we have previously demonstrated the membrane lipidome is highly cell type-specific and very sensitive to pathophysiological states. However, little remains known as to how membrane lipids participate in GBM onset and progression. Hence, we employed an ex vivo model to assess the impact of TMZ treatment on healthy and GBM lipidome, which was established through imaging mass spectrometry techniques. This approach revealed that bioactive lipid metabolic hubs (phosphatidylinositol and phosphatidylethanolamine plasmalogen species) were altered in healthy brain tissue treated with TMZ. To better understand these changes, we interrogated RNA expression and DNA methylation datasets of the Cancer Genome Atlas database. The results enabled GBM subtypes and patient survival to be linked with the expression of enzymes accounting for the observed lipidome, thus proving that exploring the lipid changes could reveal promising therapeutic approaches for GBM, and ways to ameliorate TMZ side effects.
Collapse
Affiliation(s)
- Albert Maimó-Barceló
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.M.-S.); (J.A.F.)
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.M.-S.); (J.A.F.)
| | - Karim Pérez-Romero
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Santiago Garfias-Arjona
- Quirónsalud Medical Center, 07300 Inca, Spain;
- Son Verí Quirónsalud Hospital, Balearic Islands, 07609 Son Veri Nou, Spain
- Hospital de Llevant, 07680 Porto Cristo, Spain
| | - Mónica Lara-Almúnia
- Department of Neurosurgery, Jimenez Diaz Foundation University Hospital, Reyes Catolicos Av., No 2, 28040 Madrid, Spain;
- Ruber International Hospital, Maso St., No 38, 28034 Madrid, Spain
| | - Javier Piérola-Lopetegui
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Joan Bestard-Escalas
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
- Correspondence: (J.B.-E.); (G.B.-C.)
| | - Gwendolyn Barceló-Coblijn
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
- Correspondence: (J.B.-E.); (G.B.-C.)
| |
Collapse
|
13
|
Statins and Gliomas: A Systematic Review of the Preclinical Studies and Meta-Analysis of the Clinical Literature. Drugs 2022; 82:293-310. [PMID: 35122635 DOI: 10.1007/s40265-021-01668-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gliomas represent most common primary brain tumors. Glioblastoma (GBM) is the most common subtype and carries a poor prognosis. There is growing interest in the anti-glioma properties of statins. The aim of this study was to conduct a systematic review of the preclinical literature and to meta-analyze existing clinical studies to determine what benefit, if any, statins may confer in the context of glioma. METHODS The PubMed, Embase, Cochrane, and Web of Science libraries were queried in May 2021. Preclinical studies were included if they investigated the anti-cancer effects of statins in glioma in vitro and in vivo. Clinical studies were included if they reported incidence rates of glioma by statin use, or mortality outcomes among GBM patients by statin use. Pooled point estimates were calculated using a random-effects model. RESULTS In total, 64 publications, 51 preclinical and 13 clinical, were included. Preclinical studies indicated that statins inhibited glioma cell proliferation, migration, and invasion. These effects were time- and concentration-dependent. Synergistic anti-glioma effects were observed when statins were combined with other anti-cancer therapies. Clinical observational studies showed an inverse, albeit non-statistically significant, association between statin use and incidence rate of glioma (HR = 0.84, 95% CI 0.62-1.13, I2 = 72%, p-heterogeneity = 0.003, 6 studies). Statin use was not associated with better overall survival following GBM surgery (HR = 1.05, 95% CI 0.85-1.30, I2 = 30%, p-heterogeneity = 0.23, 4 studies). CONCLUSION Statins were potent anti-cancer drugs that suppressed glioma growth through various mechanisms in vitro; these effects have translated into the clinical realm, clinically but not statistically, in terms of glioma incidence but not GBM survival.
Collapse
|
14
|
Multiple Faces of the Glioblastoma Microenvironment. Int J Mol Sci 2022; 23:ijms23020595. [PMID: 35054779 PMCID: PMC8775531 DOI: 10.3390/ijms23020595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
The tumor microenvironment is a highly dynamic accumulation of resident and infiltrating tumor cells, responsible for growth and invasion. The authors focused on the leading-edge concepts regarding the glioblastoma microenvironment. Due to the fact that the modern trend in the research and treatment of glioblastoma is represented by multiple approaches that target not only the primary tumor but also the neighboring tissue, the study of the microenvironment in the peritumoral tissue is an appealing direction for current and future therapies.
Collapse
|
15
|
Vassileva V, Braga M, Barnes C, Przystal J, Ashek A, Allott L, Brickute D, Abrahams J, Suwan K, Carcaboso AM, Hajitou A, Aboagye EO. Effective Detection and Monitoring of Glioma Using [ 18F]FPIA PET Imaging. Biomedicines 2021; 9:811. [PMID: 34356874 PMCID: PMC8301305 DOI: 10.3390/biomedicines9070811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Reprogrammed cellular metabolism is a cancer hallmark. In addition to increased glycolysis, the oxidation of acetate in the citric acid cycle is another common metabolic phenotype. We have recently developed a novel fluorine-18-labelled trimethylacetate-based radiotracer, [18F]fluoro-pivalic acid ([18F]FPIA), for imaging the transcellular flux of short-chain fatty acids, and investigated whether this radiotracer can be used for the detection of glioma growth. METHODS We evaluated the potential of [18F]FPIA PET to monitor tumor growth in orthotopic patient-derived (HSJD-GBM-001) and cell line-derived (U87, LN229) glioma xenografts, and also included [18F]FDG PET for comparison. We assessed proliferation (Ki-67) and the expression of lipid metabolism and transport proteins (CPT1, SLC22A2, SLC22A5, SLC25A20) by immunohistochemistry, along with etomoxir treatment to provide insights into [18F]FPIA uptake. RESULTS Longitudinal PET imaging showed gradual increase in [18F]FPIA uptake in orthotopic glioma models with disease progression (p < 0.0001), and high tumor-to-brain contrast compared to [18F]FDG (p < 0.0001). [18F]FPIA uptake correlated positively with Ki-67 (p < 0.01), SLC22A5 (p < 0.001) and SLC25A20 (p = 0.001), and negatively with CPT1 (p < 0.01) and SLC22A2 (p < 0.01). Etomoxir reduced [18F]FPIA uptake, which correlated with decreased Ki-67 (p < 0.05). CONCLUSIONS Our findings support the use of [18F]FPIA PET for the detection and longitudinal monitoring of glioma, showing a positive correlation with tumor proliferation, and suggest transcellular flux-mediated radiotracer uptake.
Collapse
Affiliation(s)
- Vessela Vassileva
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Marta Braga
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Chris Barnes
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Justyna Przystal
- Department of Medicine, Division of Brain Sciences, Imperial College London, Hammersmith Campus, Burlington Danes, London W12 0NN, UK; (J.P.); (K.S.); (A.H.)
| | - Ali Ashek
- Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Louis Allott
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Diana Brickute
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Joel Abrahams
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Keittisak Suwan
- Department of Medicine, Division of Brain Sciences, Imperial College London, Hammersmith Campus, Burlington Danes, London W12 0NN, UK; (J.P.); (K.S.); (A.H.)
| | | | - Amin Hajitou
- Department of Medicine, Division of Brain Sciences, Imperial College London, Hammersmith Campus, Burlington Danes, London W12 0NN, UK; (J.P.); (K.S.); (A.H.)
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| |
Collapse
|
16
|
Han W, Shi J, Cao J, Dong B, Guan W. Emerging Roles and Therapeutic Interventions of Aerobic Glycolysis in Glioma. Onco Targets Ther 2020; 13:6937-6955. [PMID: 32764985 PMCID: PMC7371605 DOI: 10.2147/ott.s260376] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is the most common type of intracranial malignant tumor, with a great recurrence rate due to its infiltrative growth, treatment resistance, intra- and intertumoral genetic heterogeneity. Recently, accumulating studies have illustrated that activated aerobic glycolysis participated in various cellular and clinical activities of glioma, thus influencing the efficacy of radiotherapy and chemotherapy. However, the glycolytic process is too complicated and ambiguous to serve as a novel therapy for glioma. In this review, we generalized the implication of key enzymes, glucose transporters (GLUTs), signalings and transcription factors in the glycolytic process of glioma. In addition, we summarized therapeutic interventions via the above aspects and discussed promising clinical applications for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| |
Collapse
|
17
|
Abstract
Over sixty percent of all mammalian protein-coding genes are estimated to be regulated by microRNAs (miRNAs), and unsurprisingly miRNA dysregulation has been linked with cancer. Aberrant miRNA expression in cancer cells has been linked with tumourigenesis and drug resistance. In the past decade, increasing number of studies have demonstrated that cholesterol accumulation fuels tumour growth and contributes to drug resistance, therefore, miRNAs controlling cholesterol metabolism and homeostasis are obvious hypothetical targets for investigating their role in cholesterol-mediated drug resistance in cancer. In this review, we have collated published evidences to consolidate this hypothesis and have scrutinized it by utilizing computational tools to explore the role of miRNAs in cholesterol-mediated drug resistance in breast cancer cells. We found that hsa-miR-128 and hsa-miR-223 regulate genes mediating lipid signalling and cholesterol metabolism, cancer drug resistance and breast cancer genes. The analysis demonstrates that targeting these miRNAs in cancer cells presents an opportunity for developing new strategies to combat anticancer drug resistance.
Collapse
|
18
|
Markovic M, Ben-Shabat S, Aponick A, Zimmermann EM, Dahan A. Lipids and Lipid-Processing Pathways in Drug Delivery and Therapeutics. Int J Mol Sci 2020; 21:ijms21093248. [PMID: 32375338 PMCID: PMC7247327 DOI: 10.3390/ijms21093248] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this work is to analyze relevant endogenous lipid processing pathways, in the context of the impact that lipids have on drug absorption, their therapeutic use, and utilization in drug delivery. Lipids may serve as biomarkers of some diseases, but they can also provide endogenous therapeutic effects for certain pathological conditions. Current uses and possible clinical benefits of various lipids (fatty acids, steroids, triglycerides, and phospholipids) in cancer, infectious, inflammatory, and neurodegenerative diseases are presented. Lipids can also be conjugated to a drug molecule, accomplishing numerous potential benefits, one being the improved treatment effect, due to joined influence of the lipid carrier and the drug moiety. In addition, such conjugates have increased lipophilicity relative to the parent drug. This leads to improved drug pharmacokinetics and bioavailability, the ability to join endogenous lipid pathways and achieve drug targeting to the lymphatics, inflamed tissues in certain autoimmune diseases, or enable overcoming different barriers in the body. Altogether, novel mechanisms of the lipid role in diseases are constantly discovered, and new ways to exploit these mechanisms for the optimal drug design that would advance different drug delivery/therapy aspects are continuously emerging.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Aaron Aponick
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA;
| | - Ellen M. Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610, USA;
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
- Correspondence:
| |
Collapse
|
19
|
Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat 2020; 49:100670. [DOI: 10.1016/j.drup.2019.100670] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022]
|
20
|
Outer Radial Glia-like Cancer Stem Cells Contribute to Heterogeneity of Glioblastoma. Cell Stem Cell 2020; 26:48-63.e6. [PMID: 31901251 PMCID: PMC7029801 DOI: 10.1016/j.stem.2019.11.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/08/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022]
Abstract
Glioblastoma is a devastating form of brain cancer. To identify aspects of tumor heterogeneity that may illuminate drivers of tumor invasion, we created a glioblastoma tumor cell atlas with single-cell transcriptomics of cancer cells mapped onto a reference framework of the developing and adult human brain. We find that multiple GSC subtypes exist within a single tumor. Within these GSCs, we identify an invasive cell population similar to outer radial glia (oRG), a fetal cell type that expands the stem cell niche in normal human cortex. Using live time-lapse imaging of primary resected tumors, we discover that tumor-derived oRG-like cells undergo characteristic mitotic somal translocation behavior previously only observed in human development, suggesting a reactivation of developmental programs. In addition, we show that PTPRZ1 mediates both mitotic somal translocation and glioblastoma tumor invasion. These data suggest that the presence of heterogeneous GSCs may underlie glioblastoma's rapid progression and invasion.
Collapse
|
21
|
Patel D, Ahmad F, Kambach DM, Sun Q, Halim AS, Kramp T, Camphausen KA, Stommel JM. LXRβ controls glioblastoma cell growth, lipid balance, and immune modulation independently of ABCA1. Sci Rep 2019; 9:15458. [PMID: 31664073 PMCID: PMC6820787 DOI: 10.1038/s41598-019-51865-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023] Open
Abstract
Cholesterol is a critical component of membranes and a precursor for hormones and other signaling molecules. Previously, we showed that unlike astrocytes, glioblastoma cells do not downregulate cholesterol synthesis when plated at high density. In this report, we show that high cell density induces ABCA1 expression in glioblastoma cells, enabling them to get rid of excess cholesterol generated by an activated cholesterol biosynthesis pathway. Because oxysterols are agonists for Liver X Receptors (LXRs), we investigated whether increased cholesterol activates LXRs to maintain cholesterol homeostasis in highly-dense glioblastoma cells. We observed that dense cells had increased oxysterols, which activated LXRβ to upregulate ABCA1. Cells with CRISPR-mediated knockdown of LXRβ, but not ABCA1, had decreased cell cycle progression and cell survival, and decreased feedback repression of the mevalonate pathway in densely-plated glioma cells. LXRβ gene expression poorly correlates with ABCA1 in glioblastoma patients, and expression of each gene correlates with poor patient prognosis in different prognostic subtypes. Finally, gene expression and lipidomics analyses cells revealed that LXRβ regulates the expression of immune response gene sets and lipids known to be involved in immune modulation. Thus, therapeutic targeting of LXRβ in glioblastoma might be effective through diverse mechanisms.
Collapse
Affiliation(s)
- Deven Patel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fahim Ahmad
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Diane M Kambach
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qian Sun
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan S Halim
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamalee Kramp
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin A Camphausen
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jayne M Stommel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Ahmad F, Sun Q, Patel D, Stommel JM. Cholesterol Metabolism: A Potential Therapeutic Target in Glioblastoma. Cancers (Basel) 2019; 11:cancers11020146. [PMID: 30691162 PMCID: PMC6406281 DOI: 10.3390/cancers11020146] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is a highly lethal adult brain tumor with no effective treatments. In this review, we discuss the potential to target cholesterol metabolism as a new strategy for treating glioblastomas. Twenty percent of cholesterol in the body is in the brain, yet the brain is unique among organs in that it has no access to dietary cholesterol and must synthesize it de novo. This suggests that therapies targeting cholesterol synthesis in brain tumors might render their effects without compromising cell viability in other organs. We will describe cholesterol synthesis and homeostatic feedback pathways in normal brain and brain tumors, as well as various strategies for targeting these pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Fahim Ahmad
- National Institutes of Health, National Cancer Institute, Radiation Oncology Branch, Bethesda, MD 20892, USA.
| | - Qian Sun
- National Institutes of Health, National Cancer Institute, Radiation Oncology Branch, Bethesda, MD 20892, USA.
| | - Deven Patel
- National Institutes of Health, National Cancer Institute, Radiation Oncology Branch, Bethesda, MD 20892, USA.
| | - Jayne M Stommel
- National Institutes of Health, National Cancer Institute, Radiation Oncology Branch, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Sato H, Uzu M, Kashiba T, Fujiwara T, Hatakeyama H, Ueno K, Hisaka A. Trichostatin A modulates cellular metabolism in renal cell carcinoma to enhance sunitinib sensitivity. Eur J Pharmacol 2019; 847:143-157. [PMID: 30689992 DOI: 10.1016/j.ejphar.2019.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
Although sunitinib is the first-line drug for progressive renal cell carcinoma (RCC), most patients experience its tolerance. One possible way of overcoming drug resistance is combination therapy. Epigenetic modifier is one of the candidate drug group. A recent evidence suggests that cell metabolism is regulated by epigenetic mechanisms. Epigenetic abnormalities lead to changes in metabolism and may contribute to drug resistance and progression of RCC. Consequently, we investigated whether trichostatin A (TSA), a potent histone-deacetylase (HDAC) inhibitor, alters sunitinib-induced cytotoxicity and metabolism in RCC cells at epigenetic regulatory concentrations. Combined metabolome and transcriptome analysis suggested that TSA impacts on energy productive metabolic pathways, such as those involving TCA cycle and nucleotide metabolism especially for increase of hyperphosphorylated form. Combination of sunitinib and TSA increased cell death with PARP cleavage, an early marker of mitochondrial apoptosis, whereas receptor tyrosine kinase signaling, which is the target of sunitinib, was not altered by TSA. Finally, the established sunitinib resistant-RCC cell (786-O Res) was also exposed to sunitinib and TSA combination, resulting in significant growth inhibition. In summary, it was suggested that TSA reduces sunitinib resistance by triggering intracellular metabolome shifts regarding energy metabolism, that is the first recognized mechanism as an HDAC inhibitor.
Collapse
Affiliation(s)
- Hiromi Sato
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan.
| | - Miaki Uzu
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsuro Kashiba
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | - Takuya Fujiwara
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | - Hiroto Hatakeyama
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | - Koichi Ueno
- Center for Preventive Medical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | - Akihiro Hisaka
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| |
Collapse
|
24
|
Inhibition of ATM kinase upregulates levels of cell death induced by cannabidiol and γ-irradiation in human glioblastoma cells. Oncotarget 2019; 10:825-846. [PMID: 30783513 PMCID: PMC6368233 DOI: 10.18632/oncotarget.26582] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/29/2018] [Indexed: 12/18/2022] Open
Abstract
Despite advances in glioblastoma (GBM) therapy, prognosis of the disease remains poor with a low survival rate. Cannabidiol (CBD) can induce cell death and enhance radiosensitivity of GBM but not normal astrocytes. Inhibition of ATM kinase is an alternative mechanism for radiosensitization of cancer cells. In this study, we increased the cytotoxic effects of the combination of CBD and γ-irradiation in GBM cells through additional inhibition of ATM kinase with KU60019, a small molecule inhibitor of ATM kinase. We observed in GBM cells treated by CBD, γ-irradiation and KU60019 high levels of apoptosis together with strong upregulation of the percentage of G2/M-arrested cells, blockade of cell proliferation and a massive production of pro-inflammatory cytokines. Overall, these changes caused both apoptotic and non-apoptotic inflammation-linked cell death. Furthermore, via JNK-AP1 activation in concert with active NF-κB, CBD upregulated gene and protein expression of DR5/TRAIL-R2 and sensitize GBM cells to TRAIL-induced apoptosis. In contrast, CBD notably decreased in GBM surface levels of PD-L1, a critical immune checkpoint agent for T-lymphocytes. We also used in the present study TS543 human proneural glioma cells that were grown as spheroid culture. TS543 neurospheres exhibited dramatic sensitivity to CBD-mediated killing that was additionally increased in combination with γ-irradiation and KU60019. In conclusion, treatment of human GBM by the triple combination (CBD, γ-irradiation and KU60019) could significantly increase cell death levels in vitro and potentially improve the therapeutic ratio of GBM.
Collapse
|
25
|
Farnesyl diphosphate synthase is important for the maintenance of glioblastoma stemness. Exp Mol Med 2018; 50:1-12. [PMID: 30333528 PMCID: PMC6193020 DOI: 10.1038/s12276-018-0166-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is a highly malignant tumor that easily acquires resistance to treatment. The stem-cell-like character (stemness) has been thought to be closely associated with the treatment resistance of glioblastoma cells. In this study, we determined that farnesyl diphosphate synthase (FDPS), a key enzyme in isoprenoid biosynthesis, plays an important role in maintaining glioblastoma stemness. A comparison of the mRNA expression in patient-derived glioblastoma sphere cells, which maintain stemness, and their differentiated counterparts, which lose stemness, via RNA sequencing showed that most of the altered genes were networked in the cholesterol biosynthesis pathway. We screened Federal Drug Administration (FDA)-approved drugs targeting specific enzymes in the cholesterol biosynthesis pathway for their ability to inhibit glioblastoma sphere formation. Inhibitors of FDPS, such as alendronate and zoledronate, significantly reduced the formation of glioblastoma spheres, and alendronate was effective at a lower molar concentration than zoledronate. Knockdown of FDPS using short hairpin RNA also completely inhibited the formation of secondary spheres. FDPS mRNA in patients with glioblastoma was associated with malignancy in three independent microarray data sets. RNA sequencing showed that alendronate treatment reduced the embryonic stem cell signature and activated development- and necrosis-related pathways in glioblastoma spheres. These results suggest that FDPS is important for the maintenance of glioblastoma stemness and that alendronate, a drug widely used to treat osteoporosis, can be repositioned to treat glioblastoma. A drug that targets a key enzyme in aggressive brain cancer tumors could help tackle resistance to existing treatments. Glioblastoma is the most aggressive form of brain cancer and remains difficult to treat because the cancer cells can survive chemotherapy and radiotherapy. Certain cells within glioblastoma tumors have ‘stemness’ – unique stem cell-like metabolic characteristics that allow them to rapidly repair DNA damage and trigger relapse. Hyonchol Jang at the National Cancer Center in Goyang, South Korea and co-workers discovered that an enzyme called farnesyl diphosphate synthase (FDPS) helps maintain stemness in glioblastoma. The team then treated patient-derived glioblastoma cells with existing drugs known to inhibit FDPS. One such drug, which is already used to treat osteoporosis, inhibited the formation of secondary glioblastoma and may prove valuble in the treatment of brain cancer.
Collapse
|
26
|
Nikitin PV, Potapov AA, Ryzhova MV, Shurkhay VA, Kulikov EE, Zhvanskiy ES, Popov IA, Nikolaev EN. [The role of lipid metabolism disorders, atypical isoforms of protein kinase C, and mutational status of cytosolic and mitochondrial forms of isocitrate dehydrogenase in carcinogenesis of glial tumors]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2018; 82:112-120. [PMID: 29927433 DOI: 10.17116/neiro2018823112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The relationship between molecular genetic and metabolic disorders is one of the challenges of modern oncology. In this review, we consider lipid metabolism and its changes as one of the factors of oncogenesis of glial tumors. Also, we demonstrate that the genome and the metabolome are interconnected by a large number of links, and the metabolic pathways, during their reorganization, are able to drastically affect the genetic structure of the cell and, in particular, cause its tumor transformation. Our own observations and analysis of the literature data allow us to conclude that mass spectrometry is a highly accurate current method for assessing metabolic disorders at the cellular level. The use of mass spectrometry during surgery allows the neurosurgeon to obtain real-time data on the level of specific molecular markers in the resected tissue, thereby bringing intraoperative navigation techniques to the molecular level. The generation of molecular fingerprints for each tumor significantly complements the available neuroimaging, molecular genetic, and immunohistochemical data.
Collapse
Affiliation(s)
- P V Nikitin
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - A A Potapov
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - M V Ryzhova
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - V A Shurkhay
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047; Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701
| | - E E Kulikov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701; Federal Research Center 'Fundamentals of Biotechnology', Leninskiy Prospect, 33/2, Moscow, Russia, 119071
| | - E S Zhvanskiy
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701
| | - I A Popov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701
| | - E N Nikolaev
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701; Skolkovo Institute of Science and Technology, Nobelya Str., 3, Moscow, Russia, 143026; Institute of Energy Problems of Chemical Physics, Leninskiy Prospect, 38/2, Moscow, Russia, 119334
| |
Collapse
|
27
|
Santos JG, Da Cruz WMS, Schönthal AH, Salazar MD, Fontes CAP, Quirico-Santos T, Da Fonseca CO. Efficacy of a ketogenic diet with concomitant intranasal perillyl alcohol as a novel strategy for the therapy of recurrent glioblastoma. Oncol Lett 2017; 15:1263-1270. [PMID: 29391903 DOI: 10.3892/ol.2017.7362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022] Open
Abstract
It has been hypothesized that persistent ketotic hypoglycemia represents a potential therapeutic strategy against high-grade gliomas. Perillyl alcohol (POH) is a non-toxic, naturally-occurring, hydroxylated monoterpene that exhibits cytotoxicity against temozolomide-resistant glioma cells, regardless of O6-methylguanine-methyltransferase promoter methylation status. The present study aimed to evaluate the toxicity and therapeutic efficacy of intranasal POH when administered in combination with a ketogenic diet (KD) program for the treatment of patients with recurrent glioblastoma. The 32 enrolled patients were divided into two groups, KD or standard diet, with intranasal POH treatment (n=17 and n=15, respectively). The nutritional status and anthropometric parameters of the patients were measured. Patients that adhered to the KD maintained a strict dietary regimen, in addition to receiving 55 mg POH four times daily, in an uninterrupted administration schedule for three months. Neurological examination and magnetic resonance imaging analysis were used to monitor disease progression. A total of 9/17 patients in the KD group survived and maintained compliance with the KD. After three months of well-tolerated treatment, a partial response (PR) was observed for 77.8% (7/9) of the patients, stable disease (SD) in 11.1% (1/9) and 11.1% (1/9) presented with progressive disease (PD). Among the patients assigned to the standard diet group, the PR rate was 25% (2/8 patients), SD 25% (2/8) and PD 50% (4/8 patients). The patients assigned to the KD group presented with reduced serum lipid levels and decreased low-density lipoprotein cholesterol levels. These results are encouraging and suggest that KD associated with intranasal POH may represent a viable option as an adjunct therapy for recurrent GBM.
Collapse
Affiliation(s)
- Juliana Guimarães Santos
- Graduate Program in Medical Sciences, Fluminense Federal University, Niteroi, Rio de Janeiro 24033-900, Brazil
| | | | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Cristina Asvolinsque Pantaleão Fontes
- Service of Radiology, Department of Radiology, Antonio Pedro University Hospital, Fluminense Federal University, Niteroi, Rio de Janeiro 24033-900, Brazil
| | - Thereza Quirico-Santos
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Rio de Janeiro 24210-130, Brazil
| | - Clovis Orlando Da Fonseca
- Service of Neurosurgery, Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University, Niteroi, Rio de Janeiro 24033-900, Brazil
| |
Collapse
|
28
|
Abate M, Laezza C, Pisanti S, Torelli G, Seneca V, Catapano G, Montella F, Ranieri R, Notarnicola M, Gazzerro P, Bifulco M, Ciaglia E. Deregulated expression and activity of Farnesyl Diphosphate Synthase (FDPS) in Glioblastoma. Sci Rep 2017; 7:14123. [PMID: 29075041 PMCID: PMC5658376 DOI: 10.1038/s41598-017-14495-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/11/2017] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma (GBM), the most aggressive brain cancer, is highly dependent on the mevalonate (MVA) pathway for the synthesis of lipid moieties critical for cell proliferation but the function and regulation of key intermediate enzymes like farnesyl-diphosphate synthase (FDPS), up to now, remained unknown. A deregulated expression and activity of FDPS was the central research idea of the present study. FDPS mRNA, protein and enzyme activity were analyzed in a cohort of stage III-IV glioma patients (N = 49) and primary derived cells. FDPS silencing helped to clarify its function in the maintenance of malignant phenotype. Interestingly, compared to tumor-free peripheral (TFB) brain and normal human astrocytes (NHA), FDPS protein expression and enzyme activity were detected at high degree in tumor mass where a correlation with canonical oncogenic signaling pathways such as STAT3, ERK and AKT was also documented. Further, FDPS knockdown in U87 and GBM primary cells but not in NHA, enhanced apoptosis. With the effort to develop a more refined map of the connectivity between signal transduction pathways and metabolic networks in cancer FDPS as a new candidate metabolic oncogene in glioblastoma, might suggest to further target MVA pathway as valid therapeutic tool.
Collapse
Affiliation(s)
- Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, Via Pansini 5, 80131, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini, 80131, Naples, Italy
| | - Simona Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy
| | - Giovanni Torelli
- Neurosurgery Unit A.O. San Giovanni di Dio e Ruggi d' Aragona - Salerno's School of Medicine Largo Città di Ippocrate, 84131, Salerno, Italy
| | - Vincenzo Seneca
- "G.Rummo" Medical Hospital, Department of Neurosurgery, Benevento, Italy
| | - Giuseppe Catapano
- "G.Rummo" Medical Hospital, Department of Neurosurgery, Benevento, Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy
| | - Roberta Ranieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy
| | - Maria Notarnicola
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Bari, 70013, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano Salerno, Italy
| | - Maurizio Bifulco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy. .,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini, 80131, Naples, Italy.
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081, Baronissi Salerno, Italy.
| |
Collapse
|
29
|
Viral MicroRNAs Repress the Cholesterol Pathway, and 25-Hydroxycholesterol Inhibits Infection. mBio 2017; 8:mBio.00576-17. [PMID: 28698273 PMCID: PMC5513709 DOI: 10.1128/mbio.00576-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
From various screens, we found that Kaposi's sarcoma-associated herpesvirus (KSHV) viral microRNAs (miRNAs) target several enzymes in the mevalonate/cholesterol pathway. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR [a rate-limiting step in the mevalonate pathway]), and farnesyl-diphosphate farnesyltransferase 1 (FDFT1 [a committed step in the cholesterol branch]) are repressed by multiple KSHV miRNAs. Transfection of viral miRNA mimics in primary endothelial cells (human umbilical vein endothelial cells [HUVECs]) is sufficient to reduce intracellular cholesterol levels; however, small interfering RNAs (siRNAs) targeting only HMGCS1 did not reduce cholesterol levels. This suggests that multiple targets are needed to perturb this tightly regulated pathway. We also report here that cholesterol levels were decreased in de novo-infected HUVECs after 7 days. This reduction is at least partially due to viral miRNAs, since the mutant form of KSHV lacking 10 of the 12 miRNA genes had increased cholesterol compared to wild-type infections. We hypothesized that KSHV is downregulating cholesterol to suppress the antiviral response by a modified form of cholesterol, 25-hydroxycholesterol (25HC). We found that the cholesterol 25-hydroxylase (CH25H) gene, which is responsible for generating 25HC, had increased expression in de novo-infected HUVECs but was strongly suppressed in long-term latently infected cell lines. We found that 25HC inhibits KSHV infection when added exogenously prior to de novo infection. In conclusion, we found that multiple KSHV viral miRNAs target enzymes in the mevalonate pathway to modulate cholesterol in infected cells during latency. This repression of cholesterol levels could potentially be beneficial to viral infection by decreasing the levels of 25HC.IMPORTANCE A subset of viruses express unique microRNAs (miRNAs), which act like cellular miRNAs to generally repress host gene expression. A cancer virus, Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8 [HHV-8]), encodes multiple miRNAs that repress gene expression of multiple enzymes that are important for cholesterol synthesis. In cells with these viral miRNAs or with natural infection, cholesterol levels are reduced, indicating these viral miRNAs decrease cholesterol levels. A modified form of cholesterol, 25-hydroxycholesterol, is generated directly from cholesterol. Addition of 25-hydroxycholesterol to primary cells inhibited KSHV infection of cells, suggesting that viral miRNAs may decrease cholesterol levels to decrease the concentration of 25-hydroxycholesterol and to promote infection. These results suggest a new virus-host relationship and indicate a previously unidentified viral strategy to lower cholesterol levels.
Collapse
|
30
|
Strickland M, Stoll EA. Metabolic Reprogramming in Glioma. Front Cell Dev Biol 2017; 5:43. [PMID: 28491867 PMCID: PMC5405080 DOI: 10.3389/fcell.2017.00043] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022] Open
Abstract
Many cancers have long been thought to primarily metabolize glucose for energy production—a phenomenon known as the Warburg Effect, after the classic studies of Otto Warburg in the early twentieth century. Yet cancer cells also utilize other substrates, such as amino acids and fatty acids, to produce raw materials for cellular maintenance and energetic currency to accomplish cellular tasks. The contribution of these substrates is increasingly appreciated in the context of glioma, the most common form of malignant brain tumor. Multiple catabolic pathways are used for energy production within glioma cells, and are linked in many ways to anabolic pathways supporting cellular function. For example: glycolysis both supports energy production and provides carbon skeletons for the synthesis of nucleic acids; meanwhile fatty acids are used both as energetic substrates and as raw materials for lipid membranes. Furthermore, bio-energetic pathways are connected to pro-oncogenic signaling within glioma cells. For example: AMPK signaling links catabolism with cell cycle progression; mTOR signaling contributes to metabolic flexibility and cancer cell survival; the electron transport chain produces ATP and reactive oxygen species (ROS) which act as signaling molecules; Hypoxia Inducible Factors (HIFs) mediate interactions with cells and vasculature within the tumor environment. Mutations in the tumor suppressor p53, and the tricarboxylic acid cycle enzymes Isocitrate Dehydrogenase 1 and 2 have been implicated in oncogenic signaling as well as establishing metabolic phenotypes in genetically-defined subsets of malignant glioma. These pathways critically contribute to tumor biology. The aim of this review is two-fold. Firstly, we present the current state of knowledge regarding the metabolic strategies employed by malignant glioma cells, including aerobic glycolysis; the pentose phosphate pathway; one-carbon metabolism; the tricarboxylic acid cycle, which is central to amino acid metabolism; oxidative phosphorylation; and fatty acid metabolism, which significantly contributes to energy production in glioma cells. Secondly, we highlight processes (including the Randle Effect, AMPK signaling, mTOR activation, etc.) which are understood to link bio-energetic pathways with oncogenic signals, thereby allowing the glioma cell to achieve a pro-malignant state.
Collapse
Affiliation(s)
- Marie Strickland
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| | - Elizabeth A Stoll
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|